
SymPy – A Pure Python Symbolic Manipulation
Package

SymPy Development Team, presenting Onďrej Čert́ık

University of Nevada, Reno

January 7, 2009

SymPy Development Team, presenting Onďrej Čert́ık SymPy

SymPy

A Python library for symbolic mathematics

http://code.google.com/p/sympy/

>>> from sympy import Symbol, limit, sin, oo
>>> x=Symbol("x")
>>> limit(sin(x)/x, x, 0)
1
>>> integrate(x+sinh(x), x)
>>> (1/2)*x**2 + cosh(x)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

SymPy

What SymPy can do

basics (expansion, complex numbers, differentiation, taylor
(laurent) series, substitution, arbitrary precision integers,
rationals and floats, pattern matching)

noncommutative symbols

limits and some integrals

polynomials (division, gcd, square free decomposition,
groebner bases, factorization)

symbolic matrices (determinants, LU decomposition...)

solvers (some algebraic and differential equations)

2D geometry module

plotting (2D and 3D)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Motivation

Why?

BSD licensed (like SciPy and NumPy) → use it the way you
want

small, pure python → easily include it your own projects

It’s in Debian, Ubuntu, Gentoo, Arch, Sage, ...

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Motivation

Why?

BSD licensed (like SciPy and NumPy) → use it the way you
want

small, pure python → easily include it your own projects

It’s in Debian, Ubuntu, Gentoo, Arch, Sage, ...

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Motivation

Why Python?

widely used language (Google, NASA, YouTube, ...)

easy for you to define your own data types and methods on it.

very clean language that results in easy to read code.

easy to learn (good online documentation, several good
books, some free).

a huge number of libraries: statistics, networking, databases,
bioinformatic, physics, video games, 3d graphics, numerical
computation (numpy and scipy)

easy to interface C/C++/Fortran code (Cython and f2py).

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Motivation

Why Python?

widely used language (Google, NASA, YouTube, ...)

easy for you to define your own data types and methods on it.

very clean language that results in easy to read code.

easy to learn (good online documentation, several good
books, some free).

a huge number of libraries: statistics, networking, databases,
bioinformatic, physics, video games, 3d graphics, numerical
computation (numpy and scipy)

easy to interface C/C++/Fortran code (Cython and f2py).

SymPy Development Team, presenting Onďrej Čert́ık SymPy

SymPy

Other symbolic manipulation software: GiNaC, Giac, Qalculate,
Yacas, Eigenmath, Axiom, PARI, Maxima, Sage, Singular,
Mathomatic, Octave, ...
Problems:

all use their own language (except GiNaC, Giac and Sage)

GiNaC and Giac still too complicated (C++), difficult to
extend

What we want

Python library and that’s it (no environment, no new
language, nothing)

Rich funcionality

Pure Python (non Python modules could be optional) – works
on Linux, Windows, Mac out of the box

SymPy Development Team, presenting Onďrej Čert́ık SymPy

SymPy console

Acutally, I didn’t tell the full truth, we have one nice thing –
isympy:

$ bin/isympy
Python 2.4.4 console for SymPy 0.5.6-hg. These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z = symbols(’xyz’)
>>> k, m, n = symbols(’kmn’, integer=True)

In [1]: integrate(ln(x), x)
Out[1]: -x + x*log(x)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Unicode prettyprinting

Recent changes in isympy:

pretty printing by default

use unicode printing if
available

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Sage

Create a viable open source alternative to Maple,
Mathematica, Matlab and Magma

http://www.sagemath.org/

aims to glue together every useful open source mathematics
software package and provide a transparent interface to all of
them

sage: limit(sin(x)/x, x=0)
1
sage: integrate(x+sinh(x), x)
cosh(x) + x^2/2

In [1]: limit(sin(x)/x, x, 0)
Out[1]: 1

In [2]: integrate(x+sinh(x), x)
Out[2]: (1/2)*x**2 + cosh(x)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

History I

In 2005, I wanted to use symbolic mathematics in Python

pyginac used boost-python, very slow compilation (30s per
file),

I wrote swiginac together with Ola Skavhaug in SWIG, it
works, but too difficult to extend the GiNaC core behind it

Is it really that difficult to have a system, that can calculate
all I need and still be easy to extend?

Let’s reinvent the wheel for the 35th time.

SymPy Development Team, presenting Onďrej Čert́ık SymPy

History II

end of summer 2005: I implemented my first code, mostly
translating ideas from GiNaC to Python.

spring 2006: I discovered the Gruntz algorithm for limits

end of summer 2006: I implemented limits in SymPy

February 2007: Fabian Seoane joined and this was the boost
to SymPy’s development

Google Summer of Code, SymPy is under the umbrella of
Python Software Foundation, the Space Telescope Science
Institute and Portland State University

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Our Team

We try hard to work as a team:

Team

Onďrej Čert́ık, Fabian Seoane, Jurjen N.E. Bos, Mateusz Paprocki,
Marc-Etienne M.Leveille, Brian Jorgensen, Jason Gedge, Robert
Schwarz, Pearu Peterson, Fredrik Johansson, Chris Wu, Kirill
Smelkov, Ulrich Hecht, Goutham Lakshminarayan, David
Lawrence, Jaroslaw Tworek, David Marek, Bernhard R. Link,
Andrej Tokarč́ık, Or Dvory, Saroj Adhikari, Pauli Virtanen, Robert
Kern, James Aspnes, Nimish Telang, Abderrahim Kitouni, Pan
Peng, Friedrich Hagedorn, Elrond der Elbenfuerst, Rizgar Mella,
Felix Kaiser, Roberto Nobrega, David Roberts, Sebastian Krämer,
Vinzent Steinberg, Riccardo Gori, Case Van Horsen, Štěpán
Roučka, Ali Raza Syed, Stefano Maggiolo, Robert Cimrman,
Bastian Weber, Sebastian Krause, Sebastian Kreft, Dan, Alan
Bromborsky, Boris Timokhin, Robert, Andy R. Terrel, Hubert
Tsang, Konrad Meyer, Henrik Johansson, Priit Laes, Freddie
Witherden, Brian E. Granger.

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Development

How SymPy development is done:

all patches have to be reviewed by at least one other developer

all tests need to pass, all new functionality should be tested

frequent releases (we try at least once a month)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

the Schwarzschild solution in the General Relativity

spherically symmetric metric (diag(−eν(r), eλ(r), r2, r2 sin2 θ)) →
Christoffel symbols → Riemann tensor → Einstein equations →
solver

ondra@pc232:~/sympy/examples$ time python relativity.py
...
[SKIP]
...
--
metric:
-C1 - C2/r 0 0 0
0 1/(C1 + C2/r) 0 0
0 0 r**2 0
0 0 0 r**2*sin(\theta)**2

real 0m1.092s
user 0m1.024s
sys 0m0.068s

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Symbolic limits

Gruntz algorithm

the algorithm is so simple that everyone should know how it
works :)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

Comparability classes

L ≡ lim
x→∞

log |f (x)|
log |g(x)|

We define <, >, ∼:

f > g when L = ±∞
f is greater than any power of g
f is more rapidly varying than g
f goes to ∞ or 0 faster than g

f < g when L = 0

f is lower than any power of g
...

f ∼ g when L 6= 0,±∞
both f and g are bounded from
above and below by suitable integral
powers of the other

Examples:

2 < x < ex < ex2
< eex

2 ∼ 3 ∼ −5

x ∼ x2 ∼ x3 ∼ 1

x
∼ xm ∼ −x

ex ∼ e−x ∼ e2x ∼ ex+e−x

f (x) ∼ 1

f (x)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

The Gruntz algorithm I

f (x) = ex+2e−x − ex +
1

x

lim
x→∞

f (x) = ?

Strategy:

mrv set: the set of most rapidly varying subexpressions

{ex , e−x , ex+2e−x}
the same comparability class

take an item ω converging to 0 at infinity

ω = e−x

if not present in the mrv set, use the relation f (x) ∼ 1
f (x)

rewrite the mrv set using ω

{ 1
ω , ω,

1
ω e2ω}

substitute back in f (x) and expand in ω:

f (x) = 1
x −

1
ω + 1

ω e2ω = 2 + 1
x + 2ω + O(ω2)

SymPy Development Team, presenting Onďrej Čert́ık SymPy

The Gruntz algorithm II

Crucial observation: ω is from the mrv set, so

f (x) = ex+2e−x − ex +
1

x
= 2 +

1

x
+ 2ω + O(ω2)→ 2 +

1

x

We iterate until we get just a number, the final limit

Gruntz proved this always works and converges in his Ph.D.
thesis

Generally:

f (x) = · · ·︸︷︷︸
∞

+
C−2(x)

ω2︸ ︷︷ ︸
∞

+
C−1(x)

ω︸ ︷︷ ︸
∞

+C0(x) + C1(x)ω︸ ︷︷ ︸
0

+ O(ω2)︸ ︷︷ ︸
0

we look at the lowest power of ω

the limit is one of: 0, limx→∞ C0(x), ∞
SymPy Development Team, presenting Onďrej Čert́ık SymPy

The question of speed

Being pure Python has many advantages

speed is good enough for many purposes

use Cython (or C++, C) as an optional module to speed the
core up

SymPy Development Team, presenting Onďrej Čert́ık SymPy

