

 Zenoss, Inc.
 www.zenoss.com

Zenoss Developer's Guide
Copyright © 2009 Zenoss, Inc., 275 West St. Suite 204, Annapolis, MD 21401, U.S.A. All rights reserved.

This work is licensed under a Creative Commons Attribution Share Alike 3.0 License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-sa/3.0/; or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California,
94105, USA.

The Zenoss logo is a registered trademark of Zenoss, Inc. Zenoss and Open Enterprise Management are trademarks of Zenoss, Inc. in
the U.S. and other countries.

Flash is a registered trademark of Adobe Systems Incorporated.

Java is a registered trademark of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Oracle and the Oracle logo are registered trademarks of the Oracle Corporation.

SNMP Informant is a trademark of Garth K. Williams (Informant Systems, Inc.).

Sybase is a registered trademark of Sybase, Inc.

Tomcat is a trademark of the Apache Software Foundation.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

Part Number: 08-102009-2.5-v01

iii

1. Introduction .. 1
1.1. Overview ... 1

1.1.1. Model ... 1
1.1.2. Availability .. 1
1.1.3. Events .. 1
1.1.4. Performance ... 1

1.2. Detailed Architecture ... 2
1.2.1. User Layer ... 2
1.2.2. Data Layer ... 2
1.2.3. Collection and Control Service Layer ... 3

2. Getting Started ... 4
2.1. Working with the Source Code ... 4

2.1.1. Getting the Source Code .. 4
2.1.1.1. Getting Subversion for the Appliance .. 4

2.1.2. Keeping up-to-date with your checked-out code .. 5
2.1.3. Getting Patches .. 5
2.1.4. Style Guidelines ... 5

2.1.4.1. Docstrings ... 5
2.1.5. Generating Diffs for new Fixes .. 7
2.1.6. Submitting a Fix ... 7

2.2. Development Toolchain Requirements .. 7
2.2.1. Appliance ... 7

2.3. Programming Techniques .. 9
2.3.1. Calling Methods Using REST .. 9

2.3.1.1. How to Call Methods Using REST .. 9
2.3.1.2. Sending an Event .. 9

2.3.2. Miscellaneous Notes ... 12
2.3.2.1. pkg_resources ... 12
2.3.2.2. urllib2 Workarounds ... 12

2.4. zendmd: Command-line Access to the Device Management Database (DMD) 12
2.5. Programming Documentation ... 14

2.5.1. Python .. 14
2.5.2. Zenoss API .. 14
2.5.3. Other Resources ... 14
2.5.4. Contributing to the Documentation ... 14

3. ZenPacks ... 15
3.1. Overview ... 15
3.2. Creating a ZenPack ... 15

3.2.1. ZenPack Names ... 15
3.2.2. Specifying Dependencies .. 15
3.2.3. Locating ZenPack Source Outside of Zenoss ... 16
3.2.4. Community ZenPack Subversion Access .. 16

3.3. ZenPack Structure and Contents .. 16
3.4. Developing the ZenPack .. 18

3.4.1. Base ZenPack Class ... 18
3.4.2. Storing Objects in the ZODB ... 18
3.4.3. Providing DataSource classes ... 19
3.4.4. Performance Template Checklist ... 20

3.4.4.1. Data Sources ... 20
3.4.4.2. Data Points .. 20
3.4.4.3. Thresholds ... 20
3.4.4.4. Graph Definitions ... 20
3.4.4.5. Graph Points ... 20

3.4.5. Providing Performance Collector Plugins .. 21
3.4.6. Referencing Collector Plugins in ZenPacks .. 21
3.4.7. Providing Daemons ... 21
3.4.8. setuptools and the zenpacksupport .. 21

3.5. Building and Distributing ZenPacks ... 22

Zenoss Developer's Guide

iv

3.5.1. Migrating between versions ... 22
3.5.2. Converting older ZenPacks to ZenPack eggs ... 22

3.6. Development Mode .. 22
3.6.1. Source ZenPacks ... 23
3.6.2. Converting .egg Files to Development Mode ... 23

3.7. Where to Get More Information .. 23
4. Zenoss Data Stores ... 24

4.1. Zope Object Database (ZODB) .. 24
4.2. MySQL Event database ... 25

4.2.1. Connecting to the Database .. 26
4.2.2. MySQL in 60 Seconds .. 26

4.3. Python Pickle Files .. 27
4.4. Round-Robin Database .. 27

5. Events ... 29
5.1. Understanding an Event Entry .. 29

5.1.1. Event Design .. 29
5.2. Sending an Event .. 29
5.3. Adding an Event Class .. 30

5.3.1. Add to ZenEventClasses ... 30
5.3.2. Add the class to the import XML ... 30
5.3.3. Write a migrate script .. 31

6. zProperty Management ... 32
6.1. Adding a zProperty .. 32

6.1.1. Adding a zProperty to an Event ... 32
6.1.2. Adding a zProperty to a Device ... 32

6.2. Migrating the zProperty Code ... 32
7. Creating New Jobs ... 34

7.1. Job Requirements ... 34
7.2. Running a Job ... 34
7.3. Life Cycle of a Job .. 34
7.4. Shell Command Jobs .. 35
7.5. Logging ... 35

8. Device Management ... 36
8.1. Adding Devices Programatically ... 36

8.1.1. Using a REST call .. 36
8.1.2. Using an XML-RPC Call from Python .. 36
8.1.3. XML-RPC Attributes .. 37

8.2. Editing Device Information ... 37
8.2.1. Using a REST call .. 37
8.2.2. Using an XML-RPC Call from Python .. 38

8.3. Deleting A Device .. 38
8.3.1. Using a REST call .. 38
8.3.2. Using an XML-RPC Call from Python .. 38

8.4. Checking If A Device Exists ... 38
8.4.1. Using a REST call .. 38
8.4.2. Using an XML-RPC Call from Python .. 39

8.5. Exporting a Device List .. 39
9. Extending the Model .. 40

9.1. Add a ZenModel Relationship .. 40
9.1.1. One-to-One (1:1) Relationships ... 40

9.2. One-to-Many (1:N) Relationships .. 41
9.3. Many-to-Many (M:N) Relationships ... 42

9.3.1. One-to-Many (1:N) Container Relationships .. 42
9.4. Zenoss XML Schema .. 44

9.4.1. object ... 45
9.4.1.1. Example .. 45
9.4.1.2. Attributes ... 46
9.4.1.3. Children ... 46

Zenoss Developer's Guide

v

9.4.2. objects ... 46
9.4.2.1. Example .. 46
9.4.2.2. Children ... 47

9.4.3. property .. 47
9.4.3.1. Example .. 47
9.4.3.2. Attributes ... 47

9.4.4. tomany ... 47
9.4.4.1. Example .. 47
9.4.4.2. Attributes ... 48
9.4.4.3. Children ... 48

9.4.5. tomanycont ... 48
9.4.5.1. Example .. 48
9.4.5.2. Attributes ... 48
9.4.5.3. Children ... 48

9.4.6. toone .. 48
9.4.6.1. Example .. 48
9.4.6.2. Attributes ... 49

9.4.7. link ... 49
9.4.7.1. Example .. 49
9.4.7.2. Attributes ... 49

9.5. Zenoss Permissions .. 49
9.5.1. Adding New Permissions ... 49
9.5.2. Assigning Permissions to a Method ... 49
9.5.3. Checking Links ... 50

10. Zenoss Daemons ... 51
10.1. Twisted Network Programming Overview .. 51

10.1.1. Understanding NJobs, Driver and DeferredList .. 51
10.1.1.1. DeferredList ... 51
10.1.1.2. NJobs .. 52
10.1.1.3. Driver .. 52
10.1.1.4. A Simple Example .. 53

10.2. Zenoss Daemon Overview ... 55
10.3. zenhub: Daemon to ZODB management ... 56

10.3.1. Daemon to ZODB management ... 56
10.3.2. Heartbeats and other Events ... 56
10.3.3. Pluggable Daemon Services .. 57

10.4. ZenRender and Graphs ... 57
10.5. Developing a Daemon ... 57

10.5.1. Command-line Options .. 57
10.5.2. Add the Daemon Control Script ... 58
10.5.3. Set Up ZenHub Communications ... 58

10.5.3.1. Registering Services with the Hub ... 59
11. Add a Performance Daemon ... 60

11.1. Overview ... 60
11.2. DataMaps .. 60
11.3. Performance Collection .. 62

11.3.1. Connecting Collectors and Services ... 62
11.4. Creating a New Collector ... 62

11.4.1. Constructor ... 62
11.4.2. Getting a List of Devices ... 63

11.4.2.1. Thresholds ... 64
11.4.3. fetchConfig() ... 65
11.4.4. Collector's ZenHub Service .. 66
11.4.5. Miscellaneous Functions .. 66
11.4.6. Collect the Performance Data .. 66

12. Adding a Device Type .. 70
12.1. Overview ... 70
12.2. Add the MIB .. 70

Zenoss Developer's Guide

vi

12.3. Add a Device Organizer ... 70
12.4. Create a Modeler ... 71

12.4.1. Verify the SNMP connectivity and OIDs ... 71
12.4.2. Common SNMP Issues ... 72
12.4.3. Modeler Code ... 72
12.4.4. Testing the Modeler .. 74

12.5. Create a Performance Collector ... 75
12.5.1. Performance Data Collector Code .. 75
12.5.2. Writing Your Own Command Parser .. 76

12.6. Create the Template .. 77
12.6.1. Create the DataSource .. 77
12.6.2. Create a Threshold ... 78
12.6.3. Create a Graph ... 78

12.7. Map Events ... 78
12.8. Adding SSH Monitoring Tests ... 78

12.8.1. Overview .. 78
12.8.2. Modeling Plugin Test Data .. 78

12.8.2.1. Test Data for an ObjectMap ... 79
12.8.2.2. Test Data for a RelationshipMap ... 79
12.8.2.3. Test Data for a List of Data Maps ... 79

12.8.3. Data Point Parser Test Data .. 80
12.8.3.1. Test Data for Device-Level Parsers ... 80
12.8.3.2. Test Data for Component Parsers ... 80

12.8.4. Running the Tests ... 80
13. Extending the User Interface ... 81

13.1. Overview of the Zenoss UI Technologies .. 81
13.1.1. HyperText Markup Language (HTML) .. 81
13.1.2. Cascading Style Sheets (CSS) .. 81
13.1.3. Zope 2, ZPT and TAL ... 81
13.1.4. ZPT and Macro Expansion for TAL (METAL) .. 82
13.1.5. JavaScript / AJAX ... 82
13.1.6. JavaScript libraries: YUI and MochiKit .. 82

13.2. Customizing the Navigation Bar .. 82
13.2.1. Adding a link .. 82
13.2.2. A Simple HTML Page ... 83
13.2.3. A Simple TAL and METAL page .. 83

13.3. Customizing the Logo .. 84
13.4. Zope 2 Page Templates, TAL and METAL and Zenoss .. 84

13.4.1. Tips .. 86
13.5. Zope 3 Views Explained .. 87

13.5.1. The Zope 2 Way ... 87
13.5.2. The Zope 3 Way ... 87

13.6. Other Customizations ... 89
13.6.1. Adding Tabs ... 89
13.6.2. Adding a Dialog .. 91
13.6.3. Adding a New Menu or Menu Item .. 92
13.6.4. Creating a Table Using ZenTableManager .. 94
13.6.5. Creating an Editable Table .. 95
13.6.6. How to Save Properties via an Edit Screen .. 95

13.7. Creating a Dashboard Portlet ... 97
13.7.1. Create a ZenPack ... 97
13.7.2. Write the Python back-end code .. 98
13.7.3. Write the JavaScript Portlet ... 99
13.7.4. Register the portlet .. 103

13.8. Debugging Tips ... 104
14. Reports .. 105

14.1. Adding a New Report ... 105
14.2. Plugins .. 106

Zenoss Developer's Guide

vii

14.3. Adding Export Buttons to Reports ... 106
15. Migrating Zenoss Code ... 108

15.1. Introduction and Steps ... 108
15.2. How It Works ... 108
15.3. What You Write ... 108

15.3.1. Implement cutover() .. 109
15.3.2. Supporting Code ... 109
15.3.3. Testing and Deployment .. 109

16. Testing ... 110
16.1. Zenoss Unit Tests .. 110

16.1.1. Introduction ... 110
16.1.2. doctest Testing ... 110
16.1.3. Zenoss' Test Runner ... 111

16.1.3.1. An Example Unit Test ... 112
16.1.4. Integrating With Buildbot .. 114
16.1.5. JavaScript Test Framework ... 114

16.2. Functional User Interface Testing ... 115
16.2.1. Introduction ... 115
16.2.2. Installing and Running ... 115

16.2.2.1. Installing and Configuring Mac OS X ... 115
16.3. Where to Get More Information .. 115

A. Event Database Dictionary ... 116
B. TALES Expressions ... 117

B.1. Examples .. 117
B.1.1. ping ... 117
B.1.2. DNS forward lookup ... 117
B.1.3. DNS reverse lookup ... 117
B.1.4. snmpwalk ... 117

B.2. TALES Device Attributes ... 118
B.3. TALES Event Attributes ... 119

Glossary ... 120

1

Chapter 1. Introduction
1.1. Overview

The Zenoss system brings together many types of monitoring and management information. The information
is available through a standard web browser. In fact all aspects of the system are accessed though the web
there is no need to edit configuration files.

At a high level, Zenoss consists of four major parts:

1. Model

2. Availability

3. Events

4. Performance

1.1.1. Model

At the core of Zenoss is the Model. The standard model is a detailed description of all the devices Zenoss
manages and their relationship to your business or other important groupings. Because of the large amount of
information in the model there are several ways that information can be added. First is through auto discovery.
This is the primary way that information is added to the model. Zenoss auto-discovery is very flexible and can
use several different transports. The model can also be populated though the web UI or through Zenoss' exter-
nal APIs. Version 2.0 adds discovery locking which allows auto-discovered information to be overridden with
manually added information.

The model is used to drive the monitoring elements of the Zenoss system which will be described throughout
the rest of this document.

1.1.2. Availability

Availability monitoring consists of running tests against the IT infrastructure to determine if it is currently func-
tioning properly. These test are typically run externally to the monitored system. Example tests include: ping,
process, and service tests.

1.1.3. Events

The Zenoss Event Management System is a consolidation of status information from all parts of the Zenoss
system as well as external systems. When a Zenoss monitoring daemon detects a failure or threshold breach
events are generated. This is similar to most other monitoring systems available. Zenoss does more in that it
also takes event import from other parts of the IT infrastructure. These include Syslog and SNMP Traps. It's one
thing to bring the events into a single repository but an event management system must do more. As events
are received Zenoss runs them through a set of rules that augment the information they contain and integrate
them with the model.

1.1.4. Performance

The Zenoss Performance Management System tracks important IT resource information as it changes over
time. This process is also known as data collection. It is critical to know how much disk space is available, what
the CPU load is and how long a web page takes to download. This system can collect information though SNMP,
custom scripts (ZenCommands) or XML-RPC. Performance information is integrated with the Zenoss Model so
that resource usage is shown in the context of other Zenoss information.

Introduction

2

1.2. Detailed Architecture

Figure 1.1. Zenoss Detailed Architecture

1.2.1. User Layer

The User Layer is manifested as a Web Console/Portal (Zope). This layer consists of the Graphical User Interface
(GUI), which allows the user access to the following pieces of information:

Dashboard Events Locations

Devices Manufacturers Reports

Services Systems Users

Networks Groups Administration

1.2.2. Data Layer

The Data layer is where all of the information about the monitored environment is stored. For more information
about how data is stored, see the section on Datastores.

Introduction

3

Daemon Description

ZenHub Broker of information between the data layer and the
collection daemons.

1.2.3. Collection and Control Service Layer

The services that collect the data and feed it to the Data Layer come from the daemons associated with the
Collection and Control Services Layer. These daemons can be broken down into five distinct areas: Automat-
ed Modeling, Availability Monitoring, Event Collection, Performance Monitoring, or Automated Response. The
daemons that fall under each layer are detailed below.

Daemon Description

Zendisc Zendisc is a subclass of zenmodeler and it goes out to discover new network re-
sources. It walks the routing table to discover the network topology and then pings
all discovered networks to find active IPs and devices.

ZenModeler ZenModeler is a configuration collection and configuration daemon. It is used for
high-performance, automated model population using SNMP, SSH, and Telnet to
collect its information. Zenmodeler works against devices that have been loaded
into the DMD.

Table 1.1. Automated Modeling Daemons

Daemon Description

ZenPing ZenPing is the ping status monitoring (ICMP) for Zenoss. ZenPing does the high-
performance asynchronous testing of the ICMP status.

ZenWin ZenWin is used for Windows Service Monitoring (WMI).

ZenStatus ZenStatus performs active TCP connection testing of remote daemons.

ZenProcess ZenProcess enables process monitoring using SNMP host resources mib.

Table 1.2. Availability Monitoring Daemons

Daemon Description

ZenSyslog ZenSyslog is collection of and classification of syslog events.

ZenEventlog ZenEventlog is used collect (WMI) event log events.

ZenTrap ZenTrap collects SNMP Traps. It receives traps and turns them into events.

Table 1.3. Event Collection Daemons

Daemon Description

ZenPerfSNMP ZenPerfSNMP does the high performance asynchronous SNMP performance col-
lection.

ZenPerfXMLRpc ZenPerfXMLRpc is used for XML RPC Collection.

ZenCommand ZenCommand is used for XML RPC Collection specifically it allows the running of
Nagios and Cactii plug-ins on the local box or on remote boxes through SSH.

Table 1.4. Performance Monitoring Daemons

Daemon Description

ZenActions ZenActions is used for alerts (SMTP, SNPP and Maintenance Windows).

Table 1.5. Automated Response Daemons

4

Chapter 2. Getting Started
2.1. Working with the Source Code

2.1.1. Getting the Source Code

If all that you would like to do is browse through the source code, then you can just go to the Trac/Subversion
page.

The version control system used by Zenoss is Subversion. Subversion has excellent documentation in the form
of an O'Reilly book. For the moment, we'll just provide the minimum number of commands to get started.

The absolute latest version of Zenoss can be accessed directly through the Subversion repository. This code
should not be used for production purposes as there are changes actively being made which may not have
been thoroughly tested.

From a command-line prompt, go to a directory where you would like to see the source code be delivered. Here's
a sample command to get the source code:

$ svn co http://dev.zenoss.org/svn/trunk/Products

This will create a directory called Products in the current directory and checkout the source code. This repository
is readable anonymously, so no credentials are required.

To see what other portions of the code are available, such as ZenPacks or support utilities, you can look using
the following Subversion command:

$ svn ls http://dev.zenoss.org/svn/trunk

Other tools that can be used to view or checkout the source code for different platforms are available. See the
Subversion web site for more details.

2.1.1.1. Getting Subversion for the Appliance

The rPath appliance does not ship with the svn binaries, but you can still obtain them.

Procedure 2.1. Installing Subversion on Appliances

1. Edit the /etc/conaryrc file.

• For the Community version, look for the line that looks like this:

installLabelPath zenoss-project.zenoss.loc@zenoss:core-2.3

Change the above line to this (note that this should be all one line and has been modified to make it
look better in print):

installLabelPath zenoss-project.zenoss.loc@zenoss:core-2.3
 conary.rpath.com@rpl:1

• For the Enterprise version, look for the line that looks like this:

installLabelPath zenoss-project.zenoss.loc@zenoss:enterprise-2.3

Change the above line to this (note that this should be all one line and has been modified to make it
look better in print):

installLabelPath zenoss-project.zenoss.loc@zenoss:enterprise-2.3
 conary.rpath.com@rpl:1

2. Now you should be able to obtain the subversion package by using the conary update command:

[root@localhost ~] conary update --resolve subversion

http://dev.zenoss.com/trac/browser
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://oreilly.com/
http://www.rpath.com/corp/

Getting Started

5

For more information about rPath commands, see their documentation wiki. There are also a set of blog entries
Conary Uncorked has been put together by a dedicated rPath user that introduces some of the conary com-
mands much more gently.

2.1.2. Keeping up-to-date with your checked-out code

The following command, issued from the base directory of where you checked out the Zenoss code, will update
all code from that directory and all subdirectories and bring it up to date with what is current in the Subversion
repository (and therefore apply all of the current patches to the code you checked out previously):

$ svn update

If you have modified any code in this directory, these changes will be merged with the latest code updates. If there
are differences that Subversion cannot automatically resolve, Subversion will tell you that there is a problem by
showing the updated file is in conflict (for example, showing a 'C' beside the file when you run svn status).

You can tell if you have modified any of the files in the checked-out directory by typing the following:

$ svn status

If you are only interested in modifying one file rather than everything, you can specify that one file:

$ svn udpate filename

2.1.3. Getting Patches

For issue tracking, bug reports and linking patches to bug reports, Zenoss uses Trac to manage issues. The
Zenoss Trac server is found here.

You can click on the Search box on the top right-hand side and enter a search term to look for keywords in
the tickets. This will then present you with the ability to search for changesets (ie Subversion revisions), trouble
tickets, or the Wiki.

Alternatively, from the start page you can click on the Custom Query which will allow you to view the results
from your customized query.

Once you have found a patch that applies to your system, you can use the zenpatch command in order to apply
them to your system. (As mentioned previously, if you use the svn update commands, you will already be at
the latest patched level.)

$ zenpatch revision_number

2.1.4. Style Guidelines

These following guidelines are targeted at Python files. HTML files, Zope Page Template (ZPT) files, shell scripts,
etc should adhere to these as much as is reasonable and conventional in those languages. Currently, we follow
Guido's Style Guide for Python Code which is detailed in PEP 8 (Python Enhancement Proposals).

Any style conventions that stray from PEP-8 should be annotated in this document.

2.1.4.1. Docstrings

Every method and function definition within Zenoss should include a docstring. The docstring is usually com-
posed of two parts: the explanatory text and the doctest code. The explanation usually includes a description
of all or most of the following aspects of the function:

• The function's purpose

• The context in which the function is usually called

• What parameters it expects

http://wiki.rpath.com/wiki/Main_Page
http://www.conaryuncorked.org
http://trac.edgewall.org/
http://dev.zenoss.com/trac/report
http://www.python.org/dev/peps/pep-0008/

Getting Started

6

• What it returns

• Any side effects of the function

This explanatory text should scale in size with the complexity and significance of the function.

The second part of the docstring is the doctest section. This is composed of zendmd commands and expected
output from those commands. The commands are run as part of the testing process and output is compared to
the output lines. This code serves two primary purposes. First it is a working example of how the function should
be called and what it returns. Second it serves as a basic test to ensure the function is not horribly broken. This
is not intended as a replacement for unit tests. Thorough testing of boundary cases and unusual situations still
belongs in unit tests whereas the doctests are much simpler and more instructional in nature.

Docstrings begin on the line immediately following the function definition and are indented one level from the
definition. The first and last lines of the docstring are three double quotes and a newline. One blank line separates
the description from the epydoc section. epydoc can take specially formatted text in the docstrings and use
them to create API documentation. The Zenoss API documentation is located on the Zenoss Web site and is
updated every release.

Another blank line separates the epydoc section from the doctest section. The code for the function begins on
the line immediately following the docstring. For example:

def TruncateStrings(longStrings, maxLength):
 """
 Foo truncates all the strings in a list to a maximum length.
 longStrings is any iterable object which returns zero or more
 strings. maxLength is the length to which each element from
 longStrings should be truncated.

 @param longStrings: an iterable object which returns zero or more strings
 @type longStrings: Python iterable
 @param maxLength: max length of each element in longStrings
 @type maxLength: int
 @return: longStrings in the same order but possibly truncated
 @rtype: list
 @todo: Add more epydoc attributes!

 >>> from Products.SomeModule import TruncateStrings
 >>> TruncateStrings(['abcd', 'efg', 'hi', ''], 3)
 ['abc', 'efg', 'hi', '']
 >>> TruncateStrings([], 5)
 []
 """
 return [s[:maxLength] for s in longStrings]

The easiest way to create the doctest portion is from within zendmd. Except for the indentation, the docstring
should exactly match commands and output from a zendmd session.

Use the available epydoc fields where they are applicable. Some of the useful common fields are:

Commonly-used epydoc fields

@param param_name Describe the parameter

@type data_type Data type of the parameter

@return Describe the return value

@rtype Data type of the return value

@permission Zope permission that the method requires

@todo Todo for this method

Within the description section of the docstring, you may use the string DEPRECATED on its own line to denote
that the method is deprecated.

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/manual-fields.html

Getting Started

7

2.1.5. Generating Diffs for new Fixes

Once you've determined how to fix something, or have found a way to add a feature, modify the source code
in your checkout directory. Once that's complete, we just need to generate a diff starting from the base of the
checkout directory.

To generate a diff of all files in the current directory and all subdirectories:

$ svn diff > mychanges.diff

To produce a diff for just a single file:

$ svn diff source_file > mychanges.diff

2.1.6. Submitting a Fix

Zenoss accepts user contributions using the following procedure:

1. Complete the form to allow Zenoss to accept your code.

2. Create a ticket in our ticketing system.

3. Add the keyword contribute to the ticket.

4. Attach your patch (in diff format) or code to the ticket.

All contributions will be accepted under the terms of the Zenoss Contribution Agreement.

2.2. Development Toolchain Requirements

There are a number of other tools that are required to build Zenoss from source (a toolchain). Among them are
a C compiler, the make command, and other associated tools.

2.2.1. Appliance

The Zenoss appliance is based on the rPath Linux 1 (rp11) distribution.

Troves (like the gcc toolchain) that are not available on the Zenoss update repository server are generally
available from install labels, such as:

conary.rpath.com@rpl:1

The trove candy store is rBuilder Online. Zenoss recommends that you obtain an account there. It provides good
search capabilities for packages of interest, and offers forums to assist with appliance-specific questions.

For a gcc toolchain, try this as the root user:

conary update --resolve autoconf automake make which \
 --install-label="conary.rpath.com@rpl:1"
conary update --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"

The binutils trove should already be on the box.

An actual install sequence looked like the ouput below. If the --info switch is used, it is possible to see if everything
is going to resolve nicely. And if you are really paranoid, use the --test flag which runs through the update but
does not commit the result.

conary update autoconf automake make which --resolve --info \
 --install-label="conary.rpath.com@rpl:1"
 Install autoconf(:data :doc :runtime)=2.59-7-0.1
 Install automake(:data :doc :runtime)=1.9.6-3-0.1
 Install m4(:runtime)=1.4.3-4-0.1

http://community.zenoss.org/community/developers
http://dev.zenoss.com/trac/wiki/HowToAddTicket

Getting Started

8

 Install make(:doc :locale :runtime)=3.80-7.2-1
 Install which(:doc :runtime)=2.16-3-0.1

conary update autoconf automake make which --resolve \
 --install-label="conary.rpath.com@rpl:1"
Including extra troves to resolve dependencies:
 m4:runtime=1.4.3-4-0.1
Applying update job:
 Install autoconf(:data :doc :runtime)=2.59-7-0.1
 Install automake(:data :doc :runtime)=1.9.6-3-0.1
 Install m4(:runtime)=1.4.3-4-0.1
 Install make(:doc :locale :runtime)=3.80-7.2-1
 Install which(:doc :runtime)=2.16-3-0.1

conary update --info --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"
 Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Install libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

conary update --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"
Including extra troves to resolve dependencies:
 libgcc:devellib=4.1.2-11-1
Applying update job:
 Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Install libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

Generally try to find something on the rpl:1 branch name and do not mix rpl:2 stuff with the rpl:1 stuff. In some
cases, you may have to resort to pulling a trove from the rpl:devel branch if it cannot find it elsewhere. That's
what happened above when trying to resolve the libgcc dependency for the gcc trove. Adding the extra --
install-label option was necessary so that libgcc could be found. How could you know it was on rpl:devel?
Go to rBuilder Online and search for that package and it should tell you.

If you want to see where the files for a trove are installed:

conary q trove_name --lsl

[code]# conary q gcc --lsl
...
lrwxrwxrwx 1 root root 3 2004-07-07 17:04:44 UTC /usr/bin/cc -> gcc
-rwxr-xr-x 1 root root 81452 2006-06-19 18:02:30 UTC /usr/bin/gcc
-rwxr-xr-x 1 root root 16134 2005-10-15 07:22:42 UTC /usr/bin/gccbug
...

Lastly, conary makes it relatively easy to run-away if you're not happy with a trove you've installed. Use conary
rblist to see what packages have been committed to the conary stack.

conary rblist | more
r.3:
 installed: gcc(:devel :devellib :doc :lib :locale :runtime)
conary.rpath.com@rpl:1/3.4.4-9.4-1
 installed: libgcc(:devellib) conary.rpath.com@rpl:devel/4.1.2-11-1

r.2:
 installed: autoconf(:data :doc :runtime) conary.rpath.com@rpl:1/2.59-7-0.1
 installed: automake(:data :doc :runtime) conary.rpath.com@rpl:1/1.9.6-3-0.1
 installed: m4(:runtime) conary.rpath.com@rpl:1/1.4.3-4-0.1

r.1:
 updated: info-raa-web(:user) products.rpath.com@rpath:raa-2/1-1.1-2 ->
1-1.3-2
 ...

Here is how you would remove the gcc trove that was just installed:

conary rb r.3
Applying update job:
 Erase gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Erase libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

Getting Started

9

conary q gcc
gcc was not found

Be careful which troves you remove!

2.3. Programming Techniques

2.3.1. Calling Methods Using REST

REpresentational State Transfer (REST) is a method of marshaling data types and calling functions using HTTP.
Zope supports a number of different Remote Procedure Call (RPC) mechanisms, including REST.

This section describes some more advanced Zenoss concepts that we have encountered as the product has
rolled out. Some may be appropriate for your environment. Usually they require at least a little coding experience,
but they are really not that hard.

2.3.1.1. How to Call Methods Using REST

Zenoss' Web interface will let you run any method of any object by using a simple URL. Callas are in the following
format:

USERNAME:PASSWORD@MY_ZENOSS_HOST:8080/PATH_TO_OBJECT/METHOD_NAME?ARG=VAL

where:

• USERNAME is the user with rights to view this information.

• PASSWORD is the user's password.

• MY_ZENOSS_HOST is the hostname or IP address of your Zenoss instance

• PATH_TO_OBJECT is the full path of the object you want to access

• METHOD_NAME is the object's method you want to run

• ARG is the method's parameter name

• VAL is the method's parameter value

The following example provides the most recent load average of a Linux server:

http://USERNAME:PASSWORD@MY_ZENOSS_HOST:8080/zport/dmd/
Devices/Server/Linux/devices/angel/getRRDValue?dsname=laLoadInt5_laLoadInt5

Note these things about this URL:

• /zport/dmd/Devices/Server/Linux/devices/angle is the full path to the object you want to access.

• getRRDValue is the method in the Device object you want to run.

• dsname is a parameter to the getRRDValue method.

• laLoadInt5_laLoadInt5 is the value of dsname, which is the name of the data source we are interested in

Watching the URLs as you browse the Web interface can give you a place to start searching.

2.3.1.2. Sending an Event

Events can be sent to Zenoss through the web interface as well as through using zensendevent, but also
through a programmatic interface.

2.3.1.2.1. Using a REST Call

Sending an event through a rest call can be done by a simple web get. In this example we will use wget to send
an event. If you use wget don't for get to escape the "&" or wrap the URL in single quotes.

Getting Started

10

[zenos@zenoss $] wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManag-
er/manage_addEvent?
device=MYDEVICE&component=MYCOMPONENT&summary=MYSUMMARY&severity=4&eventclass=EVENTCLASS'

2.3.1.2.2. Using XML-RPC

To send an event to Zenoss using XML-RPC you will first need to create a dictionary (in Perl a hash) that will
represent the event. Zenoss will need at a minimum the following fields:

Event fields

device the name of the device from which this event originates

component the sub-component of the device (for example, eth0 or http)

summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear.

You can send an event to Zenoss via an interactive session with the Python interpreter as follows:

>>> from xmlrpclib import ServerProxy
>>> myurl= 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager'
>>> serv = ServerProxy(myurl)
>>> evt = {'device':'mydevice', 'component':'eth0',
... 'summary':'eth0 is down','severity':4, 'eventClass':'/Net'}
>>> serv.sendEvent(evt)

See below for examples in other languages.

2.3.1.2.3. Example Usage in Other Languages

Please note that we are a Python shop and may not be able to answer specific questions about XML-RPC
clients written in other languages.

2.3.1.2.3.1. Perl

Send an event via Perl using RPC::XML::Client

require RPC::XML;
require RPC::XML::Client;

$serv = RPC::XML::Client->new('http://YOURZENOSS:8081/');
%evt = ('device' => 'mydevice2', 'component' => 'eth1',
 'summary' => 'eth1 is down', 'severity' => 4);
$args = RPC::XML::struct->new(%evt);
$serv->simple_request('sendEvent', $args);

2.3.1.2.3.2. Ruby

This is an example of an Interactive Ruby (IRB) session (the returns have been omitted for the sake of clarity).
Note, however, that the Ruby standard library is under active development in general, and specifically, the XML-
RPC lib in Ruby is not stable. As of Feb 2007, there is a great deal of on-going discussion regarding XML-RPC
in Ruby by Ruby developers and contributors. The following is known to work in previous versions of Ruby:

require "xmlrpc/client"
url='user:pass@http://YOURZENOSS:8080/zport/dmd/DeviceLoader')
server = XMLRPC::Client.new2(url)

evt = {'device' => 'mydevice3', 'component' => 'eth2',
 'summary' => 'eth2 is down', 'severity' => 4}
server.call('sendEvent', evt)

2.3.1.2.3.3. PHP

<?php

include("xmlrpc.inc");

Getting Started

11

function ifInOutBps($host, $port, $user, $pass, $device, $interface) {

 $ifInOctets = 'ifInOctets_ifInOctets';
 $ifOutOctets = 'ifOutOctets_ifOutOctets';

 # base url $url = '/zport/dmd/Devices';

 # message $msg = new xmlrpcmsg(

 $device.'.os.interfaces.'.$interface.'.getRRDValues', array());

 $xifInOctets = new xmlrpcVal($ifInOctets);
 $xifOutOctets = new xmlrpcVal($ifOutOctets);
 $xifOctets = new xmlrpcVal(array($xifInOctets, $xifOutOctets), 'array');
 $msg->addParam($xifOctets);

 # client $clt = new xmlrpc_client($url, $host, $port);
 # $clt->setCredentials($user, $pass);

 # get response $rsp = $clt->send($msg);

 # any error? if ($rsp->faultCode()) {

 die('ifInOutBps - Send error: '.$rsp->faultString().'

'); }

 # convert to data structure $dst = xmlrpc_decode($rsp->serialize());

 return(array('in'=>$dst[$ifInOctets]*8, 'out'=>$dst[$ifOutOctets]*8));

}

?>

2.3.1.2.3.4. Java

This example uses the Apache XML-RPC library and Java 6 to send an event to the Zenoss server.

Required jars on the classpath (all available from the Apache download):

• xmlrpc-client-3.1.jar

• ws-commons-util-1.0.2.jar

• xmlrpc-common-3.1.jar

import java.net.URL;
import java.util.HashMap;

import org.apache.xmlrpc.client.XmlRpcClient;
import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;

public class JavaRPCExample {

 public static void main(String[] args) throws Exception {
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 url= "http://MYHOST:8080/zport/dmd/ZenEventManager"
 config.setServerURL(new URL(url));
 config.setBasicUserName("admin");
 config.setBasicPassword("zenoss");

 XmlRpcClient client = new XmlRpcClient();
 client.setConfig(config);

 HashMap<String,Object> params = new HashMap<String,Object>();

 params.put("device", "mydevice");
 params.put("component", "eth0");

http://ws.apache.org/xmlrpc/index.html

Getting Started

12

 params.put("summary", "eth0 is down");
 params.put("severity", 4);
 params.put("eventClass", "/Net");

 client.execute("sendEvent", new Object[]{params});
 }
}

2.3.2. Miscellaneous Notes

2.3.2.1. pkg_resources

Should one need to use pkg_resources, it would normally be imported like this:

import pkg_resources

To avoid the mysterious warning

_xmlplus UserWarning

use the following import line:

import Products.ZenUtils.PkgResources

2.3.2.2. urllib2 Workarounds

There is a bug in the standard Python urllib2 library that prevents HTTPS requests through a proxy from
working. This affects ZenWebTx and any other Python code that might attempt to make HTTPS calls. Zenoss
installs a Python egg named httpsproxy_urllib2-1.0 which provides modified versions of the Python httplib
and urllib2 modules. These replacement modules are used anytime Zenoss code imports httplib or urllib2.
More information regarding this module is available at PyPi.

Directions for configuring your environment to use an HTTP and HTTPS proxy are available in Zenoss Extended
Monitoring in the chapter on ZenWebTX.

2.4. zendmd: Command-line Access to the Device Management
Database (DMD)
Zenoss uses the Zope database (ZODB) to store its information. Since the ZODB is an Object-Oriented
DataBase, this is not organized by tables, rows and columns, but by objects. The object that Zenoss uses to
store the basic model of your network is in the Device Management Database (DMD) object.

You can access the DMD through an interactive, programmable interpreter: zendmd. zendmd is the Python
interpreter, with a handle to the database stored in the default namespace, and a few handy functions.

To start zendmd and see how the interpreter works, use the following commands:

$ zendmd
>>> 1 + 2
3
>>> len('hello there')
11
>>> for i in range(5):
... print i
0
1
2
3
4

These are all basic Python interpreter features. zendmd adds in a reference to the root of the object tree which
is known as dmd. You can see this root name in the URLs used to refer to objects when using Zenoss from
the browser.

http://pypi.python.org/pypi/httpsproxy_urllib2

Getting Started

13

There is a built-in function that can be used to find devices.

$ zendmd
>>> print dmd
<DataRoot at /zport/dmd>
>>> find('localhost.localdomain')
<Device at /zport/dmd/Devices/Server/Linux/devices/localhost.localdomain>

The find() function also takes wildcards:

>>> find('local*')
<Device at /zport/dmd/Devices/Server/Linux/devices/localhost.localdomain>

You can perform scripting at the command prompt. For example, we can count the number of interfaces on
our device:

>>> d = find('local*')
len(d.os.interfaces())
5

You can inspect the objects:

>>> d.getManageIp()
 '127.0.0.1'
for i in d.os.interfaces():
... for a in i.ipaddresses():
... print a.name(), a.getIpAddress()
 eth0 192.168.1.148/24

You can perform low-level checks such as re-indexing all the objects:

>>> reindex()

Or check/repair relationships on all devices:

>>> for d in dmd.Devices.getSubDevices():
... d.checkRelations(repair=True)
...

Finally, after making changes you can commit them to the database:

>>> commit()

or synch against the database and restore the old state to your interpreter, reverting any changes:

>>> synch()

Zendmd can be used to automate repetitive tasks. For example, you can enter in a large list of devices. First,
create a text file containing the names of those devices:

$ cat >lotsOfDevices.txt
device1
myhost.mydomain.com
host2.mydomain.com
^D

Of course, the data could come from an inventory list or other database. Then, you can use the dmd to process
the file:

$ zendmd
for line in file('lotsOfDevices.txt'):
... d = dmd.Devices.Server.Linux.createInstance(line.strip())
... commit()
... d.collectDevice()

You can feed zendmd commands on stdin:

$ zendmd < AddDevices.py

Getting Started

14

You can also import scripts:

$ zendmd
import MyScripts
MyScripts.loadDevices(dmd)

If you want to create a stand-alone command, reading the $ZENHOME/ZenModel/zendmd.py file is a good start.

The full List of zendmd names is described below.

zendmd Name Description

dmd Device Management Database, the root persistent object

app The Zope Application, the root of the database

zport Zenoss Portal, the portal that contains Zenoss

find() Look up devices by name, and by address; supports wildcards

devices Equivalent to dmd.Devices

sync() Revert the objects in zendmd back to the state in the ZODB

commit() Push object changes to the persistent store

abort() Undo any object changes and refresh from persistent storage

me a reference to the machine running zendmd, if it can be found

reindex() recreates the indexes against the objects

login() sets the security context of the given user

logout() removes any security context

Table 2.1. zendmd Names and Descriptions

2.5. Programming Documentation

2.5.1. Python

If you are new to Python here are a few resources to get you started:

• The official Python documentation contains a tutorial and the reference guide for the standard libraries that
ship with Python. Note that Zenoss is currently constrained to using Python 2.4, so be careful when reading
about different Python features.

• Dive Into Python is an excellent book if you are familiar with other programming languages and contains
lots of great examples.

2.5.2. Zenoss API

As mentioned previously, more detailed information is gathered using the epydoc documentation system, and
the results are in the Application Programming Interface (API) documentation.

2.5.3. Other Resources

Discussion regarding development of Zenoss takes place on the Zenoss forums, at:

http://community.zenoss.org/community/forums

2.5.4. Contributing to the Documentation

If you find errors or omissions in the documentation, you can either submit a ticket (see Section 2.1.6, “Submitting
a Fix”) or send an e-mail to docs@zenoss.com.

http://docs.python.org/index.html
http://diveintopython.org/
http://community.zenoss.org/community/forums
mailto:docs@zenoss.com

15

Chapter 3. ZenPacks
3.1. Overview
A ZenPack is a package that adds new functionality to Zenoss. For basic information on ZenPacks see the
Zenoss Admin Guide section on ZenPacks. The following information pertains to the creation of more complex
ZenPacks that contain skins, Python classes, daemons, etc.

As of Zenoss 2.2 the ZenPack framework has switched to using Python Eggs as the packaging mechanism for
ZenPacks. Python Eggs are the standard mechanism for packaging and distributing code.

The zenpack command should be used for installation and removal of ZenPacks, not the easy_install
command that is frequently used with non-ZenPack Python Eggs.

The use of dotted names for ZenPacks (see Section 3.2.1, “ZenPack Names” below) was also introduced in
this version. Zenoss 2.2 supports installation and use of pre-2.2 ZenPacks, but all new ZenPacks are created in
the new format. This document relates to ZenPacks created in the new style. For documentation on ZenPacks
predating Zenoss 2.2 please see previous versions of this document and the Zenoss Admin Guide.

If you developed pre-2.2 ZenPacks and wish to convert them to Egg-style ZenPacks see the section below
Section 3.5.2, “Converting older ZenPacks to ZenPack eggs”.

3.2. Creating a ZenPack
ZenPacks can be created through the Zenoss user interface by using the Create ZenPack… menu item on the
ZenPacks page. This creates the ZenPack on the file system at $ZENHOME/ZenPacks/zenpackid and installs
it into Zenoss.

3.2.1. ZenPack Names

ZenPack names consist of at least three strings joined by periods. The first of these strings is always "ZenPacks."
Each of these strings must start with a letter and contain only letters, numbers and underscores. The reason for
this naming scheme is that the ZenPack will setup namespaces in Python that reflect these names. There is a
Python namespace called ZenPacks. Within that namespace are packages representing the second part of all
the installed ZenPack and so on. So for example if you have a ZenPack named ZenPacks.MyCompany.MyZenPack
then it is importable in Python (and zendmd) as

import ZenPacks.MyCompany.MyZenPack

A data source class provided by this example might be accessed as

from ZenPacks.MyCompany.MyZenPack.datasources.MyDataSourceClass \
 import MyDataSourceClass

The advantage of these namespaces is that they help prevent namespace conflicts between different organiza-
tions authoring ZenPacks. So if a third party wants to develop an HTTP monitoring ZenPack they could name it
ZenPacks.OurCompany.HttpMonitor and it would not conflict with the ZenPacks.zenoss.HttpMonitor Core Zen-
Pack.

3.2.2. Specifying Dependencies

The ZenPack Edit page allows you to specify versions of Zenoss that your ZenPack is compatible with as well
as dependencies on other ZenPacks. The first item in the Dependencies section of that page is the version of
Zenoss that is required. If that field is blank then your ZenPack will be installable under any version of Zenoss
version 2.2 or later. If you enter a specific version number then the ZenPack will run only under that exact version
of Zenoss, this is usually not desirable. The most typical version requirement is to specify that the ZenPack is
compatible with any version of Zenoss equal to or greater than a specific version. The syntax for this is ">=X"
where X is the minimum version the ZenPack requires. For example, if a ZenPack requires Zenoss version 2.2.1
or greater the version specification would be >=2.2.1.

http://peak.telecommunity.com/DevCenter/PythonEggs

ZenPacks

16

Below the Zenoss version specification is a list of all other ZenPack eggs installed. Old-style (non-egg) ZenPacks
cannot be listed as dependencies and do not appear in this list. If your ZenPack requires another ZenPack to
be installed then check the checkbox to the left of the other ZenPack's name. Optionally you can also give a
version specification for each ZenPack you require.

3.2.3. Locating ZenPack Source Outside of Zenoss

For any non-trivial ZenPacks we recommend maintaining the source code somewhere other than $ZENHOME/Zen-
Packs. There are a couple reasons for this:

• Performing a zenpack --remove deletes the ZenPack's directory from $ZENHOME/ZenPacks. If you do not
have the files copied in another location you can easily lose all or some of your work.

• If your ZenPack source is maintained in a version control system it is frequently easier to keep the code
within a larger checkout directory elsewhere on the filesystem.

To move a ZenPack source directory out of $ZENHOME/ZenPacks you can simply copy the directory to the new
location then run install again using the --link option. This will remove the $ZENHOME/ZenPacks/YourZenPackId
directory.

cp -r $ZENHOME/ZenPacks/YourZenPackId SomeOtherDirectory
zenpack --link --install SomeOtherDirectory/YourZenPackId

3.2.4. Community ZenPack Subversion Access

There is a Community ZenPack development site at:

http://community.zenoss.org/community/developers/zenpack_development

This site hosts Subversion source code control access to all contributed Community ZenPacks. Accounts are
granted by request and offered to ZenPack contributors. The goal of this site is to encourage ZenPack devel-
opment and open up improvements to all ZenPacks to a greater audience.

The Community ZenPack development site contains instructions for:

• working with Community ZenPacks from Subversion

• building and modifying ZenPacks

• converting old-style ZenPacks to Python Egg ZenPacks

3.3. ZenPack Structure and Contents
This section describes the files and directory structures that make up most ZenPacks. A more detailed source
of information about Python Eggs, entry points and other technical details of building eggs is found here.

The $ZENHOME/Products/ZenModel/ZenPackTemplate directory contains the template files and directories
used when Zenoss creates a ZenPack. If you decide to change these files, note that these changes will not
be preserved across upgrades.

A ZenPack has the concept of a namespace, so that multiple people or organizations can create similar
ZenPack names without their code colliding with each other. In this example, the name of the ZenPack is
ZenPacks.pkg.zpid, where pkg is the package name and zpid is the ZenPack id.

In the $ZENHOME/ZenPacks/ directory, you will find the directory ZenPacks.pkg.zpid with the following contents
(abbreviated for clarity):

build
build/bdist.linux-i686
build/lib
build/lib/ZenPacks
...

dist
dist/ZenPacks.pkg.zpid-version_id-py2.4.egg

http://community.zenoss.org/community/developers/zenpack_development
http://peak.telecommunity.com/DevCenter/setuptools

ZenPacks

17

INSTALL.txt
README.txt

setup.py

ZenPacks
ZenPacks/__init__.py
ZenPacks/pkg
ZenPacks/pkg/__init__.py

ZenPacks/pkg/zpid

ZenPacks/pkg/zpid/__init__.py

ZenPacks/pkg/zpid/daemons

ZenPacks/pkg/zpid/datasources
ZenPacks/pkg/zpid/datasources/__init__.py

ZenPacks/pkg/zpid/lib
ZenPacks/pkg/zpid/lib/__init__.py

ZenPacks/pkg/zpid/libexec

ZenPacks/pkg/zpid/migrate
ZenPacks/pkg/zpid/migrate/__init__.py

ZenPacks/pkg/zpid/modeler
ZenPacks/pkg/zpid/modeler/__init__.py
ZenPacks/pkg/zpid/modeler/plugins
ZenPacks/pkg/zpid/modeler/plugins/__init__.py

ZenPacks/pkg/zpid/objects
ZenPacks/pkg/zpid/objects/objects.xml

ZenPacks/pkg/zpid/parsers
ZenPacks/pkg/zpid/parsers/__init__.py

ZenPacks/pkg/zpid/reports
ZenPacks/pkg/zpid/services
ZenPacks/pkg/zpid/services/__init__.py
ZenPacks/pkg/zpid/skins
ZenPacks/pkg/zpid/skins/ZenPacks.pkg.zpid
ZenPacks.pkg.zpid.egg-info
ZenPacks.pkg.zpid.egg-info/entry_points.txt
ZenPacks.pkg.zpid.egg-info/namespace_packages.txt
ZenPacks.pkg.zpid.egg-info/not-zip-safe
ZenPacks.pkg.zpid.egg-info/PKG-INFO
ZenPacks.pkg.zpid.egg-info/SOURCES.txt
ZenPacks.pkg.zpid.egg-info/top_level.txt

This directory is created by Python when the ZenPack is exported to an egg file or when it is installed
from source. This directory can safely be deleted at any time if you wish and need not be kept within any
version control system.
This directory is created when the ZenPack is exported to an egg file. The egg file is initially created within
here then copied to the $ZENHOME/export directory. This directory can safely be deleted at any time if you
wish and need not be kept within any version control system.
This file contains parameters for use by setuptools and distutils in creating eggs and doing source installs.
Zenoss creates an appropriate setup.py when a ZenPack is created. ZenPack developers should usually
edit this information through the ZenPack edit page within Zenoss rather than directly in the setup.py file.

Any time a ZenPack is saved or exported via the GUI Zenoss will modify certain values at the top of the
setup.py file. The lines that Zenoss modifies are clearly commented and segregated at the top of the file.
If you wish to make changes to setup.py you can safely do so as long as you leave those lines intact.
This directory mirrors the dotted name structure of your ZenPack name. For example, if your ZenPack
name is ZenPacks.MyCompany.MyZenPack then this directory will contain a directory named MyCompany which
will contain a MyZenPack directory. This last directory with the same name as the last part of your ZenPack
name is where most of the ZenPack code resides. The structure of that directory is very similar to that of
previous non-egg ZenPacks.
This is the directory whose name is that of the last part of your dotted ZenPack name.
This file contains any code that needs to be executed when the ZenPack is loaded. Zenoss loads all installed
ZenPacks on startup. Typically this file contains a few lines that will register a skins directory if the ZenPack
provides one. Also, if this class contains a class named ZenPack then on installation Zenoss will create an
instance of that class rather than the base ZenPack class in the object database.
See below for more details on providing daemons in ZenPacks.
See below for more details on providing data source classes in ZenPacks.

ZenPacks

18

This directory is intended to hold any 3rd party modules or other code your ZenPack depends on. A module
named Foo in this directory would be imported with

import ZenPacks.MyCompany.MyZenPack.lib.Foo

This directory is intended to hold plugins, such as Nagios-style or Cacti-style plugins.
See below for more details on migrating between versions of your ZenPack.
See below for more details on providing modeler plugins in ZenPacks.
Database objects such as Device Classes and Performance Templates that are added to the ZenPack via
the GUI are exported to an objects.xml file in this directory. When the ZenPack is installed on another
system those objects will be copied into that object database.
This directory contains any command parsers provided by the ZenPack. See the section that discusses
new platform command parsers for more details.
This directory contains any report plugins provided by the ZenPack.
Zenoss daemons usually communicate with zenhub to retrieve their configuration, send events, and write
performance data. If a ZenPack provides a daemon then it typically will also provide a ZenHub service for
that daemon. See the section on ZenHub for further details.
This directory contains any skins directories that should be added to Zope. Note that this contains directories
of skins, not the skin files themselves. If you include skins directories make sure that the __init__.py
file in the directory above skins is registering this directory. (The default __init__.py file provided in new
ZenPacks does this for you.)
This directory contains files which describe the egg meta-data. This is created when the egg file is generated
or the ZenPack is installed from source. This directory can safely be deleted at any time if you wish and
need not be kept within any version control system.

This file is updated every time a ZenPack is edited and saved. ZenPack developers should normally not
edit this file manually.

3.4. Developing the ZenPack

3.4.1. Base ZenPack Class

$ZENHOME/Products/ZenModel/ZenPack.py contains the base ZenPack class. When a ZenPack is installed Zenoss
inspects YourZenPackId/ZenPacks/..../LastPartOfName/__init__.py to see if it contains a class named Zen-
Pack. If it does then Zenoss instantiates it, otherwise Zenoss instantiates the base ZenModel.ZenPack.ZenPack
class. That instance is then added to the dmd.ZenPackManager.packs tree.

There are several attributes and methods of ZenPack that subclasses might be interested in overriding:

Interesting ZenPack properties and methods

packZProperties is a mechanism for easily adding zProperties. packZProperties is a list of
tuples, with each tuple containing three strings in this order:

• name of the zProperty

• default value of the zProperty

• type of the zProperty (such as string or int)

Zenoss will automatically create these when the ZenPack is in-
stalled and remove them when the ZenPack is removed. See
ZenPacks.zenoss.MySqlMonitor for an example of this usage.

install(self, app) parais called when the ZenPack is installed. If you override this be sure to
call the inherited method within your code.

remove(self, app, leaveOb-

jects)

is called when the ZenPack is removed. As with install(), make sure you
call the inherited method if you override.

3.4.2. Storing Objects in the ZODB

ZenPacks can provide Python classes for objects that will be stored in the object database. The most frequent
example of this is DataSource subclasses. When a ZenPack is removed those classes are no longer accessible

ZenPacks

19

so the objects in the database are broken. (Zeo needs to have the appropriate Python class in order to unpickle
an object from the database.) In previous versions of Zenoss there was not an easy way to associate instances
of a ZenPack-provided class with the ZenPack that provided the class. As a result ZenPack removal could
easily cause broken objects to remain in the database. If Zope had already loaded a class into the interpreter
the objects in question might continue to function until Zope was restarted, making diagnosis of such problems
even more difficult.

In Zenoss 2.2 the ZenPackPersistance class aims to remedy this problem. Any Python class provided
by a ZenPack should subclass the ZenModel.ZenPackPersistence.ZenPackPersistence class. Zenoss main-
tains a catalog of all ZenPackPersistence instances in the database. When a ZenPack is removed, the
catalog is queried to determine which objects need to be deleted. Any ZenPack-provided Python class
that might be instantiated in the object database should subclass ZenPackPersistence and define ZEN-
PACKID in the class as the name of the ZenPack providing the class. For an example of this see the
ZenPacks.zenoss.MySqlMonitor.datasources.MySqlMonitorDataSource ZenPack.

3.4.3. Providing DataSource classes

ZenPacks can provide new classes of DataSources by subclassing the ZenModel.RRDDataSource.RRDDataSource
class. If you include only one DataSource class per file, name the modules after the class the contain
(ie MyDataSource.py contains the class MyDataSource), and place those modules in the ZenPack's data
sources directory then they will automatically be discovered by Zenoss. If you wish to customize this behav-
ior take a look at the ZenPack.getDataSourceClasses() function. See the ZenPacks.zenoss.HttpMonitor and
ZenPacks.zenoss.MySqlMonitor ZenPacks for examples of ZenPacks that provide custom DataSource classes.

When creating a custom DataSource class one of the first decisions you have to make is whether you want
zencommand to process these DataSources for you or whether you will provide a custom collector daemon
to process them. The zencommand daemon is a very versatile mechanism for executing arbitrary commands
either on the Zenoss server or on the device being monitored, processing performance data returned by the
DataSource and generating events in Zenoss as appropriate. zencommand expects the command it executes
be compatible with the Nagios plug-in API. Specifically two aspects of that API are of most importance:

• Return code -The command should exit with a return code of 0, 1, 2 or 3. See here in the Nagios plug-
in API for more detail.

• Performance data -- If the command returns performance data then that data can be pulled into Zenoss
by creating DataPoints with the same names used in the command output. See here in the Nagios plug-
in API for more detail.

If you want zencommand to handle instances of your custom DataSource class then several methods in
RRDDataSource are of particular interest:

• getDescription(self) - This returns a string describing the DataSource instance. This string is displayed next
to the DataSource on the RRDTemplate view page.

• getCommand(self, context, cmd=None) - This returns the string that is the command for zencommand to
execute. context is the device or component to be collected. If you need to evaluate TALES expressions in
the command to replace things like ${dev/id} and so forth you can call the parent class's getCommand() and
pass your command as the cmd argument. (cmd will not be passed into your method, it exists specifically
for subclasses to pass their commands to the parent for TALES evaluation.)

• checkCommandPrefix(self, context, cmd) - Zenoss will check the string you return from getCommand() to see
if it is a relative or absolute path to a command. If the string starts with '/' or '$' then Zenoss assumes it is
absolute. Otherwise the zProperty zCommandPath from the context is prepended to the cmd string. You
can override checkCommandPrefix() if you wish to alter this behavior.

Make sure that your DataSource subclasses also subclass ZenPackPersistence and list it first among the parent
classes. See the section on ZenPackPersistence.py for more details.

http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203

ZenPacks

20

3.4.4. Performance Template Checklist

Performance templates are one of the easiest places to make a real user experience difference when new
features are added to Zenoss. Spending a very small amount of time to get the templates right goes a long way
towards improving the overall user experience.

3.4.4.1. Data Sources

• Can your data source be named better?

• Is it a common metric that is being collected from other devices in another way? If so, name yours the
same. This makes global reporting much easier.

• camelCaseNames are the standard. Use them.

• Never use absolute paths for COMMAND data source command templates. This will end up causing problems
on one of the three platforms we deal with. Link your plugin into zenPath('libexec') instead.

3.4.4.2. Data Points

• Using a COUNTER? You might want to think otherwise.

• Unnoticed counter rollovers can result in extremely skewed data.

• Using a DERIVE with a minimum of 0 will record unknown instead of wrong data.

• Enter the minimum and/or maximum possible values for the data point if you know them.

• This again will allow unknown to be recorded instead of bad data.

3.4.4.3. Thresholds

• Don't include a number in your threshold's name.

• This makes people have to recreate the threshold if they want to change it.

3.4.4.4. Graph Definitions

• Have you entered the units? Do it!

• This will become the y-axis label and should be all lowercase.

• Always use the base units. Never kbps or MBs. bps or bytes are better.

• Do you know the minimum/maximum allowable values? Enter them!

• Common scenarios include percentage graphing with minimum 0 and maximum 100.

• Think about the order of your graph points. Does it make sense?

• Are there other templates that show similar data to yours? If so, you should try hard to mimic their
appearance to create a consistent experience.

3.4.4.5. Graph Points

• Have you changed the legend? Do it!

• Adjust the format so that it makes sense.

• %5.2lf%s is good for values you want RRDTool to auto-scale.

• %6.2lf%% is good for percentages.

• %4.0lf is good for four digit numbers with no decimal precision or scaling.

• Should you be using areas or lines?

• Lines are good for most values.

• Areas are good for things that can be thought of as a volume or quantity.

• Does stacking the values to present a visual aggregate make sense?

ZenPacks

21

3.4.5. Providing Performance Collector Plugins

When providing performance collectors in a ZenPack (for example, Nagios-style plugins), the suggested method
for referencing the collector in the Command Template area is the following TALES expression:

${here/ZenPackManager/packs/ZenPacks.pkg.zpid/path}/libexec/myplugin.sh

3.4.6. Referencing Collector Plugins in ZenPacks

While modeler plugins are stored in the ZenPack's modeler/plugins directory, collector plugins are, by conven-
tion, stored in the libexec directory. Because Zenoss can be installed in multiple ways, and a ZenPack's direc-
tory name, when installed, includes a version number, Zenoss offers a more portable and "future-proof" way
of referencing a plugin.

In the Command Template section of the data source, you can reference a plugin by using a TALES expression,
such as:

${here/ZenPackManager}.../file.sh

For example:

${here/ZenPackManager}.../MyCollectorPlugin.sh ${dev/manageIp} ${dev/zSnmpCommunity} OtherParameters

After adding the performance template containing the data source to a ZenPack, and then exporting the Zen-
Pack, the ZenPack's object/objects.xml file will contain an entry similar to:

<property>
${here/ZenPackManager}.../MyCollectorPlugin.sh ${dev/manageIp} ${dev/zSnmpCommunity} OtherParameters </property>

3.4.7. Providing Daemons

ZenPacks can provide new performance collectors and event monitors. This is a somewhat complex undertak-
ing, so before deciding to write your own daemons make sure that zencommand and a custom DataSource class
won't fit your needs (see Section 3.4.3, “Providing DataSource classes” above.) Any file in a ZenPack's daemons
directory is symlinked in $ZENHOME/bin when the ZenPack is installed. Also, the Zenoss script that controls the
core daemons will attempt to manage your daemon too. So a zenoss start, for example, will attempt to start
your daemon as well as the core daemons.

Custom daemons usually subclass the ZenHub.PBDaemon.PBDaemon class. This class provides the basic frame-
work for communicating with zenhub. See the section "Writing a Zenoss Performance Collector" for more details.

3.4.8. setuptools and the zenpacksupport

Zenoss requires a Python module called setuptools to create and install eggs. The setuptools module is in-
stalled by the Zenoss installer in the $ZENHOME/lib/python directory. Zenoss also provides a module named
zenpacksupport which extends setuptools. The zenpacksupport class defines additional metadata that is writ-
ten to and read from ZenPack eggs. This metadata is provided through additional options passed to the setup()
call in a ZenPack's setup.py file. Those arguments are:

compatZenossVers This is the version specification representing the required Zenoss version from the
ZenPack's Edit page.

prevZenPackName This is the name of the old-style (non-egg) ZenPack that this ZenPack re-
places. If a ZenPack with this name is installed in Zenoss then it is upgrad-
ed and replaced when this ZenPack is installed. For example, if HttpMoni-

tor is installed and then ZenPacks.zenoss.HttpMonitor is installed (which has
prevZenPackName=HttpMonitor) then ZenPacks.zenoss.HttpMonitor will replace Http-
Monitor. All packable objects in the database that are included in HttpMonitor will be
added to ZenPacks.zenoss.HttpMonitor instead. A migrate script is usually required
to set __class__ correctly on instances of ZenPack-provided classes in the object

ZenPacks

22

database. The ZenPacks.zenoss.HttpMonitor ZenPack has an example of this in its
migrate directory, in the ConvertHttpMonitorDataSources.py file.

3.5. Building and Distributing ZenPacks

From your ZenPack's page in the GUI select the Export ZenPack... menu item to create an egg file. The file is
first created in your ZenPack's dist directory then copied to the $ZENHOME/export directory.

You can optionally also download the egg file through your web browser when doing the export. As part of
the export process Zenoss exports database objects to the objects/objects.xml file in your ZenPack source
directory. If you don't need to update the objects.xml file you can create the egg from the command line instead:

cd YourZenPackDirectory
python setup.py bdist_egg

This creates the egg file in the ZenPack's dist directory.

Users who install your egg file will not be able to edit the ZenPack or re-export it. These functions require the
setup.py file which is not usually distributed within the egg file itself. In most cases this is desirable because
end-users should usually not be making changes and redistributing a different version of your ZenPack than
the one you developed.

There are times when you want to allow others to develop a ZenPack with you. In these cases you must provide
them with the entire source directory, not just an egg file.

3.5.1. Migrating between versions

Any time a ZenPack is installed Zenoss looks in the ZenPack's migrate directory for steps whose version is
greater than or equal to the version of the ZenPack being installed. Migrate steps are classes that subclass
ZenModel.ZenPack.ZenPackMigration. This mechanism allows ZenPacks to modify items in the object database
that were created by previous versions of the ZenPack and need updating. The ZenPacks.zenoss.MySqlMonitor
Core ZenPack includes good examples of how migrate steps are written.

3.5.2. Converting older ZenPacks to ZenPack eggs

Zenoss 2.2 includes a new script called eggifyzenpack which automates much or all of the process of converting
a pre-2.2 ZenPack to an egg ZenPack. The script is in $ZENHOME/bin so is usually on the zenoss user's path
already. The --newid option is required and specifies the new name of the ZenPack. (See the section above on
ZenPack names.) the sole positional argument to eggifyzenpack is the current name of the installed ZenPack
to be converted. Zeo must be running prior to invoking the script.

eggifyzenpack --newid ZenPacks.MyCompany.MyZenPackName MyOldZenPackName

This will create a ZenPack with the name given with --newid in $ZENHOME/ZenPacks. The old ZenPack that
was converted is uninstalled and removed from $ZENHOME/Products. ZenPacks converted in this way have
PREV_ZENPACK_NAME in their setup.py set to the name of the old ZenPack that they replace. When a user with the
old ZenPack installed installs the new egg ZenPack it will be processed as an upgrade and the older ZenPack
will be removed.

3.6. Development Mode

New ZenPacks can be created in Zenoss by going to the Settings → ZenPacks page and selecting the Create
ZenPack... menu item on the ZenPacks page. This creates the ZenPack on the file system at $ZENHOME/Zen-
Packs/ZenPacks.community.YourZenPack and installs it into Zenoss. You may then proceed to add device class-
es, templates, MIBs to the ZenPack with the Add to ZenPack menu option. (This is known as "development
mode" for the ZenPack.) Once you are happy with your ZenPack, you can export it for others to use. However,
once you install a freshly exported .egg ZenPack on another system (or uninstall and re-install your new Zen-
Pack) you can no longer add things to the ZenPack.

ZenPacks

23

3.6.1. Source ZenPacks

If you have the source for the ZenPack available you can simply attach to the source tree. Assuming that the
source directory is ZenPacks.community.YourZenPack, install the ZenPack with the following commands:

zenpack --link --install ZenPacks.community.YourZenPack
zopectl restart

Your ZenPack should now be usable and back in development mode. Changes made to the ZenPack will be
persisted back to the source tree, you may still export and download as necessary. When you are satisfied with
your changes, you may commit them back to the Subversion repository.

3.6.2. Converting .egg Files to Development Mode

If you wish to convert an already installed ZenPack, or to install and convert an .egg ZenPack, follow these steps.

1. Install the .egg as you would normally.

2. Restart Zope with the command:

zopectl restart

3. Copy the ZenPack development files into the .egg's directory (the CONTENTS directory is unnecessary):

cp $ZENHOME/Products/ZenModel/ZenPackTemplate/* \
$ZENHOME/ZenPacks/ZenPacks.community.YourZenPack-1.0.2-py2.4.egg/

4. You can now make any modifications to the ZenPack, such as updating the version number or adding new
device classes.

5. Go into the ZenPack from the ZenPacks tab in Settings.

6. Export the ZenPack. The changes will be persisted to the new .egg and the file system.

There is a minor bug in the export and download functions. The new version saved in the export directo-
ry will have the correct name with all the updates (for example, ZenPacks.community.YourZenPack-1.0.3-
py2.4.egg). If you choose to export and download the ZenPack, it will have the original name despite the
updated version (for example, ZenPacks.community.YourZenPack-1.0.2-py2.4.egg) or it may fail to down-
load. Use the version in the export directory.

3.7. Where to Get More Information
Discussion regarding development of ZenPacks takes place on the Zenoss Community forums, at:

http://community.zenoss.org/community/zenpacks

http://community.zenoss.org/community/zenpacks

24

Chapter 4. Zenoss Data Stores
There are a few data stores used by Zenoss:

Data Stores

ZODB Object-oriented database for Python objects

MySQL The Event database where event information is stored.

Pickle files Python pickle files are used to cache information otherwise obtained from zenhub.

RRD files Round Robin Database that stores performance information.

Figure 4.1. Datastores Overview

4.1. Zope Object Database (ZODB)
The ZODB is an object-oriented database used by Zope to store Python objects and their states. For example,
modelers maintain information about devices and their configuration in the ZODB.

Zenoss uses ZEO, which is a layer between Zope and the ZODB. ZEO allows for multiple Zope servers to
connect to the same ZODB. The ZODB is started and stopped by zeoctl.

ZODBs can be clustered using ZEO, but Zenoss Enterprise customers should contact Customer Support
before investigating clustering.

Here is a simple example of using transactions in the ZODB:

...
 import transaction

 ...
 trans= transaction.get()

 # Determine that bad things have happened

Zenoss Data Stores

25

 if bad_thing:
 trans.abort()
 # ... any other cleanup required inside the function eg 'return'

 # Life is good!
 # NB: Username or program name -- it's just a text field
 trans.setUser("zenmodeler")
 trans.note("Added good things to xyz object")
 trans.commit()

The setUser() and note() functions are responsible for creating entries that can be found under the Modifica-
tions tab or menu-item.

There are restrictions on what data can be stored, specifically data types that can be pickled. Basic Python data
types such as strings, numbers, lists and dictionaries can be pickled, but Python code objects cannot be pickled.
In addition, files and sockets cannot be pickled.

The ZODB cannot detect changes to mutable types like lists and dictionaries. In order for changes to be
detected, not only is commit() afterwards, but you must explicitly tell the ZODB about the change by modi-
fying a Persistent objects _p_changed attribute.

 # The following imports shouldn't be required in Zenoss code
 # as it should already be taken care of for you. These are
 # included merely to explicitly show the class dependencies.
 import ZODB
 from Persistence import Persistent
 import transaction
 ...
 class myExampleClass(Persistent):
 """
 An example class to be used to demonstrate the use of the
 modifying a list and then notifiying ZODB that work needs
 to be done through the _p_changed attribute.
 """
 def __init__(self):
 """
 Initializer
 """
 self.mylist= []

 def addToMyList(self, listItem):
 """
 Track the listItems that we need
 """
 self.mylist.append(listItem)
 self._p_changed= True # Notify ZODB

 transaction.commit()

As a general rule, use commit() whenever you want other processes to have access to your database changes.
So if a daemon is collecting and Zope needs to do something with the data, run commit() first from the daemon.

This should be enough information to get you started. See ZODB for Python Programmers for more details.

4.2. MySQL Event database

MySQL is an open-source relational database that Zenoss uses to store Zenoss events. Configuration informa-
tion about the MySQL database can be maintained by going to the Event Manager link from the navigation bar
when you are logged in as a user with ZenManager privileges.

MySQL-level performance tweaking can substantially improve Zenoss' ability to handle events. One tool that
can be used to improve your database performance is MySQLTuner (http://blog.mysqltuner.com/).

If you need a connection to the MySQL events database, here is how to retrieve a connection and how to put
it back into the pool.

http://docs.python.org/library/pickle.html
http://www.zope.org/Documentation/Articles/ZODB1
http://www.mysql.com/
http://blog.mysqltuner.com/

Zenoss Data Stores

26

DbConnectionPool is hidden and is accessed through DbAccessBase. It follows the Singleton design pattern, so
it'll only actually create one DbConnectionPool. It extends the Python class Queue, so DbConnectionPool is also
a synchronized queue and should be thread-safe. DbAccessBase is extended by EventManagerBase>?, so if you
have access to the ZenEventManager (located at /zport/dmd/ZenEventManager) you'll have the ability to get a
database connection.

4.2.1. Connecting to the Database

First you'll need to get an instance of ZenEventManager OR an instance of a class that extends DbAccessBase.
Within Zenoss, a ZenEventManager should already be instantiated.

Next is the try block which should include ANY database calls. This is where you'll get a connection from the
pool with the connect() method. You may pass this around to other methods or create a cursor and make
some database transactions. The try block MUST be completed with a finally block that includes the close()
method. You MUST pass the connection object to the close() method. This will ensure that even if the code
within the try breaks, we are not leaking database connections. If you create more than one connection (ie
more than one connect() call in your try block) you will need to have a corresponding close() call. There is
ALWAYS a one-to-one relationship between connect() and close() calls.

Here is a block of code that illustrates best practices for using the DbConnectionPool

...
zem = self.dmd.ZenEventManager
try:
 conn1 = zem.connect()
 conn2 = zem.connect()
 curs1 = conn1.cursor()
 ...
 curs2 = conn2.cursor()
 ...
 # do work
 ...
 curs3 = conn1.cursor()
 ...
finally:
 zem.close(conn1)
 zem.close(conn2)
 ...
...

Take a look at EventManagerBase.py for some examples of code using the DbConnectionPool.

4.2.2. MySQL in 60 Seconds

To start an interactive session with MySQL, run the mysql as the zenoss user. The following example is from a
default install of Zenoss where there is no password for the MySQL root user.

$ mysql -uroot
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17799
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Once we've logged into MySQL, we can see the various databases and see the tables that are available. The
events database is maintained by Zenoss.

mysql> show databases;
+--------------------+
| Database |
+--------------------+

Zenoss Data Stores

27

| information_schema |
| events |
| mysql |
| test |
+--------------------+
4 rows in set (0.03 sec)
mysql> use events;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+------------------+
| Tables_in_events |
+------------------+
| alert_state |
| detail |
| heartbeat |
| history |
| log |
| status |
+------------------+
6 rows in set (0.00 sec)

From here we can determine what information is in what table. For instance, the log table.

mysql> describe log;
+----------+-------------+------+-----+-------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+-------------------+-------+
evid	char(25)	NO	MUL		
userName	varchar(64)	YES		NULL	
ctime	timestamp	NO		CURRENT_TIMESTAMP	
text	text	YES		NULL	
+----------+-------------+------+-----+-------------------+-------+
4 rows in set (0.00 sec)

4.3. Python Pickle Files

Python's native storage for storing data is called a Pickle. Pickle files are used by zenperfsnmp for caching
configuration information gathered from zenhub. This is a performance enhancement for dealing with startup
communications with zenhub, as larger sites with hundreds or more devices could experience enough of a delay
during initialization that Zenoss would have difficulty functioning until the configuration information had been
gathered. Every update from the Zenoss server (which is dealt with by zenhub) causes zenperfsnmp to update
the pickle files.

The pickle files are kept in the $ZENHOME/perf/Devices/devicename/ directory, and are named collector-
config.pickle. These pickle files are only read during startup and are periodically recreated, so it is safe to
delete them, and it is not necessary to back them up.

4.4. Round-Robin Database

RRD is used by Zenoss to store and graph performance collection data. These data files have a fixed format
that is decided at their creation time, and record data points at set intervals. This data is later consolidated
into coarser time units (so as to reduce the total size of data files) and the RRD toolset also contains code to
create graphs.

A few other interesting facts:

• Zenoss is a gold-level sponsor of RRD.

• The Renderserver sends RRD graphics to Web browsers.

http://oss.oetiker.ch/rrdtool/

Zenoss Data Stores

28

Figure 4.2. RRD Overview

29

Chapter 5. Events
5.1. Understanding an Event Entry
From a Python programming perspective, an event is essentially a dictionary of keyword/value pairs that gets
passed up to zenhub to be stored and parsed. A description of the standard fields used in Zenoss can be found
in the section titled Event Database Dictionary.

From the user's perspective, the events can be found in either the Event Console or in the Events tab. To view
an event's information, click on the magnifying glass icon in the event entry and it will display three tabs: Fields,
Details and Log.

The standard keyword and value pairs are presented to the user in the Fields tab of the event. Any non-standard
keyword/value pairs are presented in the Details tab. The Log tab is for post-processed events and so won't
trouble us for the moment.

5.1.1. Event Design

There are a few requirements for events:

• Event objects need to be persisted in the MySQL database.

• On queries from within Zope these queries must use the Zope security mechanisms to allow controlled
access to the data.

• Events must be constructed outside of a Zope framework as well.

To meet these requirements there are three types of event:

Event an event that lives outside of a Zope context and can go in and out of MySQL.

ZEvent event in a Zope context inherits from Event and has a subset of its fields populated as defined
by resultFields in a getEventList() query.

ZEventDetail full event information (all fields, detail, and log)

5.2. Sending an Event
Events can be created through a number of different ways:

• From the command line (zensendevent)

• Through the user interface (Add Event)

• By daemons, which convert their messages into events (such as zentrap)

• From daemons and programs that have detected error conditions

• From an external source (using, for example, XML-RPC)

Regardless of what program generates the event, or from which protocol the event is sent to Zenoss, the fol-
lowing fields (at a minimum) should be specified:

Event fields

device the name of the device from which this event originates

component the sub-component of the device (for instance eth0, http, etc)

summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear. Note that
for Python code, that mappings to names are provided (see example below).

Here is an example using Python from within a program that connects to zenhub:

Import severities (eg Clear, Debug, Info, Warning, Error Critical) and

Events

30

some event classes into our namespace
from Products.ZenEvents.ZenEventClasses import *

class exampleClass(PBDaemon):
 def examplefunc(self):
 event= {}
 event['component']= 'eth0'
 event['severity']= Warning
 event['summary']= 'eth0 is down'
 event['message']= 'Received error code 0xa7 from listen()'
 self.sendEvent(event, device='mydevice')

Using XML-RPC in Python:

from xmlrpclib import ServerProxy
myurl= 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager'
serv = ServerProxy(myurl)
evt = {'device':'mydevice', 'component':'eth0', 'summary':'eth0 is down',
 'severity':4, 'eventClass':'/Net'
 }
serv.sendEvent(evt)

Some suggested non-standard fields for adding to your event are:

resolution Describe a method of fixing the situation that might have caused the event, or suggest a
course of action for diagnosing the condition.

explanation Describe in more detail the impact of this event on the computing environment. For in-
stance, does the condition which generates this event prevent a service from starting or
being monitored?

5.3. Adding an Event Class
Event classes can be added easily through the UI. If you need to use an event class internally, however, you
need to make sure that class will always be available, which involves several more steps.

5.3.1. Add to ZenEventClasses

Add a definition of the name of your new event class to Products/ZenEvents/ZenEventClasses:

...
My_New_Class = "/My/New/Class"

Now your event class is centralized and can be imported wherever you need to use it, e.g.:

...
from Products.ZenEvents.ZenEventClasses import My_New_Class
...
if thing.evclass == My_New_Class:
...

5.3.2. Add the class to the import XML

Several event classes are imported from XML by zenload just after the ZODB is created. To include your new
event class in this import, add an <object> element describing it to Products/ZenModel/data/events.xml. Be
sure to nest it inside the classes that already exist, if appropriate. For example, if your new class is "/Status/New-
Class", you would add it inside the <object id='Status'> that already exists:

...
<object id='Status' module='Products.ZenEvents.EventClass' class='EventClass'>
<!--This event exists already -->
...
<object id='NewClass' module='Products.ZenEvents.EventClass' class='EventClass'>
<!--This is your new event -->
</object>
></object>

Events

31

5.3.3. Write a migrate script

Since your code is no longer backwards-compatible, you need to add the new event class to databases that have
already been created by writing a migrate script. (See the section on migrating for more detailed information).
Create a new script in Products/ZenModel/migrate with an unique name (here neweventclasses.py). Here's an
example:

__doc__="""Add new classes to EventManager
"""
...
import Migrate
...
class NewEventClasses(Migrate.Step):
 version = Migrate.Version(1, 1, 0) # Replace this with the correct version
 def cutover(self, dmd):
 dmd.Events.createOrganizer("/My/Event/Class")
 dmd.Events.createOrganizer("/My/Event/Class2") # Add multiple new classes in the same migrate script
 dmd.ZenEventManager.buildRelations()

NewEventClasses()

Next, add your migrate script to Products/ZenModel/migrate/__init__.py:

...
import neweventclasses

Now

zenmigrate --dont-commit

to make sure your class is created properly.

Once you're satisfied with your changes, make the changes permanent with zenmigrate.

$ zenmigrate

32

Chapter 6. zProperty Management
6.1. Adding a zProperty

6.1.1. Adding a zProperty to an Event

In EventClass.py...

...

def buildZProperties(self):
 edict = self.getDmdRoot("Events")
 edict._setProperty("zNewProperty", "default value")
 edict._setProperty("zNewIntegerProperty", -1, type="int")
 edict._setProperty("zNewFloatProperties", 10.01, type="float")
 edict._setProperty("zNewListProperty", ["default value", \
 "another default value"], type="lines")
 edict._setProperty("zNewBooleanProperty", False, type="boolean")

...

Adding a new property to the EventClass is as easy adding a new line to the buildZProperties method. You need
to set a new property at the "Events" level.

6.1.2. Adding a zProperty to a Device

In DeviceClass.py

...

def buildDeviceTreeProperties(self):
 devs= self.getDmdRoot("Devices")

...

 devs._setProperty("zNewProperty", "default value")
 devs._setProperty("zNewIntegerProperty", -1, type="int")
 devs._setProperty("zNewFloatProperties", 10.01, type="float")
 devs._setProperty("zNewListProperty", ["default value", \
 "another default value"], type="lines")
 devs._setProperty("zNewBooleanProperty", False, type="boolean")
...
...

Adding a new property to the DeviceClass is as easy adding a new line to the buildDeviceTreeProperties method.
You need to set a new property at the "Devices" level.

6.2. Migrating the zProperty Code

Create a new file in $ZENHOME/Products/ZenModel/migrate/zNewProperty.py

__doc__='''

Add zNewProperty to DeviceClass.
'''
import Migrate

class zNewProperty(Migrate.Step):
 version= Migrate.Version(1, 1, 0)

 def cutover(self, dmd):
 if not dmd.Devices.hasProperty("zNewProperty"):
 dmd.Devices._setProperty("zNewProperty", "default value here")

zProperty Management

33

zNewProperty()

When a zenmigrate is executed, this code will create the new zProperty for all Devices. Do not forget to update
the Migrate.Version to your current working version. For more information on migrating: see the section on
Chapter 15, Migrating Zenoss Code.

34

Chapter 7. Creating New Jobs
Creating a Job class to encompass an asynchronous process is fairly straightforward. A simple subclass defining
a single method is usually all that is required.

7.1. Job Requirements

Jobs should subclass Products.Jobber.jobs.Job. At a minimum, a Job must implement its own run() method,
which should perform the actions specific to the job and call back to the finished() method reporting success
or failure.

Example 7.1. A Job that cleans up the history table in the events database

from Products.Jobber.jobs import Job
from Products.Jobber.status import SUCCESS, FAILURE

class CleanHistoryJob(Job):
 """
 Delete all events of a certain age from the
 history table.
 """
 def __init__(self, agedDays=7):
 self.agedDays = agedDays
 super(CleanHistoryJob, self).__init__()

 def run(self, r):
 zem = self.dmd.ZenEventManager
 try:
 zem.manage_deleteHistoricalEvents(
 agedDays=self.agedDays)
 except:
 self.finished(FAILURE)
 else:
 self.finished(SUCCESS)

7.2. Running a Job

dmd.JobManager is a tool that, predictably, manages jobs. To add a job to the queue to be run by the zenjobs
daemon, call dmd.JobManager.addJob, passing in the job class as the first argument, followed by arguments to
the job's constructor. For example, to run the example CleanHistoryJob:

dmd.JobManager.addJob(CleanHistoryJob, agedDays=7)

7.3. Life Cycle of a Job

When zenjobs runs a Job, it calls the start() method, which calls run() and returns a Deferred that will fire
when the Job finishes; setup steps that can't happen in run() for whatever reason should occur here. run()
should, as mentioned above, call finished(); Jobs that require post-run actions may override finished() to
provide them.

Creating New Jobs

35

Example 7.2. A Job that sends an email when starting and finishing

class EmailSendingJob(Job):

 def start()
 self.preRun()
 return super(EmailSendingJob, self).start()

 def run(self, r):
 # Do whatever
 self.finished(SUCCESS)

 def finished(self, r):
 self.postRun()
 return super(EmailSendingJob, self).finished(r)

 def preRun(self):
 sendEmail("Job %s is starting" % self.id)

 def postRun(self):
 sendEmail("Job %s has finished" % self.id)

A Job may provide an interrupt() method that halts the job. The implementation of this method in the base
class does nothing at all.

7.4. Shell Command Jobs
Products.Jobber.jobs.ShellCommandJob is a useful base class for Jobs that run commands in a child shell.
Subclasses should set the cmd attribute on the instance. A ShellCommandJob can also be scheduled directly,
passing in a list representing the command as the first argument.

Example 7.3. A Job that models a device in the background

from Products.Jobber.jobs import ShellCommandJob

class ModelDeviceJob(ShellCommandJob):

 def __init__(self, devname):
 self.cmd = ['zenmodeler', 'run', '-d', devname]
 super(ShellCommandJob, self).__init__()

Or, to run a command as a one-off:
def modelDevice(dmd, devname):
 dmd.JobManager.addJob(ShellCommandJob,
 ['zenmodeler', 'run', '-d', devname])

ShellCommandJob's implementation of the interrupt() method kills the child process (kindly, if possible).

7.5. Logging
Jobs can write text to disk so that it is accessible by other processes, using a specialized LogFile object. Simply
call Job.getLog() to get the log, then use log.write(text) to write a line. This LogFile is streamed to the UI
in the job detail view.

36

Chapter 8. Device Management
8.1. Adding Devices Programatically

Devices can be added to Zenoss through the UI but also through a programmatic interface. This how to will
describe adding a device using that interface.

8.1.1. Using a REST call

Adding a device through a rest call can be done by a simple web get. In this example we will use wget to add a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget
 'http://admin:zenoss@MYHOST:8080/zport/dmd/DeviceLoader/loadDevice\
?deviceName=NEWDEVICE&devicePath=/Server/Linux'

The result of this command will be the log of auto-discovery and you can look for the string "NEWDEVICE
loaded!" to see if it was successful. Possible failure messages are: "NEWDEVICE exists" and "no snmp found"

8.1.2. Using an XML-RPC Call from Python

This is an example of how to add a device using Python. Because XML-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling loadDevice on your proxy object.

>>> from xmlrpclib import ServerProxy
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/DeviceLoader'
>>> serv = ServerProxy(url)
>>> dev = {'deviceName':'NEWDEVICE', 'devicePath':'/Server/Linux'}
>>> serv.loadDevice(dev)

You can check on the device with another XML-RPC call:

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> print serv.getManageIp()

Device Management

37

8.1.3. XML-RPC Attributes

 XML-RPC Attributes Description

deviceName the name or IP of the device. If it's a name it must resolve in DNS

devicePath the device class where the first "/" starts at "/Devices" like "/Server/Linux" the default
is "/Discovered"

tag the tag of the device

serialNumber the serial number of the device

zSnmpCommunity SNMP community to use during auto-discovery if none is given the list zSnmpCom-
munities will be used

zSnmpPort SNMP port to use default is 161

zSnmpVer SNMP version to use default v1 other valid values are v2

rackSlot the rack slot of the device.

productionState production state of the device default is 1000 (Production)

comments any comments about the device

hwManufacturer hardware manufacturer this must exist in the database before the device is added

hwProductName hardware product this must exist in the manufacturer object specified

osManufacturer OS manufacturer this must exist in the database before the device is added

osProductName OS product this must exist in the manufacturer object specified

locationPath path to the location of this device like "/Building/Floor" must exist before device is
added

groupPaths list of groups for this device multiple groups can be specified by repeating the at-
tribute in the URL

systemPaths list of systems for this device multiple groups can be specified by repeating the
attribute in the URL

statusMonitors list of status monitors (zenping) for this device default is "localhost"

performanceMonitor performance monitor to use default is "localhost"

discoverProto discovery protocol default is "snmp" other possible value is "none"

Table 8.1. XML-RPC Attributes and Descriptions

8.2. Editing Device Information

Devices can be edited through the UI but also through a programmatic interface. This how to will describe editing
device info using that interface.

8.2.1. Using a REST call

Editing device info through a rest call can be done by a simple web get. In this example we will use wget to add
a device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/\
Server/Linux/devices/MYDEVICE/manage_editDevice?serialNumber=MYSERIALNUM\
&tag=MYTAG'

The result of this command will change the Serial Number to MYSERIALNUM and the Tag to MYTAG for device,
MYDEVICE.

Device Management

38

8.2.2. Using an XML-RPC Call from Python

This is an example of how to edit device info using Python. Because XML-RPC can be used from any language
feel free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling editDevice on your proxy object.

>>> from xmlrpclib import ServerProxy
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/'
 'Server/Linux/devices/MYDEVICE'
>>> serv = ServerProxy(url)
>>> serv.manage_editDevice('MYTAG', 'MYSERIALNUM')

Here is the signature of manage_editDevice() from Device.py

def manage_editDevice(self, tag="", serialNumber="",
zSnmpCommunity="", zSnmpPort=161, zSnmpVer="v1",
rackSlot=0, productionState=1000, comments="",
hwManufacturer="", hwProductName="",
osManufacturer="", osProductName="",
locationPath="", groupPaths=[], systemPaths=[],
statusMonitors=["localhost"], performanceMonitor="localhost",
priority=3, REQUEST=None):

8.3. Deleting A Device

Devices can be deleted through the UI but also through a programmatic interface.

8.3.1. Using a REST call

Deleting a device through a rest call can be done by a simple web get. In this example we will use wget to delete
a device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/\
Server/Linux/devices/MYDEVICE/deleteDevice'

The result of this command will delete the device MYDEVICE.

8.3.2. Using an XML-RPC Call from Python

This is an example of how to delete a device using Python. Because XML-RPC can be used from any language
feel free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling deleteDevice on your proxy object.

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> serv.deleteDevice()

8.4. Checking If A Device Exists

Devices can be checked for existence through the UI but also through a programmatic interface. This how to
will describe how to check if a device exists using that interface.

8.4.1. Using a REST call

Checking if a device exists through a rest call can be done by a simple web get. In this example we will use
wget to check of the existence of a device. If you use wget don't for get to escape the "&" or wrap the URL
in single quotes.

Device Management

39

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/Server\
/Linux/devices/MYDEVICE'

If this command results with an exit code of 1 and a server response code of 404, then MYDEVICE does not exist
in Zenoss. If this command results with an exit code of 0 and a server response code of 200, the MYDEVICE does
exist in Zenoss.

8.4.2. Using an XML-RPC Call from Python

This is an example of how to check if a device exists using Python. Because XML-RPC can be used from any
language feel free to use your favorite. What is important here is the base URL in ServerProxy.

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> try:
>>> serv.getId()
>>> exists = True
>>> except:
>>> exists = False

8.5. Exporting a Device List
To export a device list:

1. Go to the ZMI:

http://localhost:8080/zport/dmd/Devices/manage

2. Make a script object called getMyDeviceList().

3. Put the following line into the body of the script:

return [d.id for d in context.getSubDevices()]

4. Call it like this:

http://localhost:8080/zport/dmd/Devices/getMyDeviceList

Alternatively, enter the following line to return all device IP addresses:

return [d.manageIp for d in context.getSubDevices()]

You can call this method from different parts of the tree to limit the list of devices:

http://localhost:8080/zport/dmd/Devices/Server/Linux/getMyDeviceList

40

Chapter 9. Extending the Model
9.1. Add a ZenModel Relationship

The ZenRelations class allows Zope objects to form bi-directional relationships. There are four different types
of relationships possible:

ONE_TO_ONE only one object at each end of the relationship

ONE_TO_MANY classic parent-child relation, no containment objects have different primary paths

ONE_TO_MANY_CONT one-to-many containment relation (but bi-directional)

MANY_TO_MANY many objects on both ends of relationship

Figure 9.1. ZenRelations

9.1.1. One-to-One (1:1) Relationships

Example of 1:1 Server to Admin Relationship

...

from Products.ZenRelations.RelSchema import *
...
class Server(Device):
...

_relations = (

("admin" , ToOne(ToOne, "Admin", "server")),
) + Device._relations
...
...
class Admin(TestBaseClass):
...
_relations = (

("server", ToOne(ToOne, "Server", "admin")),
)
...
...
...

The Server object is an example of a class that inherits from Device. According to this relationship there can be
only one Admin assigned to a Server and only one Server assigned to an Admin. This relationship is created by:

Importing ToOne from Products.ZenRelations.RelSchema.
Appending a two-item tuple to the _relations attribute
The first item in the tuple is a "string" object which is the local name

Extending the Model

41

The second item in the tuple is a "RelSchema" object which represents the relationship to another class.
In this case the ToOne constructor creates/returns that "RelSchema" object

ToOne constructors takes three parameters:

• The first parameter is a "type" object, "remoteType" which represents the relationship from another
class. The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative. In
this case it is again a ToOne relationship.

• The third parameter is a "string" object, "remoteName" which the remote name of itself.
Appending a complementary two item tuple to the _relations attribute in the relative class.

9.2. One-to-Many (1:N) Relationships
This is a real example which illustrates a one-to-many relationship between one Location and many Devices.

From Device.py

...
from Products.ZenRelations.RelSchema import *
...
class Device(ManagedEntity, Commandable):
...
event_key= portal_type = meta_type = 'Device'

default_catalog= "deviceSearch" #device ZCatalog

relationshipManagerPathRestriction = '/Devices'
...
_relations = ManagedEntity._relations + (
("location", ToOne(ToMany, "Location", "devices")),
)
...

From Location.py

...

from Products.ZenRelations.RelSchema import *
...
class Location(DeviceOrganizer):
...
Organizer configuration
dmdRootName = "Locations"

portal_type = meta_type = event_key = 'Location'

_relations = DeviceOrganizer._relations + (

("devices" , ToMany(ToOne,"Device","location")),
)
...

According to this relationship there can be only one Location assigned to a Device but more than one Device
assigned to a Location. This relationship is created by:

Importing ToOne and ToMany from Products.ZenRelations.RelSchema.
Appending a two-item tuple to the _relations attribute
The first item in the tuple is a "string" object which is the local name
The second item in the tuple is a RelSchema object which represents the relationship to another class.

RelSchema constructors takes three parameters:

• The first parameter is a "type" object, "remoteType" which represents the relationship from another
class. The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative.

Extending the Model

42

• The third parameter is a "string" object, "remoteName" which the remote name of itself.

Appending a complementary two item tuple to the _relations attribute in the relative class.

9.3. Many-to-Many (M:N) Relationships
This is a real example from Device.py which illustrates a many-to-many relationship between many Devices
and many Device Groups.

...
from Products.ZenRelations.RelSchema import *
...
class Device(ManagedEntity, Commandable):
...
event_key = portal_type = meta_type = 'Device'

default_catalog = "deviceSearch" #device ZCatalog

relationshipManagerPathRestriction = '/Devices'
...
_relations = ManagedEntity._relations + (
("groups", ToMany(ToMany, "DeviceGroup", "devices")),
)
...

From DeviceGroup.py

...
from Products.ZenRelations.RelSchema import *
...
class DeviceGroup(DeviceOrganizer):
...
Organizer configuration
dmdRootName = "Groups"

portal_type = meta_type = event_key = 'DeviceGroup'

_relations = DeviceOrganizer._relations + (
("devices", ToMany(ToMany,"Device","groups")),
)
...

According to this relationship there can be more than one Device assigned to a Device Group and more than
one Device Group assigned to a Device. This relationship is created by:

• Importing ToMany from Products.ZenRelations.RelSchema.

• Appending a two-item tuple to the _relations attribute

• The first item in the tuple is a "string" object which is the local name

• The second item in the tuple is a RelSchema object which represents the relationship to another class.
In this case the ToMany constructor creates/returns the RelSchema object.

The RelSchema constructors take three parameters

• The first parameter is a "type" object, "remoteType" which represents the relationship from another
class. The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative. In
this case it is again the ToMany relationship.

• The third parameter is a "string" object, "remoteName" which the remote name of itself.

• Appending a complementary two-item tuple to the _relations attribute in the relative class.

9.3.1. One-to-Many (1:N) Container Relationships

Device to Hard Drives

Extending the Model

43

This is a real example which illustrates a one-to-many relationship between one DeviceHW and many Hard-
Drives where a DeviceHW object contains HardDrives.

From DeviceHW.py

...
from Products.ZenRelations.RelSchema import *
...
class DeviceHW(Hardware):
...
meta_type = "DeviceHW"
...
_relations = Hardware._relations + (
("harddisks", ToManyCont(ToOne, "HardDisk", "hw")),
)
...

From HardDisk.py

...
from Products.ZenRelations.RelSchema import *
...
class HardDisk(HWComponent):
...
portal_type = meta_type = 'HardDisk'
...
_relations = HWComponent._relations + (
("hw", ToOne(ToManyCont, "DeviceHW", "harddisks")),
)
...

According to this relationship there can be only one DeviceHW assigned to a HardDisk but more than one
HardDisk assigned to a DeviceHW. This relationship is created by:

1. Importing ToOne and ToManyCont from Products.ZenRelations.RelSchema.

2. Appending a two-item tuple of to the _relations attribute

1. The first item in the tuple is a "string" object which is the local name

2. The second item in the tuple is a RelSchema object which represents the relationship to another class.

RelSchema constructors take three parameters

1. The first parameter is a "type" object, "remoteType" which represents the relationship from another
class. The "type" should be of a class derived from RelSchema

2. The second parameter is a "string" object, "remoteClass" which is the class name of the relative.

3. The third parameter is a "string" object, "remoteName" which the remote name of itself.

3. Appending a complementary two-item tuple to the _relations attribute in the relative class.

Specifying the remoteClass in a Relationship

The remoteClass parameter can be specified in a relationship by two methods.

("admin", ToOne(ToOne, "Admin", "server"))

In the example above "Admin" is the remote class on the relationship. For this to work properly the module
"Admin" must be in the python path and it must contain a class named "Admin".

This behavior can be modified by using the attribute zenRelationsBaseModule. For instance if Admin was located
in the path Products.ZenModel you could set zenRelationsBase = "Products.ZenModel". Now the remote class
is in the module Products.ZenModel.Admin and the class must be Named "Admin".

If you wish to put multiple classes into one module and use them in relations you can add the class name to the
end of the remoteClass value. For instance "Admin.Test" would access the module Admin with the class Test.

Extending the Model

44

If the two classes in a relation are in a different packages then you can use the fully qualified path to the
class. For instance here are the definitions of two classes in different packages: Products.ZenWidgets.Menu
and Products.ZenModel.DeviceOrganizer.

In Products.ZenWidget.Menu.py

...
class Menu(ZenModelRM):
...
 _relations = (
 ("deviceOrg",
 ToOne(ToManyCont,
 "Products.ZenModel.DeviceOrganizer",
 "menus")),
)
...

In Products.ZenModel.DeviceOrgaizer.py

...
class DeviceOrganizer(ZenModelRM):
...
 _relations = (
 ("menus",
 ToManyCont(ToOne,
 "Products.ZenWidget.Menu",
 "deviceOrg")),
)
...

9.4. Zenoss XML Schema
This XML schema describes the output of the zendump command.

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="link">
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="object">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="object" />
 <xs:element ref="property" />
 <xs:element ref="tomany" />
 <xs:element ref="tomanycont" />
 <xs:element ref="toone" />
 </xs:choice>
 <xs:attribute name="module" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="class" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="id" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="objects">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="property">
 <xs:complexType mixed="true">
 <xs:attribute name="type" type="xs:NMTOKEN" use="required" />

Extending the Model

45

 <xs:attribute name="visible" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="True" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mode" type="xs:string" use="optional" />
 <xs:attribute name="setter" type="xs:NMTOKEN" use="optional" />
 <xs:attribute name="select_variable" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="lineTypes" />
 <xs:enumeration value="rrdtypes" />
 <xs:enumeration value="sourcetypes" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="tomany">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="link" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="tomanycont">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="toone">
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required" />
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

</xs:schema>

9.4.1. object

 <xs:element name="object">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="object" />
 <xs:element ref="property" />
 <xs:element ref="tomany" />
 <xs:element ref="tomanycont" />
 <xs:element ref="toone" />
 </xs:choice>
 <xs:attribute name="module" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="class" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="id" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

9.4.1.1. Example

<object id='deleteActionRuleWindows' module='Products.ZenModel.ZenMenuItem'

Extending the Model

46

 class='ZenMenuItem'>
<property type="text" id="description" mode="w" >
Delete Rule Windows...
</property>
<property type="text" id="action" mode="w" >
dialog_deleteActionRuleWindows
</property>
<property type="boolean" id="isglobal" mode="w" >
True
</property>
<property type="lines" id="permissions" mode="w" >
('Change Alerting Rules',)
</property>
<property type="boolean" id="isdialog" mode="w" >
True
</property>
<property type="float" id="ordering" mode="w" >
80.0
</property>
</object>

The object element is an XML representation of a Zope object. The example above is the XML representation
of a ZenMenuItem object.

9.4.1.2. Attributes

• id - the unique identifier for the object instance

• class - the classname of the object instance

• module - the module in which this object's class is defined

9.4.1.3. Children

• object - an object may also have objects as children

• property - (see property element section below)

• tomany - (see tomany element section below)

• tomanycont - (see tomanycont element section below)

• toone - (see toone element section below)

9.4.2. objects

 <xs:element name="objects">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

9.4.2.1. Example

<objects>
<object id='deleteActionRuleWindows' module='Products.ZenModel.ZenMenuItem'
class='ZenMenuItem'>
<property type="text" id="description" mode="w" >
Delete Rule Windows...
</property>
</object>
</objects>

The object element is an XML representation of a Zope object. The example above is the XML representation
of a ZenMenuItem object.

Extending the Model

47

9.4.2.2. Children

• object - the objects element may also have object as children

9.4.3. property

 <xs:element name="property">
 <xs:complexType mixed="true">
 <xs:attribute name="type" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="visible" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="True" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mode" type="xs:string" use="optional" />
 <xs:attribute name="setter" type="xs:NMTOKEN" use="optional" />
 <xs:attribute name="select_variable" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="lineTypes" />
 <xs:enumeration value="rrdtypes" />
 <xs:enumeration value="sourcetypes" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>>

9.4.3.1. Example

<property type="float" id="ordering" mode="w" >
80.0
</property>

The property element represents a property of an object in Zope. The example above represents an "ordering"
property of an object. The value of the "ordering" property is 80.0 and is of type float.

9.4.3.2. Attributes

• id - the unique identifier of this property

• type - the datatype of the property's value

• visible - an optional boolean, a flag used to display or hide the property

• mode - read/write permission of this property

• setter - the name of the method to set this property

• select_variable - the name of the list which hold the possible values of this property

9.4.4. tomany

 <xs:element name="tomany">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="link" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

9.4.4.1. Example

<tomany id='devices'>

Extending the Model

48

<link objid='/zport/dmd/Devices/Server/Linux/devices/MYDEVICE'/>
</tomany>

The tomany element represent a ToManyRelationship object in Zope. The example above is of the "devices"
to many relationship on an object.

9.4.4.2. Attributes

• id - unique name of the to many relationship

9.4.4.3. Children

• link - (see link element below) These links are the XML representations of the references to related objects

9.4.5. tomanycont

 <xs:element name="tomanycont">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

9.4.5.1. Example

<tomanycont id='instances'>
<object id='dropbear' module='Products.ZenEvents.EventClassInst'
class='EventClassInst'>
<property type="string" id="eventClassKey" mode="w" >
dropbear
</property>
<property type="int" id="sequence" mode="w" >
1
</property>
...
</tomanycont>

9.4.5.2. Attributes

• id - the name of the to many cont relationship

9.4.5.3. Children

• object - the tomanycont element may have objects elements as children, these subobjects are the XML
representations of these related objects

9.4.6. toone

 <xs:element name="toone">
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required" />
 <xs:attribute name="id" type="xs:NMTOKEN" use="required" />
 </xs:complexType>
 </xs:element>

9.4.6.1. Example

<toone id='perfServer' objid='/zport/dmd/Monitors/Performance/localhost'/>

The toone element represents a ToOneRelationship on an object. The example above is a toone relationship
named "perfServer". It represents a device's relationship to only one performance server "localhost."

Extending the Model

49

9.4.6.2. Attributes

• id - the name of the toone relationship of an object

• objid - the path to the related object

9.4.7. link

 <xs:element name="link">
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

9.4.7.1. Example

<link objid='/zport/dmd/Devices/Server/Linux/devices/MYDEVICE'/>

The link is a reference to another object element rather than a new instance of an object element.

9.4.7.2. Attributes

• objid - is the path to the object

9.5. Zenoss Permissions
In this example we'll be adding a new permission named "Example Permission", assigning it to a method, then
checking for that permission.

9.5.1. Adding New Permissions
1. Add the new permission to $ZENHOME/Products/ZenModel/ZenossSecurity.py

ZenossSecurity.py is a file where all the string constants for Zenoss permissions are held. By adding this
line to ZenossSecurity.py we've made a new constant that will be used to assign to a method.

ZEN_EXAMPLE_PERMISSION='Example Permission'

2. Now that we have a "name" for the permission available, we should add the permission to Zope. In $ZEN-
HOME/Products/ZenModel/ZentinalPortal.py there is a class named PortalGenerator. There is a method
named setupPermissions() defined in PortalGenerator.

Here you'll see a group of calls to manage_permissions. Add a new line to this method that adds your new
permission.

 mp(ZEN_EXAMPLE_PERMISSION, [ZEN_MANAGER_ROLE, MANAGER_ROLE], 1)

The first parameter is the permission. In this example the permission being managed is
ZEN_EXAMPLE_PERMISSION. The second parameter is the list of default roles assigned to the permis-
sion. In this example ZEN_MANAGER_ROLE and MANAGER_ROLE are set as defaults. The third argu-
ment is the acquired flag. When the flag is set to true, the permissions will be acquired in addition to the
ones specified.

3. To make your permission official you'll need to use this permission. Apply your newly added permission to
a method. See the next section on assigning permissions to a method. Your permission must be declared
and used by a method to make it a valid permission.

9.5.2. Assigning Permissions to a Method
1. Import your new permission:

 from Products.ZenModel.ZenossSecurity import *

2. Import ClassSecurityInfo. In most cases we have set ClassSecurityInfo to security

Extending the Model

50

 from AccessControl import ClassSecurityInfo
 security = ClassSecurityInfo()

3. Above the method definition add this line of code

 security.declareProtected(ZEN_EXAMPLE_PERMISSION, 'exampleMethod')
 def exampleMethod(self):
 ...

The first parameter to declareProtected() is the permission to be set on the method. In this case the
permission is ZEN_EXAMPLE_PERMISSION. The second parameter is the name of the method. In this case the
name of the method is exampleMethod().

9.5.3. Checking Links
1. To check permission on a object, call checkRemotePerm().

 self.checkRemotePerm(ZEN_EXAMPLE_PERMISSION, foo)

The first parameter is the permission to check. In this case the permission is ZEN_EXAMPLE_PERMISSION. The
second parameter is the object being checked. In this case the name of the object is foo. This call will check
if foo has the ZEN_EXAMPLE_PERMISSION.

51

Chapter 10. Zenoss Daemons
10.1. Twisted Network Programming Overview

Zenoss relies heavily on the Twisted network Python libraries. Twisted provides an asynchronous, layered net-
working stack that is used by Zenoss for daemon communications as well as for contacting devices. The main
Twisted documentation can provide a more detailed background.

One of the central concepts in Twisted is not a multi-threaded design, but an asynchronous design. This means
that it is event-driven (the next function to be called depends on what data is received) with co-operative mul-
ti-tasking (such as a badly behaved function that sleeps or takes a long time to execute can stall an entire
application). The unit of co-operative multi-tasking is a deferred object. A simplified overview is that a Twisted
program starts a bunch of deferred tasks and then waits for timers to expire and network events to happen.

Daemons communicate with ZenHub via Twisted Perspective Broker (PB), which is a library for transferring
objects over the network. The most important PB concepts for our purposes are these:

• Methods that start with remote_ are callable from the daemons.

• There are restrictions on what type of objects can be passed back and forth between the service and the
daemon. Passing native Python types is supported, as well as some support for more simple objects (classes
without methods). Simple objects can be marked using the PB method pb.setUnjellyableForClass() to
help accomplish this goal.

10.1.1. Understanding NJobs, Driver and DeferredList

Writing scalable, single-threaded communications servers requires an event-driven programming approach.
Small, simple I/O steps are connected by callbacks, rather than normal control flow. For example, instead of
just sending a request and waiting for the response you have to create the request, queue it for delivery, send
it when the network flow-control says it has space, wait for the response, reading it piecemeal, as it arrives,
and then correlating it to the sent message. Fortunately, we use a comprehensive library that performs many
of these steps for us, so the underlying steps are not as small. But, once you have queued your request, you
must head back to the main event loop so that I/O from many different parts of your application can complete
in a reactive manner. The fundamental callback mechanism is the Twisted library's Deferred. There are three
common tasks that our data collectors perform in an asynchronous environment. They are:

1. Perform these tasks, in any order, and report to me when they are complete.

2. Perform this long list of tasks, but do not do more than N of them at a time.

3. Perform a sequence of related activities in the correct order.

10.1.1.1. DeferredList

Lets say you need to perform I/O requests in parallel, and you don't care which finishes first, so long as they
all complete before the next step. For this problem, we gather up the deferreds from each step as we initiate it,
and we hand them to a DeferredList. Once they have all fired (with callbacks or errbacks) the DeferredList will
return a list of the results, along with a boolean value indicating success or failure.

from twisted.internet.defer import DeferredList

d1 = task1()
d2 = task2()
d3 = task3()
d = DeferredList([d1, d2, d3])
d.addCallback(printResults)

def printResults(results):
 for success, value in results:
 if success:
 print "Callback successful:", value
 else:

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/projects/core/documentation/howto/index.html

Zenoss Daemons

52

 print "Errback: ", value

Each task runs in parallel, completing at its own pace. This approach is useful for knowing when a number of
unrelated requests have completed. For example, fetching the initial configuration may have several requests
that are not interrelated. These may be done in parallel, so long as they all complete before collection begins.

10.1.1.2. NJobs

Each collector can overwhelm existing resources if it does not limit itself. For example, file descriptors in a
process are normally limited to approximately a thousand. Unless you change the operating system's default it
is not possible to talk to more than a thousand devices at one time if each requires its own file descriptor. So, we
normally wish to a talk to as many as we can concurrently, but not so many that we run out of local resources.
NJobs takes a callable that takes a single argument and returns a deferred, and a sequence of items, along with
a value N, such that only N of the callables are outstanding at each time.

from Products.ZenUtils.NJobs import NJobs

jobs = NJobs(10, collectDevice, devices)
d = jobs.start()
d.addCallback(printResults):

def printResults(results):
 for result in results:
 print "Result is", results

The callable is called on the sequence list in the order given, but each call may complete out-of-order. Therefore,
the results may also have a different order than the input sequence. NJobs prevents us from having to write a
built-in limit to each type of asynchronous collector.

10.1.1.3. Driver

The most difficult to understand of the asynchronous tools that uses Deferreds is Driver. First let's understand
the basic problem. We have a sequence of asynchronous activities we want to link together, but each step
requires some intervening computation or organization. If the activities were synchronous, they might look like
this:

config = readConfig()
self.updateConfig(config)
for d in self.config:
 clearStatus(d.id)
collect(self.config)
sendHeartbeat()

Each of these steps must be completed in order. Using just deferreds we might right something like this:

d = readConfig()
d.addCallback(updateConfig)
def clearStatuses(self):
 d = DeferredList([clearStatus(d.id) for d in self.config])
 d.addCallback(collect)
 d.addCallback(heartbeat)
d.addCallback(clearStatuses)

The interleaving of synchronous calls (the for loop) and asynchronous calls twists the code around the callback
mechanism. There is a mechanism in Python that can be used to straighten out a convoluted sequence of
actions to produce a stream of results. Like a tokenizer, which uses yield to produce tokens as they have been
discovered in an input stream, Driver uses yield to produce deferreds as they come up. Driver consumes the
deferreds and resumes computation when they complete. So lets see what this code looks like when we yield
a deferred whenever we have one:

yield readConfig()
self.updateConfig(results)
for d in self.config:
 yield clearStatus(d.id)
yield self.config()
yield sendHeartbeat()

Zenoss Daemons

53

What remains is very much like the normal synchronous control flow, except the result from the deferreds are
missing. The value results in the 2nd line of the example is a stand-in for some mechanism to get the results
of the last deferred that was returned by yield.

Here's the example in a more complete fragment:

from Products.ZenUtils.Driver import drive
def cycle(driver):
 yield readConfig()
 self.updateConfig(driver.next())
 for d in self.config:
 yield clearStatus(d.id)
 driver.next()
 yield self.config(); driver.next()
 yield sendHeartbeat(); driver.next()
drive(cycle)

So, when we drive one of these deferred-generating-sequences, we get a reference to the driver. The driver
keeps the last value returned by a deferred result, so that it is available to the iterator. Construction is difficult to
understand, but understanding is not necessary to use Driver. If you have a sequence of code, where deferreds
keep cropping up and preventing your workflow from, well, flowing, you can use Driver to make flow like the
synchronous version.

First, you need a generator which takes a single argument. If you don't have one, you can make one right in
the body of the function:

def f(a, b, c, d):
 def inner(drive):
 yield g(a, b, c, d)
 drive.next()
 return drive(inner)

Next, just yield the deferreds as they come up, and get the result with driver.next(). It's good to call
driver.next() even if you don't use the result, because if the result was an exception, driver.next() will throw
the exception.

Finally, drive returns a deferred, so be sure to perform callback handling on it. The callback value of the deferred
is the last value from the last deferred.

drive(function).addBoth(self.handleResult)

10.1.1.4. A Simple Example

The following code is a simple example of the usage of a Twisted client / server code as well as the Zenoss
driver() code.

#! /usr/bin/env python

__doc__= """
Simple example of using ZenUtils Driver and Twisted Perspective Broker (PB).
Sums all of the numbers that are given as command line arguments by repeatedly
calling a remote add method on the server-side object.
"""

from twisted.spread import pb
from twisted.internet import reactor
import Globals
from Products.ZenUtils.Driver import drive

class Server(pb.Root):
 """
 This is the server-side object.
 """

 def __init__(self, port):
 """
 Listen on the specified port.

Zenoss Daemons

54

 @param port: the TCP/IP port to listen on
 @type port: positive integer
 """
 reactor.listenTCP(port, pb.PBServerFactory(self))

 def remote_add(self, x, y):
 """
 Add the two parameters together and return the result.

 @param x: first operand
 @type x: number
 @param y: second operand
 @type y: number
 @return: the sum of x and y
 @rtype: number
 """
 return x + y

class Client(object):
 """
 This is the client-side object.
 """

 def __init__(self, port, numbers, callback):
 """
 Connect to the server and drive the sum method.

 @param port: TCP/IP port number on which a server is listening
 @type port: positive integer
 @param numbers: numbers to add
 @type numbers: list of numbers
 @param callback: a callable that accepts an argument
 @type callback: Twisted callback object
 """
 self.numbers = [int(n) for n in numbers]
 self.clientFactory = pb.PBClientFactory()
 drive(self.sum).addCallback(callback)
 reactor.connectTCP('localhost', port, self.clientFactory)

 def sum(self, driver):
 """
 Get the root object. Call the remote add method repeatedly keeping
 track of the total.
 This is a Python iterable.

 @param driver: a driver of the iterables
 @param driver: Zenoss driver() class
 @return: deferred to track the returned number
 @rtype: Twisted deferred object
 """
 yield self.clientFactory.getRootObject()
 root = driver.next()
 total = 0
 for n in self.numbers:
 yield root.callRemote('add', total, n)
 total = driver.next()

def main(numbers):
 """
 Assign a port. Create the client and server. Run the reactor.

 @param numbers: numbers to add
 @type numbers: list of numbers
 """
 port = 7691

 # Add the server to the reactor
 Server(port)

Zenoss Daemons

55

 def callback(total):
 """
 A simple callback to return the total and stop the reactor

 @param total: the total, as returned by the server
 @param total: number
 """
 print total
 reactor.stop()

 # Add the client to the reactor
 Client(port, numbers, callback)

 reactor.run()

if __name__ == '__main__':
 import sys
 if len(sys.argv) > 1:
 main(sys.argv[1:])
 else:
 print 'Usage: %s <number> [number...]' % __file__

10.2. Zenoss Daemon Overview

There are a few general types of daemon types in Zenoss:

Types of Daemons found in Zenoss

zenhub Each instance of zenhub opens a connection to the ZODB. All other daemons connect
to the hub in order to receive and transmit changes to the ZODB.

modeler daemons These daemons attempt to construct a model of devices and networks using Zenoss
objects, and associate components with devices to prepare for performance data col-
lection.

collector daemons Collector daemons are concerned with gathering performance data for each of the
modeled components and storing the results in RRD files. The RRD data is always
stored locally to the host that runs the collector daemon.

event daemons An event daemon converts messages received from devices using whatever method
the device supports, and converts the messages into Zenoss events.

zenrender A render server takes a request for an RRD graph, renders the graphic and sends
the graphic back. A render server will be found where collectors run, as the collectors
generate the RRD files.

Zenoss Enterprise users also have the option of using Distributed Collectors, which can create hubs and col-
lectors on different hosts in order to monitor devices. With Distributed Collectors there may be multiple zenhub
daemons (one per hub, naturally), and for a host with collector daemons there will also be a renderserver.

From a programming perspective, most daemons will choose one of the following classes:

Class Features

CmdBase Logging and option parsing

ZenDaemon Logging and option parsing, daemon

ZCmdBase Logging and option parsing, daemon, ZODB connec-
tion

PBDaemon Logging and option parsing, daemon, PB communica-
tions

Zenoss Daemons

56

10.3. zenhub: Daemon to ZODB management
The zenhub daemon (aka the Hub or ZenHub) is a single-threaded and asynchronous daemon that provides
the following features:

• Connections between daemons and the ZODB for persistent object management (for example, configuration
loading). Writes to the ZODB are synchronous operations.

• Connections between daemons and the MySQL event database for events and event management. Writes
to MySQL are synchronous operations.

• Connections between daemons and performance data in RRD files

• Pluggable Daemon Services

• User-interactive RRD graph fetching (such as renderserver functionality)

• Loading configuration

Figure 10.1. ZenHub, Daemon and the ZODB

The Hub (as of Zenoss version 2.3) can be split out some of its tasks by creating workers (a configuration file
option). Requests from collectors are farmed out to the worker processes to spread out some of the load.

Propagating configuration changes and fetching RRD Data is not pushed through workers! This means that
large configuration downloads will still affect the user experience. Some sort of caching on the daemon's
side may be necessary for large sites.

10.3.1. Daemon to ZODB management

The zenhub daemon manages updates to the object database (ZODB) to any daemons that connect to zenhub
(in practice this means all Zenoss daemons). The Hub watches for changes to the ZODB database (for exam-
ple, the use of the commit() function) and initiates change notifications to any affected daemons. zenhub also
provides daemons access to the object database for loading configuration items and posting events.

10.3.2. Heartbeats and other Events

Another management function that zenhub provides is the ability to send notifications (ie Zenoss events). An
event will be provided from the daemon to the Hub which then stores the event in the event database (ie a
MySQL table) and then the event is processed according to any mappings that match the event. In this way an
event generated by an error condition can be cleared by another event.

Each daemon should post an event when it is shutdown, so that the console is kept informed of intentional
shutdowns. However, these events should be cleared by matching start events. Start/shutdown events should
only be sent when the server is daemon-ized.

Each daemon should post a periodic Heartbeat event. If a heartbeat event is not updated the Zenoss GUI will
indicate a problem with the daemon. Ideally, a daemon only sends a heartbeat event after each successful

Zenoss Daemons

57

operating cycle (after each performance data collection). It is not acceptable to just post events in a separate
thread or timer unless that thread also does some minimal testing for internal status and health.

If the daemon cannot talk to the Hub (zenhub is down) then events are queued up. When communications are
restored the queued events are then delivered.

10.3.3. Pluggable Daemon Services

To implement these features, zenhub has a collection of Services that it is willing to provide to other daemons.
A daemon will connect and request a particular Service. ZenHub will create that Service, and send future object
change notices to the Service, which in turn can decide how best to notify the daemon. Some daemons, such as
zenping, have a very simple configuration that doesn't change very often. Others, such as the zenperfsnmp,
have a much more complex configuration that must be kept up-to-date with model changes.

Each Service is implemented as a class that zenhub can import. Using Twisted's Perspective Broker (PB)
facilities, a daemon can request that the Hub perform some action (ie a class method) and return the results
to the daemon, and vice versa. In other words, the Service acts as the interface between the daemon and the
Hub. The services directory in a ZenPack directory structure is where the Service class is kept.

10.4. ZenRender and Graphs

ZenRender provides access to RRD files (and rrdtool) stored on a remote collector from a user's browser, and
allows this even with firewalls. Zenrender can implement rendering methods via PB and HTTP.

ZenHub maintains a connection from zenrender, so an HTTP request to ZenHub and back through to the remote
zenrender is an option. zenrender can implement all the RenderServer methods via HTTP requests, too.

You can use the following default URLs to get a graph:

Default URL Description

http://hostname:8080/zport/RenderServer The Zope RenderServer (original mechanism)

http://zenoss:8090/collector ZenHub, where collector is the name of the collector
defined in the model. This port number can only be
changed by editing the Render hub service.

http://hostname:8091 A direct reference to zenrender at the given hostname.
The port number is configurable at each zenrender
server.

10.5. Developing a Daemon

10.5.1. Command-line Options

Each daemon should support:

$ mydaemon start

This should daemon-ize the new daemon, running it forever in the background.

$ mydaemon stop

This should find the collector and stop it with a graceful shutdown.

$ mydaemon run

The new daemon should run for one cycle (if it has a cycle), and should not daemon-ize and log to stderr.

Thankfully most of this infrastructure is taken care of for you. Should you require more command-line options,
here's how you should take advantage of the existing code:

Zenoss Daemons

58

from Products.ZenHub.PBDaemon import PBDaemon
class myclass(PBDaemon)

 ...

 def buildOptions(self):
 """Build our list of command-line options
 """
 PBDaemon.buildOptions(self)
 self.parser.add_option('--newoption',
 dest='dest_var', action="store_true", default=False,
 help="Do something really interesting")

The option formats are as specified in the Python optparse library.

Other features taken care of with the Zenoss daemon infrastructure is reading from configuration files, the --
genconf flag (which produces a configuration file populated with all options, comments and default values) as
well as the --genxmltable flag (which produces a DocBook XML table showing command-line switches). As
other features can be added to the base class, if you follow this recommendation there are more things your
daemon gets for free.

The code to allow commands to get command-line option values out of a config file in $ZENHOME/etc/ currently
can only set values on lower-case options. Please be aware of this when you create new command-line
options.

10.5.2. Add the Daemon Control Script

The daemons directory should contain a file with the name of your daemon (the one that should appear under
the Daemons tab under Settings). This file is an executable shell script which should contain the following:

#! /usr/bin/env bash

. $ZENHOME/bin/zenfunctions

MYPATH=`python -c "import os.path; print os.path.realpath('$0')"`
THISDIR=`dirname $MYPATH`
PRGHOME=`dirname $THISDIR`
PRGNAME=mydaemon.py
CFGFILE=$CFGDIR/mydaemon.conf

generic "$@"

Of course, the PRGNAME and CFGFILE variables don't necessarily need to be contain the same name as the
daemon. However, keeping the same name will certainly make things much less confusing.

The mydaemon.py file is assumed to live at the base of the ZenPack.

10.5.3. Set Up ZenHub Communications

The basics of daemon communications are these.

Procedure 10.1. Daemon to ZenHub Communication Steps

1. A daemon connects to ZenHub. The raw mechanics of this are handled by the PBDaemon classes so we
don't need to explicitly code anything.

2. The daemon requests specific Services by name from ZenHub. The Services are classes either already
known to ZenHub or classes provided in the services directory in a ZenPack and are loaded by ZenHub
at runtime.

3. The daemon calls remote_ methods on the Service objects from ZenHub to receive configuration information
or perform other work.

4. The Services can also call remote_ methods on the daemon to provide updates, etc.

http://docs.python.org/library/optparse.html

Zenoss Daemons

59

10.5.3.1. Registering Services with the Hub

The services directory needs to be created at the base directory of your ZenPack. Included in this directory
is the __init__.py file. The __init__.py can be empty, but it must exist or any service class files cannot be
loaded by zenhub.

zenhub imports Services (a daemon-to-Hub interface class) and the daemons can then use their own Service
to perform actions. Look for the example closest to your needs from the $ZENHOME/Products/ZenHub/services/
directory as well as from other ZenPacks (such as HelloWorldZenPack or ZenJMX).

A basic Service class can be found in the Products.ZenHub.HubService.HubService class. More complex dae-
mons doing data collection may want to subclass Products.ZenHub.PerformanceConfig.PerformanceConfig in-
stead to take advantage of some additional infrastructure there.

60

Chapter 11. Add a Performance Daemon
11.1. Overview

Zenoss is designed to be an extensible platform for integrating new performance collectors. Basically, this should
be a simple matter of getting the list of devices and sending/receiving data over the network to collect new
values. Essentially, this is what every collector does.

Each collector should post values to RRD files and execute thresholds against those updates. The Python
class RRDUtil supports writing values to RRD files. The Python class Thresholds will simplify the execution of
thresholds on each RRD update.

Data collection needs to work in a wide variety of networking infrastructures, so it needs to have acceptable
performance in light of high latency wide-area networks. Collectors should intentionally interleave requests to
multiple devices to reduce the overall time necessary to walk the list of devices. Collectors should not overload
a single device by sending multiple outstanding requests to that device.

In order to debug collection, the collector should be capable of logging detailed debugging output at each step
of collection, as well as posting events about collection failure. In particular, logging raw values and errors from
devices helps find errors in post-processing. Any performance information about total devices collected, or total
collect time should be posted at the informational level (above debug).

Since the collectors are generally going to run long-term, cached values and other stored and pre-computed
values should be periodically purged in order to synchronize the collectors' state with the real world, as well to
eliminate possible memory leaks.

If the collector monitors device components as well as whole devices, it may be necessary to load the device
configuration information in an incremental way. If it takes 30 minutes to gather the configuration information,
this is simply too slow and unresponsive. The collector should load its configuration information incrementally,
performing collection against those devices it knows about. It can cache the configuration information persistently
to provide a larger "initial set" of configuration upon start-up.

Many collectors benefit from "pre-failing" their devices. They get the list of devices presently marked down by
the ping tester, and they skip those devices during collection. This eliminates unnecessary longer delays as
collectors run against devices that are just unreachable.

11.2. DataMaps

Zenoss divides data collection into two parts: modeling, and performance collection. During the modeling, or
discover step, the external world is sampled through a series of plug-ins. The result of the discovery step is a
generic "Map": a nested data structure that mimics the structure of the components within a device.

Add a Performance Daemon

61

Figure 11.1. Modeling Overview

For example, we can query the list of network interfaces on a device using SNMP. We will map that into a data
structure to mimic the path on the device:

 { 'os' : { 'interfaces' { 'eth0': { 'type': 'ethernetCsmacd',
 'speed': ... }
 { 'eth1': { 'type': 'ethernetCsmacd',
 'speed': ... }

These dictionaries of collected data are called DataMaps. There is a set of recursive functions that walk the maps
and apply the values to the device, creating components and setting values on them. In this way, a remote
collector can push updated configuration back to the central database without concern as to what the current
configuration is, and what exactly should be updated.

The Zenoss plugins are specialized to easily create these maps. Typically they consist of a single method
process() to transform SNMP query results into DataMaps. The plugin specifies the SNMP tables to be scanned,
and the process method is used to transform the results into DataMaps. Some plugins can test their applicability
to a specific device. For example, the plugin may only be appropriate if the device supports SNMPv2, or has a
particular agent OID. These plugins have a "test" method which is run before the plugin is used by the modeler.

SSH plugins, which are very much like SNMP plugins, transform output of various commands into datamaps.
For example, the output of the Unix df command is transformed into a map to create and update file system
information.

Add a Performance Daemon

62

11.3. Performance Collection

Modeling updates the object database model with information about what data to collect. As an example, if the
modeler detects three network interfaces, it creates slots for each network interface, and each of these slots is
referenced by an index. It is now up to the data collector to fill each of these slots with performance data.

When the performance collectors read their configuration, the devices are matched against templates, and each
template contains each data sources (for example, which data points (such as SNMP OIDs) and their slot to
collect) and thresholds. In addition, any information necessary to read the performance data (such as zProperties
that contain login information) is retrieved. This information is usually organized by device, and is loaded by the
collector when it is started.

When devices change configuration (and therefore change the performance data that needs to be collected),
the model must be refreshed either with an explicit selection of Model Device on the device, or by the periodic
runs of a modeler (such as zenmodeler).

11.3.1. Connecting Collectors and Services

All collectors (and the modelers) are sub-classed from PBDaemon. PBDaemon will automatically connect to zenhub
and re-connect as needed. It provides an easy-to-use Event Service.

The configuration format and API for getting and updating any specific collector will depend on the Service it
uses. There are a few caveats about forwarding configuration to collectors:

1. Change notifications are very "bursty".

2. A sequence of updates in a burst will often update the same object many times.

3. The configuration for thousands of devices can take a long time to extract. The configuration should be
pushed or pulled incrementally.

Caveats 1 and 2 mean that we often delay sending updates by several seconds to reduce the number of changes
sent. Caveat 3 makes for complex exchanges between a service and the collector. There are classes to sup-
port delayed evaluation of configuration (Procrastinator). There is support for determining the type of object
change: the deletion of a device, the update of a template, and the update of a monitor's configuration (Perfor-
manceConfig).

11.4. Creating a New Collector

For this section, we will contemplate a new collector that will collect ping performance data. We will want to create
a new DataSource type with several built-in DataPoints, such as Average Ping Time, and Fastest Ping Time.

11.4.1. Constructor

The following example is a simple network ping-performance collector. It relies on the availability of fping to
perform the actual ping test.

class pingperf(RRDDaemon):
 initialServices = RRDDaemon.initialServices + [
 'ZenPacks.zenoss.PingPerf.PingConfig'
]
 configCycleInterval = 20*60
 pingCycleInterval = 5*60

The class pingperf is derived from a base class that supports writing to RRD files. It is a also PBDaemon, which
means that it will connect to ZenHub to fetch its configs and post events. PingConfig is the module/class that will
be loaded in ZenHub to satisfy zenperf's configuration requests. We also configure reasonable default values
for two cycles: the time between configuration refreshes and the time between ping tests.

 def __init__(self):
 RRDDaemon.__init__(self, 'pingperf')

Add a Performance Daemon

63

 self.devices = {} # device id -> ip address
 self.running = False

The constructor for this class calls the base's constructor, passing our name. We will need to hold the configu-
ration between cycles, so we initialize an empty configuration. If the ping testing takes longer than one configu-
ration cycle, we won't want to start a second test. We set a flag to note that we aren't running a ping test (yet).

When the base class is started, it attempts to connect to ZenHub and get remote references to the services is
will use. Most collectors have two services: EventService and a collector-specific service that scans the model
for configuration. Our service will be PingConfig. After the service reference are loaded, the base class calls
a connected() method.

 def connected(self):
 def inner(driver):
 log.debug("fetching config")
 yield self.fetchConfig()
 driver.next()
 driveLater(self.configCycleInterval, inner)
 drive(inner).addCallbacks(self.pingDevices, self.errorStop)

This method uses a technique to serialize a callback chain. See the ZenUtils/Driver.py for details on how this
works. The effect is that the config is loaded with the fetchConfig() method, and the inner function is called
repeatedly after configCycleInterval seconds.

Once the inner function completes the first time, it either calls pingDevices() on success or errorStop() on
failure.

11.4.2. Getting a List of Devices

When the collector connects, and requests its config from the Service, the service will walk the list of all the
devices for that monitor, and extract out the ping DataSources:

def remote_getDevices(self):
 config = []
 monitor = self.dmd.Monitors.Performance._getOb(self.name)
 for dev in self.monitor.devices():
 for templ in dev.getRRDTemplates():
 dataSources = templ.getRRDDataSources('Ping')
 if dataSources:
 break
 else:
 continue
 config.append(
 (dev.id, # name of the device
 dev.getManageIp(), # the IP to ping
 dev.getThresholdInstances('Ping')
 # any thresholds on the ping
)
)

To make this configuration load incremental, the Service can send just the name of the devices to load, and
then the collector can use a different method to load the configuration of each device at a later time. For such
a simple configuration, it may not be worth the extra complexity.

When this code is placed into a class that is a sub-class of HubService, it can be loaded by name, when the
collector loads it services. PBDaemon will automatically connect you to this service, if the name of the service
is provided in the class configuration.

The call to get this configuration in our new collector looks like this:

 d = self.getService('some.package.PingService').callRemote('getDevices')
 d.addCallback(self.startCollection)

1. PBDaemon has already connected you to the service some.package.PingService class.

2. getDevices becomes remote_getDevices in the hub.

Add a Performance Daemon

64

3. The protocol for getting configurations is anything you like: you can control both sides of the communi-
cations.

4. Requests and responses are asynchronous and will involve callback objects.

5. The communications are heavily dependent on the Prospective Broker (PB) library in Twisted. Please
refer to the Perspective Broker (PB) documentation for how the calls to remote objects work.

11.4.2.1. Thresholds

As each collector reads updated performance data it will evaluate any thresholds associated with those updates.
The classes representing those thresholds must be loaded before the thresholds may loaded evaluated. So,
each collector asks ZenHub for the names of all of the thresholds that can be monitored and imports them for
future use.

The management of Thresholds within the collector is complex. There exists a class (Thresholds) to manage
the thresholds and transform performance updates into events.

11.4.2.1.1. Complex Thresholds

A complex threshold allows Zenoss to produce an event:

• When user time and system time is over 80%

• When value A is 80% of value B

• On a different RRD consolidation function from AVERAGE

• When a file system is X% full, and a critical event is Y% full

Figure 11.2. Complex Thresholds

Thresholds are not “min/max value checkers” but “transformers of values into events”. As new values come in,
the Threshold will look at the value and determine if an event is warranted. Because of the inheritable template
mechanism, we have two separate tasks for Thresholds. The first is to represent the configuration for a threshold
within the template. A value like “80” in the case of “File System at 80% full” is part of the configuration. However,
when applied to a context, such as file system “C:\\” on device “WINXYZ” the value becomes “96000 blocks”.
The value “96000 blocks” needs to transfer from the Zenoss object model, to the collector, so that values can
be evaluated with the given context, without referring to the entire object model.

http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html

Add a Performance Daemon

65

This leads us to separate thresholds into two components: one that hold the configuration and user intent, and
another that can travel as part of the collector configuration to the collector. This “Threshold with Context” object
is then executed when new values for data points are collected. The first type of threshold (for configuration)
is called ThresholdClass, and the second type, which evaluates a value with context is called a ThresholdIn-
stance. The Zenoss data model will load ThresholdClass classes from Zenoss and installed ZenPacks. These
objects are responsible for creating the ThresholdInstance objects that are sent via the collector configuration
for evaluation in the collector. Templates refer to derived versions of ThresholdClass, which when given a con-
text, create ThresholdInstance objects.

To reduce the effort when writing a performance collector, support classes are used to hold ThresholdInstances
and map updates to datapoints into threshold evaluation and event generation. The classes MinMaxThresh-
old and MinMaxThresholdInstance replaced the previous Threshold and flattening mechanism defined for data
points and collectors in Zenoss version 2.0.X.

Presently, collectors are generally ignorant of context (device, or component), and almost certainly ignorant of
DataSources and DataPoints. They are given the parameters necessary to fetch a value and store it into an RRD
file. ThresholdsInstances wish to work on distinguished DataSource/DataPoint names within a context. So, to
map from RRD files back to Thresholds, we use the RRD filename. When a collector updates a file, it notifies
the Thresholds class (the utility class for all collectors to hold threshold information). This class maintains a
mapping of file names to Threshold and DataPoint. Eventually, it might be worth translating the collectors so
that they know about context and DataPoint.

Known Problems with Complex Thresholds

To send classes from Server to Client, the client has to expect and approve them. We will need to transfer
the list of approved ThresholdInstance sub-classes before a client can load those thresholds. The collector
will then have to approve and import these sub-classes at start-up.

11.4.3. fetchConfig()

Let's look at fetchConfig():

 def fetchConfig(self):
 'Get configuration values from ZenHub'
 def inner(driver):
 yield self.model().callRemote('getDefaultRRDCreateCommand')
 createCommand = driver.next()

 yield self.model().callRemote('propertyItems')
 self.setPropertyItems(driver.next())

 self.rrd = RRDUtil(createCommand, self.pingCycleInterval)

 yield self.model().callRemote('getThresholdClasses')
 self.remote_updateThresholdClasses(driver.next())

 yield self.model().callRemote('getCollectorThresholds')
 self.rrdStats.config(self.options.monitor,
 self.name,
 driver.next(),
 createCommand)

 devices = []
 if self.options.device:
 devices = [self.options.device]
 yield self.model().callRemote('getDevices', devices)
 update = driver.next()
 if not isinstance(update, dict):
 log.error("getDevices returned: %r" % update)
 else:
 self.devices = update
 return drive(inner)

Add a Performance Daemon

66

Here the same drive/inner technique is used to serialize a bunch of asynchronous remote method calls. The base
class provides a method called model() which returns a remote reference to the collector-specific configuration
class. We call several remote methods, most of which are inherited from a base ZenHub service class.

We must get the default RRD create command. Then we copy the collector properties, which provides updated
values for pingCycleInterval and configCycleInterval. In order to execute thresholds, we need to know the set
of all threshold classes and get them imported. After the threshold classes are installed, we have to get the
thresholds for this collector. These thresholds do not belong to the datapoints to be collected (ping response
time), but for values like "total cycle time" that are based on the collectors performance.

Finally we call the remote method getDevices() which returns a mapping of device id to IP address. We make
allowances for the simple one-device invocation:

pingperf -v 10 -d someDevice

11.4.4. Collector's ZenHub Service

Here's our ZenHub service:

from Products.ZenHub.services.PerformanceConfig import PerformanceConfig
class PingConfig(PerformanceConfig):
 """
 A very simple service for fetching device data
 """

 def getDeviceConfig(self, device):
 return (device.id, device.getManageIp())

 def sendDeviceConfig(self, listener, config):
 listener.callRemote('updateDevice', config)

 def remote_getDevices(self, devices):
 result = {}
 for d in self.config.getDevices():
 if not devices or d.id in devices:
 result[d.id] = d.getManageIp()
 return result

Most of the implementation for this class is in the base class. The base class determines the devices affected
when database changes occur. It then uses the methods getDeviceConfig and sendDeviceConfig to figure out
how to send the changes to the collector.

11.4.5. Miscellaneous Functions

Back to the collector, here are the methods that are called by ZenHub to update the collector with changes:

 def remote_deleteDevice(self, doomed):
 log.debug("Async delete device %s" % doomed)
 try:
 del self.devices[doomed]
 except KeyError:
 pass

 def remote_updateDevice(self, cfg):
 log.debug("Async config update for %s", cfg.name)
 d, ip = cfg
 self.devices[d] = ip

11.4.6. Collect the Performance Data

The only method left in our simple collector is to actually ping some devices, post the timings to a configuration
file, send any resulting events, and send a heartbeat.

 def pingDevices(self, ignored=None):
 def inner(driver):

Add a Performance Daemon

67

 reactor.callLater(self.configCycleInterval, self.pingDevices)
 if not self.options.cycle:
 self.stop()
 if self.running:
 log.error("Ping is still running")
 return
 self.running = True

 log.debug("Pinging %s..." % (" ".join(self.devices.keys())[:100]))
 start = time.time()
 revMap = dict([(ip, d) for d, ip in self.devices.items()])
 fd, fname = mkstemp()
 fp = os.fdopen(fd, "w")
 log.debug("Writing devices to tempfile %s." % fname)
 fp.write('\n'.join(revMap.keys()) + '\n')
 fp.close()
 from twisted.internet.utils import getProcessOutput
 fping = os.path.join(os.path.dirname(__file__), "fping.sh")
 log.debug("starting %s" % fping)
 yield getProcessOutput(fping, (fname,))
 log.debug("fping returned: %s" % driver.next())
 for line in driver.next().split('\n'):
 if not line: continue
 match = parseLine.match(line)
 if not match:
 log.debug("%s does not match expected output" % line)
 continue
 ip = match.group(IP)
 ms = float(match.group(MS))
 if not revMap.has_key(ip):
 continue
 device = revMap.pop(ip)
 path = 'Devices/%s/ping_time' % device
 ms = self.rrd.save(path, ms, 'GAUGE')
 for ev in self.thresholds.check(path, time.time(), ms):
 self.sendThresholdEvent(**ev)
 os.unlink(fname)
 self.heartbeat()
 cycle = self.pingCycleInterval
 self.rrdStats.gauge('devices', cycle, len(self.devices))
 self.rrdStats.gauge('down', cycle, len(revMap))
 self.rrdStats.gauge('cycleTime', cycle, time.time() - start)

 d = drive(inner)
 def clearRunning(arg):
 self.running = False
 if isinstance(arg, Failure):
 log.error("Error pinging devices: %s" % (arg,))
 return arg
 d.addBoth(clearRunning)
 return d

This is a long method, so let's take it in parts. Let's take everything outside of the inner() function:

def inner():
 #

 d = drive(inner)
 def clearRunning(arg):
 self.running = False
 if isinstance(arg, Failure):
 msg = "Error occurred in pingperf collection: %s" % (arg.value,)
 self.sendEvent(WARNING_EVENT, summary=msg)
 return arg
 self.running = True
 d.addBoth(clearRunning)
 return d

Again we are using the same drive/inner approach to serialize asynchronous calls. We also want to track the
fact that we are running the inner method so that we can detect cases where our collection cycle is taking too

Add a Performance Daemon

68

long. The clearRunning() function is added to the callback chain to ensure that the running flag is reset however
the inner function completes. It was also a convenient place to report on any errors. Here's the definition of
WARNING_EVENT to remove any mystery about its value:

The following is a constant definition used to send an event if the collector has an error:

WARNING_EVENT = dict(eventClass=Status_Ping,
 component="ping",
 device=socket.getfqdn(),
 severity=Warning)

The inner function does all the work:

 def inner(driver):
 reactor.callLater(self.configCycleInterval, self.pingDevices)
 if not self.options.cycle:
 self.stop()
 if self.running:
 log.error("Ping is still running")
 return

This bit of code controls the ping cycle. By starting the timer call chain immediately we are ensured to repeat
the call in the future even if an error occurs or the collection takes too long.

 log.debug("Pinging %s..." % (" ".join(self.devices.keys())[:100]))
 start = time.time()
 revMap = dict([(ip, d) for d, ip in self.devices.items()])
 fd, fname = mkstemp()
 fp = os.fdopen(fd, "w")
 log.debug("Writing devices to tempfile %s." % fname)
 fp.write('\n'.join(revMap.keys()) + '\n')
 fp.close()

Our implementation for pinging all the devices is farmed out to an external process (fping). So we write a config
file for fping (a list of IP addresses) into a temporary file. Next, we run fping and collect the results:

 from twisted.internet.utils import getProcessOutput
 fping = os.path.join(os.path.dirname(__file__), "fping.sh")
 log.debug("starting %s" % fping)
 yield getProcessOutput(fping, (fname,))
 log.debug("fping returned: %s" % driver.next())

The next loop parses each line of output using a regular expression:

 log.debug("fping returned: %s" % driver.next())
 for line in driver.next().split('\n'):
 if not line: continue
 match = parseLine.match(line)
 if not match:
 log.debug("%s does not match expected output" % line)
 continue
 ip = match.group(IP)
 ms = float(match.group(MS))
 if not revMap.has_key(ip):
 continue

When a match is found, we determine the device from the IP address and post the value to an RRD file:

 device = revMap.pop(ip)
 path = 'Devices/%s/ping_time' % device
 ms = self.rrd.save(path, ms, 'GAUGE')

We use the resulting value (which may have been averaged in with other data from the RRD file) to check
thresholds:

 for ev in self.thresholds.check(path, time.time(), ms):
 self.sendThresholdEvent(**ev)

Add a Performance Daemon

69

Finally, we remove the temporary file, send a heartbeat, and report statistics on the total number of devices, the
devices that did not report, and the total time to process the device list.

 os.unlink(fname)
 self.heartbeat()
 cycle = self.pingCycleInterval
 self.rrdStats.gauge('devices', cycle, len(self.devices))
 self.rrdStats.gauge('down', cycle, len(revMap))
 self.rrdStats.gauge('cycleTime', cycle, time.time() - start)

70

Chapter 12. Adding a Device Type
In this example we'll add platform support for AIX, which uses vendor extensions to store MIB data which Zenoss
doesn't understand. To simplify things a little, we'll say that our Zenoss server name is zenoss1

12.1. Overview

Adding support for a new platform can be broken down into a number of easily-defined steps:

• Add the platform-specific MIB to make it easier to find items to collect SNMP information and map numeric
OIDs to names.

• Add a device organizer for the platform to create a tidy place to store platform-specific information.

• Create modelers to gather information that does not change often (such as network cards or file system
names)

• Create performance data collectors which will be used to gather current usage statistics (how full the file
system is now).

• Create templates which will be used to store the results from the data collectors and use the data for graph-
ing. This also allows us to set thresholds so that we can generate events when certain conditions are met
(such as when the file system is 95% full).

• Create event mappings to create reasonable responses to events coming from the devices. Additionally, if
the new device warrants it, create a new event organizer to manage new events.

f the data is collected through an API or network protocol that Zenoss doesn't natively support, it may be nec-
essary to create a daemon that understands that protocol. This daemon might allow Zenoss to model, collect
performance data and event information, and then store that information.

12.2. Add the MIB

MIBs are used by Zenoss as a way to convert trap output from numeric OIDs to named OIDs. Once you add the
MIB it should be easy to point your device's trapsink to the Zenoss server and from the Zenoss server convert
the traps into Zenoss events.

The AIX MIB which is stored in the /usr/lib/samples/snmp/aix.my MIB file on any AIX server. Copy the MIB
file to your Zenoss server and add it with the command:

zenmib run $ZENHOME/share/mibs/site/aix.my

Verify that the MIB is in the management page at:

http://zenoss1:8080/zport/dmd/Mibs

12.3. Add a Device Organizer

If you wish to create a device organizer so that it's easy to differentiate between other types of devices and the
type that you're adding, feel free to do so. In the case of AIX, there are a couple of types of setups:

Generic AIX Definitions

Standalone This describes the case where the entire pSeries server is dedicated to run-
ning one instance of AIX.

Logical PARtition (LPAR) Some AIX pSeries servers are capable of running multiple instances of AIX.
An AIX instance (LPAR in IBM speak) is equivalent to a VMware image.

Frames AIX LPARs are hosted on physical hardware (ie a pSeries server), which is
referred to as a frame. These frames are capable of being run as either a
standalone server or as a bunch of LPARs. The frame is like a VMware host.

http://zenoss1:8080/zport/dmd/Mibs

Adding a Device Type

71

Virtual IO (VIO) Server A VIO server is a special LPAR that allows you to consolidate IO hardware
(eg Ethernet, Fibre Channel cards) and share virtualized hardware with oth-
er LPARs. This is one of the key technologies required in order to perform
VMotion-style activities for AIX LPARs.

A separate server (called a Hardware Management Console (HMC)) is used to manage standalone devices,
frames and LPARs (including VIO servers). The HMC is actually a Linux server with a custom configuration to
support AIX. In this example, we'll just add the AIX parts and ignore the HMC.

Add a device class for AIX in the /Devices/Server/AIX class. From the navigation bar at the left-hand side, go to
the Classes section and select Devices. Then click on Server, which shows you the Sub-Devices screen. From
the Sub-Devices table menu, select Add New Organizer. Provide an id (ie AIX) and click OK.

Under the newly created /Server/AIX organizer, create the LPAR class. Under that class, create a VIO class.

In this newly created scheme, we're intending on putting standalone servers and frames in the /Server/AIX
class, any LPARs in the /Server/AIX/LPAR class, and any VIO servers (which are a special type of LPAR) under
the /Server/AIX/LPAR/VIO class. If we wanted to have each frame contain its own tab showing the LPARs that
it hosts, we would need to create new ZenModel objects (complete with relations), instantiate them at the base
of /Server/AIX and then write more ZPTs to handle our custom behaviours.

Another situation where we might be forced to write our own device class Python code is where we want to
add properties that don't exist in other devices. For instance, we may want to record whether or not a Fibre
Channel device supports N-Port ID Virtualization (NPIV). This extra property would need to be subclassed from
the ZenModel class and the object initialized from within our ZenPack's __init__.py file.

12.4. Create a Modeler
When you navigate to a particular host and from the page menu select ManageModel Device, which runs all
of the associated modelers (which, confusingly enough, are set for a device through the MoreCollector Plu-
gins menu item). What we need to do is copy and customize an existing modeler plugin from $ZENHOME/Prod-
ucts/DataCollector/plugins/zenoss/snmp and then add that plugin to our list of plugins that our platform's de-
vice class will use.

We'll start with creating a Filesystem modeler plugin. We'll copy the HRFileSystemMap plugin and call our plugin
AIXFileSystemMap.py. Using the information in the MIB, we can find the place where it stores the list of file
systems.

Name Re-
quired?

Description

condition() N Returns True or False to indicate whether or not to run the other functions

preprocess() N This will get called before the process() function

process() Y This is the actual function that processes any information retrieved from a
query and converts it into a format suitable for updating the device model.

Table 12.1. Modeler Functions

12.4.1. Verify the SNMP connectivity and OIDs

First, verify that your server's SNMP daemon is functional and that you have the correct SNMP version and
credentials. We'll assume that we're using SNMP version 1 and are using the public community, and that your
new host will allow connections from our Zenoss server.

Run the snmpwalk command from the Zenoss monitoring server:

snmpwalk -v1 -c public myaixbox.example.com 1.3.6.1.4.1.2.6.191.1 | head

This produces a lot of output that we've truncated to save patience and space.

SNMPv2-SMI::enterprises.2.6.191.1.1.1.0 = INTEGER: 5
SNMPv2-SMI::enterprises.2.6.191.1.1.2.0 = ""
SNMPv2-SMI::enterprises.2.6.191.1.1.3.0 = INTEGER: 2

Adding a Device Type

72

SNMPv2-SMI::enterprises.2.6.191.1.1.4.0 = Gauge32: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.5.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.6.0 = INTEGER: 2
SNMPv2-SMI::enterprises.2.6.191.1.1.7.0 = STRING:
"The current used percentage 93 of the file system /mnt has gon"
SNMPv2-SMI::enterprises.2.6.191.1.1.9.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.10.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.11.0 = INTEGER: 0

If you don't see output like the above, nothing else will work. Find the issue and fix it.

The Zenoss community Web site has a ZenPack with a graphical MIB browser that might help for these steps.

12.4.2. Common SNMP Issues

Following is a list of some common reasons why snmpwalk may not return any data:

• SNMP daemon on the remote system is not running.

• SNMP daemon on the remote system has different security credentials than what you are using (for example,
version 1 instead of version 2c, wrong community name).

• SNMP daemon on the remote system allows connections only from certain IP addresses or IP address
ranges, and the Zenoss server does not meet that criteria.

• SNMP daemon on the remote allows queries only to certain portions of certain MIBs, and you have specified
something not allowed by that policy.

• Firewall or firewalls between the Zenoss server and the remote system to not allow UDP or SNMP traffic.

• Firewall on the Zenoss server does not allow UDP or SNMP traffic outbound or inbound.

• Firewall on the remote system does not allow UDP or SNMP traffic outbound or inbound.

As a first sanity check, try the snmpwalk command on the remote host. For example:

snmpwalk -v1 -c public localhost 1.3.6.1.4.1.2.6.191.1 | head

12.4.3. Modeler Code

Multiple modelers for different components of a system can be created, or one huge modeler for everything
can be created. Smaller modelers are preferred for maintenance reasons. The following modeler is for the file
systems, and would live in the modeler/plugins/ directory of your ZenPack.

Python requires that __init__.py files be in both the modeler/ and the modeler/plugins/ directories. If they are
missing your modeler will not load.

__doc__ = """AIXFileSystemMap

This modeler determines the filesystems on the device and updates
appropriately. It is up to the performance template that must be
named 'Filesystems' to collect the actual performance data
(eg free/available blocks).
"""

import re

from Products.ZenUtils.Utils import unsigned
from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, \
 GetTableMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class AIXFileSystemMap(SnmpPlugin):

 maptype = "FileSystemMap"
 compname = "os"
 relname = "filesystems"
 modname = "Products.ZenModel.FileSystem"
 deviceProperties = \
 SnmpPlugin.deviceProperties + ('zFileSystemMapIgnoreNames',)

Adding a Device Type

73

 #
 # These column names are for the aixFsTable from the
 # /usr/samples/snmpd/aixmib.my MIB file located on your AIX hosts.
 # (It's in the bos.net.tcp.adt fileset.)
 #
 columns = {
 '.1': 'snmpindex', # aixFsIndex
 '.2': 'storageDevice', # aixFsName
 '.3': 'mount', # aixFsMountPoint
 '.4': 'type', # aixFsType
 '.5': 'totalBlocks', # aixFsSize - a value in MB

#
Comment out the following entries to reduce the amount
of stuff that we need to send. They are listed here
for reference and completeness.
#
'.6': 'aixFsFree',
'.7': 'aixFsNumINodes',
'.8': 'aixFsUsedInodes',
'.9': 'aixFsStatus',
'.10': 'aixFsExecution',
'.11': 'aixFsResultMsg',
 }

 snmpGetTableMaps = (
 GetTableMap('aixFsTable', '.1.3.6.1.4.1.2.6.191.6.2.1', columns),
)

 #
 # This table is included for reference
 #
 aixFsType = {
 1: 'jfs',
 2: 'jfs2',
 3: 'cdrfs',
 4: 'procfs',
 5: 'cachefs',
 6: 'autofs',
 7: 'afs',
 8: 'dfs',
 9: 'nfs',
 10: 'nfs3',
 11: 'other',
 }

 def process(self, device, results, log):
 """Gather data from the standard AIX snmpd + friends"""

 log.info('processing %s for device %s', self.name(), device.id)
 getdata, tabledata = results

 #
 # Gather the data using SNMP and just exit if there's an SNMP
 # issue. If we don't, the filesystem table in Zenoss will get
 # wiped out. Ouch!
 #
 fstable = tabledata.get("aixFsTable")
 if not fstable:
 log.warn('No SNMP response from %s for the %s plugin',
 device.id, self.name())
 log.warn("Data= %s", getdata)
 log.warn("Columns= %s", self.columns)
 return

 skipfsnames = getattr(device, 'zFileSystemMapIgnoreNames', None)
 maps = []
 rm = self.relMap()
 for fs in fstable.values():

Adding a Device Type

74

 if not fs.has_key("totalBlocks"):
 continue # Ignore blank entries

 if not self.checkColumns(fs, self.columns, log):
 log.warn("Data= %s", getdata)
 log.warn("Columns= %s", self.columns)
 continue

 log.debug("Found %s", fs['mount'])
 #
 # Ensure that we only check on local disk
 # NB: it may make sense to report on AFS/DFS volumes....
 #
 fstype = self.aixFsType.get(fs['type'], None)
 if fstype not in ('jfs', 'jfs2'):
 continue

 if fs['totalBlocks'] > 0 and (not skipfsnames or \
 not re.search(skipfsnames,fs['mount'])):
 om = self.objectMap(fs)

 #
 # The internal id that Zenoss uses can be used in URLs,
 # while Unix filesystem names cannot.
 # Map to an URL-safe name.
 #
 om.id = self.prepId(om.mount)

 #
 # Map our MIB data to what Zenoss expects
 #
 om.blockSize = 1024**2; # ie MB

 rm.append(om)
 maps.append(rm)

 #
 # As a final sanity check, see if we found anything. If we
 # didn't find anything, that's probably an error so just return.
 #
 if len(maps) == 0:
 log.warn("No filesystems found by %s for %s",
 self.name(), device.id)
 return

 return maps

Because this question occurs so often in the mailing lists, the following information bears repeating. The
function name required of any modeler is the process() function.

12.4.4. Testing the Modeler

To test your new modeler plugin, add it to the list of modeler plugins. From within the newly-created AIX device
class, select More > Collector Plugins to select the appropriate plugin, which should be in the list of items to add.

You can test your new plugin by using zenmodeler from the command line:

zenmodeler run -d myaixbox.example.com -v 10

For testing purposes, you may want to add this and only this modeler plugin to one particular host and make it
the only plugin. Any syntax errors or exceptions will be visible so that you can hopefully debug them.

Once you're satisfied that everything is working correctly, verify everything by running the Manage > Model
Device command and then examining the OS tab. If everything is correct, you'll see your list of file systems in
the Filesystem area, but with unknown for everything except the total size of the file systems. The actual usage
numbers of the file system is collected by a different mechanism -- a performance data collector.

Adding a Device Type

75

Keep in mind that a modeler is run infrequently (eg once a day or once a week, depending on your settings),
while a performance data collector is run every five or ten minutes.

12.5. Create a Performance Collector

A performance data collector gathers the current statistics of items such as the amount of space used in a file
system. The data can be collected using either a script or an SNMP command. For our Filesystem data, we
must create a new data collector called Filesystem (this is a special name) that will return a property called
usedBlocks (another special name).

If your operating system's MIB provides a usedBlocks (or something named like that) value, then we can make
use of existing Zenoss infrastructure and just collect that data using SNMP. Otherwise, you need to create a
script to take the total size of the filesystem (totalBlocks) and subtract the freeBlocks value. Unfortunately, AIX
only provides freeBlocks, so we need to create a command.

With the Zenoss 2.4 release, we can also create a command parser to gather our performance information. This
new functionality allows you to write simple code to gather performance data and graph the results.

12.5.1. Performance Data Collector Code

Multiple collectors for different components of a system can be created, or one huge collectors for everything can
be created. Smaller collectors are preferred for maintenance reasons. The following collector is for calculating
file system free space, and would live in the libexec/ directory of your ZenPack.

#!/usr/bin/env python

"""Gather used disk space statistics for AIX"""

import sys
import re
from subprocess import *

base_fs_table_oid= "1.3.6.1.4.1.2.6.191.6.2.1"

def process_disk_stats(device, community, totalBlocks_oid, freeBlocks_oid):
 """Gather OID info and sanitize it"""

 cmd= "snmpwalk -v1 -c %s -On %s %s %s" % (community, device, \
 totalBlocks_oid, freeBlocks_oid)
 proc= Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)

 #
 # Check to make sure that we don't have any hangups in
 # executing our smidump
 #
 if not proc.stdout:
 print "Couldn't open pipe to stdout for %s" % cmd
 return

 if not proc.stderr:
 print "Couldn't open pipe to stderr for %s" % cmd
 return

 (line1, line2)= proc.stdout.readlines()
 totalBlocks= line1.split()[-1]
 freeBlocks= line2.split()[-1]
 usedBlocks= totalBlocks - freeBlocks

 return totalBlocks, freeBlocks, usedBlocks

if __name__ == "__main__":
 if len(sys.argv) < 4:
 print "Need device, community and fs_index arguments!"
 sys.exit(1)

Adding a Device Type

76

 (device, community, fs_index)= sys.argv[1:]

 totalBlocks_oid= ".".join(base_fs_table_oid, 5, fs_index)
 freeBlocks_oid= ".".join(base_fs_table_oid, 6, fs_index)

 totalBlocks, freeBlocks, usedBlocks= process_disk_stats(device, \
 community, totalBlocks_oid, freeBlocks_oid)
 print "totalBlocks:%s freeBlocks:%s usedBlocks:%s" % (totalBlocks, \
 freeBlocks, usedBlocks)
 sys.exit(0)

12.5.2. Writing Your Own Command Parser

Zencommand may be used to execute commands on remote hosts using the SSH protocol. This provides
secure and flexible performance monitoring for Unix-style systems such as AIX, Solaris, OS X (Darwin) and
Linux servers.

When the remote host has commands that show data in a format already understood by Zencommand (such
as Nagios or Cacti plugins), Zencommand can process the results and update the ZODB. However, if you are
monitoring servers that have not had these commands installed, you need to extend Zencommand with new
parsers to understand the results.

The basic data flow for Zencommand is this:

1. A collector starts Zencommand with a collector name, like localhost or collector2.

2. Zencommand contacts zenhub and loads the commands to be run against the devices for that configura-
tion. The command configuration includes details such as "use SSH" to run the command on the remote box
and credentials to allow access to the remote host. The command configuration also includes a specification
for the parser to use on the data that is returned by the command.

3. Zencommand runs the command on the remote host, and when the command finishes, a parser is created
and the results are passed to the processResults() method of the parser. The processResults() method
is passed the command configuration fetched from ZenHub, and an object into which parsed results will be
placed. The parser is also used to copy any data needed by Zencommand during the parsing.

4. Zencommand takes the returned Python dictionary from the parser and updates the ZODB.

Consider the Unix df command. It can be used to determine free disk space on a device's file systems. Here's
a typical output format from Linux:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda6 57669700 34162636 20577616 63% /
/dev/sda7 71133144 28824804 38694924 43% /home
/dev/mmcblk1 3924476 536 3923940 1% /media/disk

The Zenoss data modeler (zenmodeler) will have created components under this device for the file systems.
The mapping of data to the component must use the mount point information. ZenHub must copy mount point
information from the model data stored in the ZODB into the configuration for this command. To know what
data may be needed for parsing, ZenHub creates the parser that will be used by Zencommand, and calls the
dataForParser() method. Remember, this happens in ZenHub, and not Zencommand, and it happens before
any command is run.

The result of dataForParser() is a Python dictionary that is stored as data in the command configuration passed
to Zencommand. When the parser is invoked in Zencommand, it will have access to this information.

• After the parser digests the results of running the command, it can produce performance information
and events.

• The result object is a simple Python class that contains two lists, one called values and the other called
events.

• The events item contains a dictionary of string to value mappings which are turned into events. Zen-
command will update the event with the device name, but the rest of the fields (such as component,
severity, etc) are up to the parser to fill in.

Adding a Device Type

77

• The values item is a list of two-element tuples. The first element is the data point, and the second is a
value, which is a Python number or None. None is always ignored.

• Every command run by Zencommand comes with a list of data points that correspond to that command.
In our df example, the datapoints may include percentUsed and blocksFree, along with any thresholds
or parser-specific data, such as mount point.

• Thresholds will be tested by Zencommand, and threshold events automatically generated.

• The command's exit code is available at parse time, too.

Parsers will be available to Zenoss when they are placed in the $ZENHOME/Products/ZenRRD/parsers directory
or in a ZenPack's $ZENHOME/ZenPacks.pkg.zpid-version_id-py2.4.egg/Zenpacks/pkg/zpid/parsers directory.
Each parser should be a sub-class of the Products.ZenRRD.CommandParser.CommandParser class.

A command like df is a very common case. Unix commands will often emit easily-parsed, line-oriented records.
There are some useful subclasses of CommandParser that perform much of the parsing if you provide these
parsers with the right details, such as regular expressions. They are:

Name Description

componentScanner A regular expression that finds details about a component that can be used to map
back to the component known to the Zenoss model. It must return a match named
component using the Python regular expression syntax ?P<component>

scanners An iterable list of regular expressions that will pull out numerical values from the
output of the command.

componentScanValue The data to be copied to the data point needed to match the component to the
output results.

Table 12.2. CommandParser Helper Parsers

Let's examine what these values might be for our df command, and its example output.

1. For the componentScanner, we want to find the mount-point data and extract it, so that we can match the
Unix file separator ('/') to the component file system that has the id "_". We can use something like:

% (?P<component>/.*)$

2. For the scanners, we'll use a tuple of regular expressions to pull out the numerical values we want:

(r' (?P<availableBlocks>\d+) +(?P<percentUsed>\d+)%')

3. For the componentScanValue, we'll specify mount so that the mount point information is copied to the command
configuration by ZenHub and matched against the component value parsed by the componentScanner regular
expression.

12.6. Create the Template

A performance template is essentially a wrapper around reading and manipulating the data from RRD database
files. The template has the same constraints as RRD. An example of a constraint is that if you decide that you
wish to change the collection frequency, or perform some function on returned data and store that computed
value into the RRD file, you need to remove the old RRD file and create a new one.

12.6.1. Create the DataSource

To create our new performance template, go to the AIX device class organizer and select More > All Templates.
This will take you to a screen which shows you the performance templates. From the menu, select Add Template
and provide an ID of Filesystem (yes, there should already be one there, but from the /Devices/Server path).

Click on the newly created performance template and add in a nice description. Then, click in the Data Sources
menu and select Add DataSource...to create the special usedBlocks data source. If your operating system's
MIB provides a usedBlocks (or something named like that) value, then select a type of SNMP. Otherwise, you

Adding a Device Type

78

need to create a script to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value.
Unfortunately, AIX only provides freeBlocks, so we needed to create a command like we did in the earlier section.

12.6.2. Create a Threshold

Defining a threshold on a data point does two things: it can be used to define a line on a graph showing the
threshold value and it can create an event when the threshold is passed and cleared. In this example for Filesys-
tem, we could create a threshold that would alert us when we've gone past 95% utilization on a filesystem.

12.6.3. Create a Graph

From the device class (ie /Devices/Server/AIX), click on the Templates tab. Click on the template and go to
the Graph Definitions sub-menu. From that sub-menu, choose Add a Graph. You will be prompted for the name
of your new graph. Add the datapoints of interest to create a graph and then click on the 'save' button at the
bottom of the screen. Note that if you're interested in doing something more complicated than just adding data
points, then you need to start browsing the RRDtool site.

12.7. Map Events

If our new platform provides a reporting log that doesn't get passed into Zenoss, then we can write a daemon
to extract these messages and create events from these messages. As an example, AIX records certain low-
level events such as hardware issues and core dumps into a circular log. If we wanted to extract this information
using a tool like errpt, then we would need to write a daemon that is capable of recording the last time that we
saw an event, log into the AIX server and grab the errpt information and convert that entry into a Zenoss event.

Once we have events coming into Zenoss, we might become aware of certain peculiarities in our events such a
certain informational message actually indicates that any previous critical failures are over. In order to cut down
on the amount of false alarms, we should create an event mapping that would examine informational messages
and clear out any critical events.

12.8. Adding SSH Monitoring Tests

12.8.1. Overview

The SSH Monitoring ZenPacks include an unit-testing framework that is easily extensible with the command
output from various hosts. This extensibility can be used to add command output found in the field that trigger
issues in the parsers.

Each SSH Monitoring ZenPack has a testPlugins.py and testParsers.py file in its tests directory. These test
scripts walk the plugindata and parserdata directories to find test data.

To create a new test you need to create a new directory with the name of the host under the appropriate test
data directory (e.g. tests/plugindata/aix/test-aix61). In that new directory place two files. Both files share
the same name; one has no extension and the other has a .py extension.

The file with no extension must contain the command on the first line, and the output of the command on the
subsequent lines. The file with the .py extension contains a Python dictionary with expected values that were
manually parsed from the command output. The format of these dictionaries is slightly different depending on the
type of test (modeling plugin or data point parser). The formats will be covered in sections later in this document.

If you are adding the first test data files for a parser, then you must edit testPlugins.py or testParsers.py
to import the parser module and add the module to the list of tested modules.

12.8.2. Modeling Plugin Test Data

Multiple modeling plugins can parse the same command. The first level of keys in the dictionary is the name
of the modeling plugin class.

http://oss.oetiker.ch/rrdtool

Adding a Device Type

79

Modeling plugins can return values of the following types (which are defined in $ZENHOME/Products):

• ObjectMap

• RelationshipMap

• List of the above data map classes

The test data for each of these return types is in different formats.

12.8.2.1. Test Data for an ObjectMap

The test data is formatted as a simple dictionary that maps the attribute names of that ObjectMap to the expected
values.

{
 "lsps_s": # the parser
 {"totalSwap": 536870912}
}

12.8.2.2. Test Data for a RelationshipMap

RelationshipMaps contain many ObjectMaps. The test data is formatted as a two-level nested dictionary. The
first level of keys is the ID that identifies the ObjectMap under test. The second level dictionary maps the attribute
names of that ObjectMap to the expected values.

{
 "lslpp": { # the parser

 "ICU4C.rte 6.1.0.0": dict(
 setProductKey=("ICU4C.rte 6.1.0.0", "IBM"),
 setDescription="International Components for Unicode",
 setInstallDate="2008/12/16 13:56:29",
),

 "Java5.sdk 5.0.0.130": dict(
 setProductKey=("Java5.sdk 5.0.0.130", "IBM"),
 setDescription="Java SDK 32-bit",
 setInstallDate="2008/12/16 14:22:26",
),

 "cdrecord 1.9-7": dict(
 setProductKey=("cdrecord 1.9-7", "IBM"),
 setDescription="A command line CD/DVD recording program.",
 setInstallDate="2008/12/16 19:17:11",
),

 },
}

12.8.2.3. Test Data for a List of Data Maps

The test data is formatted as a list of dictionaries. The dictionaries are flat for ObjectMaps or two-level nested
for RelationshipMaps.

{
 "prtconf": # the parser
 [
 {"setHWProductKey": ("9114-275", "IBM"),
 "setHWSerialNumber": "10E03AE"},

 {"proc1": dict(
 clockspeed=1000,
 cacheSizeL2=1536,
 setProductKey=('PowerPC POWER4, 64-bit, 1000 MHz', 'IBM'),),},

 {"totalMemory": 2147483648}
],

Adding a Device Type

80

}

12.8.3. Data Point Parser Test Data

Data point parsers differ in their return values. They can either return device-level data points or component
data points. The test data is formatted differently based on the return type of the parser.

12.8.3.1. Test Data for Device-Level Parsers

The test data for a device-level parser is formatted as a simple dictionary. The keys are the IDs of the data
points returned by the parser.

{
 "read": 171409 * 1024,
 "written": 530600 * 1024,
}

12.8.3.2. Test Data for Component Parsers

The test data for a component parser is formatted as a two-deep nested dictionary. The first-level keys are the
IDs of the components under test. The second-level dictionary maps the IDs of the data points to the expected
values.

{
 '/': dict(
 totalBlocks=131072,
 usedBlocks=108052,
 availBlocks=23020,
 percentUsed=83,
 usedInodes=7505,
 availableInodes=5962,
 percentInodesUsed=56,
),

 '/opt': dict(
 totalBlocks=131072,
 usedBlocks=84496,
 availBlocks=46576,
 percentUsed=65,
 usedInodes=1645,
 availableInodes=10753,
 percentInodesUsed=14,
),
}

12.8.4. Running the Tests

To run all the tests in a ZenPack Use the last part of the ZenPack name

runtests --type unit AixMonitor

To run a single test

runtests --type unit --name testAixPlugins AixMonitor

You might notice that tests are run redundantly from the build directory of the ZenPack in addition to being run
from the source directory. To keep this from happening do the following:

find build -name tests -delete

81

Chapter 13. Extending the User Interface
13.1. Overview of the Zenoss UI Technologies
The Zenoss user interface is built on top of Zope. Zope provides a framework on which progressively more
sophisticated functionality can be built. (NB: As this introduction is necessarily brief, it should not be treated
as technically correct in every detail, but as being generally believable.) You can layer the user interface using
multiple technologies, as well as mix and match:

• HyperText Markup Language (HTML)

• Cascading Style Sheets (CSS)

• Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language (TAL)

• ZPT and Macro Expansion for TAL (METAL)

• JavaScript/AJAX

• Yahoo User Interface (YUI) Library and Mochikit

13.1.1. HyperText Markup Language (HTML)

HTML is the most basic formatting language available on the Web, and some version of HTML is understood by
every Web browser. HTML is in practice a sloppy variant of eXtensible Markup Language (XML) which divides
up a page into elements (tags such as title, head or h3) and content (for example, the things that you actually
care about).

If you are converting an existing Web page, verify it by using the free HTML validation service at:

http://validator.w3.org/

13.1.2. Cascading Style Sheets (CSS)

Web browsers take HTML and convert elements like h1 (heading at level 1) and convert them into what each
browser thinks is appropriate for that element. That 'each browser' part means that the way that the page displays
is different on each browser. Style sheets are a way for the web page designer to tell the browser that a certain
element should have a certain style. As an example the h1 element could be styled "Arial, 20pt, neon lime green
and make it blink". (Use the power responsibly! :)

The 'cascading' part of CSS means that stylesheets can build on each other. Practically, that means that the
order in which you load CSS information can lead to different results.

13.1.3. Zope 2, ZPT and TAL

Zope 2 is essentially a Web server with brains. The brains part are the Python programming language and the
object-oriented database (ZODB), which are used to create Web pages in a structured way.

There is a Zope 1 and also a Zope 3. Zope 1 is dead, and a large portion of the Zope community is migrating
to or has migrated from Zope 3. Zope 2 and Zope 3 are quite different, and a considerable amount of effort
would be required in order to convert Zenoss to Zope 3. Keep it in mind when looking at Zope material that
you need Zope 2.

Zope Page Templates are in essence HTML pages which are well-formed (ie not sloppy HTML where you
only need to care about creating a starting element) with extra XML attributes (ie the bits after the element
name in-between the < and > characters). The extra XML bits (attributes) are not a part of any HTML standard
and are ignored by HTML editors, meaning that ZPT pages live happily with HTML. These attributes and the
programming functionality that they deliver are called the Template Attribute Language (TAL).

The TAL attributes allow you, the web page creator, to add dynamic content using information from inside the
Zope database (ZODB). From a Zenoss perspective, this allows you to write a query that you can use to build

http://www.zope.org/
http://validator.w3.org/
http://www.zope.org/
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx

Extending the User Interface

82

a table, or show different items depending on what objects or devices exist in a particular state. In other words,
TAL is the Zope way of accomplishing what you would normally need to do in a CGI inside of a plain web server
like Apache.

It should be noted that inside of TAL it is also possible to use a restricted subset of Python. The restrictions
include not being able to load certain standard libraries, as well as operations like reading and writing to disk.
This is done intentionally for security reasons.

13.1.4. ZPT and Macro Expansion for TAL (METAL)

TAL is the programming language of Zope, allowing you to use parts of the database and programmatically work
with data. This is good, but because TAL is hidden away inside of HTML, there's no way to reuse blocks of HTML
and TAL for your site just by using TAL. In order to re-use chunks of HTML and TAL in an easy-to-use fashion.

13.1.5. JavaScript / AJAX

Let's get one thing out of the way: Java and JavaScript only share the 'Java' part, and that's only for marketing
reasons. Really. They're totally different. Technically, JavaScript is actually called ECMAScript, but that's some-
thing that's much worse than JavaScript so everyone calls it JavaScript.

JavaScript can be written directly on the web page inside of a script element anywhere in an HTML page, or it
can be stored on a server and accessed from a script element using the name specified in the src attribute.

So what's the AJAX part? Originally, AJAX was shorthand for "Asynchronous JavaScript And XML", a set of
techniques for writing JavaScript. So AJAX is a state of mind rather than a standard. Generally, something is
considered AJAX if it uses the JavaScript XMLHttpRequest() function to retrieve data from a server and presents
the returned XML document in a interactive way to the user.

13.1.6. JavaScript libraries: YUI and MochiKit

There are a number of classes to make life programming in JavaScript easier. The ones that are implemented
in Zenoss are:

Yahoo User Interface (YUI) YUI is a collection of CSS templates and JavaScript utilities that create a
cross browser-compatible toolkit. This is quite an achievement considering
the many issues with how each browser implements (or doesn't) different
features.

MochiKit MochiKit provides a set of low-level facilities to perform GUI functions.

13.2. Customizing the Navigation Bar

This information is presented here because many people want to be able to customize the navigation bar.
However, there are two possible issues with modifying this ZPT page:

• It is possible that an upgrade or other operation will remove your modifications, so you will need to
perform them again. Saving the ZPT page in a ZenPack will allow you to save your changes, but you
will need to manage this ZenPack yourself.

• Zenoss may in the future completely change this code, and there will be no effort on Zenoss' part to
ensure that your changes are preserved.

Go to your Zenoss server with the following URL:

http://yourzenossserver:8080/zport/portal_skins/zenmodel/manage

13.2.1. Adding a link

Look for a file called leftPane. Click on the file and it will bring you to a screen which will show you the source for
the file. Click on the Customize button which will copy it to the http://yourzenossserver:8080/zport/portal_skins/

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://developer.yahoo.com/yui/
http://mochikit.com/

Extending the User Interface

83

custom folder and open up the file. Make whatever changes you wish and then save the file. The save button
is down at the bottom of the page.

Zope looks for the customized version of Web pages in the custom folder first, before any other pages of the
same name.

13.2.2. A Simple HTML Page

If all you need is a simple Web page, go to the ZMI and add the page:

http://yourzenossserver:8080/zport/portal_skins/custom/manage

This will bring you into the ZMI starting in the portal_skins folder. From here, beside the Add button (which is
near the top right-hand side of the screen), select Page Template and then click on the Add button.

In the dialog screen that comes up, give your new page a name in the Id input box. We'll use helloWorld as the
name of our fist page. Then click on the Add and Edit button.

This should bring us to a text-editor web page. Delete everything that's in there and add the following:

<html>
<head>
<title>Hello World</title>
</head>
<body>
<h1>Hello world!</h1>
<p>My test page</p>
</body>
</html>

Click on the Save Changes button. Now try out our sample Web page.

http://yourzenossserver:8080/zport/helloWorld

This is just a plain old web page, with nothing fancy about it. Not really anything much to see here or get excited
about.

But... did you notice that where we saved our file has absolutely no relation to where in the path we can reference
our new page? That's a Zope thing. Since our page doesn't use any Zope features, we can put it anywhere.
If we were to use some of Zope's TAL we might need to be more concerned. The next section will illustrate
this behaviour.

13.2.3. A Simple TAL and METAL page

Using the same steps from the previous section, create a new Page Template called helloWorld2, which is the
new and improved (okay, maybe just different :) version of your first page. Add in the following:

<tal:block metal:use-macro="here/templates/macros/page1">

<tal:block metal:fill-slot="contentPane">

<h1>Hello world!</h1>
<p>My test page</p>
</tal:block>
</tal:block>

The /zport/portal_skins/zenmodel/templates file contains the METAL definitions used by Zenoss pages. One
of the page1, page2, or page3 macros will probably be a good start for what you want. Look through the templates
page to see how it's built. Our example above uses the page1 macro.

After you've saved the page, you can try it out:

http://yourzenossserver:8080/zport/dmd/helloWorld2

Extending the User Interface

84

Now you can see your page within all of the Zenoss page elements. There's a navigation bar, the logo, the
server time, search bar and everything else. Now try the following URL:

http://yourzenossserver:8080/zport/dmd/Devices/helloWorld2

Now the breadcrumb path showing that you are in the Devices part of Zenoss shows up. What happens now
if you go to the base of Zenoss?

http://yourzenossserver:8080/zport/hello/World2

Oops! That didn't look good, you've got an error screen. If you look in the View Error Details part, you'll notice
that it's complaining about missing here/breadCrumbs. That's because the breadCrumbs function isn't on every
object, just some of them.

From this point forward is a matter of examining other pages, seeing where they run from and trying out new
things. The functions that Zenoss provides are written in Python, so you'll need to learn more Python in order to
take advantage of Zope. See the Section 13.4, “Zope 2 Page Templates, TAL and METAL and Zenoss” section
for more details.

13.3. Customizing the Logo

Here is how to change the logo that appears in Zenoss to a custom logo of your choosing:

1. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/manage

a. Click on zenterprise.css and then its Customize button

b. Find zent-img/zenoss-logo-enterprise.png in the stylesheet and change it to zenoss-lo-

go-enterprise.png

c. Save the Changes.

2. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/zent-img/manage

a. Click on zenoss-logo-enterprise.png and then its Customize button

b. Upload your replacement image. It should be 318x35 pixels in size.

13.4. Zope 2 Page Templates, TAL and METAL and Zenoss

Templates live in layers which, due to Zope magic (aka acquisition), are available anywhere in the object tree.
As is the case with most templating languages, Zope templates are context-agnostic, meaning that they may be
used as views on any object. When the name of a template is called against a particular context, the skins tool
(/zport/portal_skins in Zenoss) will supply the appropriate template object, determined by the priority of the
layers -- given two templates with the same name, that in the higher priority layer will prevail. This allows Zope
products to override the templates of other products to provide different functionality. It can also result in total
confusion as to the source of a template as this process is in no way transparent.

Templates may be created in the ZODB, or they may live on the filesystem; the latter is preferable for all but
the most ad hoc situations. Typically, a Zope product that provides templates will register a skins directory,
which will include one or more layers. When the product is initialized, the layers it provides will be added to the
skins tool under whatever skin is specified. Zenoss has a single skin, so only the order of the layers determines
template inheritance.

The Zenoss UI comprises several layers, mostly for the purposes of organization. The ZenModel and ZenEvents
products each have a folder (named zenmodel and zenevents, respectively), the ZenUtils product has one (in-
explicably located at ZenUtils/js), and the ZenWidgets product has two (zentablemanager and zenui). zenmod-
el and zenevents generally contain templates applicable to classes provided by their respective products. The
zenui folder contains most of the dialog templates, nearly all of the CSS, JavaScript (including the YUI library),
image files and other templates that don't necessarily belong to a single product. The zentablemanager layer
provides resources related to ZenTableManager. The ZenUtils/js layer provides the MochiKit library and a few
JavaScript utilities. Both the zentablemanager folder and the ZenUtils/js layer are legacies and shouldn't be

Extending the User Interface

85

modified. All new templates should go in one of the other three, and all static browser resources should go in
zenui.

Directory Notes

zenmodel Contains the majority of the templates.

zenevents Event-specific templates.

zentablemanager Deprecated.

zenui Most of the dialog templates, nearly all of the CSS, JavaScript (including the YUI
library), image files and other templates that don't necessarily belong to a single
product.

ZenUtils/js Deprecated. This layer is actually not under portal_skins. The MochiKit library and
a few JavaScript utilities

Table 13.1. Zenoss portal_skins directories and their Descriptions

Zope page templates are a combination of METAL, TAL and TALES, each of which is summarized more suc-
cinctly than one familiar with them might expect here.

In short, METAL allows templates to define macros (which are essentially sub-templates that may be called by
other templates) and slots (which may be filled by other templates). For example, one wishing to have a title
on all pages might create the following base.pt:

<html metal:define-macro="base_template">
<head>
 <title>Zenoss: <tal:block metal:define-slot="subtitle">
 Default Subtitle</tal:block>
 </title>
</head>
<body>
 <tal:block metal:define-slot="content">Default Content</tal:block>
</body>
</html>

Then on a template that might be used to view an object, one could:

<tal:block metal:use-macro="here/base/macros/base_template">
<tal:block metal:fill-slot="subtitle">My Subtitle</tal:block>
 <tal:block metal:fill-slot="content">My Content</tal:block>
</tal:block>

This allows for relatively complex abstraction.

Zenoss has a base template providing several basic page types that include global CSS and JavaScript re-
sources, the basic page structure, and optionally the tab pane. This template is located at ZenModel/skins/
zenmodel/templates.pt. When creating a new template, find another like it and copy the templates.pt macro
reference used there.

TAL comprises a set of attributes for page elements allowing for iteration loops, dynamic attribute mutation, and
other dynamic content. The above resource will summarize these more fully.

TALES allows access to the template's namespace. Some useful properties available on all templates:

Commonly-used Zope Properties in ZPT

here the context object

container the folder containing the context object

template the template object

root the portal object (zport)

user the current authenticated user object

request the current HttpRequest object

http://www.owlfish.com/software/simpleTAL/tal-guide.html

Extending the User Interface

86

portal_url the base URL of the portal (eg http://localhost:8080/zport)

TALES accepts paths (e.g. here/id) which it resolves into object properties. It will attempt to resolve the final
path element as a key index, a key name, an attribute, or a callable. For example, if mydict is a dictionary on
the context, here/mydict/mykey will return mydict[mykey]. If getSomething() is a method on the context, here/
getSomething will return the result of that method. However, if python:here.getSomething() returns a dictionary,
one cannot do here/getSomething/mykey.

The path resolution is fairly limited -- for example, one cannot pass arguments to methods. In
case something more complex is needed, one can use python: followed by arbitrary Python code.
For example, python:here.mydict[mykey] will return the same thing as here/mydict/mykey, while
python:here.getSomething(template.id) is not possible using a path. The previous paragraph's impossible
here/getSomething/mykey can be resolved this way: python:here.getSomething()[mykey].

Finally, if one wishes to generate a string, one may prepend the argument with string:. Everything after that will be
treated as a string, unless contained within ${}, in which case it will be evaluated as a TALES path. For example:

 <span tal:content='string:The name of this
 template is ${template/id}'/>

13.4.1. Tips
• ZPT ignores everything inside a script element, although it does not ignore TAL defined on the element

itself. This can make dynamic JavaScript problematic. One way around this, however, is like this:

 <script tal:content="string:
 var templateId = '${template/id}';
 "></script>

This is obviously unwieldy, especially in the case of several levels of nested quotes, but it at least allows
JavaScript access to the template's namespace.

• Slots on macros are not inherited unless specifically defined. For example, if one has a template base.pt:

 <tal:block metal:define-macro="base">
 My Base Template
 Default Content
 </tal:block>

from which one wishes to create a more specific base template, plaintext.pt:

 <tal:block metal:define-macro="plaintext">
 <style>body{font-family:Courier,monospace}</style>
 <tal:block metal:use-macro="here/base/macros/base"/>
 </tal:block>

templates calling here/plaintext/macros/plaintext will not be able to fill here/base/macros/base's 'content'
slot. One must chain the slots, defining a plaintext content slot inside the fill of base's content slot:

 <tal:block metal:define-macro="plaintext">
 <style>body{font-family:Courier,monospace}</style>
 <tal:block metal:use-macro="here/base/macros/base">

 <tal:block metal:fill-slot="content">
 <tal:block metal:define-slot="content">
 </tal:block>
 </tal:block>

 </tal:block>
 </tal:block>

• Thanks to Zope's magical acquisition, templates can be treated as methods on objects. If an object may be
viewed at /zport/dmd/object/mytemplate, then calling object.mytemplate() in a Python file will return the
HTML that template generates. In this case, however, there's no request object, so templates that ask for
one will throw an error. This is both a blessing and a curse; many man-hours have been wasted searching
for methods that do not exist.

Extending the User Interface

87

• Generally, unless a specific tag is required, use <tal:block> for purely logical structures, as it will produce
no side effects (whereas using <div> could easily do so).

13.5. Zope 3 Views Explained

In an effort to decouple the model layer from the UI layer, we've taken to implementing Zope 3 views in Zenoss.
So far, we've just done the JSON-providing methods that feed the portlets, event console, etc., but ideally we
would like to move the entire application to this style.

Let's say you're adding a new screen to Zenoss. This screen shows a list of components under a Device and
their event pills (the actual worth of this screen is both nonexistent and irrelevant). Here's how you'd do it, the
old way and the new way.

13.5.1. The Zope 2 Way
1. Add a method to the relevant class that assembles and delivers your data. In this case, you'd probably add

a method to the Products.ZenModel.Device.Device class that walks components under self and generates
an event pill for each. We'll call it getComponentList. If your method should logically be broken up into
several methods, for organization or otherwise, you'll add those to the class as well, or find a way to use
nested functions.

2. Create a page template that calls the method and renders the data. Your template would be, say, ZenMod-
el/skins/zenmodel/viewDeviceComponents.pt. Surrounding the content block, you'd have something like:

<tal:block tal:define="componentdata here/getComponentList">...</tal:block>

3. Link to your template. Either by adding a tab to the Device class, or by dropping a link in another template,
you're going to point to a URL that describes a Device instance and your template:

<a tal:attributes="href string:${here/absolute_url_path}/viewDeviceComponents">
 Component List

And you're done! Now, here are the problems with this approach:

• You've added a method used only for the UI layer to a class in the model layer, which leads to bloated
classes and a terrible time reading dir().

• Another developer will have a difficult time figuring out why the method is there, unless they grep templates
for a call.

• There's nothing identifying the template as being applicable to a particular class or group of classes.

• If your method is applicable to another class, or if you want your template to apply to different kinds of objects,
you either need to define the same method on the other classes, or create a mixin and modify your classes
to inherit from it. In the first case, you've got to (remember to) update methods in two places if changes are
ever desired. In the second case, you add to the already terrible Zope class inheritance tree (plus, where
do you draw the line? Should we really have forty-seven mixins for a class if only the UI demands it?).

• Calling your template on another object will get you a traceback. Not a 404, a traceback.

13.5.2. The Zope 3 Way
1. Create a BrowserView class to contain logic and load the template. Instead of inflating model classes with

view methods, make yourself a BrowserView, which will adapt the context to add logic you need to render
the template. That is, when a view is the result of traversal, the view class will be instantiated, passing the
context into the constructor (it will be available on the view instance as self.context; the request object will
be self.request).

You'll put something like this in ZenModel/browser/DeviceViews.py (browser is a convention):

Extending the User Interface

88

from Products.Five.browser import BrowserView
from Products.Five.pagetemplatefile import ViewPageTemplateFile

class ComponentListView(BrowserView):

 __call__ = ViewPageTemplateFile('viewDeviceComponents.pt')

 def getComponentList(self):
 ... do things with self.context and self.request ...

BrowserViews are called when they're the result of a traversal, so that's your hook. ViewPageTemplateFile()
is a callable, so the assignment is fine. If, instead of rendering a template, you just wanted to return some
text (for example, JSON), you could do:

from Products.Five.browser import BrowserView
from Products.Five.pagetemplatefile import ViewPageTemplateFile

class ComponentListView(BrowserView):

 def __call__(self):
 ... do things with self.context and self.request ...
 return results

2. Create a page template that calls the method and renders the data. This is the same as the Zope 2 way,
except for one key difference: view is now a global, and that's how you can access your custom method
(here is still available and still refers to the context, just as before).

 <tal:block tal:define="componentdata view/getComponentList">
 ...
 </tal:block>

Another difference is that you don't render the template by traversing to a template against a context;
instead, you traverse to a BrowserView, which knows which template to use. This is great, especially when
you want to use the same template for radically different contexts; as long as you have two BrowserViews
that know how to provide the methods the template wants, you're good.

3. Wire everything up with ZCML. This is where most people start scoffing. It's okay. It actually makes sense.

So you have a view, but you don't have a way to call that view; there isn't a URL that will resolve to an
instance of your BrowserView. To fix that, you register the view.

When Zope starts up, it looks inside every Product for a file called configure.zcml. In Zenoss, most Products
don't have one (though some do now). You can do a bunch of stuff with these, but we're going to ignore
everything except registration of views.

You would, in this case, modify Products/ZenModel/browser/configure.zcml (because Device is in Zen-
Model; it doesn't actually matter where you register the view, but you should try to keep Products pluggable),
adding the registration of your view:

 <browser:page
 for="Products.ZenModel.Device.Device"
 name="componentlist"
 class=".DeviceViews.ComponentListView"
 permission="zope2.View"
 />

Notice that your view is defined as being applicable only to instances of the Device class. Were you to
attempt to call componentlist against an IpInterface instance, for example, you'd get a 404 -- not so if
componentlist were a mere template. Also notice the relative import in the class attribute; .DeviceViews
will look for the DeviceViews module in the current package, that is, ZenModel.browser.

So, the whole request workflow progresses thusly:

1. Someone asks for /zport/dmd/Devices/devices/mydevice/componentlist

Extending the User Interface

89

2. Zope resolves mydevice; that's the context in which it'll attempt to resolve componentlist

3. Zope attempts to resolve componentlist as an attribute of mydevice, then a method of mydevice, then a
dictionary key of mydevice, then starts looking up registered views.

4. We find a view in the ZCML. Does it match?

name="componentlist": Check.

Context class="Products.ZenModel.Device.Device": Check.

We want the view DeviceViews.ComponentListView.

5. Zope makes sure the user has zope2.View in this context. We'll assume they do; if not, kicked out to login
screen.

6. Zope instantiates ComponentListView(mydevice), then calls it, which renders the template file.

7. The template is rendered, using view and here, and returned as the response.

So much better! No bloated classes; no ridiculous class inheritance; great code organization. Define a method
in one place, then adapt objects to provide it, instead of modifying many classes with the same method. If you
want to see the screens available for a Device, just go look in the ZCML -- no need to remember which page
templates are applicable to which objects. Also, you can adapt many different objects for the same template
with different views.

There are a few other things that could be mentioned, but they all require a discussion of interfaces, which will
deferred to a later section. Briefly, the Zope Component Architecture, and its aspect-oriented approach, saves
a lot of hackery. Also it's the rules now.

13.6. Other Customizations

13.6.1. Adding Tabs

This section will show how to add a new tab in Zenoss or modify existing one by means of ZenPack or zendmd.

A tab in Zenoss is an object property that resides within the following structure:

 factory_type_information = (
 {
 'immediate_view' : 'deviceOrganizerStatus',
 'actions' :
 (
 { 'id' : 'status'
 , 'name' : 'Status'
 , 'action' : 'deviceOrganizerStatus'
 , 'permissions' : (permissions.view,)
 },
)
 },
)

For example, tabs in the Locations screen are created from the Python class definition

Location(DeviceOrganizer, ZenPackable)

which resides in the module Location.py in the $ZENPATH/Products/ZenModel directory.

Zenoss works with class instances which are created runtime by Zope. These objects are packed within database
which is called ZODB. If you want to modify some object properties you should connect to ZODB and get the
object first, modify it and save your changes.

The following example shows the procedure for adding a new tab to Locations screen. This code is executed
from __init__.py of an example ZenPack.

import Globals

Extending the User Interface

90

import transaction
import os.path

skinsDir = os.path.join(os.path.dirname(__file__), 'skins')
from Products.CMFCore.DirectoryView import registerDirectory
if os.path.isdir(skinsDir):
 registerDirectory(skinsDir, globals())

from AccessControl import Permissions as permissions
from Products.ZenModel.ZenPack import ZenPackBase
from Products.ZenUtils.Utils import zenPath
from Products.ZenModel.ZenossSecurity import *
from Products.ZenUtils.ZenScriptBase import ZenScriptBase

class ZenPack(ZenPackBase):
 olMapTab = { 'id' : 'olgeomaptab'
 , 'name' : 'OpenLayers Map'
 , 'action' : 'OLGeoMapTab'
 , 'permissions' : (permissions.view,)
 }

 def _registerOLMapTab(self, app):
 # Register new tab in locations
 dmdloc = self.getDmdRoot('Locations')
 finfo = dmdloc.factory_type_information
 actions = list(finfo[0]['actions'])
 for i in range(len(actions)):
 if(self.olMapTab['id'] in actions[i].values()):
 return
 actions.append(self.olMapTab)
 finfo[0]['actions'] = tuple(actions)
 dmdloc.factory_type_information = finfo
 transaction.commit()

 def _unregisterOLMapTab(self, app):
 dmdloc = self.getDmdRoot('Locations')
 finfo = dmdloc.factory_type_information
 actions = list(finfo[0]['actions'])
 for i in range(len(actions)):
 if(self.olMapTab['id'] in actions[i].values()):
 actions.remove(actions[i])
 finfo[0]['actions'] = tuple(actions)
 dmdloc.factory_type_information = finfo
 transaction.commit()

 def install(self, app):
 ZenPackBase.install(self, app)
 self._registerOLMapTab(app)

 def upgrade(self, app):
 ZenPackBase.upgrade(self, app)
 self._registerOLMapTab(app)

 def remove(self, app, junk):
 ZenPackBase.remove(self, app, junk)
 zpm = app.zport.ZenPortletManager
 self._unregisterOLMapTab(app)

The class method _registerOLMapTab(self, app) registers the modified property of object Locations , which
resides in /zport/dmd/Locations in the ZODB.

The function getDmdRoot('Locations') returns the class instance of class Location which is in ZopeDB. Next
we get the dictionary of its factory_type_information property. Modify this, so that a new dictionary defining
the tab is appended to it. The tab structure is defined in olMapTab dictionary. The id field is the identification
name of this tab. You can put any string here. The name field is the string that is shown on your new tab,
action points to the template that is executed when you click on the tab and should be accessible in Zope. The
permissions field is default permissions for zenoss user to execute the template this tab points to. This line
dmdloc.factory_type_information = finfo is very important because Zope won't detect any change to the

Extending the User Interface

91

persistent object and transaction.commit() won't save any modifications to the object. The rule here is that
commit() saves only modifications of object that executes its setattr() method.

Of course every step shown above can be done manually within the zendmd prompt. The following session
shows adding new tab to Locations in zendmd:

zenoss@db-server:/home/geonick$ zendmd
Welcome to zenoss dmd command shell!
use zhelp() to list commands
>>> from AccessControl import Permissions as permissions
>>> locobj = dmd.getDmdRoot('Locations')
>>> locobj
<Location at /zport/dmd/Locations>
>>> finfo = locobj.factory_type_information
>>> finfo
({'immediate_view': 'deviceOrganizerStatus',
'actions': ({'action': 'deviceOrganizerStatus',
'id': 'status', 'name': 'Status', 'permissions': ('View',)},
{'action': 'viewEvents', 'id': 'events',
'name': 'Events', 'permissions': ('View',)},
{'action': 'deviceOrganizerManage', 'id': 'manage', 'name'
: 'Administration', 'permissions': ('Manage DMD',)},
{'action': 'locationGeoMap', 'id': 'geomap', 'name
: 'Map', 'permissions': ('View',)})},)
>>> actions = list(finfo[0]['actions'])
>>> olMapTab = {'id': 'olgeomaptab', 'name': 'OpenLayers Map',
'action': 'OLGeoMapTab','permissions': (permissions.view,)}
>>> for i in range(len(actions)):
... if(olMapTab['id'] in actions[i].values()):
... break
...
>>> actions.append(olMapTab)
>>> finfo[0]['actions'] = tuple(actions)
>>> locobj.factory_type_information = finfo
>>> locobj.factory_type_information
({'immediate_view': 'deviceOrganizerStatus', 'actions': (
{'action': 'deviceOrganizerStatus',
'id': 'status', 'name': 'Status', 'permissions': ('View',)},
{'action': 'viewEvents',
'id': 'events', 'name': 'Events', 'permissions': ('View',)},
{'action': 'deviceOrganizerManage',
'id': 'manage', 'name': 'Administration', 'permissions': ('Manage DMD',)},
{'action': 'locationGeoMap',
'id': 'geomap', 'name': 'Map', 'permissions': ('View',)},
{'action': 'OLGeoMapTab', 'permissions': ('View',),
'id': 'olgeomaptab', 'name': 'OpenLayers Map'})},)
>>>commit()

After commit() the new tab should be in Locations. Don't forget to provide the template file.

Submitted by Nikolai Georgiev

13.6.2. Adding a Dialog

The dialog container exists on every page in Zenoss; it's a DIV element with the id attribute of dialog. Loading
a dialog performs two actions:

1. Fetching (via an XHR) HTML to display inside the dialog container

2. Showing the dialog container. These can be accomplished by calling the show() method on the dialog con-
tainer, passing the event and an URL that will return the contents:

 $('dialog').show(this.event, 'dialog_MyDialog')

The dialog can then be hidden with, predictably, $('dialog').hide(). Since dialogs are almost always loaded
via clicking on a menu item, menu items whose isdialog attribute is True will generate the JavaScript to
show the dialog automatically. See the Section 13.6.3, “Adding a New Menu or Menu Item” section of this
guide for more information.'

Extending the User Interface

92

As for the dialog box contents themselves, any valid HTML will do, but certain conventions exist. Dialogs should
have a header:

 <h2>Perform Action</h2>

Dialogs should also provide a cancel button:

 <input id="dialog_cancel" type="button" value="Cancel"
 onclick="$('dialog').hide()"/>

The main wrinkle with dialogs occurs in the area of form submission. Some dialogs are self-contained, and can
carry their own form that is created and submitted just like any other form. Other dialogs, however, submit forms
that exist elsewhere on the page -- for example, dialogs that perform actions against multiple rows checked
in a table. These dialogs may use the submit_form method on the dialog container, which submits the form
surrounding the menu item that caused the dialog to be loaded to the url passed in to the method. Thus for a
table surrounded by a <form> and containing several checkboxes, dialogs loaded by menu items in the table's
menu may submit the table's form to a url by providing a button:

 <input type="submit" name="doAction:method" value="Do It"
 tal:attributes="onclick string:
 $('dialog').submit_form('${here/absolute_url_path}')"/>

See the section on Section 13.1.3, “Zope 2, ZPT and TAL” for more information about tal:attributes and the
${here/absolute_url_path} syntax.

Finally, dialogs that create objects should validate the desired id before submitting. A method on the dialog
container called submit_form_and_check(), which accepts the same parameters as submit_form() (URL), will
do this. It requires:

1. A text box with the id 'new_id', the value of which will be checked

2. A hidden input field with the id checkValidIdPath, with a value containing the path in which the id should be
valid (for example, creating a device under /zport/dmd/Devices will require checking that no other devices
in /zport/dmd/Devices has the same id, so the value of checkValidIdPath should be "/zport/dmd/Devices".
here/getPrimaryUrlPath works well for most cases).

3. An element with the id errmsg into which the error message from the validation method, if any, will be put

For example, a generic object creation dialog:

 <h2>Create Object</h2>

 ID:
 <input id="new_id" name="id"/>
 <input type="hidden" id="checkValidIdPath"
 tal:attributes="value here/getPrimaryUrlPath"/>

 <input tal:attributes="onclick string:
 return $$('dialog').submit_form_and_check('${here/getPrimaryUrlPath}')"
 id="dialog_submit"
 type="submit"
 value="Create"
 name="createObject:method"/>
 <input id="dialog_cancel" type="button" value="Cancel"
 onclick="$('dialog').hide()"/>

These examples will cover most cases; generally, a good idea is to look at other dialog templates that contain
similar elements or perform similar actions.

13.6.3. Adding a New Menu or Menu Item

Classes that inherit from the ZenMenuable mixin have a method called getMenus, which traverses up the object's
path aggregating ZenMenuItem objects owned by its ancestors. These objects comprise an action to be executed,
a human-readable description, and various attributes restricting the objects to which the item is applicable.

For example, imagine basic menus exist on dmd and dmd.Devices:

Extending the User Interface

93

 dmd
 More (menu)
 See more... (menu item)
 Do more...
 Manage
 Manage object...
 dmd.Devices
 More
 See more...
 Do less...

A call to dmd.Devices.getMenus() will return:

 More
 See more... (from dmd.Devices)
 Do more... (from dmd)
 Do less... (from dmd.Devices)
 Manage
 Manage object... (from dmd)

As you can see, menu items inherit their ancestors' unless they define their own, which override when their
ancestors' conflict.

In theory, all ZenMenuables (which includes nearly all objects in Zenoss) may own menu items; in practice, all
but a few menus live on /zport/dmd.

Adding a new menu item is fairly straightforward. Because menu items are persistent objects, modifications
must happen in a migrate script (or be included as XML in a ZenPack). The method ZenMenuable.buildMenus()
accepts a dictionary of menus, each of which is a list of dictionaries representing the attributes of menu items.
Instructions on writing migrate scripts can be found elsewhere in this guide.

1. Find the id of the menu to which you wish to add items. The simplest way to do this is to locate the menu_ids
definition on the page template that renders the menu. Tables will have a single menu id. The page menu
may have several, which will be rendered as sub-menus. The TopLevel menu is a special case; it appears
in the page menu, but its items are rendered as siblings of the other menus.

2. If activating the menu item will require a dialog, create one. See the Section 13.6.2, “Adding a Dialog” section
of this guide for more info.

3. Determine the objects for which the menu item should be visible. Menu items will use several criteria for
determining whether to apply:

• allowed_classes: A list of strings of class names for which the menu item should be rendered.

• banned_classes: A list of strings of class names for which the menu item should not be rendered.

• banned_ids: A list of strings of object ids for which the menu item should not be rendered.

• isglobal: Whether the menu item should be inherited by children of the menu item's owner.

• permissions: The permissions the current user must have for the context in order for the item to render.

4. Figure out the action the menu item will perform. If it's a dialog, then the action is the name of the dialog
template, and the isdialog attribute of the menu item should be True. If it's a regular link, the action should
be the URL or "javascript:" you would normally have as the href attribute of an anchor.

5. Now build the dictionary. It should look like this, where MenuId is the menu from step 1:

 menus = { 'MenuId': [
 { 'id': 'myUniqueId',
 'description': 'Perform My Action...',
 'action': 'dialog_myAction',
 'isdialog': True,

Extending the User Interface

94

 'allowed_classes': ('MyGoodClass',),
 'banned_classes': ('MyBadClass',),
 'banned_ids': ('Devices',),
 'ordering': 50.0,
 'permissions': (ZenossSecurity.ZEN_COMMON,)
 },
]}

'ordering' is a float determining the item's relative position in the menu. Greater numbers mean the item
will be placed higher. Also notice that it's almost certainly pointless to set both allowed_classes and
banned_classes; it was done here only as an example. The permission ZEN_COMMON is a standard Zenoss
permission -- see the new permissions section of this guide for more information.

If you have more menu items in the same menu, you can add them to that list; if you have more menus,
you can create more keys in the menus dictionary.

6. Finally, use the dmd.buildMenus() method to create the MenuItems:

 dmd.buildMenus(menus)

13.6.4. Creating a Table Using ZenTableManager

ZenTableManager is a Zope product that helps manage and display large sets of tabular data. It allows for
column sorting, breaking down the set into pages, and filtering of elements in the table.

Here's a sample of a table listing all devices under the current object along with their IPs. First we set up the
form that will deal with our navigation form elements:

 ...
<form method="post" tal:attributes="action here/absolute_url_path"
 name="[MYFORM]">
<script type="text/javascript"
 src="/zport/portal_skins/zenmodel/submitViaEnter.js"></script>

Next, we set up our table, defining the objects we want to list (in this case, here/devices/getSubDevicesGen).
We then pass those objects, along with a unique tableName, to ZenTableManager, which will return a batch of
those objects of the right size (for paging purposes):

 <table class="zentable"
tal:define="objects here/devices/getSubDevicesGen;
tableName string:myDeviceTable;
batch python:here.ZenTableManager.getBatch(tableName, objects)"
tal:condition="python:batch or
here.ZenTableManager.getTableState(tableName, 'filter')">

Next, a table header and a couple of hidden fields:

 <tr>
<th class="tabletitle" colspan="2"> <!--Colspan will of course change with the number of fields you show-->
My Devices
</th>
</tr>
<input type='hidden' name='tableName' tal:attributes='value tableName' />
<input type='hidden' name='zenScreenName' tal:attributes='value template/id' />

Now we add the rows that describe our devices. First we need to set up the column headers so that they'll be
clickable for sorting. For that, we use ZenTableManager.getTableHeader(tableName, fieldName, fieldTitle,
sortRule="cmp").

 <tbody>
<tr>
<!--We want to sort by names using case-insensitive comparison-->
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName, 'primarySortKey', 'Name', 'nocase')">name</th>
<!--Default sortRule is fine for IP sorting-->
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(

Extending the User Interface

95

tableName, 'getDeviceIp', 'IP')">ip</th>
</tr>

Now the data themselves. In order to have our rows alternate colors, we'll use the useful TALES attribute odd,
which is True for every other item in a tal:repeat loop.

 <tal:block tal:repeat="device batch">
<tr tal:define="odd repeat/device/odd"
tal:attributes="class python:test(odd, 'odd', 'even')">
<td class="tablevalues">
<a class="tablevalues" href="href"
tal:attributes="href device/getDeviceUrl"
tal:content="device/id">device

</td>
<td class="tablevalues"
tal:content="device/getDeviceIp">ip</td>
</tr>
</tal:block>
</tbody>

Finally, let's add the navigation tools we need and close off our tags.

 <tr>
<td colspan="2" class="tableheader">

</td>
</tr>

</table>
</form>

13.6.5. Creating an Editable Table

But what if you want to be able to edit devices from this table? The process is simple. First, you add a checkbox
to the first column of your device list:

 <td class="tablevalues" align="left">
<!--Now add your checkbox, defining the list of devices as "deviceNames"-->
<input tal:condition="here/editableDeviceList"
type="checkbox" name="deviceNames:list"
tal:attributes="value device/getRelationshipManagerId"/>
<!--Then the first column contents as above-->
<a...>device
</td>

Now that we can choose devices from the list, we need the controls to edit them. In this case, we'll use a macro
defining controls that allow a device to be moved to a different device class. Just add the macro call to the end
of your table:

 ...
</tr>
<!--Add controls here-->
<tal:block tal:condition="here/editableDeviceList"
tal:define="numColumns string:5"> <!--This macro includes the <tr> tag, so we need to pass it colspan-->

</tal:block>

</table>
</form>

13.6.6. How to Save Properties via an Edit Screen

Creating a new Edit Form.

Add form input fields

Add a boolean type:

Extending the User Interface

96

 ...
<select class="tablevalues"
tal:attributes="name MyBooleanProperty:boolean">
<option tal:repeat="boolProp python:(True,False)" tal:content="boolProp"
tal:attributes="value boolProp;
 selected python:boolProp==here.getMyBooleanProperty()"/>
</select>
...

This block of code creates a select dropdown with two options: True and False. The select dropdown is pre-
populated with the value returned by getMyBooleanProperty(). The value of this form field will be stored in the
attribute MyBooleanProperty.

Add a text box type:

 ...
<textarea class="tablevalues" rows='5' cols="33"
tal:attributes="name MyTextProperty:text"
tal:content="here/getMyTextProperty">
</textarea>
...

This block of code creates a text box. The text box is pre-populated with the string value returned by getMy-
TextBoxProperty(). The value of this form field will be stored in the attribute MyTextBoxProperty.

Add a text type:

 ...
<input class="tablevalues" type="text" size="40"
tal:attributes="value here/getMyStringProperty; name MyStringProperty"/>
...

This block of code creates a text field. The text field is pre-populated with the string value returned by getMyS-
tringProperty(). The value of this form field will be stored in the attribute MyStringProperty.

Add a select dropdown type:

 ...
<select class="tablevalues"
tal:attributes="name MySelectProperty">
<option tal:repeat="propOption here/getMySelectPropertyOptions"
tal:content="propOption"
tal:attributes="value propOption;
 selected python:propOption==getMySelectProperty()" />
</select>
...

This block of code creates a select dropdown where the option value and displayed option string are the same.
A list of option values are returned by getMySelectPropertyOptions. The select dropdown is pre-populated by
the value in getMySelectProperty. The value of this form field will be stored in the attribute MySelectProperty.

 ...
<select class="tablevalues"
tal:attributes="name MySelectProperty:int">
<option tal:repeat="propOptionTuple here/getMySelectPropertyOptionTuples"
tal:content="python:propOptionTuple[0]"
tal:attributes="value propOptionTuple[1];
 selected python:propOptionTuple[1]==getMySelectProperty()" />
</select>
...

This block of code creates a select dropdown where the option value is an integer and displayed option is a
string. A list of tuples containing the option values and displayed option string are returned by getMySelectProp-
ertyOptionTuples. The select dropdown is pre-populated by the value in getMySelectProperty. The value of this
form field will be stored in the attribute MySelectProperty.

Add the form action

Extending the User Interface

97

...
<form id='MyForm' method="post" tal:attributes="action here/absolute_url_path">
...

The form action should be set to a function (i.e. here/absolute_url_path) that returns the path to the object
being edited.

 ...
<input class="tableheader" type="submit"
name="saveProperties:method" value=" Save " />
...

This submit button name will be in the format saveProperties:method. saveProperties is the method name that
will be executed when the submit button is clicked.

Add the save() method

...
def saveProperties(self, REQUEST=None):
 """Save all Properties found in the REQUEST.form object. """
 for name, value in REQUEST.form.items():
 if getattr(self, name, None) != value:
 self.setProperty(name, value)

 return self.callZenScreen(REQUEST)
...

Create a saveProperty() method in the effective object.

13.7. Creating a Dashboard Portlet
There are just a few distinct steps to creating a custom dashboard portlet:

• Create the ZenPack as a container to hold everything

• Write the Python code that will define the back-end data methods

• Write the JavaScript code defining the portlet

• Testing the new ZenPack

This tutorial will walk through examples of each of these in the creation of a simple portlet that provides a table
listing links to reports under a given ReportClass.

13.7.1. Create a ZenPack

First, set up the directory structure by going into Zenoss, and from the navigation bar, go to the Settings area.
From here, click on the ZenPacks tab and from the page menu select the Create a ZenPack... menu item.

For the sake of our example, we'll use the name ZenPacks.myexample.portlet as the name for our
new ZenPack. When we take a look at the ZenPack from the filesystem level in the $ZENHOME/Zen-
Packs/ZenPacks.myexample.portlet/Zenpacks/myexample/portlet, directory, we should see the following

ReportListPortletPack/
__init__.py
ReportListPortlet.js

Next, add the following Python code to __init__.py:

import Globals
import os.path

skinsDir= os.path.join(os.path.dirname(__file__), 'skins')
from Products.CMFCore.DirectoryView import registerDirectory
if os.path.isdir(skinsDir):
 registerDirectory("skins", globals())

This satisfies the ZenPack requirements for the skins directory.

Extending the User Interface

98

The skins directory is required, although you won't be using it in this portlet. Normally it contains Zope templates
specific to your ZenPack.

The __init__.py is a requirement for Python modules (of which Zope products, and by extension ZenPacks,
are a type). When the ZenPack is loaded on Zenoss startup, code in __init__.py will be run. This is where you'll
place the back-end functions so that your portlet gets attached to the Zenoss portal object and made available
to the portlet front-end.

Finally, you'll need to make a ZenPack object so that you can hook into installation, upgrade and removal
methods, as well as to register and unregister your portlet. Add the following code into __init__.py:

from Products.ZenModel.ZenPack import ZenPackBase

class ZenPack(ZenPackBase):
 """
 Portlet ZenPack class
 """

 def install(self, app):
 """
 Initial installation of the ZenPack
 """
 ZenPackBase.install(self, app)

 def upgrade(self, app):
 """
 Upgrading the ZenPack procedures
 """
 ZenPackBase.upgrade(self, app)

 def remove(self, app, leaveObjects=False):
 """
 Remove the ZenPack from Zenoss
 """
 # NB: As of Zenoss 2.2, this function now takes three arguments.
 ZenPackBase.remove(self, app, leaveObjects)

As you can see, nothing special has been done yet; that will come later.

13.7.2. Write the Python back-end code

Since the ReportListPortlet will present its information as tabular data, you'll be using the JavaScript YUI
library's TableDatasource on the front-end (more about that in the next section). That datasource accepts data
as a JSON object with the following structure:

 {
 'columns': ['Column1', 'Column2'],
 'data': [
 {
 'Column1':'row 1 value',
 'Column2':'another row 1 value'
 },
 {
 'Column1':'row 2 value',
 'Column2':'another row 2 value'

 }
]
 }

Thus you need a method in Zenoss to structure your list of reports accordingly and serialize it as JSON. You
then need to place that method in Zenoss so that it's accessible to the browser via an ordinary HTTP request.
This method should accept a path to a ReportClass whose reports are to be listed.

Extending the User Interface

99

Here's the final method (we'll go through it piece by piece in a moment):

 import simplejson

 def getJSONReportList(self, path='/Device Reports'):
 """
 Given a report class path, returns a list of links to child
 reports in a format suitable for a TableDatasource.
 """

 # This function will be monkey-patched onto zport, so
 # references to self should be taken as referring to zport

 # Add the base path to the path given
 path = '/zport/dmd/Reports/' + path.strip('/')

 # Create the empty structure of the response object
 response = { 'columns': ['Report'], 'data': [] }

 # Retrieve the ReportClass object for the path given. If
 # nothing can be found, return an empty response
 try:
 reportClass = self.dmd.unrestrictedTraverse(path)
 except KeyError:
 return simplejson.dumps(response)

 # Get the list of reports under the class as (url, title) pairs
 reports = reportClass.reports()
 reportpairs = [(r.absolute_url_path(), r.id) for r in reports]

 # Iterate over the reports, create links, and append them to
 # the response object
 for url, title in reportpairs:
 link = "%s" % (url, title)
 row = { 'Report': link }
 response['data'].append(row)

 # Serialize the response and return it
 return simplejson.dumps(response)

 # Monkey-patch onto zport
 from Products.ZenModel.ZentinelPortal import ZentinelPortal
 ZentinelPortal.getJSONReportList = getJSONReportList

This function will be defined in __init__.py.

First, you'll need simplejson to serialize the response:

 import simplejson

That's it for the method. This should now be in __init__.py. Next, set up the monkey-patch by importing zport's
class:

 from Products.ZenModel.ZentinelPortal import ZentinelPortal

Then set your function as a class method:

 ZentinelPortal.getJSONReportList = getJSONReportList

And that's it! Now this method is accessible wherever zport is; for example, via HTTP:

http://myzenoss:8080/zport/getJSONReportList?path=Device%20Reports

13.7.3. Write the JavaScript Portlet

Zenoss portlets rely on elements of both the MochiKit and Yahoo! UI JavaScript libraries. JavaScript is a proto-
type-based language, not a class-based language; as a result, innumerable efforts have been made to create

Extending the User Interface

100

class-like JavaScript objects. Zenoss is no exception. It does not use YUI's class-like objects, but instead its
own constructor, based on the Prototype library's Class, that allows simple subclassing.

Similarly, Zenoss uses its own Datasource object that wraps around YUI's DataSource component; this allows
for the use of datasource subclassing, as well as simple JSON serialization.

As a result of using these custom components, creating a new Portlet is fairly straightforward. Each portlet
must have a corresponding Datasource, which handles communication with the server.

The ReportListPortlet will use the predefined TableDatasource, so no separate datasource class definition is
needed. See $ZENHOME/Products/ZenWidgets/ZenossPortlets/GoogleMapsPortlet.js for an example of a cus-
tomized datasource.

The global YAHOO object defines a namespace; YAHOO.zenoss is where all custom Zenoss components are stored.
The complete portlet definition, which should be placed in ReportListPortlet.js, follows. As before, we'll go
over it step by step in a moment.

 var ReportListPortlet = YAHOO.zenoss.Subclass.create(
 YAHOO.zenoss.portlet.Portlet);

 ReportListPortlet.prototype = {

 // Define the class name for serialization
 __class__:"YAHOO.zenoss.portlet.ReportListPortlet",

 // __init__ is run on instantiation (feature of Class object)
 __init__: function(args) {

 // args comprises the attributes of this portlet, restored
 // from serialization. Take them if they're defined,
 // otherwise provide sensible defaults.
 args = args || {};
 id = 'id' in args? args.id : getUID('ReportList');
 title = 'title' in args? args.title: "Reports";
 bodyHeight = 'bodyHeight' in args? args.bodyHeight:200;

 // You don't need a refresh time for this portlet. In case
 // someone wants one, it's available, but default is 0
 refreshTime = 'refreshTime' in args? args.refreshTime: 0;

 // The datasource has already been restored from
 // serialization, but if not make a new one.
 datasource = 'datasource' in args? args.datasource :
 new YAHOO.zenoss.portlet.TableDatasource({

 // Query string will never be that long, so GET
 // is appropriate here
 method:'GET',

 // Here's where you call the back end method
 url:'/zport/getJSONReportList',

 // Set up the path argument and set a default ReportClass
 queryArguments: {'path':'/Device Reports'}
 });

 // Call Portlet's __init__ method with your new args
 this.superclass.__init__(
 {id:id,
 title:title,
 datasource:datasource,
 refreshTime: refreshTime,
 bodyHeight: bodyHeight
 }
);

 // Create the settings pane for the portlet

Extending the User Interface

101

 this.buildSettingsPane();
 },

 // buildSettingsPane creates the DOM elements that populate the
 // settings pane.
 buildSettingsPane: function() {

 // settingsSlot is the div that holds the elements
 var s = this.settingsSlot;

 // Make a function that, given a string, creates an option
 // element that is either selected or not based on the
 // settings you've already got.
 var getopt = method(this, function(x) {
 opts = {'value':x};
 path = this.datasource.queryArguments.path;
 if (path==x) opts['selected']=true;
 return OPTION(opts, x); });

 // Create the select element
 this.pathselect = SELECT(null, null);

 // A function to create the option elements from a list of
 // strings
 var createOptions = method(this, function(jsondoc) {
 forEach(jsondoc, method(this, function(x) {
 opt = getopt(x);
 appendChildNodes(this.pathselect, opt);
 }));
 });

 // Wrap these elements in a DIV with the right CSS class,
 // and give it a label, so it looks pretty
 mycontrol = DIV({'class':'portlet-settings-control'}, [
 DIV({'class':'control-label'}, 'Report Class'),
 this.pathselect
]);

 // Put the thing in the settings pane
 appendChildNodes(s, mycontrol);

 // Go get the strings that will populate your select element.
 d = loadJSONDoc('/zport/dmd/Reports/getOrganizerNames');
 d.addCallback(method(this, createOptions));
 },

 // submitSettings puts the current values of the elements in
 // the settingsPane into their proper places.
 submitSettings: function(e, settings) {

 // Get your ReportClass value and put it in the datasource
 var mypath = this.pathselect.value;
 this.datasource.queryArguments.path = mypath;

 // Call Portlet's submitSettings
 this.superclass.submitSettings(e, {'queryArguments':
 {'path': mypath}
 });
 }
 }
 YAHOO.zenoss.portlet.ReportListPortlet = ReportListPortlet;

The dashboard template loads all the dependencies for portlets, including the two important ones:
YAHOO.zenoss.Subclass and YAHOO.zenoss.portlet.Portlet.

First, create your ReportListPortlet as a subclass of YAHOO.zenoss.portlet.Portlet (which is defined in $ZEN-
HOME/Products/ZenWidgets/skins/zenui/javascript/portlet.js, if you care to look at its code):

 var ReportListPortlet = YAHOO.zenoss.Subclass.create(

Extending the User Interface

102

 YAHOO.zenoss.portlet.Portlet);

Most of the Portlet class's options are fine here; you'll be adding a select element to the settings pane, to select
the base report class, and defining a TableDatasource, to get data from your server-side method. To customize
the subclass, modify the prototype object of the portlet. When ReportListPortlet is called as a constructor, the
attributes of Portlet's prototype are copied to ReportListPortlet, except for those that ReportListPortlet has
defined itself. Portlet's prototype is also made available as ReportListPortlet.superclass.

 ReportListPortlet.prototype = {

The __class__ attribute will be used when the portlet is restored from serialization. It points to the correct code,
so define it as the eventual place of your Portlet in the YAHOO.zenoss namespace.

 __class__:"YAHOO.zenoss.portlet.ReportListPortlet",

The __init__ method is called when a ReportListPortlet is created (a feature of YAHOO.zenoss.Class). The
entity that restores portlets from saved settings will pass in an object containing those settings as attributes, so
you'll need to go through those, making any changes necessary and supplying defaults if settings don't exist.

 __init__: function(args) {

 args = args || {};
 id = 'id' in args? args.id : getUID('ReportList');
 title = 'title' in args? args.title: "Reports";
 bodyHeight = 'bodyHeight' in args? args.bodyHeight:200;
 refreshTime = 'refreshTime' in args? args.refreshTime: 0;

In the process of iterating over settings, the method will come across the datasource. If it doesn't exist yet, you'll
need to create one. Since these are tabular data, you'll use TableDatasource.

 datasource = 'datasource' in args? args.datasource :
 new YAHOO.zenoss.portlet.TableDatasource({

 method:'GET',

Set the data source's URL to the path to the method on zport that you wrote previously:

 url:'/zport/getJSONReportList',

And set up the arguments that get passed to that method, providing a default:

 this.superclass.__init__(
 {id:id,
 title:title,
 datasource:datasource,
 refreshTime: refreshTime,
 bodyHeight: bodyHeight
 }
);

Since you're going to have a modified settings pane, containing the select element by which the base Report-
Class is chosen, you'll need to call a method to add that to the default elements.

 this.buildSettingsPane();
 },

Now write that method, since you've finished the initialization.

 buildSettingsPane: function() {

Portlet.settingsSlot is the reference to the div element that contains the settings pane.

 var s = this.settingsSlot;

Since your settings pane will include a select element, you'll need to create options to be chosen, using MochiKit's
OPTION(); also, you want the select element to show the current value. This function will accept a string repre-
senting an existing ReportClass and build an option element, setting it as selected if it matches the current value.

Extending the User Interface

103

 var getopt = method(this, function(x) {
 opts = {'value':x};
 path = this.datasource.queryArguments.path;
 if (path==x) opts['selected']=true;
 return OPTION(opts, x); });

Now create the select element to hold the options, again using MochiKit's SELECT():

 this.pathselect = SELECT(null, null);

Set up the function that accepts a list of strings and iterates over them, turning them into options and appending
them to your select element:

 var createOptions = method(this, function(jsondoc) {
 forEach(jsondoc, method(this, function(x) {
 opt = getopt(x[0]);
 appendChildNodes(this.pathselect, opt);
 }));
 });

Now put the (currently empty) select element into a div with the proper CSS class defined, so that it will organize
itself properly in the settings pane, and have a label:

 mycontrol = DIV({'class':'portlet-settings-control'}, [
 DIV({'class':'control-label'}, 'Report Class'),
 this.pathselect
]);

 appendChildNodes(s, mycontrol);

Finally, you're ready to get the data for all of your option elements. You'll use MochiKit's handy loadJSONDoc(),
which accepts a URL, fires off an XHR, parses the response text as JSON, and returns a JavaScript object, with
which you'll call back to your option-building method:

 d = loadJSONDoc('/zport/dmd/Reports/getOrganizerNames');
 d.addCallback(method(this, createOptions));
 },

Lastly, you need to hook into the method that saves changed settings, so it will include your ReportClass string:

 submitSettings: function(e, settings) {

 var mypath = this.pathselect.value;
 this.datasource.queryArguments.path = mypath;

 // Call Portlet's submitSettings
 this.superclass.submitSettings(e, {'queryArguments':
 {'path': mypath}
 });
 }
 }

All that's left is to assign the ReportListPortlet constructor to the YAHOO.zenoss namespace:

 YAHOO.zenoss.portlet.ReportListPortlet = ReportListPortlet;

13.7.4. Register the portlet

Now you need to tell Zenoss about the portlet and assign permissions. Open up __init__.py again, and add
the following Python code to the top:

from Products.ZenModel.ZenossSecurity import ZEN_COMMON
from Products.ZenUtils.Utils import zenPath

Next, modify the ZenPack class you defined way back in step 1. Since upgrading and installing the portlet will
amount to the same thing, create a method on your ZenPack class to cover those steps:

Extending the User Interface

104

def _registerReportListPortlet(self, app):
 zpm = app.zport.ZenPortletManager
 portletsrc = zenPath('Products', 'ReportListPortletPack',
 'ReportListPortlet.js')
 zpm.register_portlet(
 sourcepath=portletsrc,
 id='ReportListPortlet',
 title='Report List',
 permission=ZEN_COMMON)

That method will let ZenPortletManager, the object on zport that, unsurprisingly, manages portlets, know about
the portlet source code. The zenPath() function is a utility that joins strings together to create a filesystem path
under $ZENHOME -- in this case, pointing to the directory where your ZenPack will be installed. When registering a
portlet, you provide an id, a title, and the permissions for the portlet (as this portlet should be visible to everyone,
ZEN_COMMON is the appropriate permission).

Now you can modify your install(), upgrade() and remove() methods:

def install(self, app):
 ZenPackBase.install(self, app)
 self._registerReportListPortlet(app)

def upgrade(self, app):
 ZenPackBase.upgrade(self, app)
 self._registerReportListPortlet(app)

def remove(self, app):
 ZenPackBase.remove(self, app) zpm =
 app.zport.ZenPortletManager
 zpm.unregister_portlet('ReportListPortlet')

Save and exit. You can test your ZenPack at this point by navigating to the parent directory of ReportList-
PortletPack and running:

zenpack --install ReportListPortletPack

Load up the Zenoss UI in your browser and click Add Portlet on your dashboard. Make sure the Report List
portlet appears as an option. If so, add one and check that you can change the base ReportClass. Also make
sure it shows reports.

Now all that's left is to export the ZenPack from Zenoss. From the ZenPacks tab under Settings, click on your
new ZenPack. From the page menu, select the Export ZenPack... menu item. That will create a new egg file
called ZenPacks.myexample.portlet.egg. Distribute away!

13.8. Debugging Tips
There are quite a number of components used in order to create the Zenoss interface, and it can be quite
a challenge to understand what's happening and how to fix issues. The following are a list of some simple
debugging tips:

• Use page templates rather than full HTML pages whenever possible. There are a number of dependencies
between CSS, JavaScript and other components, and doing it the hard way can be really hard. Trying to do
things the hard way in a cross-browser fashion is exceptionally difficult. As a side benefit, using the page
templates means that your pages will benefit from any improvements in the base product.

• Run Firefox Version 3.x or later, and examine the Error Console to find out what JavaScript errors are
occurring. There will be tons of CSS issues coming from different CSS pages (it's annoying, but not fatal),
but you can safely ignore them.

• The Firefox Error Console will not tell you if Firefox wasn't able to find or load a JavaScript file (if the path
you've specified in your Web page to get to the JavaScript file is incorrect). In order to determine if Zope was
given a path to a filename that it couldn't find, you'll need to go into Zope's ZMI, go to the error log (http://
yourzenossserver:8080/error_log/manage) and remove all of the error log filters. After you do that, retry the
operation and you can see what files Zope wasn't able to find and fix the paths in your page.

105

Chapter 14. Reports
14.1. Adding a New Report
Zenoss reports are simply HTML pages that use TALES markup. For a more thorough discussion, see Chap-
ter 13, Extending the User Interface.

New pages can be created using the Zope Management Interface (ZMI) interface. Navigate to this URL on your
Zenoss server:

http://yourzenossserver:8080/zport/dmd/Reports

You can add a report at this point in the Reports tree by adding "/manage" to the URL in your browser:

http://yourzenossserver:8080/zport/dmd/Reports/manage

Here you can select Report from the menu on the right, and add a new Report. Name it "test" and save it. After
you see your new "test" report, leave the ZMI by selecting the "test" object, and then selecting the Test tab at
the top of the page.

You will then see a sample page:

Reports

This is Page Template test.

If we use some TALES templates, we can get a test page that has the Zenoss look and feel. Navigate back
to our test page under the ZMI:

http://localhost:8080/zport/dmd/Reports/test/manage

Now change the text to this:

<tal:block metal:use-macro="here/reportMacros/macros/exportableReport">
<tal:block metal:fill-slot="report">
<tal:block metal:use-macro="here/templates/macros/page1">
<tal:block metal:fill-slot="breadCrumbPane">

</tal:block>
<tal:block metal:fill-slot="contentPane">
<h1>Reports</h1>
This is Page Template <i tal:content='here/title_or_id'/>.
</tal:block>
</tal:block>
</tal:block>
</tal:block>

The meat of a report goes here:

<tal:block metal:fill-slot="contentPane">

...

</tal:block>

Typically, a list of records is pulled from the database, summarized, and then shown in a table using the TALES
markup.

Although you can make changes and save them using the web interface, it is a cumbersome editor. It is simpler
to make the changes to an external file and reload it. If you store your file in the $ZENHOME/Products/ZenRe-
ports/reports directory, you can load it in with the ReportLoader?:

Reports

106

$ cd $ZENHOME/Products/ZenReports

$ python ReportLoader.py --force

14.2. Plugins
Reports are often summaries which are not tied to a particular object. Instead of adding code to objects to make
them available in the page template, you can put the python code for a report in the $ZENHOME/Products/Zen-
Reports/plugin directory.

You can execute a plugin using this tal:block:

<tal:block tal:define="
objects python:here.ReportServer.plugin('cpu', here.REQUEST);
"

...

</tal:block>

Plugins are executed every time a report is run, and do not require a Zope restart to get pick up changes. With
help from the ZenReports? Plugin module, you can even test the reports from the command line. This further
reduces the number of times that Zope is used as a development environment.

See the examples in the plugins directory.

14.3. Adding Export Buttons to Reports
Adding an Export All button to a report is fairly straightforward. The overall format of the report markup looks
something like this:

<tal:block tal:define="
objects python:here.ZenUsers.getAllThingsForReport();
objects python: (hasattr(request, 'doExport') and list(objects)) or objects;
tableName string: thisIsTheTableName;
batch python:here.ZenTableManager.getBatch(tableName,objects,
sortedHeader='getUserid');
exportFields python:['getUserid', 'id', 'delay',
'enabled', 'nextActiveNice', 'nextDurationNice',
'repeatNice', 'where'];
">
<tal:block metal:use-macro="here/reportMacros/macros/exportableReport">
<tal:block metal:fill-slot="report">

The normal report markup goes here

</tal:block>
</tal:block>
</tal:block

The first definition is a call to some method that retrieves the objects for the report. This might be a list, tuple
or an iterable class.

If we are doing an export then we need this to be a list, so the second tal:define line makes sure we have a
list in the event that we are doing an export. It's good to not do this if we are not doing an export. Large reports
might run into performance issues if an iterable is converted to a list unnecessarily.

tablename is defined here for use by the getBatch() call that follows.

Reports

107

exportFields is a list of data to be included in the export. These can be attribute names or names of methods
to call. See DataRoot.writeExportRows() for more details on what can be included in this list.

Within the <tal:block metal:fill-slot="report"></tal:block> block goes the report markup you would use
when not including the export functionality.

If the Export All button is mysteriously not doing anything you may need to be using zenTableNaviga-
tion/macros/navtool rather than zenTableNavigation/macros/navbody in your report. The former includes
the <form> tag, the latter does not. If you are not providing a <form> tag then you need to use navtool so
the export button is within a form.

108

Chapter 15. Migrating Zenoss Code
This section is not intended for ZenPack writers but for people modifying the core code (eg files under
the $ZENHOME/Products/ directory). If you are migrating code in a ZenPack, see the section on migrating
zenpacks.

15.1. Introduction and Steps

If you have added new functionality to Zenoss that will break backwards compatibility, you need to provide code
for your version that will allow users to upgrade without breakage.

Here's a breakdown of everything you will need to do in order to create your migration code and move your
new code into production:

1. Create your code in the $ZENHOME/Products/ZenModel/migrate/migrate package directory.

2. Add an import statement to __init__.py

3. Run zenmigrate --dont-commit iteratively to test

15.2. How It Works

The first place to look is in Products/ZenModel/migrate. For starters, examine the code in migrate.Migrate
and note the Step class - this is what you will subclass when writing your migration code. The
migrate.Migrate.Migration.main() method is what is called from the zenmigrate.py script and is what fires
off the whole process.

To further understand the process, note the global variable allSteps: this is appended to every time Migrate.Step
is instantiated.

But, you ask, how does my code get into allSteps?

Once your migration code is complete, you will do a couple things: add your file to the migrate directory and
then add an import statement to migrate/__init__.py. When migrate.Migrate is imported in the zenmigrate.py
script, the __init__.py code is run. Each module imported by this file has a class that gets instantiated at the
end of its module (see the Migrate.Step.__init__() method). It is through this mechanism that each custom
migration module in the migrate directory is added to allSteps (sorted by name and version number).

When migrate.Migrate.main() is called, allSteps is iterated and checks are performed to see if each migration
step needs to be run or not. main() calls cutover(), which calls migrate(), and this is where the actual work
of migration occurs, where your code gets executed.

15.3. What You Write

As noted, your migration code will subclass migrate.Migrate.Step. You can stub your migration file out like this:

__doc__='''My migration code'''

from Acquisition import aq_base

import Migrate

class MyMigrateCode(Migrate.Step):
 version = Migrate.Version(1, 1, 0)
 # The above needs to be updated to the appropriate version
 # ie a version above the previously-released version of Zenoss

 def cutover(self, dmd):
 pass

Migrating Zenoss Code

109

MyMigrateCode()

You will need to do the following to this code:

1. Fill in the doc string

2. Update the version passed to Migrate.Version

3. Update the cutover() method with actual code

4. Add any supporting code you might need that doesn't strictly belong in cutover()

15.3.1. Implement cutover()

Implementation is very straight-forward: you get the dmd object passed into the cutover() method, thus giving
you access to nearly every part of Zenoss. The only thing you don't have direct access to is the portal object.
But you can easily get that by calling dmd.getPhysicalRoot().

Implementation details are 100% dependent upon what part of Zenoss you are migrating -- if you look at the
current migration scripts (in trunk), you will get a good sense of the diversity as well as many examples from
which to work.

Changes made to the ZODB database (dmd and associated objects hierarchies) are committed back to the
database unless the --dont-commit flag is passed to zenmigrate. The --dont-commit lets the developer repeat-
edly run a script and debug without making permanent changes to the database. If your migrate script makes
changes outside of the Zope database it should probably implement Step.revert() to undo any changes it has
made.

15.3.2. Supporting Code

Supporting code is just modularization. If you're going to be using a function (or method) more than once, just
break it out of the cutover() method. This will make maintenance easier and will allow those who come after
you to see the intent of the migration code more quickly.

15.3.3. Testing and Deployment

Once your code meets with your approval (and that of the Zenoss development team), you are free to name
it something appropriate and save it to Products/ZenModel/migrate. Upon adding your migration module, you
must now edit Products/ZenModel/migrate/__init__.py so that it gets imported when zenmigrate.py is run.

After adding your script (and after every change you make to your new script), be sure to run zenmigrate run.
Here are some things you can do to help ensure quality:

1. Load Zenoss in a web browser, and navigate to the part of the application that was impacted by your mi-
gration script

2. Look at the log files for error output

3. Load up zendmd from the command line and make sure that no errors are generated when using the part
of the API impacted by the change

After someone reviews the changes, your migration code is ready for deployment.

110

Chapter 16. Testing
16.1. Zenoss Unit Tests

16.1.1. Introduction

There are different types of test strategies which attempt to determine changes in behavior and errors.

Test Type Description

Python doctest Simple tests in the documentation for a function

Unit tests Test functions in a module together using the runtests
command

Functional testing Try to test the software as the user would use the soft-
ware. Selenium is used to test multiple Web browsers
to simulate actual use.

Load testing Attempts to determine how many operations the sys-
tem is capable of performing with the provided config-
uration.

16.1.2. doctest Testing

A handy feature of Python is the ability to include simple tests in the docstring for a function. This allows the
programmer to see some of the normal cases and boundary conditions, but it also allows the programmer to
run sanity checks on the function by running the Python doctest utilities.

First, a complete sample file (blue.py) to illustrate:

import os
from exceptions import ValueError

def myfunc(a, b):
 """
 Determine if a likes b.

 >>> myfunc(0, 0)
 True
 >>> myfunc(0, 1)
 False

 # Comments in-between tests should be separated with an extra line,
 # otherwise doctest will notify you of an error.
 # This should raise an exception
 >>> myfunc(0, "bad")
 Traceback (most recent call last):
 ValueError: Argument is bad
 """
 if a == "bad" or b == "bad":
 raise ValueError("Argument is bad")

 return a == b

if __name__ == "__main__":
 import doctest
 doctest.testmod()

Now we can test our module by running Python with the -v flag:

$ python blue.py -v
Trying:

http://docs.python.org/library/doctest.html

Testing

111

 myfunc(0, 0)
Expecting:
 True
ok
Trying:
 myfunc(0, 1)
Expecting:
 False
ok
1 items had no tests:
 __main__
1 items passed all tests:
 2 tests in __main__.myfunc
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

The -v flag gets passed to your program, not to Python!

16.1.3. Zenoss' Test Runner

Zenoss has a Zope product, ZenTestRunner, whose sole purpose it to run a specific group of tests. We did
this in order to avoid running all the tests in the Products directory if you only want to run tests on a specific
portion of Zenoss.

Do NOT run unit tests on a production server!

Some of the tests are destructive in nature (eg 'delete all events') and are intended to be used only on a
development server.

All of our examples should be run as the zenoss user. If you really want to run all of the tests:

$ runtests -t unit

If you are running a Selenium server, then you can use runtests to run the unit tests and the Selenium tests.
To run the Selenium tests on there own:

$ runtests -t selenium

To run all of the ZenModel tests:

runtests ZenModel

All that is required by developers is that they add tests into the tests directory that has a __init__.py contained
inside that directory.

1. Run the existing tests to make sure that you know what to expect:

runtests -t unit

2. Go to the tests directory inside of the directory with the classes you want tested:

cd $ZENHOME/Products/ZenModel/tests

3. Copy one of the existing tests to a name reflecting the product for which you are adding tests:

cp testZenModel.py
 testZenNewProduct.py

Your new test script must contain the prefix test in the filename. So testmytest.py will work, but not
mytest or mytest.py.

4. Change the import line in the new file to reflect the new product name:

from Products import ZenNewProduct as product

5. Save and quit, then run the test suites to make sure everything is passing:

Testing

112

$ runtests -t unit ZenModel

Follow the same procedures as above for ZenPacks, with the following differences:

• Make sure that your ZenPack has the tests directory in it (eg $ZENHOME/Zen-

Packs/ZenPacks.org.zpname-version info.egg/ZenPacks/org/zpname/tests), containing an
__init__.py file and your new test script.

• The runtests doesn't currently understand Python Egg-style namespaces, so only the last part of the
ZenPack name is used. For example, if our ZenPack's name was ZenPacks.org.zpname

$ runtests -t unit zpname

16.1.3.1. An Example Unit Test

This first unit test deliberately has an error it, but we'll show what happens and how we can make it better.

from xmlrpclib import ServerProxy
from Products.ZenTestCase.BaseTestCase import BaseTestCase

class TestXmlRpc(BaseTestCase):

 def setUp(self):
 self.baseUrl = 'http://admin:zenoss@NotExistServer:8080/zport/dmd/'
 self.testdev = 'xmlrpc_testdevice'

 def testSendEvent(self):
 serv = ServerProxy(self.baseUrl + 'ZenEventManager')
 evt = {
 'device':'xmlrpcTestDevice',
 'component':'eth0',
 'summary':'eth0 is down',
 'severity':4,
 'eventClass':'/Net'
 }
 serv.sendEvent(evt)

def test_suite():
 from unittest import TestSuite, makeSuite
 suite = TestSuite()
 suite.addTest(makeSuite(TestXmlRpc))
 return suite

First, notice that our test has to fail as the server that we're trying to reach (NotExistServer) doesn't exist. Here's
the output when we run it from the command-line.

 $ runtests -t unit -n testXMLRPC ZenModel
Running tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v
--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/ZenModel
 testXMLRPC
Running unit tests at level 1
Running unit tests from /opt/zenoss/Products/ZenModel
Parsing /opt/zenoss/etc/zope.conf
E
==
ERROR: testSendEvent (tests.testXMLRPC.TestXmlRpc)
--
Traceback (most recent call last):
 File "/opt/zenoss/lib/python/Testing/ZopeTestCase/profiler.py", line 98,
 in __call__
 testMethod()
 File "/opt/zenoss/Products/ZenModel/tests/testXMLRPC.py", line 34,
 in testSendEvent
 serv.sendEvent(evt)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1153, in __call__
 return self.__send(self.__name, args)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1440, in __request

Testing

113

 verbose=self.__verbose
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1186, in request
 self.send_content(h, request_body)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1300, in send_content
 connection.endheaders()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 798, in endheaders
 self._send_output()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 679, in _send_output
 self.send(msg)
 File "/opt/zenoss/lib/python2.4/httplib.py", line 646, in send
 self.connect()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 614, in connect
 socket.SOCK_STREAM):
gaierror: (-2, 'Name or service not known')

--
Ran 1 test in 0.007s

FAILED (errors=1)

While that does tell us that we do have a problem (Name or service not known), it's a lot of output for one
problem. And the note at the bottom that tells us that we have errors (ie in our tests scripts) rather than failures
(ie issues in our code). If this happens if every test that fails to trap exceptions or conditions generated this much
output (there are over 140 unit tests in ZenModel alone!) we'd be drowned in a sea of output!

An improved example:

import traceback
from xmlrpclib import ServerProxy
from Products.ZenTestCase.BaseTestCase import BaseTestCase

class TestXmlRpc(BaseTestCase):
 "Test basic XML-RPC services against our Zenoss server"

 def setUp(self):
 self.baseUrl = 'http://admin:zenoss@localhost:8080/zport/dmd/'
 self.testdev = 'xmlrpc_testdevice'

 def testSendEvent(self):
 "Send an XML-RPC event"
 serv = ServerProxy(self.baseUrl + 'ZenEventManager')
 evt = {
 'device':'xmlrpcTestDevice',
 'component':'eth0',
 'summary':'eth0 is down',
 'severity':4,
 'eventClass':'/Net'
 }

 try:
 serv.sendEvent(evt)
 except:
 msg= traceback.format_exc(limit=0)
 self.fail(msg)

def test_suite():
 from unittest import TestSuite, makeSuite
 suite = TestSuite()
 suite.addTest(makeSuite(TestXmlRpc))
 return suite

This time the output looks like this:

$ runtests -t unit -n testXMLRPC ZenModel
Running tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v
--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/ZenModel
 testXMLRPC
Running unit tests at level 1

Testing

114

Running unit tests from /opt/zenoss/Products/ZenModel
Parsing /opt/zenoss/etc/zope.conf
F
==
FAIL: Send an XML-RPC event
--
Traceback (most recent call last):
 File "/opt/zenoss/lib/python/Testing/ZopeTestCase/profiler.py", line 98,
 in __call__
 testMethod()
 File "/opt/zenoss/Products/ZenModel/tests/testXMLRPC.py", line 41,
 in testSendEvent
 self.fail(msg)
 File "/opt/zenoss/lib/python2.4/unittest.py", line 301, in fail
 raise self.failureException, msg
AssertionError: Traceback (most recent call last):
gaierror: (-2, 'Name or service not known')

--
Ran 1 test in 0.004s

FAILED (failures=1)

Here are the differences, from the top down:

• We have a nicer description of what the test is testing (Send an XML-RPC event).

• The output is (slightly) shorter but still provides us with the underlying error message that we need to know.
The more levels of stack in the function, the greater the savings.

• We see that we have one failure condition detected, as opposed to an error in our unit test.

To get the above example to work, change the Zenoss server in the URL to be the localhost server.

16.1.4. Integrating With Buildbot

The Buildbot program is a Python-based build and test system used at Zenoss Inc in order to perform nightly
builds of the various architectures, run unit tests and sanity check the code with PyFlakes.

The Buildbot configuration is not visible outside of Zenoss.

16.1.5. JavaScript Test Framework

YUI includes a full unit test framework. Most of the specifics are best explained by them.

Zenoss-specific tests should all be located in $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/tests
directory. Each test script should then be registered in the getLoader() function in zenoss-core.js, using the
naming scheme test_description.

These tests may then be run on any page using the runtests() function. For example, the dashboard tests
should be registered as test_dashboard, and can then be run as:

runtests('dashboard')

This will pop up a logger window that will print test results.

An example test script has been provided. Please see:

• $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/tests/ test_example.js

• $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/zenoss-core.js

Also run in the JavaScript console of your browser:

runtests('example')

http://buildbot.net/trac
http://divmod.org/trac/wiki/DivmodPyflakes
http://developer.yahoo.com/yui/yuitest/

Testing

115

16.2. Functional User Interface Testing

16.2.1. Introduction

Functional testing refers to testing of the task-oriented features (aka functions) as opposed to the much low-
er-level unit-tests. A good unit test will tell you if a piece of code is working within specifications, while a good
functional test will tell you if the entire program works as expected for a particular task.

16.2.2. Installing and Running

Selenium is a suite of tools used to create tests and record their results. These regression tests are intended to
be run against multiple different browsers in order to verify the targeted web application.

16.2.2.1. Installing and Configuring Mac OS X

Selenium uses Firefox by default, so you need to make sure that firefox-bin is in your search path:

which firefox-bin

If that returns nothing, then you need to add the path to firefox-bin to PATH. For example:

export
 PATH=$PATH:/Applications/Internet/Firefox.app/Contents/MacOS/

The actual Selenium tests are found in the $ZENHOME/Products/ZenUITests/tests/selenium/ directory.

16.3. Where to Get More Information
Discussion regarding testing takes place on the Zenoss-Testing forum, available from:

http://community.zenoss.org/community/forums

http://selenium.openqa.org/
http://community.zenoss.org/community/forums

116

Appendix A. Event Database Dictionary
Event Field Description

dedupid events will deduplicate based on the value of this field.
by default: device, component, eventClass, eventKey,
severity

device name of device

component name of component (like eth0, httpd, etc)

eclass eventClass (if not specified maybe added by rule pro-
cess if this fails will be /Unknown)

eventKey if a component needs further deduplication specifica-
tion this field maybe used

summary message text truncated at 150 characters

message full message text

severity number from 0 to 5

eventState state of event 0 = new, 1 = acknowledged, 2 = sup-
pressed

eventClassKey key by which rules processing begins. Often equal to
component.

eventGroup logical group of event source (syslog, ping, nteventlog
etc)

stateChange last time event changed automatically updated

firstTime unix timestamp when event is received.

lastTime last time an event was received

count number of times an event has repeated

prodState prodState of the device context

suppid id of event that suppressed this event

manager fqdn of the collector from which this event came

agent collector name from which event came (zensyslog,
zentrap, etc)

DeviceClass device class from device context

Location device location from device context

Systems device systems from device context separated by |

DeviceGroups device systems from device context separated by |

ipAddress ip from which event came

facility syslog facility of this is syslog event

priority syslog priority of this is syslog event

ntevid nt event id if this is nt eventlog event.

117

Appendix B. TALES Expressions
TALES is syntax you can use to retrieve values call methods on Zenoss objects. Several fields in Zenoss accept
TALES syntax, including command templates, event mapping transforms, user commands, event commands,
zProperties, and zLinks.

Commands (those associated with devices as well as those associated with events) can use TALES expressions
to incorporate data from the related devices and/or events. TALES is a syntax for specifying expressions that let
you access the attributes of certain objects such as a device or an event in Zenoss. For additional documentation
on TALES syntax please see the TALES section in the Zope book.

Depending on the context you may have access to a device and/or an event. Below is a list of the attributes
and methods you may wish to use on device and event objects. The syntax for accessing device attributes
and methods is ${dev/attributename}, so for example to get the manageIp of a device you would use ${dev/
manageIp}. For events, the syntax is ${evt/attributename}

B.1. Examples

B.1.1. ping

A command to ping a device might look like this. The ${..} is a TALES expression to get the manageIp value
for the device.

ping -c 10 ${dev/manageIp}

B.1.2. DNS forward lookup

Assuming that the ${device/id} is a resolvable name

host ${device/id}

B.1.3. DNS reverse lookup

host ${device/manageIp}

B.1.4. snmpwalk

snmpwalk -v1 -c${device/zSnmpCommunity} ${here/manageIp} system

zProperties are also available for devices and events using the same syntax as above.

To use these expressions effectively you need to know which objects, attributes and methods are available to
you in which contexts. Usually there is a dev and/or device which allows you access the device in a particular
context. Contexts related to a particular event usually have evt and/or event defined. Some available attributes
for each of these classes are listed below. List items with parenthesis after them are methods and much have
the parenthesis included in the TALES expression to function correctly.

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx

TALES Expressions

118

B.2. TALES Device Attributes

 Device Attribute Description

getId The primary means of identifying a device within Zenoss

getManageIp The IP address used to contact the device in most situations

productionState The production status of the device: Production, Pre Production, Test,
Maintenance or Decommissioned. This attribute is a numeric value, use
getProductionStateString for a textual representation.

getProductionStateString Returns a textual representation of the productionState

snmpAgent The agent returned from SNMP collection

snmpDescr The description returned by the SNMP agent

snmpOid The OID returned by the SNMP agent

snmpContact The contact returned by the SNMP agent

snmpSysName The system name returned by the SNMP agent

snmpLocation The location returned by the SNMP agent

snmpLastCollection When SNMP collection was last performed on the device. This is a Date-
Time object.

getSnmpLastCollectionString Textual representation of snmpLastCollection

rackSlot The slot name/number in the rack where this physical device is installed

comments User entered comments regarding the device

priority A numeric value: 0 (Trivial), 1 (Lowest), 2 (Low), 3 (Normal), 4 (High), 5
(Highest)

getPriorityString A textual representation of the priority

getHWManufacturerName Name of the manufacturer of this hardware

getHWProductName Name of this physical product

getHWProductKey Used to associate this device with a hardware product class

getOSManufacturerName Name of the manufacturer of this device's operating system

getOSProductName Name of the operating system running on this device

getOSProductKey Used to associate the operating system with a software product class

getHWSerialNumber Serial number for this physical device

getLocationName Name of the Location assigned to this device

getLocationLink Link to the Zenoss page for the assigned Location

getSystemNames A list of names of the Systems this device is associated with

getDeviceGroupNames A list of names of the Groups this device is associated with

getOsVersion Version of the operating system running on this device

getLastChangeString When the last change was made to this device

getLastPollSnmpUpTime Uptime returned from SNMP

uptimeStr Textual representation of the SNMP uptime for this device

getPingStatusString Textual representation of the ping status of the device

getSnmpStatusString Textual representation of the SNMP status of the device

Table B.1. TALES Device Attributes

TALES Expressions

119

B.3. TALES Event Attributes

TALES Event Attribute Description

agent The name of the daemon from which this event came (eg zensyslog, zentrap)

component The component of the associated device, if applicable

count Number of times this event has been seen

dedupid A key used to correlate duplicate events

device The id of the associated device, if applicable

evid A unique id for the event

eventClass The event class associated with this device

eventGroup The logical group of event source (syslog, ping, nteventlog etc)

eventKey The eventKey is the primary criteria for mapping events into event classes

facility The Unix syslog facility if this is a syslog event

firstTime The first time this event was seen

ipAddress The IP address of the associated device, if known

lastTime The last time this event was seen

manager Fully-qualified domain name of the collector from which this event came

priority The syslog priority if this is a syslog event

prodState The production state of the device

severity One of 0 (Clear), 1 (Debug), 2 (Info), 3 (Warning), 4 (Error) or 5 (Critical)

stateChange When the MySQL record for this event was last modified

summary Text description of the event

Table B.2. TALES Event Attributes

zProperties are also available for devices and events using the same syntax as above.

120

Glossary

Glossary
Daemon In Unix, a daemon is a computer program that runs in the background rather

than under the direct control of a user. Systems often start daemons at boot
time: they often serve the function of responding to network requests, hardware
activity, or other programs by performing some task.

Component A component is a Zenoss code abstraction for something attached to a device.
Examples of components: network interfaces, fans, CPUs, and hard disks.

Device A device is defined as a Zenoss code abstraction for a combination of a net-
worked resources hardware and that hardware's operating system. Examples
of devices: printers, servers, routers, and switches.

GNU General Public License The GPL is a widely used free software license.

Internet Control Message
Protocol

An extension to the Internet Protocol (IP) defined by RFC 792. ICMP supports
packets containing error, control, and informational messages. The PING com-
mand, for example, uses ICMP to test an Internet connection.

Management Information
Base

A MIB is a description of the OIDs that an SNMP agent supports, and are used
to provide human-friendly names and descriptions for OIDS (much like DNS
provides human-friendly names for IP addresses). In addition, the a MIB en-
try also defines the data types of the OID and other meta-data. MIBs are de-
fined using a subset of Abstract Syntax Notation One (ASN.1) defined in "Struc-
ture of Management Information Version 2 (SMIv2)" RFC 2578. The software
that converts a human-readable MIB into a computer-readable entity is called
an MIB compiler. MIBs are hierarchical (tree structured). Notable RFCs are:
RFC 1155, "Structure and Identification of Management Information for TCP/
IP based Internets", and its two companions, RFC 1213, "Management Infor-
mation Base for Network Management of TCP/IP-based Internets", and RFC
1157, "A Simple Network Management Protocol."

Modeling A model is the collection of code abstractions (python objects) that represents
actual networked resources. Modeling (creating a model of a) a piece of hard-
ware in your system consists of gathering all of that date possible about that
device and creating a device profile based upon that data. This model can be
supplemented by hand entered data that is of particular use in creating a more
accurate profile (model) of the device. This information can also be re-used to
assist in the modeling of hardware producing similar data.

Object Identifier In the context of SNMP, consists of the object identifier for an object in a Man-
agement Information Base (MIB).

Performance Template A performance template defines how performance data is to be collected. A
template defines the data sources to collect, any thresholds and how the data
sources should be graphed. There are two types of performance templates:
device-level and component.

A device-level template is usually defined manually (the device template being
an obvious exception) and do not rely on modeling information. A device-level
template must be bound manually and data sources configured.

A component-level template relies on modeling data to determine what and
how to monitor a component. A component-level template must not be bound

Glossary

121

manually or there will be undefined results. Examples of component-level tem-
pates: network interfaces, disks, CPUs.

The rule of thumb to determine if a performance template is a device-level or
component-level template is to see if zenmodeler models the component. If
you can see new elements in the GUI after running zenmodeler, then a com-
ponent-level template will be automatically bound. If zenmodeler doesn't find
something, then you have a device-level template.

Simple Network Manage-
ment Protocol

A set of protocols for managing complex networks. The first versions of SNMP
were developed in the early 80s. SNMP works by sending messages, called
protocol data units (PDUs), to different parts of a network. SNMP-compliant
devices, called agents, store data about themselves in Management Informa-
tion Bases (MIBs) and return this data to the SNMP requesters.

SNMP Trap When a condition is met on a remote device that is recognized by the SNMP
agent on that remote device (eg bad login attempts, processor on fire), the
SNMP protocol allows for the remote device to inform the SNMP manager of
this event. The SNMP protocol uses the term trap to refer to the alert sent from
the agent to the manager.

SNMP Walk The operation performed using SNMP to gather information about a specific
device.

sudo sudo (substitute user [or superuser] do), is a program in Unix-like operating
systems that allows users to run programs with the security privileges of an-
other user (normally the system's superuser) in a secure manner. Users must
confirm their identity to sudo by supplying their password before running the
target program. Once authentication has taken place, and if the /etc/sudoers
file is configured to give the user access to the command requested, then the
system allows the command, but logs it. Because sudo is very particular about
the format of this configuration file, and errors could cause serious problems,
editing should always be done with the provided visudo or sudoedit tool, which
checks for correctness before saving.

Virtual Appliance A virtual appliance is a minimalist virtual machine image designed to run un-
der VMware, providing network applications such as Web servers. Virtual ap-
pliances are a subset of the broader class of software appliances. Like soft-
ware appliances, virtual appliances are aimed to eliminate the installation, con-
figuration and maintenance costs associated with running complex stacks of
software. A key concept that differentiates a virtual appliance from a virtual
machine is that a virtual appliance is a fully pre-installed and pre-configured
application and operating system environment whereas a virtual machine is,
by itself, without software Typically a virtual appliance will have a web interface
to configure the inner workings of the appliance. A virtual appliance is usually
built to host a single application, and so represents a new way of deploying
network applications.

Device Management
Database

The DMD is the area inside of the ZODB where Zenoss stores device and
network configuration information.

Zope Object DataBase The ZODB is the Object-Oriented DataBase (OODB) used by Zope. The OODB
part means that data is not stored in terms of tables, rows and columns, but
instead as objects.

ZEO ZEO is a layer between Zope and the ZODB, and allows multiple Zope servers
to share the same ZODB. zenhub (the Zenoss Hub) attaches to the ZODB
through ZEO. The terms ZEO (a mechanism to attach to the ZODB) and the
ZODB (the actual data store) are used almost synonymously in the text.

Glossary

122

Zope Configuration Manage-
ment Language

ZCML is an XML file that contains information about configuring Zope and Zope
Products (such as Zenoss).

Zope Management Interface The ZMI refers to the user interface provided by the Zope system to create and
manage Zope products (Zenoss being a Zope product). The ZMI on a Zenoss
system can be accessed by going to the URL of your Zenoss server and adding
the name manage to the end. For example: http://yourzenossserver:8080/zport/
manage

Macro Exapnsion for TAL While TAL is used to allow Zope to dynamically add content for a single HTML
page, TAL logic can't be shared by multiple pages. METAL macros allow for
TAL to be used in multiple places with variable passing (called slots).

Template Attribute Lan-
guage

TAL is a set of XML elements and tags used by Zope and are incorporated into
HTML pages. These XML elements and tags (inside of the tal namespace)
allow Zope to programmatically extend a static HTML page and dynamically
include content.

Asynchronous JavaScript
And XML

AJAX is a set of techniques for writing JavaScript. So AJAX is a state of mind
rather than a standard. Generally, something is considered AJAX if it uses
the JavaScript XMLHttpRequest() function to retrieve data from a server and
presents the returned XML document in a interactive way to the user.

	Zenoss Developer's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Model
	1.1.2. Availability
	1.1.3. Events
	1.1.4. Performance

	1.2. Detailed Architecture
	1.2.1. User Layer
	1.2.2. Data Layer
	1.2.3. Collection and Control Service Layer

	Chapter 2. Getting Started
	2.1. Working with the Source Code
	2.1.1. Getting the Source Code
	2.1.1.1. Getting Subversion for the Appliance

	2.1.2. Keeping up-to-date with your checked-out code
	2.1.3. Getting Patches
	2.1.4. Style Guidelines
	2.1.4.1. Docstrings

	2.1.5. Generating Diffs for new Fixes
	2.1.6. Submitting a Fix

	2.2. Development Toolchain Requirements
	2.2.1. Appliance

	2.3. Programming Techniques
	2.3.1. Calling Methods Using REST
	2.3.1.1. How to Call Methods Using REST
	2.3.1.2. Sending an Event
	2.3.1.2.1. Using a REST Call
	2.3.1.2.2. Using XML-RPC
	2.3.1.2.3. Example Usage in Other Languages
	2.3.1.2.3.1. Perl
	2.3.1.2.3.2. Ruby
	2.3.1.2.3.3. PHP
	2.3.1.2.3.4. Java

	2.3.2. Miscellaneous Notes
	2.3.2.1. pkg_resources
	2.3.2.2. urllib2 Workarounds

	2.4. zendmd: Command-line Access to the Device Management Database (DMD)
	2.5. Programming Documentation
	2.5.1. Python
	2.5.2. Zenoss API
	2.5.3. Other Resources
	2.5.4. Contributing to the Documentation

	Chapter 3. ZenPacks
	3.1. Overview
	3.2. Creating a ZenPack
	3.2.1. ZenPack Names
	3.2.2. Specifying Dependencies
	3.2.3. Locating ZenPack Source Outside of Zenoss
	3.2.4. Community ZenPack Subversion Access

	3.3. ZenPack Structure and Contents
	3.4. Developing the ZenPack
	3.4.1. Base ZenPack Class
	3.4.2. Storing Objects in the ZODB
	3.4.3. Providing DataSource classes
	3.4.4. Performance Template Checklist
	3.4.4.1. Data Sources
	3.4.4.2. Data Points
	3.4.4.3. Thresholds
	3.4.4.4. Graph Definitions
	3.4.4.5. Graph Points

	3.4.5. Providing Performance Collector Plugins
	3.4.6. Referencing Collector Plugins in ZenPacks
	3.4.7. Providing Daemons
	3.4.8. setuptools and the zenpacksupport

	3.5. Building and Distributing ZenPacks
	3.5.1. Migrating between versions
	3.5.2. Converting older ZenPacks to ZenPack eggs

	3.6. Development Mode
	3.6.1. Source ZenPacks
	3.6.2. Converting .egg Files to Development Mode

	3.7. Where to Get More Information

	Chapter 4. Zenoss Data Stores
	4.1. Zope Object Database (ZODB)
	4.2. MySQL Event database
	4.2.1. Connecting to the Database
	4.2.2. MySQL in 60 Seconds

	4.3. Python Pickle Files
	4.4. Round-Robin Database

	Chapter 5. Events
	5.1. Understanding an Event Entry
	5.1.1. Event Design

	5.2. Sending an Event
	5.3. Adding an Event Class
	5.3.1. Add to ZenEventClasses
	5.3.2. Add the class to the import XML
	5.3.3. Write a migrate script

	Chapter 6. zProperty Management
	6.1. Adding a zProperty
	6.1.1. Adding a zProperty to an Event
	6.1.2. Adding a zProperty to a Device

	6.2. Migrating the zProperty Code

	Chapter 7. Creating New Jobs
	7.1. Job Requirements
	7.2. Running a Job
	7.3. Life Cycle of a Job
	7.4. Shell Command Jobs
	7.5. Logging

	Chapter 8. Device Management
	8.1. Adding Devices Programatically
	8.1.1. Using a REST call
	8.1.2. Using an XML-RPC Call from Python
	8.1.3. XML-RPC Attributes

	8.2. Editing Device Information
	8.2.1. Using a REST call
	8.2.2. Using an XML-RPC Call from Python

	8.3. Deleting A Device
	8.3.1. Using a REST call
	8.3.2. Using an XML-RPC Call from Python

	8.4. Checking If A Device Exists
	8.4.1. Using a REST call
	8.4.2. Using an XML-RPC Call from Python

	8.5. Exporting a Device List

	Chapter 9. Extending the Model
	9.1. Add a ZenModel Relationship
	9.1.1. One-to-One (1:1) Relationships

	9.2. One-to-Many (1:N) Relationships
	9.3. Many-to-Many (M:N) Relationships
	9.3.1. One-to-Many (1:N) Container Relationships

	9.4. Zenoss XML Schema
	9.4.1. object
	9.4.1.1. Example
	9.4.1.2. Attributes
	9.4.1.3. Children

	9.4.2. objects
	9.4.2.1. Example
	9.4.2.2. Children

	9.4.3. property
	9.4.3.1. Example
	9.4.3.2. Attributes

	9.4.4. tomany
	9.4.4.1. Example
	9.4.4.2. Attributes
	9.4.4.3. Children

	9.4.5. tomanycont
	9.4.5.1. Example
	9.4.5.2. Attributes
	9.4.5.3. Children

	9.4.6. toone
	9.4.6.1. Example
	9.4.6.2. Attributes

	9.4.7. link
	9.4.7.1. Example
	9.4.7.2. Attributes

	9.5. Zenoss Permissions
	9.5.1. Adding New Permissions
	9.5.2. Assigning Permissions to a Method
	9.5.3. Checking Links

	Chapter 10. Zenoss Daemons
	10.1. Twisted Network Programming Overview
	10.1.1. Understanding NJobs, Driver and DeferredList
	10.1.1.1. DeferredList
	10.1.1.2. NJobs
	10.1.1.3. Driver
	10.1.1.4. A Simple Example

	10.2. Zenoss Daemon Overview
	10.3. zenhub: Daemon to ZODB management
	10.3.1. Daemon to ZODB management
	10.3.2. Heartbeats and other Events
	10.3.3. Pluggable Daemon Services

	10.4. ZenRender and Graphs
	10.5. Developing a Daemon
	10.5.1. Command-line Options
	10.5.2. Add the Daemon Control Script
	10.5.3. Set Up ZenHub Communications
	10.5.3.1. Registering Services with the Hub

	Chapter 11. Add a Performance Daemon
	11.1. Overview
	11.2. DataMaps
	11.3. Performance Collection
	11.3.1. Connecting Collectors and Services

	11.4. Creating a New Collector
	11.4.1. Constructor
	11.4.2. Getting a List of Devices
	11.4.2.1. Thresholds
	11.4.2.1.1. Complex Thresholds

	11.4.3. fetchConfig()
	11.4.4. Collector's ZenHub Service
	11.4.5. Miscellaneous Functions
	11.4.6. Collect the Performance Data

	Chapter 12. Adding a Device Type
	12.1. Overview
	12.2. Add the MIB
	12.3. Add a Device Organizer
	12.4. Create a Modeler
	12.4.1. Verify the SNMP connectivity and OIDs
	12.4.2. Common SNMP Issues
	12.4.3. Modeler Code
	12.4.4. Testing the Modeler

	12.5. Create a Performance Collector
	12.5.1. Performance Data Collector Code
	12.5.2. Writing Your Own Command Parser

	12.6. Create the Template
	12.6.1. Create the DataSource
	12.6.2. Create a Threshold
	12.6.3. Create a Graph

	12.7. Map Events
	12.8. Adding SSH Monitoring Tests
	12.8.1. Overview
	12.8.2. Modeling Plugin Test Data
	12.8.2.1. Test Data for an ObjectMap
	12.8.2.2. Test Data for a RelationshipMap
	12.8.2.3. Test Data for a List of Data Maps

	12.8.3. Data Point Parser Test Data
	12.8.3.1. Test Data for Device-Level Parsers
	12.8.3.2. Test Data for Component Parsers

	12.8.4. Running the Tests

	Chapter 13. Extending the User Interface
	13.1. Overview of the Zenoss UI Technologies
	13.1.1. HyperText Markup Language (HTML)
	13.1.2. Cascading Style Sheets (CSS)
	13.1.3. Zope 2, ZPT and TAL
	13.1.4. ZPT and Macro Expansion for TAL (METAL)
	13.1.5. JavaScript / AJAX
	13.1.6. JavaScript libraries: YUI and MochiKit

	13.2. Customizing the Navigation Bar
	13.2.1. Adding a link
	13.2.2. A Simple HTML Page
	13.2.3. A Simple TAL and METAL page

	13.3. Customizing the Logo
	13.4. Zope 2 Page Templates, TAL and METAL and Zenoss
	13.4.1. Tips

	13.5. Zope 3 Views Explained
	13.5.1. The Zope 2 Way
	13.5.2. The Zope 3 Way

	13.6. Other Customizations
	13.6.1. Adding Tabs
	13.6.2. Adding a Dialog
	13.6.3. Adding a New Menu or Menu Item
	13.6.4. Creating a Table Using ZenTableManager
	13.6.5. Creating an Editable Table
	13.6.6. How to Save Properties via an Edit Screen

	13.7. Creating a Dashboard Portlet
	13.7.1. Create a ZenPack
	13.7.2. Write the Python back-end code
	13.7.3. Write the JavaScript Portlet
	13.7.4. Register the portlet

	13.8. Debugging Tips

	Chapter 14. Reports
	14.1. Adding a New Report
	14.2. Plugins
	14.3. Adding Export Buttons to Reports

	Chapter 15. Migrating Zenoss Code
	15.1. Introduction and Steps
	15.2. How It Works
	15.3. What You Write
	15.3.1. Implement cutover()
	15.3.2. Supporting Code
	15.3.3. Testing and Deployment

	Chapter 16. Testing
	16.1. Zenoss Unit Tests
	16.1.1. Introduction
	16.1.2. doctest Testing
	16.1.3. Zenoss' Test Runner
	16.1.3.1. An Example Unit Test

	16.1.4. Integrating With Buildbot
	16.1.5. JavaScript Test Framework

	16.2. Functional User Interface Testing
	16.2.1. Introduction
	16.2.2. Installing and Running
	16.2.2.1. Installing and Configuring Mac OS X

	16.3. Where to Get More Information

	Appendix A. Event Database Dictionary
	Appendix B. TALES Expressions
	B.1. Examples
	B.1.1. ping
	B.1.2. DNS forward lookup
	B.1.3. DNS reverse lookup
	B.1.4. snmpwalk

	B.2. TALES Device Attributes
	B.3. TALES Event Attributes

	Glossary

