
Exploring Lift

Derek Chen-Becker, Marius Danciu and Tyler Weir

February 17, 2010

ii

Copyright © 2008, 2009 by Derek Chen-Becker, Marius Danciu, and Tyler Weir.
This work is licensed under the Creative Commons Attribution-No Derivative Works 3.0 Un-
ported License.

Contents

iii

iv CONTENTS

List of Figures

v

vi LIST OF FIGURES

List of Listings

vii

viii LIST OF LISTINGS

Dedication

Derek would like to thank his wife, Debbie, for her patience and support while writing this book.
He would also like to thank his two young sons, Dylan and Dean, for keeping things interesting
and in perspective.

Tyler would like to thank his wife, Laura, for encouraging him.

Marius would like to thank his wife, Alina, for her patience during long weekends and bearing
with his monosyllabic answers while working on the book.

ix

x LIST OF LISTINGS

Acknowledgements

This book would not have been possible without the Lift Developers and especially David Pollak:
without him, we wouldn’t have this opportunity.

We would also like to thank the Lift community, as well as the following individuals, for valu-
able feedback on the content of this book: Adam Cimarosti, Malcolm Gorman, Doug Holton,
Hunter Kelly, James Matlik, Larry Morroni, Jorge Ortiz, Tim Perrett, Tim Pigden, Dennis Przy-
tarski, Thomas Sant Ana, Heiko Seeberger, and Eric Willigers.

A huge thanks to Charles Munat for editing this work, and to Tim Perrett for helping with the
REST API in Chapter 13.

xi

xii LIST OF LISTINGS

Part I

The Basics

1

Chapter 1

Welcome to Lift!

Welcome to Exploring Lift. We’ve created this book to educate you about Lift, which we think is
a great framework for building compelling web applications. Lift is designed to make powerful
techniques easily accessible while keeping the overall framework simple and flexible. It may
sound like a cliché, but in our experience Lift makes it fun to develop because it lets you focus on
the interesting parts of coding. Our goal for this book is that by the end, you’ll be able to create
and extend any web application you can think of.

1.1 Why Lift?

For those of you have experience with other web frameworks such as Struts, Tapestry, Rails, et
cetera, you must be asking yourself, "Why another framework? Does Lift really solve problems
any differently or more effectively than the ones I’ve used before?" Based on our experience (and
that of others in the growing Lift community), the answer is an emphatic, "Yes!" Lift has cherry-
picked the best ideas from a number of other frameworks, while creating some novel ideas of its
own. It’s this combination of a solid foundation and new techniques that makes Lift so powerful.
At the same time, Lift has been able to avoid the mistakes made in the past by other frameworks.
In the spirit of “convention over configuration,” Lift has sensible defaults for everything while
making it easy to customize precisely what you need to: no more and no less. Gone are the days
of XML file after XML file providing basic configuration for your application. Instead, a simple Lift
app requires only that you add the LiftFilter to your web.xml and add one or more lines telling Lift
what package your classes sit in (Section ??). The methods you code aren’t required to implement
a specific interface (called a trait), although there are support traits that make things that much
simpler. In short, you don’t need to write anything that isn’t explicitly necessary for the task at
hand. Lift is intended to work out of the box, and to make you as efficient and productive as
possible.

One of the key strengths of Lift is the clean separation of presentation content and logic, based
on the bedrock concept of the Model-View-Controller pattern1. One of the original Java web ap-
plication technologies that’s still in use today is JSP, or Java Server Pages2. JSP allows you to mix
HTML and Java code directly within the page. While this may have seemed like a good idea at the
start, it has proven to be painful in practice. Putting code in your presentation layer makes it more
difficult to debug and understand what is going on within a page, and makes it more difficult
for the people writing the HTML portion because the contents aren’t valid HTML. While many

1http://java.sun.com/blueprints/patterns/MVC.html
2http://java.sun.com/products/jsp/

3

http://java.sun.com/blueprints/patterns/MVC.html
http://java.sun.com/products/jsp/

4 CHAPTER 1. WELCOME TO LIFT!

modern programming and HTML editors have been modified to accomodate this mess, proper
syntax highlighting and validation don’t make up for having to switch back and forth between
one or more files to follow the page flow. Lift takes the approach that there should be no code
in the presentation layer, but that the presentation layer has to be flexible enough to accomodate
any conceivable use. To that end, Lift uses a powerful templating system, à la Wicket3, to bind
user-generated data into the presentation layer. Lift’s templating is built on the XML processing
capabilities of the Scala language4, and allows such things as nested templates, simple injection of
user-generated content, and advanced data binding capabilities. For those coming from JSP, Lift’s
advanced template and XML processing allows you essentially to write custom tag libraries at a
fraction of the cost in time and effort.

Lift has another advantage over many other web frameworks: it’s designed specifically to
leverage the Scala programming language. Scala is a relatively new language developed by Mar-
tin Odersky5 and his programming language research group at EPFL Switzerland. It compiles
to Java bytecode and runs on the JVM, which means that you can leverage the vast ecosystem
of Java libraries just as you would with any other Java web framework. At the same time, Scala
introduces some very powerful features designed to make you, the developer, more productive.
Among these features are an extremely rich type system along with powerful type inference, na-
tive XML processing, full support for closures and functions as objects, and an extensive high-
level library. The power of the type system together with type inference has led people to call
it “the statically-typed dynamic language”6. That means you can write code as quickly as you
can with dynamically-typed languages (e.g. Python, Ruby, etc.), but you have the compile-time
type safety of a statically-typed language such as Java. Scala is also a hybrid functional (FP) and
object-oriented (OO) language, which means that you can get the power of higher-level func-
tional languages such as Haskell or Scheme while retaining the modularity and reusability of
OO components. In particular, the FP concept of immutability is encouraged by Scala, making it
well-suited for writing highly-concurrent programs that achieve high throughput scalability. The
hybrid model also means that if you haven’t touched FP before, you can gradually ease into it. In
our experience, Scala allows you to do more in Lift with fewer lines of code. Remember, Lift is all
about making you more productive!

Lift strives to encompass advanced features in a very concise and straightforward manner.
Lift’s powerful support for AJAX and Comet allows you to use Web 2.0 features with very lit-
tle effort. Lift leverages Scala’s Actor library to provide a message-driven framework for Comet
updates. In most cases, adding Comet support to a page involves nothing more than extending
a trait7 to define the rendering method of your page and adding an extra function call to your
links to dispatch the update message. Lift handles all of the back-end and page-side coding to
provide the Comet polling. AJAX support includes special handlers for doing AJAX form sub-
mission via JSON, and almost any link function can easily be turned into an AJAX version with a
few keystrokes. In order to perform all of this client-side goodness, Lift has a class hierarchy for
encapsulating JavaScript calls via direct JavaScript, jQuery, and YUI. The nice part is that you, too,
can utilize these support classes so that code can be generated for you and you don’t have to put

3http://wicket.apache.org/
4Not only does Scala have extensive library support for XML, but XML syntax is actually part of the language. We’ll

cover this in more detail as we go through the book.
5Martin created the Pizza programming language, which led to the Generic Java (GJ) project that was eventually

incorporated into Java 1.5. His home page is at http://lamp.epfl.ch/~odersky/
6http://scala-blogs.org/2007/12/scala-statically-typed-dynamic-language.html
7A trait is a Scala construct that’s almost like a Java interface. The main difference is that traits may implement

methods and have fields.

http://wicket.apache.org/
http://lamp.epfl.ch/~odersky/
http://scala-blogs.org/2007/12/scala-statically-typed-dynamic-language.html

1.2. WHAT YOU SHOULD KNOW BEFORE STARTING 5

JavaScript logic into your templates.

1.2 What You Should Know before Starting

First and foremost, this is a book on the Lift framework. There are several things we expect you
to be familiar with before continuing:

• The Scala language and standard library. This book is not intended to be an introduction to
Scala: there are several very good books available that fill that role. You can find a list of
Scala books at the Scala website, http://www.scala-lang.org/node/959.

• HTML and XML. Lift relies heavily on XHTML for its template support, so you should
understand such things as DocTypes, elements, attributes, and namespaces.

• General HTTP processing, including GET and POST submission, response codes, and con-
tent types.

1.3 For More Information about Lift

Lift has a very active community of users and developers. Since its inception in early 2007 the
community has grown to hundreds of members from all over the world. The project’s leader,
David Pollak8, is constantly attending to the mailing list, answering questions, and taking fea-
ture requests. There is a core group of developers who work on the project, but submissions are
taken from anyone who makes a good case and can turn in good code. While we strive to cover
everything you’ll need to know in this book, there are several additional resources available for
information on Lift:

1. The first place to look is the Wiki at http://wiki.liftweb.net/index.php/Main_
Page. The Wiki is maintained not only by David, but also by many active members of the
Lift community, including the authors. Portions of this book are inspired by and borrow
from content on the Wiki. In particular, it has links to all of the generated documentation
not only for the stable branch, but also for the unstable head, if you’re feeling adventurous.
There’s also an extensive section of HowTos and articles on advanced topics that cover a
wealth of information.

2. The mailing list at http://groups.google.com/group/liftweb is very active, and if
there are things that this book doesn’t cover, you should feel free to ask questions there.
There are plenty of very knowledgeable people on the list that should be able to answer
your questions. Please post specific questions about the book to the Lift Book Google Group
at http://groups.google.com/group/the-lift-book. Anything else that is Lift-
specific is fair game for the mailing list.

3. Lift has an IRC channel at irc://irc.freenode.net/lift that usually has several peo-
ple on it at any given time. It’s a great place to chat about issues and ideas concerning Lift.

8http://blog.lostlake.org/

http://www.scala-lang.org/node/959
http://wiki.liftweb.net/index.php/Main_Page
http://wiki.liftweb.net/index.php/Main_Page
http://groups.google.com/group/liftweb
http://groups.google.com/group/the-lift-book
irc://irc.freenode.net/lift
http://blog.lostlake.org/

6 CHAPTER 1. WELCOME TO LIFT!

1.4 Your First Lift Application

We’ve talked a lot about Lift and its capabilities, so now let’s get hands-on and try out an applica-
tion. Before we start, though, we need to take care of some prerequisites:

Java 1.5 JDK Lift runs on Scala, which runs on top of the JVM. The first thing you’ll need to install
is a modern version of the Java SE JVM, available at http://java.sun.com/. Recently
Scala’s compiler was changed to target Java version 1.5. Version 1.4 is still available as a
target, but we’re going to assume you’re using 1.5. Examples in this book have only been
tested with Sun’s version of the JDK, although most likely other versions (e.g. Blackdown
or OpenJDK) should work with little or no modification.

Maven 2 Maven is a project management tool that has extensive capabilities for building, de-
pendency management, testing, and reporting. We assume that you are familiar with ba-
sic Maven usage for compilation, packaging, and testing. If you haven’t used Maven be-
fore, you can get a brief overview in appendix ??. You can download the latest version of
Maven from http://maven.apache.org/. Brief installation instructions (enough to get
us started) are on the download page, at http://maven.apache.org/download.html.

A programming editor This isn’t a strict requirement for this example, but when we start get-
ting into coding, it’s very helpful to have something a little more capable than Notepad. If
you’d like a full-blown IDE with support for such things as debugging, continuous com-
pile checking, etc., then there are plugins available on the Scala website at http://www.
scala-lang.org/node/91. The plugins support:

Eclipse http://www.eclipse.org/ The Scala Plugin developer recommends using
the Eclipse Classic version of the IDE

NetBeans http://www.netbeans.org Requires using NetBeans 6.5

IntelliJ IDEA http://www.jetbrains.com/idea/index.html Requires Version 8
Beta

If you’d like something more lightweight, the Scala language distribution comes with plug-
ins for editors such as Vim, Emacs, jEdit, etc. You can either download the full Scala distribu-
tion from http://www.scala-lang.org/ and use the files under misc/scala-tool-support,
or you can access the latest versions directly via the SVN (Subversion) interface at https://
lampsvn.epfl.ch/trac/scala/browser/scala-tool-support/trunk/src. Get-
ting these plugins to work in your IDE or editor of choice is beyond the scope of this book.

Now that we have the prerequisites out of the way, it’s time to get started. We’re going to leverage
Maven’s archetypes9 to do 99% of the work for us in this example. First, change to whatever
directory you’d like to work in:

cd work

Next, we use Maven’s archetype:generate command to create the skeleton of our project:

9An archetype is essentially a project template for Maven that provides prompt-driven customization of basic at-
tributes.

http://java.sun.com/
http://maven.apache.org/
http://maven.apache.org/download.html
http://www.scala-lang.org/node/91
http://www.scala-lang.org/node/91
http://www.eclipse.org/
http://www.netbeans.org
http://www.jetbrains.com/idea/index.html
http://www.scala-lang.org/
https://lampsvn.epfl.ch/trac/scala/browser/scala-tool-support/trunk/src
https://lampsvn.epfl.ch/trac/scala/browser/scala-tool-support/trunk/src

1.4. YOUR FIRST LIFT APPLICATION 7

mvn archetype:generate -U \
-DarchetypeGroupId=net.liftweb \
-DarchetypeArtifactId=lift-archetype-blank \
-DarchetypeVersion=1.0 \
-DremoteRepositories=http://scala-tools.org/repo-releases \
-DgroupId=demo.helloworld \
-DartifactId=helloworld \
-Dversion=1.0-SNAPSHOT

Maven should output several pages of text. It may stop and ask you to confirm the properties
configuration, in which case you can just hit <enter>. At the end you should get a message that
says BUILD SUCCESSFUL. You’ve now successfully created your first project! Don’t believe us?
Let’s run it to confirm:

cd helloworld
mvn jetty:run

Maven should produce more output, ending with

[INFO] Starting scanner at interval of 5 seconds.

This means that you now have a web server (Jetty10) running on port 8080 of your machine. Just go
to http://localhost:8080/ and you’ll see your first Lift page, the standard “Hello, world!”
With just a few simple commands, we’ve built a functional (albeit limited) web app. Let’s go
into a little more detail and see exactly how these pieces fit together. First, let’s examine the
index page. Whenever Lift serves up a request in which the URL ends with a forward slash, Lift
automatically looks for a file called index.html11 in that directory. For instance, if you tried
to go to http://localhost:8080/test/, Lift would look for index.html under the test/
directory in your project. The HTML sources will be located under src/main/webapp/ in your
project directory. Here’s the index.html file from our Hello World project:

<lift:surround with="default" at="content">
<h2>Welcome to your project!</h2>
<p><lift:helloWorld.howdy /></p>

</lift:surround>

This may look a little strange at first. For those with some XML experience, you may recognize
the use of prefixed elements here. For those who don’t know what a prefixed element is, it’s an
XML element of the form

<prefix:element>

In our case we have two elements in use: <lift:surround> and
<lift:helloWorld.howdy />. Lift assigns special meaning to elements that use the “lift” pre-
fix: they form the basis of lift’s extensive templating support, which we will cover in more detail
in section ??. When lift processes an XML template, it does so from the outermost element inward.
In our case, the outermost element is <lift:surround with=”default” at=”content”>.

10http://www.mortbay.org/jetty/
11Technically, it also searches for some variations on index.html, including any localized versions of the page, but

we’ll cover that later in section

http://localhost:8080/
http://www.mortbay.org/jetty/

8 CHAPTER 1. WELCOME TO LIFT!

The <lift:surround> element basically tells Lift to find the template named by the with at-
tribute (default, in our case) and to put the contents of our element inside of that template. The at
attribute tells Lift where in the template to place our content. In Lift, this “filling in the blanks”
is called binding, and it’s a fundamental concept of Lift’s template system. Just about everything
at the HTML/XML level can be thought of as a series of nested binds. Before we move on to the
<lift:helloWorld.howdy/> element, let’s look at the default template. You can find it in the
templates-hidden directory of the web app. Much like the WEB-INF and META-INF directo-
ries in a Java web application, the contents of templates-hidden cannot be accessed directly by
clients; they can, however, be accessed when they’re referenced by a <lift:surround> element.
Here is the default.html file:

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:lift="http://liftweb.net/">
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="description" content="" />
<meta name="keywords" content="" />

<title>demo.helloworld:helloworld:1.0-SNAPSHOT</title>
<script id="jquery" src="/classpath/jquery.js" type="text/javascript"></script>

</head>
<body>
<lift:bind name="content" />
<lift:Menu.builder />
<lift:msgs/>

</body>
</html>

As you can see in the listing, this is a proper XHTML file, with <html>, <head>, and <body>
tags. This is required since Lift doesn’t add these itself. Lift simply processes the XML from each
template it encounters. The <head> element and its contents are boilerplate; the interesting things
happen inside the <body> element. There are three elements here:

1. The <lift:bind name=”content” /> element determines where the contents of our
index.html file are bound (inserted). The name attribute should match the corresponding
at attribute from our <lift:surround> element.

2. The <lift:Menu.builder /> element is a special element that builds a menu based on
the SiteMap (to be covered in chapter ??). The SiteMap is a high-level site directory com-
ponent that not only provides a centralized place to define a site menu, but allows you to
control when certain links are displayed (based on, say, whether users are logged in or what
roles they have) and provides a page-level access control mechanism.

3. The <lift:msgs /> element allows Lift (or your code) to display messages on a page as
it’s rendered. These could be status messages, error messages, etc. Lift has facilities to set
one or more messages from inside your logic code.

Now let’s look back at the <lift:helloWorld.howdy /> element from the index.html file.
This element (and the <lift:Menu.builder /> element, actually) is called a snippet, and it’s of
the form

<lift:class.method>

1.4. YOUR FIRST LIFT APPLICATION 9

Where class is the name of a Scala class defined in our project in the demo.helloworld.snippets
package and method is a method defined on that class. Lift does a little translation on the class
name to change camel-case back into title-case and then locates the class. In our demo the class is
located under src/main/scala/demo/helloworld/snippet/HelloWorld.scala, and is
shown here:

package demo.helloworld.snippet

class HelloWorld {
def howdy = Welcome to helloworld at
{new _root_.java.util.Date}

}

As you can see, the howdy method is pretty straightforward. Lift binds the result of executing
the method (in this case a span) into the location of the snippet element. It’s interesting to note that
a method may itself return other <lift:...> elements in its content and they will be processed
as well. This recursive nature of template composition is part of the fundamental power of Lift;
it means that reusing snippets and template pieces across your application is essentially free. You
should never have to write the same functionality more than once.

Now that we’ve covered all of the actual content elements, the final piece of the puzzle is
the Boot class. The Boot class is responsible for the configuration and setup of the Lift frame-
work. As we’ve stated earlier in the chapter, most of Lift has sensible defaults, so the Boot
class generally contains only the extras that you need. The Boot class is always located in the
bootstrap.liftweb package and is shown here (we’ve skipped imports, etc):

class Boot {
def boot {
// where to search snippet
LiftRules.addToPackages("demo.helloworld")

// Build SiteMap
val entries =
Menu(Loc("Home", List("index"), "Home")) ::
Nil

LiftRules.setSiteMap(SiteMap(entries:_*))
}

}

There are two basic configuration elements, placed in the boot method. The first is the
LiftRules.addToPackagesmethod. It tells lift to base its searches in the demo.helloworld

package. That means that snippets would be located in the demo.helloworld.snippets pack-
age, views (section ??) would be located in the demo.helloworld.views package, etc. If you
have more than one hierarchy (i.e. multiple packages), you can just call addToPackagesmultiple
times. The second item in the Boot class is the SiteMenu setup. Obviously this is a pretty simple
menu in this demo, but we’ll cover more interesting examples in the SiteMap chapter.

Now that we’ve covered a basic example we hope you’re beginning to see why Lift is so pow-
erful and why it can make you more productive. We’ve barely scratched the surface of Lift’s
templating and binding capabilities, but what we’ve shown here is already a big step. In roughly
ten lines of Scala code and about thirty in XML, we have a functional site. If we wanted to add
more pages, we’ve already got our default template set up so we don’t need to write the same

10 CHAPTER 1. WELCOME TO LIFT!

boilerplate HTML multiple times. In our example we’re directly generating the content for our
helloWorld.howdy snippet, but in later examples we’ll show just how easy it is to pull content
from the template itself into the snippet and modify it as needed.

In the following chapters we’ll be covering

• Much more complex templating and snippet binding, including input forms and program-
matic template selection

• How to use SiteMap and its ancillary classes to provide a context-aware site menu and access
control layer

• How to handle state within your application

• Lift’s ORM layer, Mapper (Chapter ??), which provides a powerful yet lightweight interface
to databases

• Advanced AJAX and Comet support in Lift for Web 2.0 style applications

We hope you’re as excited about getting started with Lift as we are!

Chapter 2

PocketChange

As a way to demonstrate the concepts in the book, we’re going to build a basic application and
then build on it as we go along. As it evolves, so will your understanding of Lift. The application
we’ve picked is an Expense Tracker. We call it PocketChange.

Figure 2.1: The PocketChange App

PocketChange will track your expenses, keep a running total of what you’ve spent, allow you
to organize your data using tags, and help you to visualize the data. During the later chapters of
the book we’ll add a few fun features, such as AJAX charting and allowing multiple people per
account (with Comet update of entries). Above all, we want to keep the interface lean and clean.

We’re going to be using the View First pattern for the design of our app, because Lift’s sepa-
ration of presentation and logic via templating, views, and snippets lends itself to the View First
pattern so well. For an excellent article on the design decisions behind Lift’s approach to templat-
ing and logic, read David Pollak’s Lift View First article on the Wiki1.

1http://wiki.liftweb.net/index.php?title=Lift_View_First. Note that the example code is some-
what out of date on this page. The interesting part is David’s reasoning and decisions that have made Lift so easy to
use.

11

http://wiki.liftweb.net/index.php?title=Lift_View_First

12 CHAPTER 2. POCKETCHANGE

Another important thing to note is that we’re going to breeze through the app and touch on
a lot of details. We’ll provide plenty of references to the chapters where things are covered. This
chapter is really intended just to give you a taste of Lift, so feel free to read ahead if you want more
information on how something works. The full source for the entire PocketChange application is
available at GitHub2. Enough chatter, let’s go!

2.1 Defining the Model

The first step we’ll take is to define the database entities that we’re going to use for our app. The
base functionality of a categorized expense tracker is covered by the following items:

• User: A user of the application

• Account: A specific expense account - we want to support more than one per user

• Expense: A specific expense transaction tied to a particular account

• Tag: A word or phrase that permits us a to categorize each expense for later searching and
reporting

We’ll start out with the User, as shown in listing ??. We leverage Lift’s MegaProtoUser (Section ??)
class to handle pretty much everything we need for user management. For example, with just
the code you see, we define an entire user management function for our site, including a signup
page, a lost password page, and a login page. The accompanying SiteMap (Section ??) menus are
generated with a single call to User.siteMap. As you can see, we can customize the XHTML
that’s generated for the user management pages with a few simple defs. The opportunities for
customization provided by MetaMegaProtoUser are extensive.

Listing 2.1: The PocketChange User Entity
package com.pocketchangeapp.model

// Import all of the mapper classes
import _root_.net.liftweb.mapper._

// Create a User class extending the Mapper base class
// MegaProtoUser, which provides default fields and methods
// for a site user.
class User extends MegaProtoUser[User] {
def getSingleton = User // reference to the companion object below
def allAccounts : List[Account] =
Account.findAll(By(Account.owner, this.id))

}

// Create a "companion object" to the User class (above).
// The companion object is a "singleton" object that shares the same
// name as its companion class. It provides global (i.e. non-instance)
// methods and fields, such as find, dbTableName, dbIndexes, etc.
// For more, see the Scala documentation on singleton objects
object User extends User with MetaMegaProtoUser[User] {
override def dbTableName = "users" // define the DB table name

2http://github.com/tjweir/pocketchangeapp/tree

http://github.com/tjweir/pocketchangeapp/tree

2.1. DEFINING THE MODEL 13

// Provide our own login page template.
override def loginXhtml =
<lift:surround with="default" at="content">
{ super.loginXhtml }

</lift:surround>

// Provide our own signup page template.
override def signupXhtml(user: User) =
<lift:surround with="default" at="content">
{ super.signupXhtml(user) }

</lift:surround>
}

Note that we’ve also added a utility method, allAccounts, to the User class to retrieve all of
the accounts for a given user. We use the MetaMapper.findAll method to do a query by owner ID
(Section ??) supplying this user’s ID as the owner ID.

Defining the Account entity is a little more involved, as shown in Listing ??. Here we define a
class with a Long primary key and some fields associated with the accounts. We also define some
helper methods for object relationship joins (Section ??). The Expense and Tag entities (along with
some ancillary entities) follow suit, so we won’t cover them here.

Listing 2.2: The PocketChange Account Entity
package com.pocketchangeapp.model

import _root_.java.math.MathContext
import _root_.net.liftweb.mapper._
import _root_.net.liftweb.util.Empty

// Create an Account class extending the LongKeyedMapper superclass
// (which is a "mapped" (to the database) trait that uses a Long primary key)
// and mixes in trait IdPK, which adds a primary key called "id".
class Account extends LongKeyedMapper[Account] with IdPK {
// Define the singleton, as in the "User" class
def getSingleton = Account

// Define a many-to-one (foreign key) relationship to the User class
object owner extends MappedLongForeignKey(this, User) {
// Change the default behavior to add a database index
// for this column.
override def dbIndexed_? = true

}

// Define an "access control" field that defaults to false. We’ll
// use this in the SiteMap chapter to allow the Account owner to
// share out an account view.
object is_public extends MappedBoolean(this) {
override def defaultValue = false

}

// Define the field to hold the actual account balance with up to 16
// digits (DECIMAL64) and 2 decimal places
object balance extends MappedDecimal(this, MathContext.DECIMAL64, 2)

14 CHAPTER 2. POCKETCHANGE

object name extends MappedString(this,100)
object description extends MappedString(this, 300)

// Define utility methods for simplifying access to related classes. We’ll
// cover how these methods work in the Mapper chapter
def admins = AccountAdmin.findAll(By(AccountAdmin.account, this.id))
def addAdmin (user : User) =
AccountAdmin.create.account(this).administrator(user).save

def viewers = AccountViewer.findAll(By(AccountViewer.account, this.id))
def entries = Expense.getByAcct(this, Empty, Empty, Empty)
def tags = Tag.findAll(By(Tag.account, this.id))
def notes = AccountNote.findAll(By(AccountNote.account, this.id))

}

// The companion object to the above Class
object Account extends Account with LongKeyedMetaMapper[Account] {
// Define a utility method for locating an account by owner and name
def findByName (owner : User, name : String) : List[Account] =
Account.findAll(By(Account.owner, owner.id.is), By(Account.name, name))

... more utility methods ...
}

2.2 Our First Template

Our next step is to figure out how we’ll present this data to the user. We’d like to have a home
page on the site that shows, depending on whether the user is logged in, either a welcome mes-
sage or a summary of account balances with a place to enter new expenses. Listing ?? shows
a basic template to handle this. We’ll save this as index.html. The astute reader will no-
tice that we have a head element but no body. This is XHTML, so how does that work? This
template uses the <lift:surround> tag (Section ??) to embed itself into a master template
(/templates_hidden/default). Lift actually does what’s called a “head merge” (Section ??)
to merge the contents of the head tag in our template below with the head element of the master
template. The <lift:HomePage.summary> and <lift:AddEntry.addentry> tags are calls
to snippet methods. Snippets are the backing Scala code that provides the actual page logic. We’ll
be covering them in the next section.

Listing 2.3: The Welcome Template
<lift:surround with="default" at="content">
<head>
<!-- include the required plugins -->
<script type="text/javascript" src="/scripts/date.js"></script>
<!--[if IE]>
<script type="text/javascript" src="/scripts/jquery.bgiframe.js">
</script>
<![endif]-->

<!-- include the jQuery DatePicker JavaScript and CSS -->

2.3. WRITING SNIPPETS 15

<script type="text/javascript" src="/scripts/jquery.datePicker.js">
</script>
<link rel="stylesheet" type="text/css" href="/style/datePicker.css" />

</head>
<!-- The contents of this element will be passed to the summary method

in the HomePage snippet. The call to bind in that method will
replace the XML tags below (e.g. account:name) with the account
data and return a NodeSeq to replace the lift:HomePage.summary
element. -->

<lift:HomePage.summary>
<div class="column span-24 bordered">
<h2>Summary of accounts:</h2>
<account:entry>
<acct:name /> : <acct:balance />

</account:entry>
</div>
<hr />

</lift:HomePage.summary>

<div class="column span-24">
<!-- The contents of this element will be passed into the add method

in the AddEntry snippet. A form element with method "POST" will
be created and the XML tags (e.g. e:account) below will be
replaced with form elements via the call to bind in the add
method. This form will replace the lift:AddEntry.addentry element
below. -->

<lift:AddEntry.addentry form="POST">
<div id="entryform">
<div class="column span-24"><h3>Entry Form</h3>
<e:account /> <e:dateOf /> <e:desc /> <e:value />
<e:tags/><button>Add $</button>

</div>
</div>

</lift:AddEntry.addentry>
</div>

<script type="text/javascript">
Date.format = ’yyyy/mm/dd’;
jQuery(function () {
jQuery(’#entrydate’).datePicker({startDate:’00010101’,

clickInput:true});
})

</script>
</lift:surround>

As you can see, there’s no control logic at all in our template, just well-formed XML and some
JavaScript to activate the jQuery datePicker functionality.

2.3 Writing Snippets

Now that we have a template, we need to write the HomePage and AddEntry snippets so that we
can actually do something with the site. First, let’s look at the HomePage snippet, shown in Listing

16 CHAPTER 2. POCKETCHANGE

??. We’ve skipped the standard Lift imports (Listing ??) to save space, but we’ve specifically
imported java.util.Date and all of our Model classes.

Listing 2.4: Defining the Summary Snippet

package com.pocketchangeapp.snippet

import ... standard imports ...
import _root_.com.pocketchangeapp.model._
import _root_.java.util.Date

class HomePage {
// User.currentUser returns a "Box" object, which is either Full
// (i.e. contains a User), Failure (contains error data), or Empty.
// The Scala match method is used to select an action to take based
// on whether the Box is Full, or not ("case _" catches anything
// not caught by "case Full(user)". See Box in the Lift API. We also
// briefly discuss Box in Appendix C.
def summary (xhtml : NodeSeq) : NodeSeq = User.currentUser match {
case Full(user) => {
val entries : NodeSeq = user.allAccounts match {
case Nil => Text("You have no accounts set up")
case accounts => accounts.flatMap({account =>
bind("acct", chooseTemplate("account", "entry", xhtml),

"name" ->
{account.name.is},

"balance" -> Text(account.balance.toString))
})

}
bind("account", xhtml, "entry" -> entries)

}
case _ => <lift:embed what="welcome_msg" />

}
}

Our first step is to use the User.currentUser method (this method is provided by the
MetaMegaProtoUser trait) to determine if someone is logged in. This method returns a “Box,”
which is either Full (with a User) or Empty. (A third possibility is a Failure, but we’ll ignore that
for now.) If it is full, then a user is logged in and we use the User.allAccounts method to
retrieve a List of all of the user’s accounts. If the user doesn’t have accounts, we return an XML
text node saying so that will be bound where our tag was placed in the template. If the user does
have accounts, then we map the accounts into XHTML using the bind function. For each account,
we bind the name of the account where we’ve defined the <acct:name> tag in the template, and
the balance where we defined <acct:balance>. The resulting List of XML NodeSeq entities is
used to replace the <lift:HomePage.summary> element in the template. Finally, we match the
case where a user isn’t logged in by embedding the contents of a welcome template (which may
be further processed). Note that we can nest Lift tags in this manner and they will be recursively
parsed.

Of course, it doesn’t do us any good to display account balances if we can’t add expenses, so
let’s define the AddEntry snippet. The code is shown in Listing ??. This looks different from the
HomePage snippet primarily because we’re using a StatefulSnippet (Section ??). The primary
difference is that with a StatefulSnippet the same “instance” of the snippet is used for each

2.3. WRITING SNIPPETS 17

page request in a given session, so we can keep the variables around in case we need the user to
fix something in the form. The basic structure of the snippet is the same as for our summary: we
do some work (we’ll cover the doTagsAndSubmit function in a moment) and then bind values
back into the template. In this snippet, however, we use the SHtml.select and SHtml.text
methods to generate form fields. The text fields simply take an initial value and a function
(closure) to process the value on submission. The select field is a little more complex because
we give it a list of options, but otherwise it is the same concept.

Listing 2.5: The AddEntry Snippet
package com.pocketchangeapp.snippet

import ... standard imports ...
import com.pocketchangeapp.model._
import com.pocketchangeapp.util.Util

import java.util.Date

/* date | desc | tags | value */
class AddEntry extends StatefulSnippet {
// This maps the "addentry" XML element to the "add" method below
def dispatch = {
case "addentry" => add _

}

var account : Long = _
var date = ""
var desc = ""
var value = ""
// S.param("tag") returns a "Box" and the "openOr" method returns
// either the contents of that box (if it is "Full"), or the empty
// String passed to it, if the Box is "Empty". The S.param method
// returns parameters passed by the browser. In this instance, the
// name of the parameter is "tag".
var tags = S.param("tag") openOr ""

def add(in: NodeSeq): NodeSeq = User.currentUser match {
case Full(user) if user.editable.size > 0 => {
def doTagsAndSubmit(t: String) {
tags = t
if (tags.trim.length == 0)
error("We’re going to need at least one tag.")

else {
// Get the date correctly, comes in as yyyy/mm/dd
val entryDate = Util.slashDate.parse(date)
val amount = BigDecimal(value)
val currentAccount = Account.find(account).open_!

// We need to determine the last serial number and balance
// for the date in question. This method returns two values
// which are placed in entrySerial and entryBalance
// respectively
val (entrySerial, entryBalance) =
Expense.getLastExpenseData(currentAccount, entryDate)

18 CHAPTER 2. POCKETCHANGE

val e = Expense.create.account(account)
.dateOf(entryDate)
.serialNumber(entrySerial + 1)
.description(desc)
.amount(BigDecimal(value)).tags(tags)
.currentBalance(entryBalance + amount)

// The validate method returns Nil if there are no errors,
// or an error message if errors are found.
e.validate match {
case Nil => {
Expense.updateEntries(entrySerial + 1, amount)
e.save

val acct = Account.find(account).open_!
val newBalance = acct.balance.is + e.amount.is
acct.balance(newBalance).save
notice("Entry added!")
// remove the statefullness of this snippet
unregisterThisSnippet()

}
case x => error(x)

}
}

}

val allAccounts =
user.allAccounts.map(acct => (acct.id.toString, acct.name))

// Parse through the NodeSeq passed as "in" looking for tags
// prefixed with "e". When found, replace the tag with a NodeSeq
// according to the map below (name -> NodeSeq)
bind("e", in,
"account" -> select(allAccounts, Empty,

id => account = id.toLong),
"dateOf" -> text(Util.slashDate.format(new Date()).toString,

date = _,
"id" -> "entrydate"),

"desc" -> text("Item Description", desc = _),
"value" -> text("Value", value = _),
"tags" -> text(tags, doTagsAndSubmit))

}
// If no user logged in, return a blank Text node
case _ => Text("")

}
}

The doTagsAndSubmit function is a new addition. Its primary purpose is to process all of the
submitted data, create and validate an Expense entry, and then return to the user. This pattern
of defining a local function to handle form submission is quite common as opposed to defining
a method on your class. The main reason is that by defining the function locally, it becomes a
closure on any variables defined in the scope of your snippet function.

2.4. A LITTLE AJAX SPICE 19

2.4 A Little AJAX Spice

So far this is all pretty standard fare, so let’s push things a bit and show you some more advanced
functionality. Listing ?? shows a template for displaying a table of Expenses for the user with an
optional start and end date. The Accounts.detail snippet will be defined later in this section.

Listing 2.6: Displaying an Expense Table
<lift:surround with="default" at="content">
<lift:Accounts.detail eager_eval="true">
<div class="column span-24">
<h2>Summary</h2>
<table><tr><th>Name</th><th>Balance</th></tr>
<tr><td><acct:name /></td><td><acct:balance /></td></tr>

</table
<div>
<h3>Filters:</h3>
<table><tr><th>Start Date</th><td><acct:startDate /></td>

<th>End Date</th><td><acct:endDate /></td></tr>
</table>

</div>

<div class="column span-24" >
<h2>Transactions</h2>
<lift:embed what="entry_table" />

</div>
</lift:Accounts.detail>

</lift:surround>

The <lift:embed> tag (Section ??) allows you to include another template at that point. In our
case, the entry_table template is shown in Listing ??. This is really just a fragment and is not
intended to be used alone, since it’s not a full XHTML document and it doesn’t surround itself
with a master template. It does, however, provide binding sites that we can fill in.

Listing 2.7: The Embedded Expense Table
<table class="" border="0" cellpadding="0" cellspacing="1"

width="100%">
<thead>
<tr>
<th>Date</th><th>Description</th><th>Tags</th><th>Value</th>
<th>Balance</th>

</tr>
</thead>
<tbody id="entry_table">
<acct:table>
<acct:tableEntry>

<tr><td><entry:date /></td><td><entry:desc /></td>
<td><entry:tags /></td><td><entry:amt /></td>
<td><entry:balance /></td>

</tr>
</acct:tableEntry>

</acct:table>
</tbody>

20 CHAPTER 2. POCKETCHANGE

</table>

Before we get into the AJAX portion of the code, let’s define a helper method in our Accounts
snippet class, shown in Listing ??, to generate the XHTML table entries that we’ll be displaying (as-
suming normal imports). Essentially, this function pulls the contents of the <acct:tableEntry>
tag (via the Helpers.chooseTemplate method, Section ??) and binds each Expense from the
provided list into it. As you can see in the entry_table template, that corresponds to one table
row for each entry.

Listing 2.8: The Table Helper Function
package com.pocketchangeapp.snippet
... imports ...

class Accounts {
...
def buildExpenseTable(entries : List[Expense], template : NodeSeq) = {
// Calls bind repeatedly, once for each Entry in entries
entries.flatMap({ entry =>
bind("entry", chooseTemplate("acct", "tableEntry", template),

"date" -> Text(Util.slashDate.format(entry.dateOf.is)),
"desc" -> Text(entry.description.is),
"tags" -> Text(entry.tags.map(_.tag.is).mkString(", ")),
"amt" -> Text(entry.amount.toString),
"balance" -> Text(entry.currentBalance.toString))

})
}
...

}

The final piece is our Accounts.detail snippet, shown in Listing ??. We start off with
some boilerplate calls to match to locate the Account to be viewed, then we define some vars
to hold state. It’s important that they’re vars so that they can be captured by the entryTable,
updateStartDate, and updateEndDate closures, as well as the AJAX form fields that we de-
fine. The only magic we have to use is the SHtml.ajaxText form field generator (Chapter ??),
which will turn our update closures into AJAX callbacks. The values returned from these callbacks
are JavaScript code that will be run on the client side. You can see that in a few lines of code we
now have a page that will automatically update our Expense table when you set the start or end
dates!

2.5 Conclusion

We hope that this chapter has demonstrated how powerful Lift can be while remaining concise
and easy to use. Don’t worry if there’s something you didn’t understand, we’ll be explaining in
more detail as we go along. We’ll continue to expand on this example app throughout the book,
so feel free to make this chapter a base reference, or pull your own version of PocketChange from
the git repository with the following command (assuming you have git installed):

git clone git://github.com/tjweir/pocketchangeapp.git

Now let’s dive in!

git://github.com/tjweir/pocketchangeapp.git

2.5. CONCLUSION 21

Listing 2.9: Our AJAX Snippet
package com.pocketchangeapp.snippet

import ... standard imports ...
import com.pocketchangeapp.model._
import com.pocketchangeapp.util.Util

class Accounts {
def detail (xhtml: NodeSeq) : NodeSeq = S.param("name") match {
// If the "name" param was passed by the browser...
case Full(acctName) => {
// Look for an account by that name for the logged in user
Account.findByName(User.currentUser.open_!, acctName) match {
// If an account is returned (as a List)
case acct :: Nil => {
// Some closure state for the AJAX calls
// Here is Lift’s "Box" in action: we are creating
// variables to hold Date Boxes and initializing them
// to "Empty" (Empty is a subclass of Box)
var startDate : Box[Date] = Empty
var endDate : Box[Date] = Empty

// AJAX utility methods. Defined here to capture the closure
// vars defined above
def entryTable = buildExpenseTable(
Expense.getByAcct(acct, startDate, endDate, Empty),
xhtml)

def updateStartDate (date : String) = {
startDate = Util.parseDate(date, Util.slashDate.parse)
JsCmds.SetHtml("entry_table", entryTable)

}

def updateEndDate (date : String) = {
endDate = Util.parseDate(date, Util.slashDate.parse)
JsCmds.SetHtml("entry_table", entryTable)

}

// Bind the data to the passed in XML elements with
// prefix "acct" according to the map below.
bind("acct", xhtml,
"name" -> acct.name.asHtml,
"balance" -> acct.balance.asHtml,
"startDate" -> SHtml.ajaxText("", updateStartDate),
"endDate" -> SHtml.ajaxText("", updateEndDate),
"table" -> entryTable)

}
// An account name was provided but did not match any of
// the logged in user’s accounts
case _ => Text("Could not locate account " + acctName)

}
}
// The S.param "name" was empty
case _ => Text("No account name provided")

}
}

22 CHAPTER 2. POCKETCHANGE

Chapter 3

Lift Fundamentals

In this chapter we will cover some of the fundamental aspects of writing a lift application, includ-
ing the architecture of the Lift library and how it processes requests. We will cover the rendering
pipeline in detail, and show you how you can add your own code to be a part of that processing.

3.1 Entry into Lift

The first step in Lift’s request processing is intercepting the HTTP request. Originally, Lift used
a java.servlet.Servlet instance to process incoming requests. This was changed to use a
java.servlet.Filter instance1 because this allows the container to handle any requests that
Lift does not (in particular, static content). The filter acts as a thin wrapper on top of the existing
LiftServlet (which still does all of the work), so don’t be confused when you look at the Lift API
and see both classes (LiftFilter and LiftServlet). The main thing to remember is that your web.xml
should specify the filter and not the servlet, as shown in Listing ??.

Listing 3.1: LiftFilter Setup in web.xml
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE web-app
3 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
4 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
5

6 <web-app>
7 <filter>
8 <filter-name>LiftFilter</filter-name>
9 <display-name>Lift Filter</display-name>

10 <description>The Filter that intercepts lift calls</description>
11 <filter-class>net.liftweb.http.LiftFilter</filter-class>
12 </filter>
13 <filter-mapping>
14 <filter-name>LiftFilter</filter-name>
15 <url-pattern>/*</url-pattern>
16 </filter-mapping>
17 </web-app>

A full web.xml example is shown in Section ??. In particular, the filter-mapping (lines 13-
16) specifies that the Filter is responsible for everything. When the filter receives the request, it

1You can see the discussion on the Lift mailing list that lead to this change here: http://tinyurl.com/dy9u9d

23

http://tinyurl.com/dy9u9d

24 CHAPTER 3. LIFT FUNDAMENTALS

checks a set of rules to see if it can handle it. If the request is one that Lift handles, it passes it on
to an internal LiftServlet instance for processing; otherwise, it chains the request and allows the
container to handle it.

3.2 A Note on Standard Imports

For the sake of saving space, the following import statements are assumed for all example code
throughout the rest of the book:

Listing 3.2: Standard Import Statements

import _root_.net.liftweb.http._
import S._
import _root_.net.liftweb.util._
import Helpers._
import _root_.scala.xml._

3.3 Lift’s Main Objects

Before we dive into Lift’s fundamentals, we want to briefly discuss three objects you will use
heavily in your Lift code. We’ll be covering these in more detail later in this chapter and in further
chapters, so feel free to skip ahead if you want more details.

3.3.1 S object

The net.liftweb.http.S object represents the state of the current request (according to David
Pollak, “S” is for Stateful). As such, it is used to retrieve information about the request and modify
information that is sent in the response. Among other things, it can be used for notices (Section ??)
, cookie management (Section ??), localization/internationalization (Chapter ??) and redirection
(Section ??).

3.3.2 SHtml

The net.liftweb.http.SHtml object’s main purpose is to define HTML generation functions,
particularly those having to do with form elements. We cover forms in detail in Chapter ??). In
addition to normal form elements, SHtml defines functions for AJAX and JSON form elements
(Chapters ?? and ??, respectively).

3.3.3 LiftRules

The net.liftweb.http.LiftRules object is where the vast majority of Lift’s global configu-
ration is handled. Almost everything that is configurable about Lift is set up based on variables
in LiftRules. We won’t be covering LiftRules directly, but as we discuss each Lift mechanism we’ll
touch on the LiftRules variables and methods related to the configuration of that mechanism.

3.4. BOOTSTRAP 25

3.4 Bootstrap

When Lift starts up there are a number of things that you’ll want to set up before any requests
are processed. These things include setting up a SiteMap (Chapter ??), URL rewriting, custom
dispatch, and classpath search. The Lift servlet looks for the bootstrap.liftweb.Boot class and
executes the boot method in the class. You can also specify your own Boot instance by using the
bootloader init param for the LiftFilter as shown in Listing ??

Listing 3.3: Overriding the Boot Loader Class

<filter>
... filter setup here ...
<init-param>

<param-name>bootloader</param-name>
<param-value>foo.bar.baz.MyBoot</param-value>

</init-param>
</filter>

Your MyBoot class must subclass Bootable2 and implement the bootmethod. The boot method
will only be run once, so you can place any initialization calls for other libraries here as well.

3.4.1 A Note on LiftRules

Most of your configuration in your Boot class will be done via the LiftRules object. LiftRules serves
as a common location for almost everything configurable about Lift. Because LiftRules spans such
a diverse range of functionality, we’re not going to cover it directly; rather, we will mention it as
we discuss each of the aspects that it controls.

3.4.2 Class Resolution

As part of our discussion of the Boot class, it’s also important to explain how Lift determines where
to find classes for Views and Snippet rendering. The LiftRules.addToPackages method tells
lift which Scala packages to look in for a given class. Lift has implicit extensions to the paths
you enter: in particular, if you tell Lift to use the com.pocketchangeapp package, Lift will
look for View classes under com.pocketchangeapp.view and will look for Snippet classes
under com.pocketchangeapp.snippet. The addToPackages method should almost always
be executed in your Boot class. A minimal Boot class would look like:

Listing 3.4: A Minimal Boot Class

class Boot {
def boot = {
LiftRules.addToPackages("com.pocketchangeapp")

}
}

2net.liftweb.http.Bootable

26 CHAPTER 3. LIFT FUNDAMENTALS

3.5 The Rendering Process

Before we move on, we want to give a brief overview of the processes by which Lift transforms
a request into a response (AKA the rendering pipeline). We’re only going to touch on the major
points here. A much more detailed tour of the pipeline is given in Section ??. The steps that we’ll
cover in this chapter are:

1. URL rewriting. This is covered in Section ??.

2. Executing any matching custom dispatch functions. This is covered in Section ??.

3. Locating the template to use for the request. This is handled via three mechanisms:

(a) Checking the LiftRules.viewDispatch RulesSeq to see if any custom dispatch
rules have been defined. We cover custom view dispatch in Section ??.

(b) If there is no matching viewDispatch, locating a template that matches and using it.
We’ll cover templates, and how they’re located, in Section ??.

(c) If no templates match, attempting to locate a view based on matching a class name and
method dispatch. We’ll cover views in Section ??.

In our experience views and templates will cover most of your needs, but as we’ll demonstrate in
later chapters, Lift has plenty of ways to customize request handling.

The following sections cover each aspect of the rendering steps defined above, but in order of
decreasing frequency of use, rather than the order in which they occur in the pipeline. We’ll start
with Templates, because those are by far the most common mechanism for rendering content in
Lift. Next, we’ll cover Views, which are essentially programmatic templates. Then we’ll examine
the various Lift tags for Template and View content. After that, we’ll take an in-depth look at
Snippets, which are the bridge between your Template (XML) content and your Scala code. Fi-
nally, we’ll cover how you can provide highly customized processing of your requests using URL
rewriting and custom dispatch functions.

3.6 Templates

Templates form the backbone of Lift’s flexibility and power. A template is an XML file that con-
tains Lift-specific tags, see ??, as well as whatever content you want returned to the user. Lift
includes built-in Tags for specific actions. These are of the form <lift:snippet_name/>. Lift
also allows you to create your own tags, which are called snippets (Section ??). These user-defined
tags are linked directly to Scala methods and these methods can process the XML contents of the
snippet tag, or can generate their own content from scratch. A simple template is shown in Listing
??.

Listing 3.5: A Sample Template
<lift:surround with="default" at="content">
<head><title>Hello!</title></head>
<lift:Hello.world />

</lift:surround>

Notice the tags that are of the form <lift:name> which in this case are <lift:surround>
and <lift:snippet>. These are two examples of Lift-specific tags. We’ll discuss all of the

3.6. TEMPLATES 27

tags that users will use in Section ??, but let’s briefly discuss the two shown here. We use the
built-in <lift:surround> tag (Section ??) to make Lift embed our current template inside the
“default” template. We also use <lift:snippet> tag (aliased to Hello.world) to execute a snip-
pet that we defined. In this instance, we execute the method world in the class Hello to generate
some content.

During template processing, Lift tries to locate a file in the template directory tree (typically
in a WAR archive) that matches the request. Lift tries several suffixes (html, xhtml, htm, and no
suffix) and also tries to match based on the client’s Accept-Language header. The pattern Lift uses
is:

<path to template>[_<language>][.<suffix>]

Because Lift will implicitly search for suffixes, it’s best to leave the suffix off of your links within
the web app. If you have a link with an href of /test/template.xhtml, it will only match that
file, but if you use /test/template for the href and you have the following templates in your
web app:

• /test/template.xhtml

• /test/template_es-ES.xhtml

• /test/template_ja.xhtml

then Lift will use the appropriate template based on the user’s requested language if a corre-
sponding template is available. For more information regarding internationalization please see
Appendix ??. In addition to normal templates, your application can make use of hidden tem-
plates. These are templates that are located under the /templates-hidden directory of your
web app. Technically, Lift hides files in any directory ending in “-hidden”, but templates-hidden
is somewhat of a de facto standard. Like the WEB-XML directory, the contents cannot be directly
requested by clients. They can, however, be used by other templates through mechanisms such as
the <lift:surround> and <lift:embed> tags (Section ??). If Lift cannot locate an appropriate
template based on the request path then it will return a 404 to the user.

Once Lift has located the correct template, the next step is to process the contents. It is im-
portant to understand that Lift processes XML tags recursively, from the outermost tag to the
innermost tag. That means that in our example Listing ??, the surround tag gets processed first.
In this case the surround loads the default template and embeds our content at the appropriate
location. The next tag to be processed is the <lift:Hello.world/> snippet. This tag is essen-
tially an alias for the lift:snippet tag (specifically, <lift:snippet type=“Hello:world”>) ,
and will locate the Hello class and execute the world method on it. If you omit the “method” part
of the type and only specify the class (<lift:Hello> or <lift:snippet type=“Hello”>),
then Lift will attempt to call the render method of the class.

To give a more complex example that illustrates the order of tag processing, consider Listing
??. In this example we have several nested snippet tags, starting with <A.snippet />. Listing
?? shows the backing code for this example.

Listing 3.6: A Recursive Tag Processing Example
<lift:A.snippet>
<p>Hello, <A:name />!</p>
<p>
<lift:B.snippet>

28 CHAPTER 3. LIFT FUNDAMENTALS

<B:title />
<lift:C.snippet />

</lift:B.snippet>
</p>

</lift:A.snippet>

The first thing that happens is that the contents of the <lift:A.snippet> tag are passed as
a NodeSeq argument to the A.snippet method. In the A.snippet method we bind, or replace,
the <A:name /> tag with an XML Text node of “The A snippet”. The rest of the input is left
as-is and is returned to Lift for more processing. Lift examines the returned NodeSeq for more
lift tags and finds the <lift:B.snippet> tag. The contents of the <lift:B.snippet> tag
are passed as a NodeSeq argument to the B.snippet method, where the <B.title /> tag is
bound with the XML Text node “The B snippet”. The rest of the contents are left unchanged and
the transformed NodeSeq is returned to Lift, which scans for and finds the <lift:C.snippet
/> tag. Since there are no child elements for the <lift:C.snippet /> tag, the C.snippet
method is invoked with an empty NodeSeq and the C.snippet returns the Text node “The C
snippet”.

Listing 3.7: The Recursive Tag Snippets Code
... standard Lift imports ...
class A {
def snippet (xhtml : NodeSeq) : NodeSeq =
bind("A", xhtml, "name" -> Text("The A snippet"))

}
class B {
def snippet (xhtml : NodeSeq) : NodeSeq =
bind("B", xhtml, "title" -> Text("The B snippet"))

}
class C {
def snippet (xhtml : NodeSeq) : NodeSeq = Text("The C snippet")

}

While the contents of the A.snippet tag are passed to the A.snippet method, there’s no
requirement that the contents are actually used. For example, consider what would happen if
we swapped the B and C snippet tags in our template, as shown in Listing ??. In this example,
the C.snippet method is called before the B.snippet method. Since our C.snippet method
returns straight XML that doesn’t contain the B snippet tag, the B snippet will never be executed!
We’ll cover how the eager_eval tag attribute can be used to reverse this behavior in Section ??.

Listing 3.8: The Swapped Recursive Snippet Template
<lift:A.snippet>
<p>Hello, <A:name />!</p>
<p>
<lift:C.snippet>
<lift:B.snippet>
<B:title />

</lift:B.snippet>
</lift:C.snippet>

</p>
</lift:A.snippet>
<!-- After the A and C snippets have been processed: -->

3.7. VIEWS 29

<p>Hello, The A snippet</p>
<p>The C snippet</p>

As you can see, templates are a nice way of setting up your layout and then writing a few
methods to fill in the XML fragments that make up your web applications. They provide a simple
way to generate a uniform look for your site, particularly if you assemble your templates using
the surround and embed tags. If you’d like more control or don’t need a template for a certain
section, you’ll want to use a View, which is discussed in the next section below.

3.7 Views

We just discussed Templates and saw that through a combination of an XML file, Lift tags, and
Scala code we can respond to requests made by a user. You can also generate a response entirely
in code using a View.

Views are generally used as implicitly defined custom dispatch methods. We’ll cover explicit
custom dispatch in more depth in Section ??. A view function is a normal Scala method of type
() ⇒ scala.xml.NodeSeq. As we showed in Section ??, there are two ways that a View can be
invoked. The first is by defining a partial function for LiftRules.viewDispatch. This allows
you to dispatch to a view for any arbitrary request path, but it is usually overkill for most use
cases. The second way that a View can be invoked is that if the first element of the request path
matches the class name of the View, then the second element is used to lookup the View function
depending on what trait the View class implements. The following paragraph will make this
clearer.

There are two traits that you can use when implementing a view class: one is the LiftView
trait, the other is the InsecureLiftView trait3. As you may be able to tell from the names, we
would prefer that you extend the LiftView trait. The InsecureLiftView determines method
dispatch by turning a request path into a class and method name. For example, if we have a
path /MyStuff/enumerate, then Lift will look for a class called MyStuff in the view subpack-
age (class resolution is covered in Section ??) and if it finds MyStuff and it has a method called
enumerate, then Lift will execute the enumerate method and return its result to the user. The
main concern here is that Lift uses reflection to get the method with InsecureLiftView, so it can
access any method in the class, even ones that you don’t intend to make public. A better way to
invoke a View is to extend the LiftView trait, which defines a dispatch partial function. This dis-
patch function maps a string (the “method name”) to a function that will return a NodeSeq. List-
ing ?? shows a custom LiftView class where the path /ExpenseView/enumerate will map to
the ExpenseView.doEnumeratemethod. If a user attempts to go to /ExpenseView/privateMethod
they’ll get a 404 because privateMethod is not defined in the dispatch method.

Listing 3.9: Dispatch in LiftView
class ExpenseView extends LiftView {
override def dispatch = {
case "enumerate" => doEnumerate _

}

def doEnumerate () : NodeSeq = {
...
<lift:surround with="default" at="content">

3Both can be found under the net.liftweb.http package.

30 CHAPTER 3. LIFT FUNDAMENTALS

{ expenseItems.toTable }
</lift:surround>

}
}

Another difference between custom dispatch and Views is that the NodeSeq returned from
the View method is processed for template tags including surrounds and includes, just as it
would be for a snippet. Dispatch methods, on the other hand, expect a LiftResponse. That
means that you can use the full power of the templating system from within your View, as shown
in Listing ??’s doEnumerate method.

Since you can choose not to include any of the pre-defined template XHTML, you can easily
generate any XML-based content, such as Atom or RSS feeds, using a View.

3.8 Tags

In the earlier sections on Templates and Views we briefly touched on some of Lift’s built-in tags,
namely, snippet and surround. In this section we’ll go into more detail on those tags as well as
cover the rest of Lift’s tags.

3.8.1 snippet

Usage: <lift:snippet form="GET/POST" type="Class:method"
multipart="true/false" />

<lift:Class.method form=”...” multipart=”...” />
<lift:Class form=”...” multipart=”...” />

The snippet tag is the workhorse of Lift. In our experience, most of the functionality of your web
apps will be handled via snippets. They’re so important that we’re going to cover their mechanism
separately in Section ??. In this section, however, we’ll cover the specifics of the snippet tag.

The most important part of the tag is the class and method definition. There are three ways to
specify this:

1. Via the type attribute. The value should be “ClassName:method” for the particular snippet
method you want to have handle the tag

2. Via a tag suffix of Class.method. This is the same as specifying the type=”Class:method”
attribute

3. Via a tag suffix of just Class. This will use the render method on the specified class to
handle the tag

Classes are resolved as specified in Section ??. Listing ?? shows three equivalent snippet tags.
Note: these are only equivalent because the method name is “render.” If we had chose a different
method, e.g., “list,” then the third example below will still call a “render” method.

Listing 3.10: Snippet Tag Equivalence
<lift:snippet type="MyClass:render" />
<lift:MyClass.render />
<lift:MyClass />

3.8. TAGS 31

The form and multipart attributes are optional. If form is included then an appropriate
form tag will be emitted into the XHTML using the specified submission method (POST or GET).
The multipart attribute is a boolean, and specifies whether a generated form tag should be set
to use multipart form submission. This is most typically used for file uploads (Section ??).

3.8.2 surround

Usage: <lift:surround with="template_name" at=”binding”>
children

</lift:surround>

The surround tag surrounds the child nodes with the named template. The child nodes are
inserted into the named template at the binding point specified by the at parameter (we’ll cover
the bind tag in Section ??). Typically, templates that will be used to surround other templates are
incomplete by themselves, so we usually store them in the <app root>/templates-hidden
subdirectory so that they can’t be accessed directly. Having said that, “incomplete” templates
may be placed in any directory that templates would normally go in. The most common usage of
surround is to permit you to use a “master” template for your site CSS, menu, etc. An example
use of surround is shown in Listing ??. We’ll show the counterpart master template in the section
on the bind tag. Note also that the surrounding template name can be either a fully-qualified path
(i.e. “/templates-hidden/default”), or just the base filename (“default”). In the latter case, Lift
will search all subdirectories of the app root for the template. By default, Lift will use “/templates-
hidden/default” if you don’t specify a with attribute, so Listings ?? and ?? are equivalent.

Listing 3.11: Surrounding Your Page
<lift:surround with="default" at="content">
<p>Welcome to PocketChange!</p>

</lift:surround>

Listing 3.12: Surrounding with the default template
<lift:surround at="content">
<p>Welcome to PocketChange!</p>

</lift:surround>

Note that you can use multiple surround templates for different functionality, and surrounds
can be nested. For example, you might want to have a separate template for your administrative
pages that adds a menu to your default template. In that case, your admin.html could look like
Listing ??. As you can see, we’ve named our bind point in the admin template “content” so that
we keep things consistent for the rest of our templates. So if, for example, we were going to nest
the template in Listing ?? above into the admin.html template in Listing ??, all we’d need to do
is change it’s with attribute from “default” to “admin.”

Listing 3.13: Adding an Admin Menu
<lift:surround with="default" at="content">
<lift:Admin.menu />
<lift:bind name="content" />

</lift:surround>

32 CHAPTER 3. LIFT FUNDAMENTALS

You cannot have a hidden template with the same name as a sub-directory of
your webapp directory. For example, if you had an admin.html template in
/templates-hidden, you could not also have an admin directory.

3.8.3 bind

Usage: <lift:bind name=”binding_name” />

The bind tag is the counterpart to the surround tag: it specifies where in the “surrounding” tem-
plate the content will be placed. An example is shown in Listing ??.

Listing 3.14: Binding in Templates
<html>
<body>
<lift:bind name="content" />

</body>
</html>

3.8.4 embed

Usage: <lift:embed what="template_name" />

The embed tag allows you to embed a template within another template. This can be used to
assemble your pages from multiple smaller templates, and it also allows you to access templates
from JavaScript commands (Chapter ??). As with the surround tag, the template name can be
either the base filename or a fully-qualified path.

Note that if you use the embed tag to access templates from within a JsCmd (typ-
ically an AJAX call), any JavaScript in the embedded template won’t be executed.
This includes, but is not limited to, Comet widgets.

3.8.5 comet

Usage: <lift:comet type="ClassName" name=”optional”/>

The comet tag embeds a Comet actor into your page. The class of the Comet actor is specified by
the type attribute. The name attribute tells Lift to create a unique instance of the Comet actor; for
example, you could have one Comet actor for site updates and another for admin messages. The
contents of the tag are used by the Comet actor to bind a response. Listing ?? shows an example of
a Comet binding that displays expense entries as they’re added. Comet is covered in more detail
in Chapter ??.

Listing 3.15: Account Entry Comet
1 <div class="accountUpdates">
2 < lift :comet type="AccountMonitor">
3 <account:entries>
4 <entry:time/> : <entry:user /> : <entry:amount />
5 </account:entries>

3.9. HEAD MERGE 33

6 </lift :comet>
7 </div>

As we mentioned in the embed tag documentation, mixing Comet with AJAX responses can
be a bit tricky due to the embedded JavaScript that Comet uses.

3.9 Head Merge

Another feature of Lift’s template processing is the ability to merge the HTML head element in a
template with the head element in the surrounding template. In our example, Listing ??, notice
that we’ve specified a head tag inside the template. Without the head merge, this head tag would
show up in the default template where our template gets bound. Lift is smart about this, though,
and instead takes the content of the head element and merges it into the outer template’s head
element. This means that you can use a surround tag to keep a uniform default template, but still
do things such as changing the title of the page, adding scripts or special CSS, etc. For example, if
you have a table in a page that you’d like to style with jQuery’s TableSorter, you could add a head
element to insert the appropriate script:

Listing 3.16: Using Head Merge
<lift:surround with="default" at="foo">
<head><script src="/scripts/tablesorter.js" type="text/javascript" /><head>
...
</lift:surround>

In this manner, you’ll import TableSorter for this template alone.

3.10 Notices, Warnings, and Error Messages

Feedback to the user is important. The application must be able to notify the user of errors, warn
the user of potential problems, and notify the user when system status changes. Lift provides a
unified model for such messages that can be used for static pages as well as for AJAX and Comet
calls. We cover messaging support in Appendix ??.

3.11 Snippets

A snippet is a method that takes a single scala.xml.NodeSeq argument and is expected to
return a NodeSeq.

Note: Although Scala can often infer return types, it’s important to explic-
itly specify the return type of your snippet methods as NodeSeq. Failure
to do so sometimes means that Lift can’t locate the snippet method, in
which case the snippet may not execute!

The argument passed to the snippet method is the XML content of the snippet tag. Because Lift
processes starting with the outer tag and working in, the contents of the outer tag are processed
after the snippet method processes them. You may change the order of processing by specifying

34 CHAPTER 3. LIFT FUNDAMENTALS

the eager_eval attribute on the tag (Section ??). As an example, let’s say we wanted a snippet
that would output the current balance of our ledger. Listing ?? shows what our snippet method
looks like.

Listing 3.17: A Simple Snippet
class Ledger {
def balance (content : NodeSeq) : NodeSeq =
Text(currentLedger.formattedBalance)

}

We simply return an XML Text node with the formatted balance. Note that the XML that a
snippet returns is itself processed recursively, so if your snippet instead looked like:

Listing 3.18: Returning Tags from a Snippet
class Ledger {
def balance (content : NodeSeq) : NodeSeq =
<p>{currentLedger.formattedBalance}
as of <lift:Util.time /></p>

}

then the lift:Util.time snippet will be processed as well after our snippet method returns.
It is this hierarchical processing of template tags that makes Lift so flexible. For those of you
coming to Lift with some JSP experience, Lift is designed to let you write your own tag libraries,
but libraries that are much more powerful and much simpler to use.

3.11.1 Binding Values in Snippets

So far we’ve only shown our snippets generating complete output and ignoring the input to the
method. Lift actually provides some very nice facilities for using the input NodeSeq within your
snippet to help keep presentation and code separate. First, remember that the input NodeSeq
consists of the child elements for the snippet tag in your template. That is, given a template
containing

Listing 3.19: Snippet Tag Children
<lift:Ledger.balance>
<ledger:balance/> as of <ledger:time />

</lift:Ledger.balance>

Then the Ledger.balance method receives

<ledger:balance/> as of <ledger:time />

as its input parameter. This is perfectly correct XML, although it may look a little strange at first
unless you’ve used prefixed elements in XML before. The key is that Lift allows you to selectively
“bind”, or replace, these elements with data inside your snippet. The Helpers.bind4 method
takes three arguments:

1. The prefix for the tags you wish to bind, in this instance, “ledger”

4net.liftweb.util.Helpers. Technically the bind method is overloaded, and can even fill in values for the lift:bind tag,
but this is advanced usage and we’re not going to cover that here.

3.11. SNIPPETS 35

2. The NodeSeq that contains the tags you wish to bind

3. One or more BindParam elements that map the tag name to a replacement value

While you can create your own BindParam instances by hand, we generally recommend importing
Helpers._, which among other things contains an implicit conversion from Pair to BindParam.
With this knowledge in hand, we can change our previous definition of the balance method to that
in Listing ?? below.

Listing 3.20: Binding the Ledger Balance
class Ledger {
def balance (content : NodeSeq) : NodeSeq =
bind ("ledger", content,

"balance" -> Text(currentLedger.formattedBalance),
"time" -> Text((new java.util.Date).toString))

}

As you can see here, we actually gain a line of code over our previous effort, but the trade-off
makes it far simpler for us to change the layout just by editing the template.

3.11.2 Stateless versus Stateful Snippets

The lifecycle of a snippet is stateless by default. That means that for each request, Lift creates a
new instance of the snippet class to execute. Any changes you make to instance variables will be
discarded after the request is processed. If you want to keep some state around, you have a couple
of options:

• Store the state in a cookie (Section ??). This can be useful if you have data that you want to
persist across sessions. The down side is that you have to manage the cookie as well as deal
with any security implications for the data in the cookie as it’s stored on the user’s machine.

• Store the state in a SessionVar (Section ??). This is a little easier to manage than cookies, but
you still have to handle adding and removing the session data if you don’t want it around
for the duration of the session. As with a cookie, it is global, which means that it will be the
same for all snippet instances.

• Pass the state around in a RequestVar by setting “injector” functions in your page transition
functions (e.g. SHtml.link, S.redirectTo, etc). We’ll cover this technique in Section ??.

• Use a StatefulSnippet subclass. This is ideal for small, conversational state, such as a form
that spans multiple pages or for a page where you have multiple variables that you want to
be able to tweak individually.

Using a StatefulSnippet is very similar to using a normal snippet but with the addition of a few
mechanisms. First, the StatefulSnippet trait defines a dispatchmethod of type PartialFunction[String,
() => NodeSeq]. This lets you define which methods handle which snippets. Because the
dispatch method in the base DispatchSnippet can be overridden with a var, it also lets you
redefine this behavior as a result of snippet processing.

Another thing to remember when using StatefulSnippets is that when you render a form, a hid-
den field is added to the form that permits the same instance of the StatefulSnippet that created
the form to be the target of the form submission. If you need to link to a different page, but would

36 CHAPTER 3. LIFT FUNDAMENTALS

like the same snippet instance to handle snippets on that page, use the StatefulSnippet.link
method (instead of SHtml.link); similarly, if you need to redirect to a different page, the State-
fulSnippet trait defines a redirectTo method. In either of these instances, a function map is
added to the link or redirect, respectively, that causes the instance to be reattached.

When might you use a stateful snippet? Consider a multi-part form where you’d like to have a
user enter data over several pages. You’ll want the application to maintain the previously entered
data while you validate the current entry, but you don’t want to have to deal with a lot of hidden
form variables. Using a StatefulSnippet instance greatly simplifies writing the snippet because
you can keep all of your pertinent information around as instance variables instead of having to
insert and extract them from every request, link, etc.

Listing ?? shows an example of a stateful snippet that handles the above example. Note that
for this example, the URL (and therefore, the template) don’t change between pages. The template
we use is shown in Listing .

Listing 3.21: Using a StatefulSnippet
... standard Lift imports ...
import _root_.scala.xml.Text

class BridgeKeeper extends StatefulSnippet {
// Define the dispatch for snippets. Note that we are defining
// it as a var so that the snippet for each portion of the
// multi-part form can update it after validation.
var dispatch : DispatchIt = {
// We default to dispatching the "challenge" snippet to our
// namePage snippet method. We’ll update this below
case "challenge" => firstPage _

}

// Define our state variables:
var name = ""
var quest = ""
var color = ""

// Our first form page
def firstPage (xhtml : NodeSeq) : NodeSeq = {
def processName (nm : String) {
name = nm
if (name != "") {
dispatch = { case "challenge" => questPage _ }

} else {
S.error("You must provide a name!")

}
}
bind("form", xhtml,

"question" -> Text("What is your name?"),
"answer" -> SHtml.text(name, processName))

}

def questPage (xhtml : NodeSeq) : NodeSeq = {
def processQuest (qst : String) {
quest = qst
if (quest != "") {

3.11. SNIPPETS 37

dispatch = {
case "challenge" if name == "Arthur" => swallowPage _
case "challenge" => colorPage _

}
} else {
S.error("You must provide a quest!")

}
}
bind("form", xhtml,

"question" -> Text("What is your quest?"),
"answer" -> SHtml.text(quest, processQuest))

}

def colorPage (xhtml : NodeSeq) : NodeSeq = {
def processColor (clr : String) {
color = clr
if (color.toLowercase.contains "No,") {
// This is a cleanup that removes the mapping for this
// StatefulSnippet from the session. This will happen
// over time with GC, but it’s best practice to manually
// do this when you’re finished with the snippet
this.unregisterThisSnippet()
S.redirectTo("/pitOfEternalPeril")

} else if (color != "") {
this.unregisterThisSnippet()
S.redirectTo("/scene24")

} else {
S.error("You must provide a color!")

}
}
bind("form", xhtml,

"question" -> Text("What is your favorite color?"),
"answer" -> SHtml.text(color, processColor))

}
// and so on for the swallowPage snippet
...

}

Listing 3.22: The StatefulSnippet Example Template
<lift:surround with="default" at="content">
<lift:BridgeKeeper.challenge form="POST">
<form:question /> : <form:answer />

<input type="submit" value="Answer" />

</lift:BridgeKeeper.challenge>
</lift:surround>

3.11.3 Eager Evaluation

As we mentioned in Section ??, Lift processes the contents of a snippet tag after it processes the
tag itself. If you want the contents of a snippet tag to be processed before the snippet, then you
need to specify the eager_eval attribute on the tag:

38 CHAPTER 3. LIFT FUNDAMENTALS

<lift:Hello.world eager_eval=”true”>...</lift:Hello.world>

This is especially useful if you’re using an embedded template (Section ??). Consider Listing ??:
in this case, the eager_eval parameter makes Lift process the <lift:embed /> tag before it
executes the Hello.world snippet method. If the “formTemplate” template looks like Listing
??, then the Hello.world snippet sees the <hello:name /> and <hello:time /> XML tags
as its NodeSeq input. If the eager_eval attribute is removed, however, the Hello.world snippet
sees only a <lift:embed /> tag.

Listing 3.23: Embedding and eager evaluation
<lift:Hello.world eager_eval="true">
<lift:embed what="formTemplate" />

</lift:Hello.world>

Listing 3.24: The formTemplate template
<hello:name />
<hello:time />

3.12 URL Rewriting

Now that we’ve gone over Templates, Views, Snippets, and how requests are dispatched to a
Class.method, we can discuss how to intercept requests and handle them the way we want to.
URL rewriting is the mechanism that allows you to modify the incoming request so that it dis-
patches to a different URL. It can be used, among other things, to allow you to:

• Use user-friendly, bookmarkable URLs like http://www.example.com/budget/2008

• Use short URLs instead of long, hard to remember ones, similar to http://tinyurl.com

• Use portions of the URL to determine how a particular snippet or view responds. For exam-
ple, you could make it so that a user’s profile is displayed via a URL such as
http://someplace.com/user/derek instead of having the username sent as part of
a query string.

The mechanism is fairly simple to set up. We need to write a partial function from a RewriteRequest
to a RewriteResponse to determine if and how we want to rewrite particular requests. Once we
have the partial function, we modify the LiftRules.rewrite configuration to hook into Lift’s
processing chain. The simplest way to write a partial function is with Scala’s match statement,
which will allow us to selectively match on some or all of the request information. (Recall that for a
partial function, the matches do not have to be exhaustive. In the instance that no RewriteRequest
matches, no RewriteResponse will be generated.) It is also important to understand that when
the rewrite functions run, the Lift session has not yet been created. This means that you generally
can’t set or access properties in the S object. RewriteRequest is a case object that contains three
items: the parsed path, the request type and the original HttpServletRequest object. (If you are
not familiar with case classes, you may wish to review the Scala documentation for them. Adding
the case modifier to a class results in some nice syntactic conveniences.)

The parsed path of the request is in a ParsePath case class instance. The ParsePath class
contains

http://tinyurl.com

3.12. URL REWRITING 39

1. The parsed path as a List[String]

2. The suffix of the request (i.e. “html”, “xml”, etc)

3. Whether this path is root-relative path. If true, then it will start with /<context-path>, fol-
lowed by the rest of the path. For example, if your application is deployed on the app context
path (“/app”) and we want to reference the file <webapp-folder>/pages/index.html, then
the root-relative path will be /app/pages/index.html.

4. Whether the path ends in a slash (“/”)

The latter three properties are useful only in specific circumstances, but the parsed path is what lets
us work magic. The path of the request is defined as the parts of the URI between the context path
and the query string. The following table shows examples of parsed paths for a Lift application
under the “myapp” context path:

Requested URL Parsed Path

http://foo.com/myapp/home?test_this=true List[String](“home”)

http://foo.com/myapp/user/derek List[String](“user”, “derek”)

http://foo.com/myapp/view/item/14592 List[String](“view”,”item”,”14592”)

The RequestType maps to one of the five HTTP methods: GET, POST, HEAD, PUT and DELETE.
These are represented by the corresponding GetRequest, PostRequest, etc. case classes, with an
UnknownRequest case class to cover anything strange.

The flexibility of Scala’s matching system is what really makes this powerful. In particu-
lar, when matching on Lists, we can match parts of the path and capture others. For example,
suppose we’d like to rewrite the /account/<account name> path so that it’s handled by the
/viewAcct template as shown in Listing ??. In this case we provide two rewrites. The first
matches /account/<account name> and redirects it to the /viewAcct template, passing the acct-
Name as a “name” parameter. The second matches /account/<account name>/<tag>, redirecting
it to /viewAcct as before, but passing both the “name” and a “tag” parameter with the acctName
and tag matches from the ParsePath, respectively. Remember that the underscore (_) in these
matching statements means that we don’t care what that parameter is, i.e., match anything in that
spot.

Listing 3.25: A Simple Rewrite Example
LiftRules.rewrite.append {
case RewriteRequest(

ParsePath(List("account",acctName),_,_,_),_,_) =>
RewriteResponse("viewAcct" :: Nil, Map("name" -> acctName))

case RewriteRequest(
ParsePath(List("account",acctName, tag),_,_,_),_,_) =>
RewriteResponse("viewAcct" :: Nil, Map("name" -> acctName,

"tag" -> tag)))

}

The RewriteResponse simply contains the new path to follow. It can also take a Map that
contains parameters that will be accessible via S.param in the snippet or view. As we stated before,
the LiftSession (and therefore most of S) isn’t available at this time, so the Map is the only way to
pass information on to the rewritten location.

40 CHAPTER 3. LIFT FUNDAMENTALS

We can combine the ParsePath matching with the RequestType and HttpServletRequest to be
very specific with our matches. For example, if we wanted to support the DELETE HTTP verb for
a RESTful5 interface through an existing template, we could redirect as shown in Listing ??.

Listing 3.26: A Complex Rewrite Example
val rewriter = {
case RewriteRequest(ParsePath(username :: Nil, _, _, _),

DeleteRequest,
httpreq)
if isMgmtSubnet(httpreq.getRemoteHost()) =>

RewriteResponse(deleteUser :: Nil, Map(username -> username))
}
LiftRules.rewrite.append(rewriter)

We’ll go into more detail about how you can use this in the following sections. In particular,
SiteMap (Chapter ??) provides a mechanism for doing rewrites combined with menu entries.

3.13 Custom Dispatch Functions

Once the rewriting phase is complete (whether we pass through or are redirected), the next phase
is to determine whether there should be a custom dispatch for the request. A custom dispatch
allows you to handle a matching request directly by a method instead of going through the tem-
plate lookup system. Because it bypasses templating, you’re responsible for the full content of the
response. A typical use case would be a web service returning XML or a service to return, say, a
generated image or PDF. In that sense, the custom dispatch mechanism allows you to write your
own “sub-servlets” without all the mess of implementing the interface and configuring them in
web.xml.

As with rewriting, custom dispatch is realized via a partial function. In this case, it’s a function
of type PartialFunction[Req,()⇒ Box[Li f tResponse]] that does the work. The Req is simi-
lar to the RewriteRequest case class: it provides the path as a List[String], the suffix of the request,
and the RequestType. If you attach the dispatch function via LiftRules.dispatch then you’ll
have full access to the S object and LiftSession; if you use
LiftRules.statelessDispatchTable instead, then these aren’t available. The result of the
dispatch should be a function that returns a Box[LiftResponse]. If the function returns Empty,
then Lift returns a “404 Not Found” response.

As a concrete example, let’s look at returning a generated chart image from our application.
There are several libraries for charting, but we’ll take a look at JFreeChart in particular. First, let’s
write a method that will chart our account balances by month for the last year:

Listing 3.27: A Charting Method
def chart (endDate : String) : Box[LiftResponse] = {
// Query, set up chart, etc...
val buffered = balanceChart.createBufferedImage(width,height)
val chartImage = ChartUtilities.encodeAsPNG(buffered)
// InMemoryResponse is a subclass of LiftResponse
// it takes an Array of Bytes, a List[(String,String)] of
// headers, a List[Cookie] of Cookies, and an integer

5http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3.14. HTTP REDIRECTS 41

// return code (here 200 for HTTP 200: OK)
Full(InMemoryResponse(chartImage,

("Content-Type" -> "image/png") :: Nil,
Nil,
200))

}

Once we’ve set up the chart, we use the ChartUtilities helper class from JFreeChart to encode
the chart into a PNG byte array. We can then use Lift’s InMemoryResponse to pass the encoded
data back to the client with the appropriate Content-Type header. Now we just need to hook the
request into the dispatch table from the Boot class as shown in Listing ??. In this instance, we want
state so that we can get the current user’s chart. For this reason, we use LiftRules.dispatch
as opposed to LiftRules.statelessDispatch. Because we’re using a partial function to per-
form a Scala match operation, the case that we define here uses the Req object’s unapply method,
which is why we only need to provide the List[String] argument.

Listing 3.28: Hooking Dispatch into Boot
LiftRules.dispatch.append {
case Req("chart" :: "balances" :: endDate :: Nil, _, _) =>
Charting.chart(endDate) _

}

As you can see, we capture the endDate parameter from the path and pass it into our chart
method. This means that we can use a URL like http://foo.com/chart/balances/20080401
to obtain the image. Since the dispatch function has an associated Lift session, we can also use the
S.param method to get query string parameters, if, for example, we wanted to allow someone to
send an optional width and height:

val width = S.param(“width”).map(_.toInt) openOr 400
val height = S.param(“height”).map(_.toInt) openOr 300

Or you can use a slightly different approach by using the Box.dmap method:

val width = S.param(“width”).dmap(400)(_.toInt)
val height = S.param(“height”).dmap(300)(_.toInt)

Where dmap is identical with map function except that the first argument is the default value to
use if the Box is Empty. There are a number of other ListResponse subclasses to cover your needs,
including responses for XHTML, XML, Atom, Javascript, CSS, and JSON. We cover these in more
detail in Section ??.

3.14 HTTP Redirects

HTTP redirects are an important part of many web applications. In Lift there are two main ways
of sending a redirect to the client:

1. Call S.redirectTo. When you do this, Lift throws an exception and catches it later on. This
means that any code following the redirect is skipped. It also means that if you use S.redirectTo
within a try/catch block, you’ll need to make sure that you aren’t catching the redirect ex-
ception (Scala usesunchecked exceptions), or test for the redirect’s exception and rethrow it.

42 CHAPTER 3. LIFT FUNDAMENTALS

Ifyou mistakenly catch the redirect exception, then no redirect will occur. If you’re using a
StatefulSnippet (Section ??), use this.redirectTo so that your snippet instance is used
when the redirect is processed.

2. When you need to return a LiftResponse, you can simply return a RedirectResponse or a
RedirectWithState response.

The RedirectWithState response allows you to specify a function to be executed when the redi-
rected request is processed. You can also send Lift messages (notices, warnings, and errors) that
will be rendered in the redirected page, as well as cookies to be set on redirect. Similarly, there is
an overloaded version of S.redirectTo that allows you to specify a function to be executed when
the redirect is processed.

3.15 Cookies

Cookies6 are a useful tool when you want data persisted across user sessions. Cookies are essen-
tially a token of string data that is stored on the user’s machine. While they can be quite useful,
there are a few things that you should be aware of:

1. The user’s browser may have cookies disabled, in which case you need to be prepared to
work without cookies or tell the user that they need to enable them for your site

2. Cookies are relatively insecure7. There have been a number of browser bugs related to data
in cookies being read by viruses or other sites

3. Cookies are easy to fake, so you need to ensure that you validate any sensitive cookie data

Using Cookies in Lift is very easy. In a stateful context, everything you need is provided by a few
methods on the S object:

addCookie Adds a cookie to be sent in the response

deleteCookie Deletes a cookie (technically, this adds a cookie with a maximum age of zero so that
the browser removes it). You can either delete a cookie by name, or with a Cookie object

findCookie Looks for a cookie with a given name and returns a Box[Cookie]. Empty means that
the cookie doesn’t exist

receivedCookies Returns a List[Cookie] of all of the cookies sent in the request

responseCookies Returns a List[Cookie] of the cookies that will be sent in the response

If you need to work with cookies in a stateless context, many of the ListResponse classes (Section
??) include a List[Cookie] in their constructor or apply arguments. Simply provide a list of the
cookies you want to set, and they’ll be sent in the response. If you want to delete a cookie in a
LiftResponse, you have to do it manually by adding a cookie with the same name and a maxage
of zero.

6http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/Cookie.html
7See http://www.w3.org/Security/Faq/wwwsf2.html (Q10) and http://www.cookiecentral.com/faq/ for details

on cookies and their security issues.

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/Cookie.html
http://www.w3.org/Security/Faq/wwwsf2.html
http://www.cookiecentral.com/faq/

3.16. SESSION AND REQUEST STATE 43

3.16 Session and Request State

Lift provides a very easy way to store per-session and per-request data through the SessionVar
and RequestVar classes. In true Lift fashion, these classes provide:

• Type-safe access to the data they hold

• A mechanism for providing a default value if the session or request doesn’t exist yet

• A mechanism for cleaning up the data when the variable’s lifecycle ends

Additionally, Lift provides easy access to HTTP request parameters via the S.param method,
which returns a Box[String]. Note that HTTP request parameters (sent via GET or POST) differ
from RequestVars in that query parameters are string values sent as part of the request; Request-
Vars, in contrast, use an internal per-request Map so that they can hold any type, and are initialized
entirely in code. At this point you might ask what RequestVars can be used for. A typical example
would be sharing state between different snippets, since there is no connection between snippets
other than at the template level.

SessionVars and RequestVars are intended to be implemented as singleton objects so that
they’re accessible from anywhere in your code. Listing ?? shows an example definition of a Re-
questVar used to hold the number of entries to show per page. We start by defining the object as
extending the RequestVar. You must provide the type of the RequestVar so that Lift knows what
to accept and return. In this instance, the type is an Int. The constructor argument is a by-name
parameter which must evaluate to the var’s type. In our case, we attempt to use the HTTP request
variable “pageSize,” and if that isn’t present or isn’t an integer, then we default to 25.

Listing 3.29: Defining a RequestVar
class AccountOps {
object pageSize extends RequestVar[Int](S.param("pageSize").map(_.toInt) openOr 25)
...

}

Accessing the value of the RequestVar is done via the is method. You can also set the
value using the apply method, which in Scala is syntactically like using the RequestVar as a
function. Common uses of apply in Scala include array element access by index and companion
object methods that can approximate custom constructors. For example, the Loc object (which
we’ll cover in Chapter ??), has an overloaded apply method that creates a new Loc class instance
based on input parameters.

Listing 3.30: Accessing the RequestVar
// get the value contained in the AccountOps.pageSize RequestVar
query.setMaxResults(AccountOps.pageSize.is)

// Change the value of the RequestVar. The following two lines
// of code are equivalent:
AccountOps.pageSize(50)
AccountOps.pageSize.apply(50)

In addition to taking a parameter that defines a default value for setup, you can also clean
up the value when the variable ends it lifecycle. Listing ?? shows an example of opening a
socket and closing it at the end of the request. This is all handled by passing a function to the

44 CHAPTER 3. LIFT FUNDAMENTALS

registerCleanupFuncmethod. The type of the function that you need to pass is CleanUpParam⇒
Unit, where CleanUpParam is defined based on whether you’re using a RequestVar or a SessionVar.
With RequestVar, CleanUpParam is of type Box[LiftSession], reflecting that the session
may not be in scope when the cleanup function executes. For a SessionVar the CleanUpParam
is of type LiftSession, since the session is always in scope for a SessionVar (it holds a ref-
erence to the session). In our example in Listing ?? we simply ignore the input parameter to the
cleanup function, since closing the socket is independent of any session state. Another important
thing to remember is that you’re responsible for handling any exceptions that might be thrown
during either default initialization or cleanup.

Listing 3.31: Defining a Cleanup Function
object mySocket extends RequestVar[Socket](new Socket("localhost:23")) {
registerCleanupFunc(ignore => this.is.close)

}

The information we’ve covered here is equally applicable to SessionVars; the only difference
between them is the scope of their respective lifecycles.

Another common use of RequestVar is to pass state around between different page views
(requests). We start by defining a RequestVar on an object so that it’s accesible from all of the
snippet methods that will read and write to it. It’s also possible to define it on a class if all of the
snippets that will access it are in that class. Then, in the parts of your code that will transition
to a new page you use the overloaded versions of SHtml.link or S.redirectTo that take
a function as a second argument to “inject” the value you want to pass via the RequestVar.
This is similar to using a query parameter on the URL to pass data, but there are two important
advantages:

1. You can pass any type of data via a RequestVar, as opposed to just string data in a query
parameter.

2. You’re really only passing a reference to the injector function, as opposed to the data itself.
This can be important if you don’t want the user to be able to tamper with the passed data.
One example would be passing the cost of an item from a “view item” page to an “add to
cart” page.

Listing ?? shows how we pass an Account from a listing table to a specific Account edit page
using SHtml.link, as well as how we could transition from an edit page to a view page using
S.redirectTo. Another example of passing is shown in Listing ??.

Listing 3.32: Passing an Account to View
class AccountOps {
...
object currentAccountVar extends RequestVar[Account](null)
...
def manage (xhtml : NodeSeq) ... {
...
User.currentUser.map({user =>
user.accounts.flatMap({acct =>
bind("acct", chooseTemplate("account", "entry", xhtml),
...
// The second argument injects the "acct" val back
// into the RequestVar

3.17. CONCLUSION 45

link("/editAcct", () => currentAccountVar(acct), Text("Edit"))
})

})
...

}
def edit (xhtml : NodeSeq) : NodeSeq = {
def doSave () {
...
val acct = currentAccountVar.is
S.redirectTo("/view", () => currentAccountVar(acct))

}
...

}
}

One important thing to note is that the injector variable is called in the scope of the following
request. This means that if you want the value returned by the function at the point where you
call the link or redirectTo, you’ll need to capture it in a val. Otherwise, the function will be called
after the redirect or link, which may result in a different value than you expect. As you can see
in Listing ??, we set up an acct val in our doSave method prior to redirecting. If we tried to do
something like

S.redirectTo("/view", () => currentAccountVar(currentAccountVar.is))

instead, we would get the default value of our RequestVar (null in this case).

3.17 Conclusion

We’ve covered a lot of material and we still have a lot more to go. Hopefully this chapter provides
a firm basis to start from when exploring the rest of the book.

46 CHAPTER 3. LIFT FUNDAMENTALS

Chapter 4

Forms in Lift

In this chapter we’re going to discuss the specifics of how you generate and process forms with
Lift. Besides standard GET/POST form processing, Lift provides AJAX forms (Chapter ??) as well
as JSON form processing (Section ??), but we’re going to focus on the standard stuff here. We’re
going to assume that you have a general knowledge of basic HTML form tags as well as how CGI
form processing works.

4.1 Form Fundamentals

Let’s start with the basics of Lift form processing. A form in Lift is usually produced via a snippet
that contains the additional form attribute. As we mentioned in Section ??, this attribute takes the
value GET or POST, and when present makes the snippet code embed the proper form tags around
the snippet HTML. Listing ?? shows an example of a form that we will be discussing throughout
this section.

Listing 4.1: An Example Form Template
<lift:Ledger.add form="POST">
<entry:description /> <entry.amount />

<entry:submit />

</lift:Ledger.add>

The first thing to understand about Lift’s form support is that you generally don’t use the
HTML tags for form elements directly, but rather you use generator functions on
net.liftweb.http.SHtml. The main reason for this is that it allows Lift to set up all of the
internal plumbing so that you keep your code simple. Additionally, we use Lift’s binding mech-
anism (Section ??) to “attach” the form elements in the proper location. In our example in Listing
??, we have bindings for a description field, an amount, and a submit button.

Our next step is to define the form snippet itself. Corresponding to our example template is
Listing ??. This shows our add method with a few vars to hold the form data and a binding to
the proper form elements. We’ll cover the processEntryAdd method in a moment; for now let’s
look at what we have inside the add method.

Listing 4.2: An Example Form Snippet
def add (xhtml : NodeSeq) : NodeSeq = {
var desc = ""
var amount = "0"

47

48 CHAPTER 4. FORMS IN LIFT

def processEntryAdd () { ... }

bind("entry", xhtml,
"description" -> SHtml.text(desc, desc = _),
"amount" -> SHtml.text(amount, amount = _),
"submit" -> SHtml.submit("Add", processEntryAdd))

}

First, you may be wondering why we use vars defined inside the method. Normally, these vars
would be locally scoped (stack-based) and would be discarded as soon as the method returns. The
beauty of Scala and Lift is that the right hand argument of each of the SHtml functions is actually
a function itself. Because these functions, also known as anonymous closures, reference variables
in local scope, Scala magically transforms them to heap variables behind the scenes. Lift, in turn,
adds the function callbacks for each form element into its session state so that when the form is
submitted, the appropriate closure is called and the state is updated. This is also why we define
the processEntryAdd function inside of the add method: by doing so, the processEntryAdd
function also has access to the closure variables. In our example, we’re using Scala’s placeholder
“_” shorthand1 to define our functions. Your description processing function could also be defined
as:

newDesc => description = newDesc

One important thing to remember, however, is that each new invocation of the add method (for
each page view) will get its own unique instance of the variables that we’ve defined. That means
that if you want to retain values between submission and re-rendering of the form, you’ll want
to use RequestVars (Section ??) or a StatefulSnippet (Section ??) instead . Generally you
will only use vars defined within the snippet method when your form doesn’t require validation
and you don’t need any of the submitted data between snippet executions. An example of using
RequestVars for your form data would be if you want to do form validation and retain submitted
values if validation fails, as shown in Listing ??. In this instance, we set an error message (more
in Chapter ??). Since we don’t explicitly redirect, the same page is loaded (the default “action”
for a page in Lift is the page itself) and the current RequestVar value of description is used as the
default value of the text box.

Listing 4.3: Using RequestVars with Forms
object description extends RequestVar("")
object amount extends RequestVar("0")

def add (xhtml : NodeSeq) : NodeSeq = {
def processEntryAdd () =
if (amount.toDouble <= 0) {
S.error("Invalid amount")

} else {
// ... process Add ...
redirectTo(...)

}

bind("entry", xhtml,

1For more details on placeholders, see the Scala Language Specification, section 6.23

4.1. FORM FUNDAMENTALS 49

"description" -> SHtml.text(description.is, description(_)),
...

}

The next thing to look at is how the form elements are generated. We use the SHtml helper
object to generate a form element of the appropriate type for each variable. In our case, we just
want text fields for the description and amount, but SHtml provides a number of other form
element types that we’ll be covering later in this section. Generally, an element generator takes an
argument for the initial value as well as a function to process the submitted value. Usually both of
these arguments will use a variable, but there’s nothing stopping you from doing something such
as

“description” -> SHtml.text(“”, println(“Description = “ + _))

Finally, our submit function executes the partially applied processEntryAdd function, which,
having access to the variables we’ve defined, can do whatever it needs to do when the submit
button is pressed.

Now that we’ve covered the basics of forms, we’re going to go into a little more detail for
each form element generator method on SHtml. The a method (all 3 variants) as well as the
ajax* methods are specific to AJAX forms, which are covered in detail in Chapter ??. The json*
methods are covered in Section ??. We’ll be covering the fileUpload method in detail in Section ??.
One final note before we dive in is that most generator methods have an overload with a trailing
asterisk (i.e. hidden_*); these are generally equivalent to the overloads without an asterisk but
are intended for Lift’s internal use.

4.1.1 checkbox

The checkboxmethod generates a checkbox form element, taking an initial Boolean value as well
as a function (Boolean)⇒ Any that is called when the checkbox is submitted. If you’ve done a lot
of HTML form processing you might wonder how this actually occurs, since an unchecked checkbox
is not actually submitted as part of a form. Lift works around this by adding a hidden form element
for each checkbox with the same element name, but with a false value, to ensure that the callback
function is always called.

Both overloads for checkbox take a final varargs sequence of Pair(String,String) so that
you can provide any XML attributes that you’d like to have on the checkbox element. Because
more than one XML node is returned by the generator, you can’t just use the % metadata mecha-
nism to set attributes on the check box element.

Note The % metadata mechanism is actually part of the Scala XML library.
Specifically, scala.xml.Elem has a % method that allows the user to
update the attributes on a given XML element. We suggest reading more
about this in the Scala API documents, or in the Scala XML docbook at
http://burak.emir.googlepages.com/scalaxbook.docbk.html.

For example, Listing ?? shows a checkbox with an id of “snazzy” and a class attribute set to
“woohoo.”

Listing 4.4: A Checkbox Example

http://burak.emir.googlepages.com/scalaxbook.docbk.html

50 CHAPTER 4. FORMS IN LIFT

SHtml.checkbox_id(false, if (_) frobnicate(),
Full("snazzy"), "class" -> "woohoo")

4.1.2 hidden

The hidden method generates a hidden form field. Unlike the HTML hidden field, the hidden
tag is not intended to hold a plain value; rather, in Lift it takes a function ()⇒ Any argument that
is called when the form is submitted. As with most of the other generators, it also takes a final
varargs sequence of Pair[String,String] attributes to be added to the XML node. Listing
?? shows an example of using a hidden field to “log” information. (When the form is submitted,
“Form was submitted” will be printed to stdout. This can be a useful trick for debugging if you’re
not using a full-blown IDE.)

Listing 4.5: A Hidden Example
SHtml.hidden(() => println("Form was submitted"))

4.1.3 link

The link method generates a standard HTML link to a page (an <a> tag, or anchor), but also
ensures that a given function is executed when the link is clicked. The first argument is the web
context relative link path, the second argument is the () ⇒ Any function that will be executed
when the link is clicked, and the third argument is a NodeSeq that will make up the body of the
link. You may optionally pass one or more Pair[String,String] attributes to be added to the
link element. Listing ?? shows using a link to load an Expense entry for editing from within a
table. In this case we’re using a RequestVar to hold the entry to edit, so the link function is a
closure that loads the current Expense entry. This combination of link and RequestVars is a
common pattern for passing objects between different pages.

Listing 4.6: A Link Example
object currentExpense extends RequestVar[Box[Expense]](Empty)

def list (xhtml : NodeSeq) : NodeSeq = {
...
val entriesXml =
entries.map(entry =>
bind("entry", chooseTemplate("expense", "entries", xhtml),
...
"edit" -> SHtml.link("/editExpense",
() => currentExpense(Full(entry)),
Text("Edit")))

)
}

4.1.4 text and password

The text and password methods generate standard text and password input fields, respec-
tively. While both take string default values and (String) ⇒ Any functions to process the return,

4.1. FORM FUNDAMENTALS 51

the password text field masks typed characters and doesn’t allow copying the value from the box
on the client side. Listing ?? shows an example of using both text and password for a login page.

Listing 4.7: A Text Field Example
def login(xhtml : NodeSeq) : NodeSeq = {
var user = ""; var pass = "";
def auth () = { ... }
bind("login", xhtml,

"user" -> SHtml.text(user, user = _, "maxlength" -> "40")
"pass" -> SHtml.password(pass, pass = _)
"submit" -> SHtml.submit("Login", auth))

}

Alternatively, you might want the user (but not the password) to be stored in a RequestVar
so that if the authentication fails the user doesn’t have to retype it. Listing ?? shows how the
snippet would look in this case.

Listing 4.8: A RequestVar Text Field Example
object user extends RequestVar[String]("")
def login(xhtml : NodeSeq) : NodeSeq = {
var pass = "";
def auth () = { ... }
bind("login", xhtml,

"user" -> SHtml.text(user.is, user(_), "maxlength" -> "40")
"pass" -> SHtml.password(pass, pass = _)
"submit" -> SHtml.submit("Login", auth))

}

4.1.5 textarea

The textarea method generates a textarea HTML form element. Generally the functionality
mirrors that of text, although because it’s a textarea, you can control width and height by
adding cols and rows attributes as shown in Listing ??. (You can, of course, add any other
HTML attributes in the same manner.)

Listing 4.9: A Textarea Example
var noteText = ""
val notes =
SHtml.textarea(noteText, noteText = _,

"cols" -> "80", "rows" -> "8")

4.1.6 submit

Submit generates the submit form element (typically a button). It requires two parameters: a
String value to use as the button label, and a function () ⇒ Any that can be used to process
your form results. One important thing to note about submit is that form elements are processed
in the order that they appear in the HTML document. This means that you should put your
submit element last in your forms: any items after the submit element won’t have been “set” by

52 CHAPTER 4. FORMS IN LIFT

the time the submit function is called. Listings ?? and ?? use the SHtml.submit method for the
authentication handler invocation.

4.1.7 multiselect

Up to this point we’ve covered some fairly simple form elements. Multiselect is a bit more complex
in that it doesn’t just process single values. Instead, it allows you to select multiple elements out
of an initial Seq and then process each selected element individually. Listing ?? shows using a
multiselect to allow the user to select multiple categories for a ledger entry. We assume that a
Category entity has an id synthetic key as well as a String name value. The first thing we do is
map the collection of all categories into pairs of (value, display) strings. The value is what will
be returned to our processing function, while the display string is what will be shown in the select
box for the user. Next, we turn the current entry’s categories into a Seq of just value strings, and we
create a Set variable to hold the returned values. Finally, we do our form binding. In this example
we use a helper function, loadCategory (not defined here), that takes a String representing a
Category’s primary key and returns the category. We then use this helper method to update the
Set that we created earlier. Note that the callback function will be executed for each selected item
in the multiselect, which is why the callback takes a String argument instead of a Set[String].
This is also why we have to use our own set to manage the values. Depending on your use case,
you may or may not need to store the returned values in a collection.

Listing 4.10: Using multiselect
import scala.collection.mutable.Set
...
def mySnippet ... {
val possible = allCategories.map(c => (c.id.toString, c.name))
val current = currentEntry.categories.map(c => c.id.toString)
val updated = Set.empty[Category]
bind (...,
"categories" ->
SHtml.multiselect(possible, current, updated += loadCategory(_)))

}

4.1.8 radio

The radio method generates a set of radio buttons that take String values and return a single String
(the selected button) on form submission. The values are used as labels for the Radio buttons, so
you may need to set up a Map to translate back into useful values. The radio method also takes
a Box[String] that can be used to pre-select one of the buttons. The value of the Box must match
one of the option values, or if you pass Empty no buttons will be selected. Listing ?? shows an
example of using radio to select a color. In this example, we use a Map from color names to the
actual color values for the translation. To minimize errors, we use the keys property of the Map
to generate the list of options.

Listing 4.11: Using radio for Colors
import java.awt.Color
var myColor : Color = _
val colorMap = Map("Red" -> Color.red,

"White" -> Color.white,

4.1. FORM FUNDAMENTALS 53

"Blue" -> Color.blue)
val colors = SHtml.radio(colorMap.keys.toList, Empty, myColor = colorMap(_))

4.1.9 select

The select method is very similar to the multiselect method except that only one item may be
selected from the list of options. That also means that the default option is a Box[String] instead
of a Seq[String]. As with multiselect, you pass a sequence of (value, display) pairs as the
options for the select, and process the return with a (String)⇒ Any function. Listing ?? shows an
example of using a select to choose an account to view.

Listing 4.12: A select Example

var selectedAccount : Account = _
val accounts = User.accounts.map(acc => (acc.id.toString, acc.name))
val chooseAccount =
SHtml.select(accounts, Empty,

selectedAccount = loadAccount(_), "class" -> "myselect")

An important thing to note is that Lift will verify that the value submitted in the form matches
one of the options that was passed in. If you need to do dynamic updating of the list, then you’ll
need to use untrustedSelect (Section ??).

4.1.10 selectObj

One of the drawbacks with the select and multiselect generators is that they deal only in Strings; if
you want to select objects you need to provide your own code for mapping from the strings. The
selectObj generator method handles all of this for you. Instead of passing a sequence of (value
string, display string) pairs, you pass in a sequence of (object, display string) pairs. Similarly, the
default value is a Box[T] and the callback function is (T)⇒ Any , where T is the type of the object
(selectObj is a generic function). Listing ?? shows a reworking of our radio example (Listing
??) to select Colors directly. Note that we set the select to default to Color.red by passing in a
Full Box.

Listing 4.13: Using selectObj for Colors

... standard Lift imports ...
import _root_.java.awt.Color

class SelectSnippet {
def chooseColor (xhtml : NodeSeq) : NodeSeq = {
var myColor = Color.red
val options = List(Color.red, Color.white, Color.blue)
val colors = SHtml.selectObj(options, Full(myColor), myColor = _)
bind(...)

}
}

54 CHAPTER 4. FORMS IN LIFT

4.1.11 untrustedSelect

The untrustedSelect generator is essentially the same as the select generator, except that the
value returned in the form isn’t validated against the original option sequence. This can be useful
if you want to update the selection on the client side using JavaScript.

4.2 File Uploads

File uploads are a special case of form submission that allow the client to send a local file to
the server. This is accomplished by using multipart forms. You can enable this by setting the
multipart attribute on your snippet tag to true. Listing ?? shows how we can add a file upload
to our existing expense entry form so that users can attach scanned receipts to their expenses. We
modify our template to add a new form, shown below. Note the multipart=”true” attribute.

Listing 4.14: File Upload Template
<lift:AddEntry.addEntry form="POST" multipart="true">
... existing headers ...
<td>Receipt (JPEG or PNG)</td>
... existing form fields ...
<td><e:receipt /></td>
...

</lift:AddEntry.addEntry>

On the server side, Listing ?? shows how we modify the existing addEntry snippet to handle
the (optional) file attachment. We’ve added some logic to the existing form submission callback
to check to make sure that the image is of the proper type, then we use the SHtml file upload
generator with a callback that sets our fileHolder variable. The callback for the fileUpload
generator takes a FileParamHolder, a special case class that contains information about the
uploaded file. Unlike some other web frameworks, Lift doesn’t store the file on the local system
and then give you the filename; instead, Lift reads the whole file into memory and gives you
the array of bytes to work with. Usually this isn’t an issue, since the web server itself will have
meaningful limits on POST sizes.

Listing 4.15: File Upload Snippet
class AddEntry {
...
// Add a variable to hold the FileParamHolder on submission
var fileHolder : Box[FileParamHolder] = Empty
...
def doTagsAndSubmit (t : String) {
...

// Add the optional receipt if it’s the correct type
val receiptOk = fileHolder match {
case Full(FileParamHolder(_, null, _, _)) => true
case Full(FileParamHolder(_, mime, _, data))
if mime.startsWith("image/") => {
e.receipt(data).receiptMime(mime)
true

}
case Full(_) => {

4.2. FILE UPLOADS 55

S.error("Invalid receipt attachment")
false

}
case _ => true

}

(e.validate, receiptOk) match {
...
}
...

}

bind("e", in,
...
"receipt" -> SHtml.fileUpload(fileHolder = _),
"tags" -> SHtml.text(tags, doTagsAndSubmit))

}
}

In our example, we want to save the file data into a MappedBinary field on our expense entry.
You could just as easily process the data in place using a scala.io.Source or
java.io.ByteArrayInputStream, or output it using a java.io.FileOutputStream.

56 CHAPTER 4. FORMS IN LIFT

Chapter 5

SiteMap

SiteMap is a very powerful part of Lift that does essentially what it says: provides a map (menu)
for your site. Of course, if all it did was generate a set of links on your page, we wouldn’t have a
whole chapter dedicated to it. SiteMap not only handles the basic menu generation functionality,
but also provides:

• Access control mechanisms that deal not only with whether a menu item is visible, but also
whether the page it points to is accessible

• Grouping of menu items so that you can easily display portions of menus where you want
them

• Nested menus so you can have hierarchies

• Request rewriting (similar to Section ??)

• State-dependent computations for such things as page titles, page-specific snippets, etc.

The beauty of SiteMap is that it’s very easy to start out with the basic functionality and then
expand on it as you grow.

5.1 Basic SiteMap Definition

Let’s start with our basic menu for PocketChange. To keep things simple, we’ll just define four
menu items to begin:

1. A home page that displays the user’s entries when the user is logged in, or a welcome page
when the user is not

2. A logout link when the user is logged in, log in and registration links and pages when the
user is not

3. Pages to view or edit the user’s profile, available only when the user is logged in

4. A help page, available whether the user is logged in or not

We’ll assume that we have the corresponding pages, "homepage", "login", "logout", and "profile,"
written and functional. We’ll also assume that the help page(s) reside under the "help" subdirec-
tory to keep things neat, and that the entry to help is /help/index.

57

58 CHAPTER 5. SITEMAP

5.1.1 The Link Class

The Link class1 is a fundamental part of Menu definitions. The Link class contains two param-
eters: a List[String] of path components, and a boolean value that controls whether prefix
matching is enabled. The path components represent the portion of the URI following your web
context, split on the "/" character. Listing ?? shows how you would use Link to represent the "/u-
tils/index" page. Of course, instead of “utils” :: “index” :: Nil, you could as easily
use List(“utils”, “index”) if you prefer.

Listing 5.1: Link Path Components
val myUtilsIndex = new Link("utils" :: "index" :: Nil, false)

Prefix matching allows the path components you specify to match any longer paths as well.
Following our first example, if you wanted to match anything under the utils directory (say, for
access control), you would set the second parameter to true, as shown in Listing ??.

Listing 5.2: Link Prefix Matching
val allUtilPages = new Link("utils" :: Nil, true)

5.1.2 ExtLink

The ExtLink object can be used to create a Link instance using your own full link URL. As its
name implies, it would usually be used for an external location. Listing ?? shows a menu item
that points to a popular website.

Listing 5.3: Using ExtLink
val goodReference = Menu(Loc("reference",

ExtLink("http://www.liftweb.net/"),
"LiftWeb"))

5.1.3 Creating Menu Entries

Menu entries are created using the Menu2 class, and its corresponding Menu object. A Menu, in
turn, holds a Loc3 trait instance, which is where most of the interesting things happen. A menu
can also hold one or more child menus, which we’ll cover in Section ??. Note that the Loc object
has several implicit methods that make defining Locs easier, so you generally want to import them
into scope . The simplest way is to import net.liftweb.sitemap.Loc._, but you can import
specific methods by name if you prefer. A Loc can essentially be thought of as a link in the menu,
and contains four basic items:

1. The name of the Loc: this must be unique across your sitemap because it can be used to look
up specific Menu items if you customize your menu display (Section ??)

2. The link to which the Loc refers: usually this will referernce a specific page, but Lift allows
a single Loc to match based on prefix as well (Section ??)

1net.liftweb.sitemap.Loc.Link
2net.liftweb.sitemap.Menu
3net.liftweb.sitemap.Loc

5.1. BASIC SITEMAP DEFINITION 59

3. The text of the menu item, which will be displayed to the user: you can use a static string or
you can generate it with a function (Section ??)

4. An optional set of LocParam parameters that control the behavior and appearance of the
menu item (see Sections ??,??, ??, and ??)

For our example, we’ll tackle the help page link first, because it’s the simplest (essentially, it’s
a static link). The definition is shown in Listing ??. We’re assuming that you’ve imported the
Loc implicit methods to keep things simple. We’ll cover instantiating the classes directly in later
sections of this chapter.

Listing 5.4: Help Menu Definition
val helpMenu = Menu(Loc("helpHome",

("help" :: "" :: Nil) -> true,
"Help"))

Here we’ve named the menu item "helpHome." We can use this name to refer back to this
menu item elsewhere in our code. The second parameter is a Pair[List[String],Boolean]
which converts directly to a Link class with the given parameters (see Section ?? above). In this
instance, by passing in true, we’re saying that anything under the help directory will also match.
If you just use a List[String], the implicit conversion is to a Link with prefix matching disabled.
Note that SiteMap won’t allow access to any pages that don’t match any Menu entries, so by doing
this we’re allowing full access to all of the help files without having to specify a menu entry for
each. The final parameter, "Help," is the text for the menu link, should we choose to generate a
menu link from this SiteMap entry.

5.1.4 Nested Menus

The Menu class supports child menus by passing them in as final constructor parameters. For
instance, if we wanted to have an "about" menu under Help, we could define the menu as shown
in Listing ??.

Listing 5.5: Nested Menu Definition
val aboutMenu = Menu(Loc("about", "help" :: "about" :: Nil, "About"))
val helpMenu = Menu(Loc(...as defined above...), aboutMenu)

When the menu is rendered it will have a child menu for About. Child menus are only ren-
dered by default when the current page matches their parent’s Loc. That means that, for instance
the following links would show in an "About" child menu item:

• /help/index

• /help/usage

But the following would not:

• /index

• /site/example

We’ll cover how you can customize the rendering of the menus in Section ??.

60 CHAPTER 5. SITEMAP

5.1.5 Setting the Global SiteMap

Once you have all of your menu items defined, you need to set them as your SiteMap. As usual,
we do this in the Boot class by calling the setSiteMap method on LiftRules, as shown in Listing
??. The setSiteMap method takes a SiteMap object that can be constructed using your menu
items as arguments.

Listing 5.6: Setting the SiteMap

LiftRules.setSiteMap(SiteMap(homeMenu, profileMenu, ...))

When you’re dealing with large menus, and in particular when your model objects create their
own menus (see MegaProtoUser, Section ??), then it can be more convenient to define List[Menu]
and set that. Listing ?? shows this usage.

Listing 5.7: Using List[Menu] for SiteMap

val menus = Menu(Loc("HomePage", "", "Home"),...) ::
...
Menu(...) :: Nil

LiftRules.setSiteMap(SiteMap(menus : _*))

The key to using List for your menus is to explicitly define the type of the parameter as "_*" so
that it’s treated as a set of varargs instead of a single argument of type List[Menu].

5.2 Customizing Display

There are many cases where you may want to change the way that particular menu items are
displayed. For instance, if you’re using a Menu item for access control on a subdirectory, you may
not want the menu item displayed at all. We’ll discuss how you can control appearance, text, etc.
in this section.

5.2.1 Hidden

The Hidden LocParam does exactly what it says: hides the menu item from the menu display.
All other menu features still work. There is a variety of reasons why you might not want a link
displayed. A common use, shown in Listing ??, is where the point of the item is to restrict access
to a particular subdirectory based on some condition. (We’ll cover the If tag in Section ??.)

Listing 5.8: Hidden Menus

val receiptImages =
Menu(Loc("receipts",

("receipts" :: Nil) -> true,
"Receipts",
Hidden, If(...)))

Note that in this example we’ve used the implicit conversion from Pair[String,Boolean]
to Link to make this Menu apply to everything under the "receipts" directory.

5.2. CUSTOMIZING DISPLAY 61

5.2.2 Controlling the Menu Text

The LinkText class is what defines the function that will return the text to display for a given
menu item. As we’ve shown, this can easily be set using the implicit conversion for string→LinkText
from Loc. As an added bonus, the implicit conversion actually takes a by-name String for the
parameter. This means that you can just as easily pass in a function to generate the link text as a
static string. For example, with our profile link we may want to make the link say "<username>’s
profile". Listing ?? shows how we can do this by defining a helper method, assuming that there’s
another method that will return the current user’s name (we use the ubiquitous Foo object here).

Listing 5.9: Customizing Link Text
def profileText = Foo.currentUser + "’s profile"
val profileMenu = Menu(Loc("Profile",

"profile" :: Nil,
profileText, ...))

Of course, if you want you can construct the LinkText instance directly by passing in a con-
structor function that returns a NodeSeq. The function that you use with LinkText takes a
type-safe input parameter, which we’ll discuss in more detail in Section ??.

5.2.3 Using <lift:Menu>

So far we’ve covered the Scala side of things. The other half of the magic is the special <lift:Menu>
tag. It’s this tag that handles the rendering of your menus into XHTML. The Menu tag uses a
built-in snippet4 to provide several rendering methods. The most commonly used method is the
Menu.builder snippet. This snippet renders your entire menu structure as an unordered list
(in XHTML). Listing ?? shows an example of using the Menu tag to build the default menu
(yes, it’s that easy).

Listing 5.10: Rendering with <lift:Menu.title>
<div class="menu">
<lift:Menu.builder />

</div>

Of course, Lift offers more customization on this snippet than just emitting some XHTML. By
specifying some prefixed attributes on the tag itself, you can add attributes directly to the menu
elements. The following prefixes are valid for attributes:

• ul - Adds the specified attribute to the element that makes up the menu

• li - Adds the specified attribute to each element for the menu

• li_item - Adds the specified attribute to the current page’s menu item

• li_path - Adds the specified attribute to the current page’s breadcrumb trail (the bread-
crumb trail is the set of menu items that are direct ancestors in the menu tree)

The suffix of the attributes represents the name of the HTML attribute that will be added to that
element, and can be anything. It will be passed directly through. For instance, we can add CSS

4net.liftweb.builtin.snippet.Menu

62 CHAPTER 5. SITEMAP

classes to our menu and elements fairly easily, as shown in Listing ??. Notice that we also add a
little JavaScript to our current menu item.

Listing 5.11: Using Attribues with Menu.builder

<lift:Menu.builder
li:class="menuitem"
li_item:class="selectedMenu"
li_item:onclick="javascript:alert(’Already selected!’);" />

In addition to rendering the menu itself, the Menu class offers a few other tricks. The Menu.title
snippet can be used to render the title of the page, which by default is the name parameter of the
Loc for the menu (the first parameter). If you write your own Loc implementation (Section ??),
or you use the Title LocParam (Section ??), you can overide the title to be whatever you’d like.
Listing ?? shows how you use Menu.title. In this particular example the title will be rendered
as "Home Page".

Listing 5.12: Rendering the Menu Title

// In Boot:
val MyMenu = Menu(Loc("Home Page", "index" :: Nil, "Home"))
// In template (or wherever)
<title><lift:Menu.title/></title>

The next snippet in the Menu class is item. The Menu.item snippet allows you to render
a particular menu item by specifying the name attribute (matching the first parameter to Loc).
As with Menu.builder, it allows you to specify additional prefixed attributes for the link to be
passed to the emitted item. Because it applies these attributes to the link itself, the only valid prefix
is "a". Additionally, if you specify child elements for the snippet tag, they will be used instead of
the default link text. Listing ?? shows an example using our "Home Page" menu item defined in
Listing ??. As you can see, we’ve added some replacement text as well as specifying a CSS class
for the link.

Listing 5.13: Using Menu.item

<lift:Menu.item name="Home Page"
a:class="homeLink">
Go Home

</lift:Menu.item>

The final snippet that the Menu class provides is the Menu.group method. We’re going to
cover the use of Menu.group in detail in Section ??.

5.3 Access Control

So far we’ve covered how to control the display side of Menus; now we’ll take a look at some of
the plumbing behind the scenes. One important function of a Menu is that it controls access to the
pages in your application. If no Menu matches a given request, then the user gets a 404 Not Found
error. Other than this binary control of "matches→display" and "doesn’t match→don’t display",
SiteMap provides for arbitrary access checks through the If and Unless LocParams.

5.4. PAGE-SPECIFIC RENDERING 63

5.3.1 If

The If LocParam takes a test function, () ⇒ Boolean, as well as failure message function,
() ⇒ Li f tResponse, as its arguments. When the Loc that uses the If clause matches a given
path, the test function is executed, and if true then the page is displayed as normal. If the
function evaluates to false, then the failure message function is executed and its result is sent
to the user. There’s an implicit conversion in Loc from a String to a response which con-
verts to a RedirectWithState instance (Section ??). The redirect is to the location specified
by LiftRules.siteMapFailRedirectLocation, which is the root of your webapp ("/") by
default. If you want, you can change this in LiftRules for a global setting, or you can provide
your own LiftResponse. Listing ?? shows a revision of the profile menu that we defined in
Listing ??, extended to check whether the user is logged in. If the user isn’t logged in, we redirect
to the login page.

Listing 5.14: Using the If LocParam
val loggedIn = If(() => User.loggedIn_?,

() => RedirectResponse("/login"))
val profileMenu = Menu(Loc("Profile",

"profile" :: Nil,
profileText, loggedIn))

5.3.2 Unless

The Unless LocParam is essentially the mirror of If. The exact same rules apply, except that the
page is displayed only if the test function returns false. The reason that there are two classes to
represent this behavior is that it’s generally clearer when a predicate is read as "working" when it
returns true.

5.4 Page-Specific Rendering

Page specific rendering with SiteMap is an advanced technique that provides a lot of flexibility
for making pages render differently depending on state.

5.4.1 The Template Parameter

Generally, the template that will be used for a page is derived from the path of the request. The
Template LocParam, however, allows you to completely override this mechanism and provide
any template you want by passing in a function ()⇒ NodeSeq. Going back to our example menus
(Section ??), we’d like the welcome page to show either the user’s entries or a plain welcome
screen depending on whether they’re logged in. One approach to this is shown in Listing ??. In
this example, we create a Template class that generates the appropriate template and then bind
it into the home page menu Loc. (See the Lift API for more on the Template class.)

Listing 5.15: Overriding Templates
val homepageTempl = Template({ () =>
<lift:surround with="default" at="content">
{ if (User.loggedIn_?) {

<lift:Entries.list />

64 CHAPTER 5. SITEMAP

} else {
<lift:embed what="welcome" />

}
}
</lift:surround>

})
val homeMenu = Menu(Loc("Home Page",

"" :: Nil,
"Home Page", homepageTempl))

5.4.2 The Snippet and LocSnippets Parameters

Besides overriding the template for a page render (admittedly, a rather coarse approach), SiteMap
has two mechanisms for overriding or defining the behavior of specific snippets. The first, Snippet,
allows you to define the dispatch for a single snippet based on the name of the snippet. Listing ??
shows how we could use Snippet to achieve the same result for the home page rendering as we
just did with the Template parameter. All we need to do is use the <lift:homepage> snippet on
our main page and the snippet mapping will dispatch based on the state. (Here we’ve moved the
welcome text into a Utils.welcome snippet.)

Listing 5.16: Using the Snippet LocParam
val homeSnippet = Snippet("homepage",
if (User.loggedIn_?) {
Entries.list _

} else {
Utils.welcome _

})
val homeMenu = Menu(Loc("Home Page",

"" :: Nil,
"Home Page", homeSnippet))

The LocSnippets trait extends the concept of Snippet to provide a full dispatch partial function.
This allows you to define multiple snippet mappings associated with a particular Loc. To simplify
things, Lift provides a DispatchLocSnippets trait that has default implementations for apply and
isDefinedAt; that means you only need to provide a dispatch method implementation for it
to work. Listing ?? shows an example of using DispatchLocSnippets for a variety of snippets.

Listing 5.17: Using LocSnippets
val entrySnippets = new DispatchLocSnippets {
def dispatch = {
case "entries" => Entries.list _
case "add" => Entries.newEntry _

}
}

5.4.3 Title

As we mentioned in Section ??, the Title LocParam can be used to provide a state-dependent title
for a page. The Title case class simply takes a function (T) ⇒ NodeSeq, where T is a type-safe

5.5. MISCELLANEOUS MENU FUNCTIONALITY 65

parameter (we’ll cover this in Section ??). Generally you can ignore this parameter if you want to,
which is what we do in Listing ??.

Listing 5.18: Customizing the Title
val userTitle = Title((_) =>
if (User.loggedIn_?) {
Text(User.name + "’s Account")

} else {
Text("Welcome to PocketChange")

})
val homeMenu = Menu(Loc("Home Page",

"" :: Nil,
"Home Page", homepageTempl, userTitle))

5.5 Miscellaneous Menu Functionality

These are LocParams that don’t quite fit into the other categories.

5.5.1 Test

Test is intended to be used to ensure that a given request has the proper parameters before ser-
vicing. With Test, you provide a function, (Req) ⇒ Boolean that is passed the full Req object.
Note that the test is performed when SiteMap tries to locate the correct menu, as opposed to If
and Unless, which are tested after the proper Loc has been identified. Returning a false means
that this Loc doesn’t match the request, so SiteMap will continue to search through your Menus to
find an appropriate Loc. As an example, we could check to make sure that a given request comes
from Opera (the Req object provides convenience methods to test for different browsers; see the
Lift API for a full list) with the code in Listing ??.

Listing 5.19: Testing the Request
val onlyOpera = Test(req => req.isOpera)
val operaMenu = Menu(Loc("Opera", "opera" :: Nil, "Only Opera", onlyOpera))

5.5.2 LocGroup

The LocGroup param allows you to categorize your menu items. The Menu.group snippet (men-
tioned in Section ??) allows you to render the menu items for a specific group. A menu item may
be associated with one or more groups. Simply add a LocGroup param with string arguments for
the group names, as shown in Listing ??.

Listing 5.20: Categorizing Your Menu
val siteMenu = Menu(Loc(...,LocGroup("admin", "site")))

In your templates, you then specify the binding of the menu as shown in Listing ??. As you
can see, we’ve also added a prefixed attribute to control the CSS class of the links ("a" is the only
valid prefix), and we’ve added some body XHTML for display. In particular, the <menu:bind>
tag controls where the menu items are rendered. If you don’t provide body elements, or if you

66 CHAPTER 5. SITEMAP

provide body elements without the <menu:bind> element, your body XHTML will be ignored
and the menu will be rendered directly.

Listing 5.21: Binding a Menu Group

<div class="site">

<lift:Menu.group group="site"
a:class="siteLink">
<menu:bind />
</lift:Menu.group>

</div>

5.6 Writing Your Own Loc

As we’ve shown, there’s a lot of functionality available for your Menu items. If you need more
control, though, the Loc trait offers some functionality, such as rewriting, that doesn’t have a direct
correspondence in a LocParam element. The basic definition of a Loc implementation covers a
lot of the same things. The following vals and defs are abstract, so you must implement them
yourself:

• def name: the name that can be used to retrieve the menu via Menu.item

• def link: the actual link; you can use the implicit conversions from List[String] or Pair[List[String],Boolean],
or you can create the Link object yourself

• def text: the text that will be displayed to the user; you can use the implicit conversion from
String, or you can provide your own LinkText instance

• def params: must return a List[LocParam] that is used to control behavior as we’ve shown
in the previous sections

• def defaultParams: used for type-safe rewriting, which we’ll cover in Section ??

Essentially, these mirror the params that are required when you use Loc.apply to generate a Loc.
We’re going to write our own Loc implementation for our Expenses in this section to demonstrate
how this works. Because this overlaps with existing functionality in the PocketChange applica-
tion, we’ll be using a branch in the PocketChange app. You can pull the new branch with the
command

git checkout --track -b custom-loc origin/custom-loc

You can then switch back and forth between the branches with the commands:

git checkout master
git checkout custom-loc

5.6. WRITING YOUR OWN LOC 67

5.6.1 Corresponding Functions

Table ?? lists the LocParams and their corresponding methods in Loc, with notes to explain any
differences in definition or usage. If yould prefer to use the LocParams instead, just define the
params method on Loc to return a list of the LocParams you want.

LocParam Loc Method Notes
Hidden N/A To make your Loc hidden, add a

Hidden LocParam to your params
method return value

If/Unless override testAccess You need to return an Either to
indicate success (Left[Boolean]) or
failure (Right[Box[LiftResponse]])

Template override calcTemplate Return a Box[NodeSeq]
Snippet and
LocSnippets

override snippets Snippet is a PartialFunction[String,
Box[ParamType]), NodeSeq =>

NodeSeq], which lets you use the
type-safe parameter to control

behavior.
Title override title You can override "def title" or "def

title(in: ParamType)" depending on
whether you want to use type-safe

parameters
Test override doesMatch_? It’s your responsibility to make sure

that the path of the request matches
your Loc, since this method is what
SiteMap uses to find the proper Loc

for a request
LocGroup override inGroup_? Nothing special here

Table 5.2: LocParam Methods in Loc

5.6.2 Type Safe Parameters

One of the nice features of Loc is that it allows you to rewrite requests in a type-safe manner.
What this means is that we can define a rewrite function on our Loc instance that returns not only
a standard RewriteResponse, but also a parameter that we can define to pass information back to
our menu to control behavior. The reason that this is type-safe is that we define our Loc on the
type of the parameter itself. For instance, let’s expand the functionality of our app so that we have
a page called "acct" that shows the expense entries for a given account. We would like this page to
be viewable only by the owner of the account under normal circumstances, but to allow them to
share it with other members if they wish to. Let’s start by defining our type-safe parameter class
as shown in Listing ??.

Listing 5.22: Defining AccountInfo
abstract class AccountInfo
case object NoSuchAccount extends AccountInfo

68 CHAPTER 5. SITEMAP

case object NotPublic extends AccountInfo
case class FullAccountInfo(account : Account,

entries : List[Expense]) extends AccountInfo

We define a few case classes to indicate various states. The FullAccountInfo holds the account
itself as well as some flags for behavior. Now that we have our parameter type, we can start to
define our Loc, as shown in Listing ??.

Listing 5.23: Defining a Type-Safe Loc
class AccountLoc extends Loc[AccountInfo] {
...
}

Assuming that an Account instance has a unique string ID, we would like to use URL rewriting
so that we can access a ledger via "/acct/<unique id>". Our rewrite function, shown in Listing ??,
handles a few different things at once. It handles locating the correct account and then checking
the permissions if everything else is OK.

Listing 5.24: The Rewrite Function
override def rewrite = Full({
case RewriteRequest(ParsePath(List("acct", aid), _, _, _), _, _) => {
Account.findAll(By(Account.stringId, aid)) match {

case List(account) if account.is_public.is => {
(RewriteResponse("account" :: Nil),
FullAccountInfo(account, account.entries))

}
case List(account) => {
(RewriteResponse("account" :: Nil),
NotPublic)

}
case _ => {
(RewriteResponse("account" :: Nil),
NoSuchAccount)
}

}
}

})

Now that we’ve defined the transformation from URL to parameter, we need to define the
behaviors based on that parameter. The account page will show a list of expense entries only if
the account is located and is public. For this example we’ll use a single template and we’ll change
the snippet behavior based on our parameter, as shown in Listing ??.

Listing 5.25: Defining Snippet Behavior
override def snippets = {
case ("entries", Full(NoSuchAccount)) => {ignore : NodeSeq =>
Text("Could not locate the requested account")}

case ("entries", Full(NotPublic)) => {ignore : NodeSeq =>
Text("This account is not publicly viewable")}

case ("entries", Full(FullAccountInfo(account, List()))) => {ignore : NodeSeq =>
Text("No entries for " + account.name.is)}

5.7. CONCLUSION 69

case ("entries", Full(FullAccountInfo(account, entries))) =>
Accounts.show(entries) _

}

In this example, we simply return some text if the Account can’t be located, isn’t public, or
doesn’t have any Expense entries. Remember that this function needs to return a snippet func-
tion, which expects a NodeSeq parameter. This is why we need to include the ignore parameter
as part of our closures. If our Account does have entries, we return a real snippet method de-
fined in our Accounts object. In our template, we simply use an entries snippet tag, as shown in
Listing ??.

Listing 5.26: Our Public Template
<lift:surround with="default" at="content">
<lift:entries eager_eval="true">
<h1><lift:Menu.title /></h1>
<lift:embed what="entry_table" />

</lift:entries>
</lift:surround>

We’re using our embedded table template for the body of the table along with the eager_eval
attribute so that we can use the same markup for all occurrences of our expense table display. We
can also define the title of the page based on the title parameter, as shown in Listing ??.

Listing 5.27: Defining the Title
override def title(param : AccountInfo) = param match {
case FullAccountInfo(acct, _) =>
Text("Expense summary for " + acct.name.is)

case _ => Text("No account")
}

5.7 Conclusion

As we’ve shown in this chapter, SiteMap offers a wide range of functionality to let you control
site navigation and access. You can customize the display of your individual items using the
LinkText LocParam as well as through the functionality of the built-in Menu builder and item
snippets. You can use the If and Unless LocParams to control access to your pages program-
matically, and you can use the Test LocParam to check the request before it’s even dispatched.
Page-specific rendering can be customized with the Template, Snippet, and LocSnippet LocParams,
and you can group menu items together via the LocGroup LocParam. Finally, you can consoli-
date all of these functions by writing your own Loc trait subclass directly, and gain the additional
benefit of type-safe URL rewriting. Together these offer a rich set of tools for building your web
site exactly they way you want to.

70 CHAPTER 5. SITEMAP

Chapter 6

The Mapper and Record Frameworks

In our experience, most webapps end up needing to store user data somewhere. Once you start
working with user data, though, you start dealing with issues like coding up input forms, valida-
tion, persistence, etc. to handle the data. That’s where the Mapper and Record frameworks come
in. These frameworks provides a scaffolding for all of your data manipulation needs. Mapper
is the original Lift persistence framework, and it is closely tied to JDBC for its storage. Record
is a new refactorization of Mapper that is backing-store agnostic at its core, so it doesn’t matter
whether you want to save your data to JDBC, JPA, or even something such as XML. With Record,
selecting the proper driver will be as simple as hooking the proper traits into your class.

The Record framework is relatively new to Lift. The plan is to move to Record as the
primary ORM framework for Lift sometime post-1.0. Because Record is still under active
design and development, and because of its current “moving target” status, this chapter is
mostly going to focus on Mapper. We will, however, provide a few comparitive examples
of Record functionality to give you a general feel for the flavor of the changes. In any case,
Mapper will not go away even when record comes out, so you can feel secure that any code
using Mapper will be viable for quite a while.

6.1 Introduction to Mapper and MetaMapper

Let’s start by discussing the relationship between the Mapper and MetaMapper traits (and the
corresponding Record and MetaRecord). Mapper provides the per-instance functionality for your
class, while MetaMapper handles the global operations for your class and provides a common
location to define per-class static specializations of things like field order, form generation, and
HTML representation. In fact, many of the Mapper methods actually delegate to methods on
MetaMapper. In addition to Mapper and MetaMapper, there is a third trait, MappedField, that
provides the per-field functionality for your class. In Record, the trait is simply called “Field”.
The MappedField trait lets you define the individual validators as well as filters to transform the
data and the field name. Under Record, Field adds some functionality such as tab order and
default error messages for form input handling.

71

72 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

6.1.1 Adding Mapper to Your Project

Since Mapper is a separate module, you need to add the following dependency to your pom.xml
to access it:

Listing 6.1: Mapper POM Dependency
<project ...>
...
<dependencies>
...
<dependency>
<groupId>net.liftweb</groupId>
<artifactId>lift-mapper</artifactId>
<version>1.0</version> <!-- or 1.1-SNAPSHOT, etc -->

</dependency>
</dependencies>
...

</project>

You’ll also need the following import in any Scala code that uses Mapper:

Listing 6.2: Mapper Imports
import _root_.net.liftweb.mapper._

6.1.2 Setting Up the Database Connection

The first thing you need to do is to define the database connection. We do this by defining
an object called DBVendor (but you can call it whatever you want). This object extends the
net.liftweb.mapper.ConnectionManager trait and must implement two methods: newConnection
and releaseConnection. You can make this as sophisticated as you want, with pooling, caching,
etc., but for now, Listing ?? shows a basic implementation to set up a PostgreSQL driver.

Listing 6.3: Setting Up the Database
.. standard Lift imports ...
import _root_.net.liftweb.mapper._
import _root_.java.sql._

object DBVendor extends ConnectionManager {
// Force load the driver
Class.forName("org.postgresql.Driver")
// define methods
def newConnection(name : ConnectionIdentifier) = {
try {
Full(DriverManager.getConnection(

"jdbc:postgresql://localhost/mydatabase",
"root", "secret"))

} catch {
case e : Exception => e.printStackTrace; Empty

}
}
def releaseConnection (conn : Connection) { conn.close }

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 73

}

class Boot {
def boot {
...
DB.defineConnectionManager(DefaultConnectionIdentifier, DBVendor)

}
}

A few items to note:

1. The name parameter for newConnection can be used if you need to have connections to
multiple distinct databases. One specialized case of this is when you’re doing DB sharding
(horizontal scaling). Multiple database usage is covered in more depth in Section ??

2. The newConnection method needs to return a Box[java.sql.Connection]. Returning
Empty indicates failure

3. The releaseConnection method exists so that you have complete control over the lifecycle
of the connection. For instance, if you were doing connection pooling yourself you would
return the connection to the available pool rather than closing it

4. The DB.defineConnectionManager call is what binds our manager into Mapper. With-
out it your manager will never get called

6.1.3 Constructing a Mapper-enabled Class

Now that we’ve covered some basic background, we can start constructing some Mapper classes
to get more familiar with the framework. We’ll start with a simple example of a class for an
expense transaction from our PocketChange application with the following fields:

• Date

• Description: a string with a max length of 100 chars

• Amount: a decimal value with a precision of 16 digits and two decimal places

• A reference to the Account that owns the transaction

Given these requirements we can declare our Expense class as shown in Listing ??.

Listing 6.4: Expense Class in Mapper
import _root_.java.math.MathContext

class Expense extends LongKeyedMapper[Expense] with IdPK {
def getSingleton = Expense
object dateOf extends MappedDateTime(this)
object description extends MappedString(this,100)
object amount extends MappedDecimal(this, MathContext.DECIMAL64, 2)
object account extends MappedLongForeignKey(this, Account)

}

74 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

For comparison, the Record version is shown in Listing ??. This example already shows some
functionality that hasn’t been ported over to Record from Mapper; among other things, the IdPK
trait, and foreign key fields (many to one mappings) are missing. The other minor differences
are that the getSingleton method has been renamed to meta, and the Field traits use different
names under the Record framework (i.e. DateTimeField vs MappedDateTime).

Listing 6.5: Entry Class in Record
import _root_.java.math.MathContext
import _root_.net.liftweb.record._

class Expense extends KeyedRecord[Expense,Long] {
def meta = Expense
def primaryKey = id
object id extends LongField(this) with KeyField[Long,Expense]
object dateOf extends DateTimeField(this)
object description extends StringField(this, 100)
object amount extends DecimalField(this, MathContext.DECIMAL64, 2)
object account extends LongField(this)

}

As you can see, we’ve set Expense to extend the LongKeyedMapper and IdPK traits and
we’ve added the fields required by our class. We would like to provide a primary key for our
entity; while not strictly necessary, having a synthetic primary key often helps with CRUD op-
erations. The LongKeyedMapper trait accomplishes two objectives: it tells Lift that we want a
primary key defined and that the key should be a long. This is basically a shortcut for using
the KeyedMapper[Long,Expense] trait. When you use the KeyedMapper trait you need to
provide an implementation for the primaryKeyField def, which must match the type of the
KeyedMapper trait and be a subtype of IndexedField. The IdPK trait handles the implemen-
tation, but note that IdPK currently only supports Long keys. Mapper supports both indexed
Longs and Strings, so if you want Strings you’ll need to explicitly use KeyedMapper[String,...]
and provide the field definition yourself. It’s possible to use some other type for your primary key,
but you’ll need to roll your own (Section ??). Technically Int indexes are supported as well, but
there is no corresponding trait for an Int foreign key. That means that if you use an Int for the
primary key, you may not be able to add a relationship to another object (Section ??), unless you
write your own. Record is a little more flexible in primary key selection because it uses, in effect, a
marker trait (KeyField) to indicate that a particular field is a key field. One thing to note is that in
the Mapper framework, the table name for your entity defaults to the name of the class (Expense,
in our case). If you want to change this, then you just need to override the dbTableName def in
your MetaMapper object.

Looking at these examples, you’ve probably noticed that the fields are defined as objects rather
than instance members (vars). The basic reason for this is that the MetaMapper needs access to
fields for its validation and form functionality; it is more difficult to cleanly define these properties
in the MetaMapper if it had to access member vars on each instance since a MetaMapper instance
is itself an object. Also note that MappedDecimal is a custom field type1, which we’ll cover in
Section ??.

In order to tie all of this together, we need to define a matching LongKeyedMetaMapper object
as the singleton for our entity, as shown in Listing ??. The Meta object (whether MetaMapper or
MetaRecord) is where you define most behavior that is common across all of your instances. In

1The authors are working on adding this to the core library soon after Lift 1.0

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 75

our examples, we’ve decided to name the meta object and instance class the same. We don’t feel
that this is unclear because the two together are what really define the ORM behavior for a “type.”

Listing 6.6: EntryMeta object
object Expense extends Expense with LongKeyedMetaMapper[Expense] {
override def fieldOrder = List(dateOf, description, amount)

}

In this instance, we’re simply defining the order of fields as they’ll be displayed in XHTML
and forms by overriding the fieldOrder method. The default behavior is an empty list, which
means no fields are involved in display or form generation. Generally, you will want to override
fieldOrder because this is not very useful. If you don’t want a particular field to show up in
forms or XHTML output, simply omit it from the fieldOrder list.

Because fields aren’t actually instance members, operations on them are slightly different than
with a regular var. The biggest difference is how we set fields: we use the apply method. In
addition, field access can be chained so that you can set multiple field values in one statement, as
shown in Listing ??:

Listing 6.7: Setting Field Values
myEntry.dateOf(new Date).description("A sample entry")
myEntry.amount(BigDecimal("127.20"))

The underlying value of a given field can be retrieved with the is method (the value method
in Record) as shown in Listing ??.

Listing 6.8: Accessing Field Values in Record
// mapper
val tenthOfAmount = myEntry.amount.is / 10
val formatted = String.format("%s : %s",

myEntry.description.is,
myEntry.amount.is.toString)

// record
if (myEntry.description.value == "Doughnuts") {
println("Diet ruined!")

}

6.1.4 Object Relationships

Often it’s appropriate to have relationships between different entities. The archetypical example
of this is the parent-child relationship. In SQL, a relationship can be defined with a foreign key that
associates one table to another based on the primary key of the associated table. As we showed in
Listing ??, there is a corresponding MappedForeignKey trait, with concrete implementations for
Long and String foreign keys. Once we have this defined, accessing the object via the relationship
is achieved by using the obj method on the foreign key field. Note that the obj method returns a
Box, so you need to do some further processing with it before you can use it. With the foreign key
functionality you can easily do one-to-many and many-to-one relationships (depending on where
you put the foreign key). One-to-many relationships can be achieved using helper methods on
the “one” side that delegate to queries. We’ll cover queries in a moment, but Listing ?? shows
examples of two sides of the same relationship.

76 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

Listing 6.9: Accessing Foreign Objects
class Expense extends LongKeyedMapper[Expense] with IdPK {
...
object account extends MappedLongForeignKey(this, Account)
def accountName =
Text("My account is " + (account.obj.map(_.name.is) openOr "Unknown"))

}

class Account ... {
...
def entries = Expense.findAll(By(Expense.account, this.id))

}

If you want to do many-to-many mappings you’ll need to provide your own “join” class with
foreign keys to both of your mapped entities. An example would be if we wanted to have tags
(categories) for our ledger entries and wanted to be able to have a given entry have multiple tags
(e.g., you purchase a book for your mother’s birthday, so it has the tags Gift, Mom, and Books).
First we define the Tag entity, as shown in Listing?? .

Listing 6.10: Tag Entity
class Tag extends LongKeyedMapper[Tag] with IdPK {
def getSingleton = Tag
object name extends MappedString(this,100)

}
object Tag extends Tag with LongKeyedMetaMapper[Tag] {
override def fieldOrder = List(name)

}

Next, we define our join entity, as shown in Listing ??. It’s a LongKeyedMapper just like the
rest of the entities, but it only contains foreign key fields to the other entities.

Listing 6.11: Join Entity
class ExpenseTag extends LongKeyedMapper[ExpenseTag] with IdPK {
def getSingleton = ExpenseTag
object tag extends MappedLongForeignKey(this,Tag)
object expense extends MappedLongForeignKey(this,Expense)

}

object ExpenseTag extends ExpenseTag with LongKeyedMetaMapper[ExpenseTag] {
def join (tag : Tag, tx : Expense) =
this.create.tag(tag).expense(tx).save

}

To use the join entity, you’ll need to create a new instance and set the appropriate foreign keys
to point to the associated instances. As you can see, we’ve defined a convenience method on
our Expense meta object to do just that. To make the many-to-many accessible as a field on our
entities, we can use the HasManyThrough trait, as shown in Listing ??.

Listing 6.12: HasManyThrough for Many-to-Many Relationships
class Expense ... {
object tags extends HasManyThrough(this, Tag,

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 77

ExpenseTag, ExpenseTag.tag, ExpenseTag.expense)
}

A similar field could be set up on the Tag entity to point to entries. It’s important to note a few
items:

• The only way to add new entries is to directly construct the ExpenseTag instances and save
them (either directly or via a helper method). You can’t make any modifications via the
HasManyThrough trait

• Although the field is defined as a query, the field is actually lazy and only runs once. That
means if you query it and then add some new ExpenseTag instances, they won’t show up in
the field contents

If you want a way to retrieve the joined results such that it pulls fresh from the database each time,
you can instead define a helper join method as shown in Section ??.

6.1.5 Indexing

It’s often helpful to add indexes to a database to improve performance. Mapper makes it easy
to do most simple indexing simply by overriding the dbIndexed_? def on the field. Listing ??
shows how we would add an index to our Expense.account field.

Listing 6.13: Indexing a Field
class Expense ... {
object account extends ... {
override def dbIndexed_? = true

}
}

Mapper provides for more complex indexing via the MetaMapper.dbIndexes def combined
with the Index, IndexField and BoundedIndexField case classes. Listing ?? shows some
examples of how we might create more complex indices.

Listing 6.14: More Complex Indices
object Expense extends ... {
// equivalent to the previous listing
override dbIndexes = Index(IndexField(account)) :: Nil
// equivalent to "create index ... on transaction_t (account, description(10))"
override dbIndexes = Index(IndexField(account),

BoundedIndexField(description,10))
}

6.1.6 Schema Mapping

The Mapper framework makes it easy not only to define domain objects, but also to create the
database schema to go along with those objects. The Schemifier object is what does all of the
work for you: you simply pass in the MetaMapper objects that you want the schema created for
and it does the rest. Listing ?? shows how we could use Schemifier to set up the database for
our example objects. The first argument controls whether an actual write will be performed on the

78 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

database. If false, Schemifier will log all of the DDL statements that it would like to apply, but
no changes will be made to the database. The second argument is a logging function (logging is
covered in Appendix ??). The remaining arguments are the MetaMapper objects that you would
like to have schemified. You need to be careful to remember to include all of the objects, otherwise
the tables won’t be created.

Listing 6.15: Using Schemifier
Schemifier.schemify(true, Log.infoF _, User, Expense, Account, Tag, ExpenseTag)

As we mentioned in Section ??, you can override the default table name for a given Mapper
class via the dbTableName def in the corresponding MetaMapper. The default table name is
the name of the Mapper class, except when the class name is also an SQL reserved word; in this
case, a “_t” is appended to the table name. You can also override individual column names on
a per-field basis by overriding the dbColumnName def in the field itself. Like tables, the default
column name for a field will be the same as the field name as long as it’s not an SQL reserved
word; in this case a “_c” is appended to the column name. Listing ?? shows how we could make
our ExpenseTag.expense field map to “expense_id”.

Listing 6.16: Setting a Custom Column Name
class ExpenseTag ... {
object expense extends ... {
override def dbColumnName = "expense_id"

}
}

6.1.7 Persistence Operations on an Entity

Now that we’ve defined our entity we probably want to use it in the real world to load and store
data. There are several operations on MetaMapper that we can use :

create Creates a new instance of the entity

save Saves an instance to the database.

delete Deletes the given entity instance

count Returns the number of instances of the given entity. An optional query criteria list can be
used to narrow the entities being counted

countByInsecureSQL Similar to count, except a raw SQL string can be used to perform the count.
The count value is expected to be in the first column and row of the returned result set. An
example would be

Expense.countByInsecureSQL(“select count(amount) “ +
“from Expense where amount > 20”, ...)

We’ll cover the IHaveValidatedThisSQL parameter in a moment.

There are also quite a few methods available for retrieving instances from the database. Each of
these methods comes in two varieties: one that uses the default database connection, and one that

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 79

allows you to specify the connection to use (Section ??). The latter typically has “DB” appended
to the method name. The query methods on MetaMapper are:

findAll Retrieves a list of instances from the database. The method is overloaded to take an
optional set of query criteria parameters; these will be covered in detail in their own section,
??.

findAllByInsecureSQL Retrieves a list of instances based on a raw SQL query. The query needs
to return columns for all mapped fields. Usually you can use the BySQL QueryParameter to
cover most of the same functionality.

findAllByPreparedStatement Similar to findAllByInsecureSQL except that prepared state-
ments are used, which usually means that the driver will handle properly escaping argu-
ments in the query string.

findAllFields This allows you to do a normal query returning only certain fields from your Map-
per instance. For example, if you only wanted the amount from the transaction table you
would use this method. Note that any fields that aren’t specified in the query will return
their default value. Generally, this method is only useful for read access to data because
saving any retrieved instances could overwrite real data.

findMap* These methods provide the same functionality as the non-Map methods, but take an
extra function argument that transforms an entity into a Box[T], where T is an arbitrary
type. An example would be getting a list of descriptions of our transactions:

Expense.findMap(entry => Full(entry.description.is))

The KeyedMapperClass adds the find method, which can be used to locate a single entity
based on its primary key. In general these operations will be supported in both Record and Map-
per. However, because Record isn’t coupled tightly to a JDBC backend some of the find methods
may not be supported directly and there may be additional methods not available in Mapper for
persistence. For this reason, this section will deal specifically with Mapper’s persistence opera-
tions.

Creating an Instance

Once we have a MetaMapper object defined we can use it to create objects using the create
method. You generally don’t want to use the “new” operator because the framework has to set
up internal data for the instance such as field owner, etc. This is important to remember, since
nothing will prevent you from creating an instance manually: you may just get errors when you
go to use the instance. The join method in Listing ?? shows an example of create usage.

Saving an Instance

Saving an instance is as easy as calling the save method on the instance you want to save. Op-
tionally, you can call the save method on the Meta object, passing in the instance you want to
save. The save method uses the the saved_? and clean_? flags to determine whether an insert
or update is required to persist the current state to the database, and returns a boolean to indicate
whether the save was successful or not. The join method in Listing ?? shows an example of save
usage.

80 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

Deleting an Instance

There are several ways to delete instances. The simplest way is to call the delete_! method on
the instance you’d like to remove. An alternative is to call the delete_! method on the Meta
object, passing in the instance to delete. In either case, the delete_! method returns a boolean
indicating whether the delete was successful or not. Listing ?? shows an example of deleting
instances.

Listing 6.17: Example Deletion
if (! myExpense.delete_!) S.error("Couldn’t delete the expense!")
//or
if (! (Expense delete_! myExpense)) S.error(...)

Another approach to deleting entities is to use the bulkDelete_!! method on MetaMapper.
This method allows you to specify query parameters to control which entities are deleted. We will
cover query parameters in Section ?? (an example is in Listing ??).

6.1.8 Querying for Entities

There are a variety of methods on MetaMapper for querying for instances of a given entity. The
simplest method is findAll called with no parameters. The “bare” findAll returns a List
of all of the instances of a given entity loaded from the database. Note that each findAll...
method has a corresponding method that takes a database connection for sharding or multiple
database usage (see sharding in Section ??). Of course, for all but the smallest datasets, pulling the
entire model to get one entity from the database is inefficient and slow. Instead, the MetaMapper
provides “flag” objects to control the query.

The ability to use fine-grained queries to select data is a fundamental feature of relational
databases, and Mapper provides first-class support for constructing queries in a manner that is not
only easy to use, but type-safe. This means that you can catch query errors at compile time instead
of runtime. The basis for this functionality is the QueryParam trait, which has several concrete
implementations that are used to construct the actual query. The QueryParam implementations
can be broken up into two main groups:

1. Comparison - These are typically items that would go in the where clause of an SQL query.
They are used to refine the set of instances that will be returned

2. Control - These are items that control things like sort order and pagination of the results

Although Mapper provides a large amount of the functionality in SQL, some features are not
covered directly or at all. In some cases we can define helper methods to make querying easier,
particularly for joins (Section ??).

6.1.9 Comparison QueryParams

The simplest QueryParam to refine your query is the By object and its related objects. By is used
for a direct value comparison of a given field: essentially an “=” in SQL. For instance, Listing ??
shows how we can get all of the expenses for a given account.

Listing 6.18: Retrieving by Account ID
val myEntries = Expense.findAll(By(Expense.account, myAccount.id))

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 81

Note that our By criterion is comparing the Expense.account field to the primary key (id
field) of our account instead of to the account instance itself. This is because the Expense.account
field is a MappedForeignKey field, which uses the type of the key instead of the type of the entity
as its underlying value. In this instance, that means that any queries using Expense.account
need to use a Long to match the underlying type. Besides By, the other basic clauses are:

• NotBy - Selects entities whose queried field is not equal to the given value

• By_>- Selects entities whose queried field is larger than the given value

• By_<- Selects entities whose queried field is less than the given value

• ByList - Selects entities whose queried field is equal to one of the values in the given List.
This corresponds to the “field IN (x,y,z)” syntax in SQL.

• NullRef - Selects entities whose queried field is NULL

• NotNullRef - Select entities whose queried field is not NULL

• Like - Select entities whose queried field is like the given string. As in SQL, the percent sign
is used as a wildcard

In addition to the basic clauses there are some slightly more complex ways to control the query.
The first of these is ByRef, which selects entities whose queried field is equal to the value of
another query field on the same entity. A contrived example would be if we define a tree structure
in our table and root nodes are marked as having themselves as parents:

Listing 6.19: An Example of ByRef
// select all root nodes from the forest
TreeNode.findAll(ByRef(TreeNode.parent,TreeNode.id))

The related NotByRef tests for inequality between two query fields.
Getting slightly more complex, we come to the In QueryParameter, which is used just like

an “IN” clause with a subselect in an SQL statement. For example, let’s say we wanted to get all
of the entries that belong to tags that start with the letter “c”. Listing ?? shows the full breakdown.

Listing 6.20: Using In
val cExpenses =
ExpenseTag.findAll(
In(ExpenseTag.tag,

Tag.id,
Like(Tag.name, "c%"))).map(_.expense.obj.open_!).removeDuplicates

Note that we use the List.removeDuplicates method to make sure that the List contains
unique entities. This requires overriding the equals and hashCode methods on the Expense
class, which we show in Listing ??. In our example we’re using the primary key (id field) to
define object “identity”.

Listing 6.21: Overriding equals and hashcode on the Expense entity
class Expense ... {
...
override def equals (other : Any) = other match {

82 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

case e : Expense if e.id.is == this.id.is => true
case _ => false

}

override def hashCode = this.id.is.hashCode
...

}

We use the ByRef params to do the join between the many-to-many entity on the query. Re-
lated to In is InRaw, which allows you to specify your own SQL subquery for the “IN” portion
of the where clause. Listing ?? shows an example of how we could use InRaw to find Tags for
expense entries made in the last 30 days.

Listing 6.22: Using InRaw
def recentTags = {
val joins = ExpenseTag.findAll(
InRaw(ExpenseTag.expense,

"select id from Expense where dateOf > (CURRENT_DATE - interval ’30
days’)",

IHaveValidatedThisSQL("dchenbecker", "2008-12-03"))
joins.map(_.expense.obj.open_!).removeDuplicates

}

Here things are starting to get a little hairy. The InRaw only allows us to specify the subquery
for the IN clause, so we have to do some postprocessing to get unique results. If you want to do
this in the query itself you’ll have to use the findAllByInsecureSql or findAllByPreparedStatement
methods, which are covered later in this section on page number ??. The final parameter for
InRaw, IHaveValidatedThisSQL acts as a code audit mechanism that says that someone has
checked the SQL to make sure it’s safe to use. The query fragment is added to the master query
as-is: no escaping or other filtering is performed on the string. That means that if you take user
input. then you need to be very careful about it or you run the risk of an SQL injection attack on
your site.

The next QueryParam we’ll cover is BySql, which lets you use a complete SQL fragment that
gets put into the where clause. An example of this would be if we want to find all expense entries
within the last 30 days, as shown in Listing ??. Again, the IHaveValidatedThisSQL case class
is required as a code audit mechanism to make sure someone has verified that the SQL used is
safe.

Listing 6.23: Using BySql
val recentEntries = Expense.findAll(
BySql("dateOf > (CURRENT_DATE - interval ’30 days’)",

IHaveValidatedThisSQL("dchenbecker","2008-12-03"))

The tradeoff with using BySql is that you need to be careful with what you allow into the
query string. BySql supports parameterized queries as shown in Listing ??, so use those if you
need to have dynamic queries. Whatever you do, don’t use string concatenation unless you really
know what you’re doing.

Listing 6.24: Parameterized BySql
val amountRange = Expense.findAll(

6.1. INTRODUCTION TO MAPPER AND METAMAPPER 83

BySql("amount between ? and ?", lowVal, highVal))

As we mentioned in Section ??, we can use the query parameters to do bulk deletes in addition
to querying for instances. Simply use the QueryParam classes to constrain what you want to
delete. Obviously, the control params that we’ll cover next make no sense in this context, but the
compiler won’t complain. Listing ?? shows an example of deleting all entries older than a certain
date.

Listing 6.25: Bulk Deletion
def deleteBefore (date : Date) =
Expense.bulkDelete_!!(By_<(Expense.dateOf, date))

6.1.10 Control QueryParams

Now that we’ve covered the selection and comparison QueryParams, we can start to look at the
control params. The first one that we’ll look at is OrderBy. This operates exactly like the order
by clause in SQL, and allows you to sort on a given field in either ascending or descending order.
Listing ?? shows an example of ordering our Expense entries by amount. The Ascending and
Descending case objects are in the net.liftweb.mapper package. The OrderBySql case class
operates similarly, except that you provide your own SQL fragment for the ordering, as shown in
the example. Again, you need to validate this SQL.

Listing 6.26: OrderBy Clause
val cheapestFirst =
Expense.findAll(OrderBy(Expense.amount,Ascending))

// or
val cheapestFirst =
Expense.findAll(OrderBySql("amount asc"),
IHaveValidatedThisSQL("dchenbecker", "2008-12-03"))

Pagination of results is another feature that people often want to use, and Mapper provides a
simple means for controlling it with two more QueryParam classes: StartAt and MaxRows, as
shown in Listing ??. In this example, we take the offset from a parameter passed to our snippet,
with a default of zero.

Listing 6.27: Pagination of Results
val offset = S.param("offset").map(_.toLong) openOr 0
Expense.findAll(StartAt(offset), MaxRows(20))

An important feature of the methods that take QueryParams is that they can take multiple
params, as shown in this example. A more complex example is shown in Listing ??. In this
example, we’re querying with a Like clause, sorting on the date of the entries, and paginating the
results, all in one statement!

Listing 6.28: Multiple QueryParams
Expense.findAll(Like(Expense.description, "Gift for%"),

OrderBy(Expense.dateOf,Descending),
StartAt(offset),
MaxRows(pageSize))

84 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

Another useful QueryParam is the Distinct case class, which acts exactly the same way
as the DISTINCT keyword in SQL. One caveat is that Mapper doesn’t support explicit joins, so
this restricts the situations in which you can use Distinct. The final “control” QueryParam
that we’ll cover is PreCache. It’s used when you have a mapped foreign key field on an entity.
Normally, when Mapper loads your main entity it leaves the foreign key field in a lazy state, so
that the query to get the foreign object isn’t executed until you access the field. This can obviously
be inefficient when you have many entities loaded that you need to access, so the PreCache
parameter forces Mapper to preload the foreign objects as part of the query. Listing ?? shows how
we can use PreCache to fetch an Expense entry as well as the account for the entry.

Listing 6.29: Using PreCache
def loadExpensePlusAccount (id : Long) =
Expense.findAll(By(Expense.id, id),

PreCache(Expense.account))

6.1.11 Making Joins a Little Friendlier

If you prefer to keep your queries type-safe, but you want a little more convenience in your joins
between entities, you can define helper methods on your entities. One example is finding all of
the tags for a given Expense, as shown in Listing ??. Using this method in our example has an
advantage over using HasManyThrough: hasManyThrough is a lazy value that will only retrieve
data from the database once per request. Using a findAll will retrieve data from the database
every time. This may be important if you add data to the database during a request, or if you
expect things to change between queries.

Listing 6.30: Join Convenience Method
def tags =
ExpenseTag.findAll(By(ExpenseTag.expense, this.id)).map(_.tag.obj.open_!)

6.2 Utility Functionality

In addition to the first-class persistence support in Mapper and Record, the frameworks provide
additional functionality to make writing data-driven applications much simpler. This includes
things such as automatic XHTML representation of objects and support for generating everything
from simple forms for an individual entity to a full-fledged CRUD2 implementation for your enti-
ties.

6.2.1 Display Generation

If you want to display a Mapper instance as XHTML, simply call the asHtml method (toXHtml
in Record) on your instance. The default implementation turns each field’s value into a Text
node via the toString method and concatenates the results separated by newlines. If you want
to change this behavior, override the asHtml on your field definitions. For example, if we wanted
to control formatting on our dateOf field, we could modify the field as shown in Listing ??.

2An acronym (Create, Read, Update and Delete) representing the standard operations that are performed on
database records. Taken from http://provost.uiowa.edu/maui/Glossary.html.

http://provost.uiowa.edu/maui/Glossary.html

6.2. UTILITY FUNCTIONALITY 85

Listing 6.31: Custom Field Display
import _root_.java.text.DateFormat
...
object dateOf extends MappedDateTime(this) {
final val dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT)

override def asHtml = Text(dateFormat.format(is))
}

Note that in Record, dateOf contains a java.util.Calendar instance and not a
java.util.Date, so we would need to use the getTime method on the value. Two similar
methods, asJSON and asJs, will return the JSON and JavaScript object representation of the in-
stance, respectively.

6.2.2 Form Generation

One of the biggest pieces of functionality in the Mapper framework is the ability to generate entry
forms for a given record. The toForm method on Mapper is overloaded so that you can control
how your form is created. All three toForm methods on Mapper take a Box[String] as their
first parameter to control the submit button; if the Box is Empty, no submit button is generated,
otherwise, the String contents of the Box are used as the button label. If you opt to skip the submit
button you’ll need to provide it yourself via binding or some other mechanism, or you can rely on
implicit form submission (when the user hits enter in a text field, for instance). The first toForm
method simply takes a function to process the submitted form and returns the XHTML as shown
in Listing ??:

Listing 6.32: Default toForm Method
myEntry.toForm(Full("Save"), { _.save })

As you can see, this makes it very easy to generate a form for editing an entity. The second
toForm method allows you to provide a URL which the Mapper will redirect to if validation
succeeds on form submission (this is not provided in Record). This can be used for something like
a login form, as shown in Listing ??:

Listing 6.33: Custom Submit Button
myEntry.toForm (Full("Login"), "/member/profile")

The third form of the toForm method is similar to the first form, with the addition of “redo”
snippet parameter. This allows you to keep the current state of the snippet when validation fails
so that the user doesn’t have to re-enter all of the data in the form.

The Record framework allows for a little more flexibility in controlling form output. The
MetaRecord object allows you to change the default template that the form uses by setting the
formTemplate var. The template may contain any XHTML you want, but the toForm method
will provide special handling for the following tags:

<lift:field_label name=“...” /> The label for the field with the given name will be rendered here.

<lift:field name=“...” /> The field itself (specified by the given name) will be rendered here. Typ-
ically this will be an input field, although it can be anything type-appropriate. For example,
a BooleanField would render a checkbox.

86 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

<lift:field_msg name=“...” /> Any messages, such as from validation, for the field with the given
name will be rendered here.

As an example, if we wanted to use tables to lay out the form for our ledger entry, the row for the
description field might look like that in Listing ??:

Listing 6.34: Custom Form Template
<!-- Example description field row for Record’s toForm method -->
<tr>
<th><lift:field_label name="description" /></th>
<td><lift:field name="description" />

<lift:field_msg name="description" /></td>
</tr>

Technically, the field_msg binding looks up Lift messages (Chapter ??) based on the field’s
uniqueId, so you can set your own messages outside of validation using the S.{error, notice,
warning} methods as shown in Listing ??:

Listing 6.35: Setting Messages via S
S.warning(myEntry.amount.uniqueFieldId,

"You have entered a negative amount!")
S.warning("amount_id", "This is brittle")

For most purposes, though, using the validation mechanism discussed in the next section is
the appropriate way to handle error checking and reporting.

6.2.3 Validation

Validation is the process of checking a field during form processing to make sure that the sub-
mitted value meets requirements. This can be something as simple as ensuring that a value was
submitted, or as complex as comparing multiple field values together. Validation is achieved via a
List of functions on a field that take the field value as input and return a List[FieldError]]
(Box[Node] in Record). To indicate that validation succeeded, simply return an empty List, oth-
erwise the list of FieldErrors you return are used as the failure messages to be presented to the
user. A FieldError is simply a case class that associates an error message with a particular field.
As an example, let’s say we don’t want someone to be able to add an Expense entry for a date in
the future. First, we need to define a function for our dateOf field that takes a Date as an input
(For Record, java.util.Calendar, not Date, is the actual value type of DateTimeField) and
returns the proper List. We show a simple function in Listing ??. In the method, we simply check
to see if the millisecond count is greater than “now” and return an error message if so.

Listing 6.36: Date Validation
import _root_.java.util.Date

class Expense extends LongKeyedMapper[Expense] with IdPK {
...
object dateOf extends MappedDateTime(this) {
def noFutureDates (time : Date) = {
if (time.getTime > System.currentTimeMillis) {
List(FieldError(this, "You cannot make future expense entries"))

6.2. UTILITY FUNCTIONALITY 87

} else {
List[FieldError]()

}
}

}
...

}

The first argument for the FieldError is the field itself, so you could use the alternate definition
shown in Listing ?? if you would prefer to define your validation functions elsewhere (if they’re
common to more than one entity, for example).

Listing 6.37: Alternate Date Validation
import _root_.java.util.Date
import _root_.net.liftweb.http.FieldIdentifier

object ValidationMethods {
def noFutureDates (field : FieldIdentifier)(time : Date) = {
if (time.getTime > System.currentTimeMillis) {
List(FieldError(field, "You cannot make future expense entries"))

} else {
List[FieldError]()

}
}
...

}

The next step is to tie the validation into the field itself. We do this by slightly modifying our
field definition for date to set our list of validators as shown in Listing ??:

Listing 6.38: Setting Validators
object dateOf extends MappedDateTime(this) {
def noFutureDates (time : Date) = { ... }
override def validations = noFutureDates _ :: Nil

}

// Using the alternate definition:
object dateOf extends MappedDateTime(this) {
override def validations = ValidationMethods.noFutureDates(dateOf) _ :: Nil

}

Note that we need to add the underscore for each validation function to be partially applied
on the submitted value. When our form is submitted, all of the validators for each field are run,
and if all of them return Empty then validation succeeds. If any validators return a Full Box, then
the contents of the Box are displayed as error messages to the user.

6.2.4 CRUD Support

Adding CRUD support to your Mapper classes is very simple. We just mix in the
net.liftweb.mapper.CRUDify trait to our meta object and it provides a full set of add, edit,
list, delete and view pages automatically. Listing ?? shows our Expensemeta object with CRUDify

88 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

mixed in.

Listing 6.39: Mixing in CRUDify
object Expense extends Expense LongKeyedMetaMapper[Expense]

with CRUDify[Long,Expense] {
... normal def here ...
// disable delete functionality
override def deleteMenuLoc = Empty

}

The CRUDify behavior is very flexible, and you can control the templates for pages or whether
pages are shown at all (as we do in our example) by overriding defs that are provided on the
CRUDify trait. In our example Listing ??, we disable the delete menu by overriding the
deleteMenuLoc method to return Empty. As an added bonus, CRUDify automatically creates
a set of menus for SiteMap (Chapter ??) that we can use by appending them onto the rest of our
menus as shown in Listing ??.

Listing 6.40: Using CRUDify Menus
class Boot {
def boot {
...
val menus = ... Menu(Loc(...)) :: Expense.menus
LiftRules.setSiteMap(SiteMap(menus : _*))

}
}

6.2.5 Lifecycle Callbacks

Mapper and Record provide for a set of callbacks that allow you to perform actions at vari-
ous points during the lifecycle of a given instance. If you want to define your own handling
for one of the lifecycle events, all you need to do is override and define the callback because
MetaMapper already extends the LifecycleCallbacks trait. Note that there is a separate
LifecycleCallbacks trait in each of the record and mapper packages, so make sure that you
import the correct one. For example, if we want to notify a Comet actor whenever a new Expense
entry is saved, we can change our Expense class as shown in Listing ??:

Listing 6.41: Lifecycle Callbacks
object Expense extends LongKeyedMapper[Expense] with LifecycleCallbacks {
...
override def afterSave { myCometActor ! this }

}

The lifecycle hooks are executed at the main operations in an instance lifecycle:

Create When a new instance is created

Delete When an instance is deleted

Save When a fresh instance is first saved (corresponding to a table insert)

6.2. UTILITY FUNCTIONALITY 89

Update When an instance that already exists in the database is updated (corresponding to a table
update)

Validation When form validation occurs.

For each of these points you can execute your code before or after the operation is run.

6.2.6 Base Field Types

The Record and Mapper frameworks define several basic field types. The following table shows
the corresponding types between Mapper and Record, as well as a brief description of each type.

Mapper Record Notes
MappedBinary BinaryField Represents a byte array. You must provide your

own overrides for toForm and asXHtml/asHtml for
input and display

MappedBirthYear N/A Holds an Int that represents a birth year. The
constructor takes a minAge parameter that is used
for validation

MappedBoolean BooleanField Represents a Boolean value. The default form
representation is a checkbox

MappedCountry CountryField Represents a choice from an enumeration of country
phone codes as provided by the
net.liftweb.mapper.Countries.I18NCountry class.
The default form representation is a select

MappedDateTime DateTimeField Represents a timestamp (java.util.Calender for
Record, java.util.Date for Mapper). The default
form representation is a text input

MappedDouble DoubleField Represents a Double value
MappedEmail EmailField Represents an email address with a maximum

length
MappedEnum EnumField Represents a choice from a given scala.Enumeration.

The default form representation is a select
MappedEnumList N/A Represents a choice of multiple Enumerations. The

default form representation is a set of checkboxes,
one for each enum value

MappedFakeClob N/A Fakes a CLOB value (really stores String bytes to a
BINARY column)

MappedGender N/A Represents a Gender enumeration. Display values
are localized via the I18NGenders object.
Internationalization is covered in appendix ??

MappedInt IntField Represents an Int value
MappedIntIndex N/A Represents an indexed Int field (typically a primary

key). In Record this is achieved with the KeyField
trait

MappedLocale LocaleField Represents a locale as selected from the
java.util.Locale.getAvailableLocales method. The
default form representation is a select

90 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

Mapper Record Notes
MappedLong LongField Represents a Long value

MappedLongForeignKey N/A Represents a mapping to another entity via the
other entities Long primary key. This functionality
in Record is not yet supported

MappedLongIndex N/A Represents an indexed Long field (typically a
primary key). In Record this is achieved with the
KeyField trait

MappedPassword PasswordField Represents a password string. The default form
representation is a password input (obscured text)

MappedPoliteString N/A Just like MappedString, but the default value is an
empty string and the input is automatically
truncated to fit the database column size

MappedPostalCode PostalCodeField Represents a validated postal code string. The field
takes a reference to a MappedCountry
(CountryField in Record) at definition and validates
the input string against the selected country’s postal
code format

MappedString StringField Represents a string value with a maximum length
and optional default value

MappedStringForeignKey N/A Represents a mapping to another entity via the
other entities String primary key. This functionality
in Record is not yet supported

MappedStringIndex N/A Represents an indexed String field (typically a
primary key). In Record this is achieved with the
KeyField trait

MappedText N/A Represents a String field that stores to a CLOB
column in the database. This can be used for large
volumes of text.

MappedTextarea TextAreaField Represents a String field that will use an HTML
textarea element for its form display. When you
define the field you can override the textareaCols
and textareaRows defs to control the dimensions of
the textarea.

MappedTimeZone TimeZoneField Represents a time zone selected from
java.util.TimeZone.getAvailableIDs. The default
form representation is a select

MappedUniqueId N/A Represents a unique string of a specified length that
is randomly generated. The implementation doesn’t
allow the user to write new values to the field. This
can be thought of as a GUID

6.2.7 Defining Custom Field Types in Mapper

The basic MappedField types cover a wide range of needs, but sometimes you may find your-
self wanting to use a specific type. In our example, we would like a decimal value for our ex-
pense amount and account balance. Using a double would be inappropriate due to imprecision

6.2. UTILITY FUNCTIONALITY 91

and rounding errors3, so instead we base it on scala.BigDecimal. We’re going to provide an
abridged version of the code that will end up in the Lift library. Feel free to examine the source
to see the constructors and methods that we’ve omitted4. Our first task is to specify the class sig-
nature and constructors, as shown in Listing ??. Note that the BigDecimal we’re using here is
scala.BigDecimal, not java.math.BigDecimal. We’ll cover how we make this work with
JDBC (which doesn’t support scala.BigDecimal) in a moment.

Listing 6.42: MappedDecimal Constructors
import _root_.java.math.{MathContext, RoundingMode}

class MappedDecimal[T <: Mapper[T]] (val fieldOwner : T,
val context : MathContext,
val scale : Int) extends MappedField[BigDecimal,T] {

// ... constructor taking initial value ...
def this(fieldOwner : T, value : BigDecimal, context: MathContext) = {
this(fieldOwner, context, value.scale)
setAll(value) // we’ll cover this later in this section

}

def this(fieldOwner : T, value : BigDecimal) = {
this(fieldOwner, MathContext.UNLIMITED, value.scale)
setAll(value)

}

The first part of the class definition is the type signature; basically the type [T <: MappedField[T]]
indicates that whatever type “owns” this field must be a Mapper subclass (<: specifies an up-
per type bound5). With our primary constructor we specify the owner mapper as well as the
MathContext (this controls rounding and precision, or the total number of digits) and scale of
the decimal value. The scale in BigDecimal essentially represents the number of digits to the
right of the decimal point. In addition, we specify ancillary constructors to take an initial value
with or without and explicit MathContext.

Now that we have the constructors in place, there are several abstract methods on MappedField
that we need to define. The first of these is a method to provide a default value. The default value
is used for uninitialized fields or if validation fails. We also need to specify the class for our
value type by implementing the dbFieldClass method. Listing ?? shows both of these meth-
ods. In our case, we default to a zero value, with the scale set as specified in the contructor. Note
that BigDecimal instances are generally immutable, so the setScale method returns a new in-
stance. We also provide the vars and methods that handle the before and after values of the field.
These values are used to handle persistence state. If you change the value of the field, then the
original value is held until the instance is saved to the database. The st method is used internally
to set the value of the field when instances are “rehydrated” from the database.

Listing 6.43: Setting a Default Value
private val zero = BigDecimal("0")
def defaultValue = zero.setScale(scale)
def dbFieldClass = classOf[BigDecimal]

3http://stephan.reposita.org/archives/2008/01/11/once-and-for-all-do-not-use-double-for-money/
4The code is checked into the master branch of the liftweb Git repository.
5For more on type bounds, see http://www.scala-lang.org/node/136.

http://stephan.reposita.org/archives/2008/01/11/once-and-for-all-do-not-use-double-for-money/
http://www.scala-lang.org/node/136

92 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

// The data and orgData variables are used so that
// we know when the field has been modified by the user
private var data : BigDecimal = defaultValue
private var orgData : BigDecimal = defaultValue
private def st (in : BigDecimal) {
data = in
orgData = in

}

// The i_is_! and i_was_! methods are used internally to
// keep track of when the field value is changed. In our
// instance they delegate directly to the data and orgData
// variables
protected def i_is_! = data
protected def i_was_! = orgData
override def doneWithSave() {
orgData = data

}

The next set of methods we need to provide deal with when and how we can access the data.
Listing ?? shows the overrides that set the read and write permissions to true (default to false for
both) as well as the i_obscure_! and real_i_set_! methods. The i_obscure_! method
returns the a value that is used when the user doesn’t have read permissions. The real_i_set_!
method is what actually stores the internal value and sets the dirty flag when the field is updated.

Listing 6.44: Access Control
override def readPermission_? = true
override def writePermission_? = true
protected def i_obscure_!(in : BigDecimal) = defaultValue
protected def real_i_set_!(value : BigDecimal): BigDecimal = {
if (value != data) {
data = value
dirty_?(true)

}
data

}

The next two methods that we need to provide deal with actually setting the value of the field.
The first is setFromAny, which takes an Any parameter and must convert it into a BigDecimal.
The second, setFromString is a subset of setFromAny in that it takes a String parameter and
must return a BigDecimal. Our implementation of these two methods is shown in Listing ??.
We’ve also added a setAll and coerce method so that we have a common place to properly set
scale and rounding modes on the value of the field.

Listing 6.45: setFrom... Methods
def setFromAny (in : Any) : BigDecimal =
in match {
case bd : BigDecimal => setAll(bd)
case n :: _ => setFromString(n.toString)
case Some(n) => setFromString(n.toString)
case Full(n) => setFromString(n.toString)
case None | Empty | Failure(_, _, _) | null => setFromString("0")

6.2. UTILITY FUNCTIONALITY 93

case n => setFromString(n.toString)
}

def setFromString (in : String) : BigDecimal = {
this.setAll(BigDecimal(in))

}

protected def setAll (in : BigDecimal) = set(coerce(in))

// Make a separate method for properly adjusting scale and rounding.
// We’ll use this method later in the class as well.
protected coerce (in : BigDecimal) =
new BigDecimal(in.bigDecimal.setScale(scale, context.getRoundingMode))

Our implementations are relatively straightforward. The only special handling we need for
setFromAny is to properly deal with Lists, Boxes, Options and the null value. The BigDecimal
constructor takes Strings, so the setFromString method is easy. The only addition we make
over the BigDecimal constructor is to properly set the scale and rounding on the returned value.

Our final step is to define the database-specific methods for our field, as shown in Listing
??. The first method we implement is targetSQLType. This method tells Mapper what the
corresponding SQL type is for our database column. The jdbcFriendly method returns a
value that can be used in a JDBC statement. Here’s where we need to use the bigDecimal val
on our scala.BigDecimal to obtain the real java.math.BigDecimal instance. Similarly,
the real_convertToJDBCFriendly method needs to return a java BigDecimal for a given
scala.BigDecimal input. The buildSet... methods return functions that can be used to set
the value of our field based on different input types. These are essentially conversion functions
that are used by Lift to convert data retrieved in a ResultSet into actual field values. Finally, the
fieldCreatorString specifices what we would need in a CREATE TABLE statement to define
this column. In this instance, we need to take into account the precision and scale. We use default
precision if we’re set to unlimited, but it’s important to understand that actual precision for the
default DECIMAL type varies between RDBMS vendors.

Listing 6.46: Database-Specific Methods

def targetSQLType = Types.DECIMAL
def jdbcFriendly(field : String) = i_is_!.bigDecimal
def real_convertToJDBCFriendly(value: BigDecimal): Object = value.bigDecimal

// The following methods are used internally by Lift to
// process values retrieved from the database.

// We don’t convert from Boolean values to a BigDecimal, so this returns null
def buildSetBooleanValue(accessor : Method, columnName : String) :
(T, Boolean, Boolean) => Unit = null

// Convert from a Date to a BigDecimal. Our assumption here is that we can take
// The milliseconds value of the Date.
def buildSetDateValue(accessor : Method, columnName : String) :

(T, Date) => Unit =
(inst, v) =>
doField(inst, accessor,{
case f: MappedDecimal[T] =>

94 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

f.st(if (v == null) defaultValue else coerce(BigDecimal(v.getTime)))
})

// Convert from a String to a BigDecimal. Since the BigDecimal object can
// directly convert a String, we just pass the String directly.
def buildSetStringValue(accessor: Method, columnName: String) :

(T, String) => Unit =
(inst, v) =>
doField(inst, accessor,{
case f: MappedDecimal[T] =>
f.st(coerce(BigDecimal(v)))

})

// Convert from a Long to a BigDecimal. This is slightly more complex than
// for a String, since we need to check for null values.
def buildSetLongValue(accessor: Method, columnName : String) :

(T, Long, Boolean) => Unit =
(inst, v, isNull) =>
doField(inst, accessor, {
case f: MappedDecimal[T] =>
f.st(if (isNull) defaultValue else coerce(BigDecimal(v)))

})

// Convert from an AnyRef (Object). We simply use the String value
// of the input here.
def buildSetActualValue(accessor: Method, data: AnyRef, columnName: String) :

(T, AnyRef) => Unit =
(inst, v) =>
doField(inst, accessor, {
case f: MappedDecimal[T] => f.st(coerce(BigDecimal(v.toString)))

})

def fieldCreatorString(dbType: DriverType, colName: String): String = {
val suffix = if (context.getPrecision == 0) "" else {
"(" + context.getPrecision + "," + scale + ")"

}
colName + " DECIMAL" + suffix

}

6.2.8 ProtoUser and MegaProtoUser

In addition to all of the database-related features, Mapper contains an extra goody to help you
quickly set up small sites. ProtoUser and MegaProtoUser are two built-in traits that de-
fine a simple user account. The ProtoUser trait defines some basic fields for a user: email,
firstName, lastName, password and superUser (a boolean to provide basic permissions).
There are also a number of defs used to format the fields for display or to provide form labels.
Listing ?? shows an example of a ProtoUser-based Mapper class that overrides some of the for-
matting defs.

Listing 6.47: A Simple ProtoUser
class User extends ProtoUser[User] {

6.3. ADVANCED FEATURES 95

override def shortName = firstName.is
override lastNameDisplayName = "surname"

}

The MegaProtoUser trait, as its name implies, extends the ProtoUser trait with a whole
suite of functionality. The main thrust of MegaProtoUser (and its associated meta object,
MetaMegaProtoUser) is to automatically handle all of the scaffolding for a complete user man-
agement system, with:

• A user registration page with configurable validation via email

• A login page that automatically handles authentication

• A lost password page that does reset via email

• A change password page

• A user edit page

• A simple method to generate SiteMap menus for all of these pages

Of course, you can customize any of these by overriding the associated methods on the MetaMegaPro-
toUser object. Listing ?? shows an example of sprucing up the signup and login pages by overrid-
ing the loginXHtml and signupXHtml methods. Listing ?? shows how easy it is to then hook
the MetaMegaProtoUser menus into SiteMap.

Listing 6.48: Hooking MetaMegaProtoUser into Boot
// in Boot.scala
LiftRules.setSiteMap(SiteMap((... :: User.sitemap) :_*))

6.3 Advanced Features

In this section we’ll cover some of the advanced features of Mapper

6.3.1 Using Multiple Databases

It’s common for an application to need to access data in more than one database. Lift supports
this feature through the use of overrides on your MetaMapper classes. First, we need to define
the identifiers for the various databases using the ConnectionIdentifier trait and overriding
the jndiName def. Lift comes with one pre-made: DefaultConnectionIdentifier. It’s jn-
diName is set to “lift”, so it’s recommended that you use something else. Let’s say we have two
databases: sales and employees. Listing ?? shows how we would define the ConnectionIdentifier
objects for these.

Listing 6.49: Defining Connection Identifiers
object SalesDB extends ConnectionIdentifier {
def jndiName = "sales"

}

object EmployeeDB extends ConnectionIdentifier {

96 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

def jndiName = "employees"
}

Simple enough. Now, we need to create connection managers for each one, or we can combine
the functionality into a single manager. To keep things clean we’ll use a single manager, as shown
in Listing ??. Scala’s match operator allows us to easily return the correct connection.

Listing 6.50: Multi-database Connection Manager

object DBVendor extends ConnectionManager {
Class.forName("org.postgresql.Driver")

def newConnection(name : ConnectionIdentifier) = {
try {
name match {
case SalesDB =>
Full(DriverManager.getConnection(
"jdbc:postgresql://localhost/sales",
"root", "secret"))

case EmployeeDB =>
Full(DriverManager.getConnection(
"jdbc:postgresql://server/employees",
"root", "hidden"))

} catch {
case e : Exception => e.printStackTrace; Empty

}
}
def releaseConnection (conn : Connection) { conn.close }

}

A special case of using multiple databases is sharding6. Sharding is a means to scale your
database capacity by associating entities with one database instance out of a federation of servers
based on some property of the entity. For instance, we could distribute user entites across 3
database servers by using the first character of the last name: A-H goes to server 1, I-P goes to
server 2, and Q-Z goes to server 3. As simple as this sounds, there are some important factors to
remember:

• Sharding increases the complexity of your code.

• To get the most benefit out of sharding, you need to carefully choose and tune your “selec-
tor.” If you’re not careful, you can get an uneven distribution where some servers handle
significantly more load than others, defeating the purpose of sharding. The example we’ve
given here of using the last name is, in practice, a very poor choice. We recommend reading
http://startuplessonslearned.blogspot.com/2009/01/sharding-for-startups.html for a good
overview of the pros and cons of various selector strategies.

• When you use sharding, you can’t just use normal joins anymore because the data isn’t all
within one instance. This means more work on your part to properly retrieve and associate
data

6For more information on sharding, see this article: http://highscalability.com/
unorthodox-approach-database-design-coming-shard

http://startuplessonslearned.blogspot.com/2009/01/sharding-for-startups.html
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard

6.3. ADVANCED FEATURES 97

Mapper provides a handy feature for sharding that allows you to choose which database connec-
tion you want to use for a specific entity. There are two methods we can use to control the behavior:
dbSelectDBConnectionForFind and dbCalculateConnectionIdentifier. dbSelect... is
used to find an instance by primary key, and takes a partial function (typically a match clause) to
determine which connection to use. dbCalculate... is used when a new instance is created to de-
cide where to store the new instance. As an example, say we’ve defined two database connections,
SalesA and SalesB. We want to place new instances in SalesA if the amount is > $100 and SalesB
otherwise. Listing ?? shows our method in action.

Listing 6.51: Sharding in Action
class Expense extends LongKeyedMapper[Expense] {
... fields, etc ...

override def dbCalculateConnectionIdentifier = {
case n if n.amount.is > 100 => SalesA
case _ => SalesB

}
}

6.3.2 SQL-based Queries

If, despite all that Mapper covers, you find yourself still wanting more control over the query, there
are two more options available to you: findAllByPreparedStatement and findAllByInsecureSql.
The findAllByPreparedStatement method allows you to, in essence, construct your query
completely by hand. The added benefit of using a PreparedStatement7 means that you can
easily include user-defined data in your queries. The findAllByPreparedStatement method
takes a single function parameter. This function takes a SuperConnection8 and returns a
PreparedStatement instance. Listing ?? shows our previous example in which we looked up
all Tags for recent Expense entries, but here using findAllByPreparedStatement instead.
The query that you provide must at least return the fields that are mapped by your entity, but you
can return other columns as well (they’ll just be ignored), so you may choose to do a “select *” if
you prefer.

Listing 6.52: Using findAllByPreparedStatement
def recentTags = Tag.findAllByPreparedStatement({ superconn =>
superconn.connection.prepareStatement(
"select distinct Expense.id, Tag.name" +
"from Tag" +
"join ExpenseTag et on Tag.id = et.tag " +
"join Expense ex on ex.id = et.expense " +
"where ex.dateOf > (CURRENT_DATE - interval ’30 days’)")

})

The findAllByInsecureSql method goes even further, executing the string you submit di-
rectly as a statement without any checks. The same general rules apply as for
findAllByPreparedStatement, although you need to add the IHaveValidatedThisSQL

7http://java.sun.com/javase/6/docs/api/java/sql/PreparedStatement.html
8Essentially a thin wrapper on java.sql.Connection, http://scala-tools.org/mvnsites/liftweb/

lift-webkit/scaladocs/net/liftweb/mapper/SuperConnection.html

http://java.sun.com/javase/6/docs/api/java/sql/PreparedStatement.html
http://scala-tools.org/mvnsites/liftweb/lift-webkit/scaladocs/net/liftweb/mapper/SuperConnection.html
http://scala-tools.org/mvnsites/liftweb/lift-webkit/scaladocs/net/liftweb/mapper/SuperConnection.html

98 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

parameter as a code audit check. In either case, the ability to use full SQL queries can allow you to
do some very powerful things, but it comes at the cost of losing type safety and possibly making
your app non-portable.

As a last resort, Mapper provides support for non-entity SQL queries through a few methods
on the DB object. The first method we’ll look at is DB.runQuery. This method allows you to
provide a full SQL query string, and is overloaded to take a parameterized query. It returns a
Pair[List[String],List[List[String]], with the first List[String] containing all of
the column names and the second List corresponding to each row in the result set. For example,
let’s say we wanted to compute the sums of each tag for a given account. Listing ?? shows how
we could accomplish this using a parameterized query against the database.

Listing 6.53: Using DB.runQuery
DB.runQuery("select Tag.name, sum(amount) from Expense ex " +

"join ExpenseTag et on et.expense = ex.id " +
"join Tag on et.tag = Tag.id " +
"join Account on Account.id = ex.account " +
"where Account.id = ? group by Tag.name order by Tag.name",
myAccount.id)

// might return:
(List("tag", "sum"]),
List(List("food","42.00"),

List("home","75.49"),
List("work","2.00")))

If you need full control over the query and full access to the result set, DB provides some low-
level utility methods. The most basic is DB.use, which takes a connection identifier as well as
a function that takes a SuperConnection (a thin wrapper on JDBC’s connection). This forms
a loan pattern9 that lets Mapper deal with all of the connection open and release details. The
DB.exec method takes a provided connection and executes an arbitrary SQL statement on it,
then applies a provided function to the result set. Similarly, the DB.prepareStatement method
allows you to create a prepared statement and then apply a function to it. You can combine these
methods to run any arbitrary SQL, as shown in Listing ??.

Listing 6.54: Using DB.use
// recompute an account balance from all of the transactions
DB.use(DefaultConnectionIdentifier) { conn =>
val balance =
// Should use a prepared statement here. This is for example only
DB.exec(conn,
"select sum(ex.amount) from Expense ex where ex.account = "
+ myAccount.id) {
rs =>
if (!rs.next) BigDecimal(0)
else (new BigDecimal(rs.getBigDecimal(1)))

}
DB.prepareStatement("update Account set balance = ? where Account.id = ",

conn) { stmt =>
stmt.setBigDecimal(1, balance.bigDecimal)
stmt.setLong(2, resetAccount.id)

9http://scala.sygneca.com/patterns/loan

http://scala.sygneca.com/patterns/loan

6.4. SUMMARY 99

stmt.executeUpdate()
}

}

6.4 Summary

In this chapter, we discussed the two major ORMs included in Lift: Mapper and Record. We’ve
shown how you can define entities using the Mapper field types and how to coordinate between
the entity and its Meta-object. We’ve shown how you can customize the display and schema of
your behavior with custom form control, CRUD support, and indexing. And we’ve show you
how to query for entities using Mapper’s type-safe query support. Finally, we showed you how
you can do in-depth customization of Mapper behavior by writing your own field types, using
multiple databases, and using raw SQL queries.

100 CHAPTER 6. THE MAPPER AND RECORD FRAMEWORKS

Part II

Advanced Topics

101

Chapter 7

Advanced Lift Architecture

This chapter is still under active development. The contents will change.

Congratulations! You’ve either made it through the introduction to Lift, or maybe you’ve just
skipped Basics and jumped right to here to Advanced; either way, the next group of chapters will
be exciting.

In this chapter we’re going to dive into some of the advanced guts of Lift so that you have a
thorough understanding of what’s going on before we explore further.

7.1 Architectural Overview

Before we jump into the specific details of the architecture, let’s refresh our memories. Figure ??
highlights the main Lift components and where they live in the ecosystem. Scala compiles down
to Java bytecode, so we sit on top of the JVM. Lift Applications are typically run in a J(2)EE web
container, such as Jetty or Tomcat. As we explained in section ??, Lift is set up to act as a Filter1 that
acts as the entry point. Usage of the rest of the framework varies from application to application,
depending on how simple or complex you make it.

The major components outlined in the diagram are:

LiftCore The engine of the framework responsible for request/response lifecycle, rendering pipeline,
invoking user’s functions etc. We don’t directly cover the core in this book since essentially
all of the functionality that we do cover sits on top of the core

SiteMap Contains the web pages for a Lift application (chapter??)

LiftRules Allows you to configure Lift. We cover this in various sections throughout the book

LiftSession The session state representation (section ??)

S The stateful object impersonating the state context for a given request/response lifecycle (sec-
tion ??)

1http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html

103

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html

104 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

Figure 7.1: Architecture

Lift Application

Lift Framework

Scala Framework

J(2)EE Web Container

JVM

Utils

Li
ftR

es
po

ns
e

Mapper/Record
ORM Framework

Comet

Views

HTTP
Auth

JS
API

Lift Core

SHtmlSLiftSessionLiftRulesSiteMap

Application
Specific
Modules Boot

(Configure Lift and
Inject user functions)

Page Templates

Model
(Lift ORM)

Snippets

7.2. THE REQUEST/RESPONSE LIFECYCLE 105

SHtml Contains helper functions for XHtml artifacts (chapters ?? and ??)

Views LiftView objects impersonating a view as a XML content. Thus pages can be composed
from other sources not only from html files. (section ??)

LiftResponse Represents the abstraction of a response that will be propagated to the client. (sec-
tion ??)

Comet Represents the Comet Actors layer which allows the sending of asynchronous content to
the browser (section ??)

ORM - Either Mapper or Record - The lightweight ORM library provided by Lift. The Mapper
framework is the proposed ORM framework for Lift 1.0 and the Record framework will be
out for next releases. (chapter ??)

HTTP Auth - You can use either Basic or Digest HTTP authentication in your Lift application.
This provides you more control as opposed to web-container’s HTTP authentication model.
(section ??)

JS API The JavaScript abstraction layer. These are Scala classes/objects that abstract JavaScript
artifacts. Such objects can be combined to build JavaScript code (chapter ??)

Utils Contains a number of helper functions that Lift uses internally and are available to your
application

7.2 The Request/Response Lifecycle

We briefly discussed the Request/Response Liftcycle in section ??, and now we’re going to cover
it in depth. This will serve not only to familiarize you with the full processing power of Lift, but
also to introduce some of the other advanced topics we’ll be discussing in this and later chapters.

One important thing we’d like to mention is that most of the configurable properties are in
LiftRules, and are of type RulesSeq. With a RulesSeq you essentially have a list of functions
or values that are applied in order. RulesSeq defines a prepend and append method that allows
you to add new configuration items at the beginning or end of the configuration, respectively.
This allows you to prioritize things like partial functions and compose various methods together
to control Lift’s behavior. You can think of a RulesSeq as a Seq on steroids, tweaked for Lift’s
usage.

The following list outlines, in order, the process of transforming a Request into a Response.
We provide references to the sections of the book where we discuss each step in case you want to
branch off.

1. Execute early functions: this is a mechanism that allows a user function to be called on the
HttpServletRequest before it enters the normal processing chain. This can be used for, for
example, to set the XHTML output to UTF-8. This is controlled through LiftRules.early

2. Perform URL Rewriting, which we already covered in detail in section ??. Controlled via
LiftRules.rewrite, this is useful for creating user-friendly URLs, among other things.
The result of the transformation will be checked for possible rewrites until there are no more
matches or it is explicitly stopped by setting the stopRewriting val in ReqwriteResponse
to true. It is relevant to know that you can have rewriter functions per-session hence you

106 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

can have different rewriter in different contexts. These session rewriters are prended to the
LiftRules rewriters before their application.

3. Call LiftRules.onBeginServicing hooks. This is a mechanism that allows you to add
your own hook functions that will be called when Lift is starting to process the request. You
could set up logging here, for instance.

4. Check for user-defined stateless dispatch in LiftRules.statelessDispatchTable. If
the partial functions defined in this table match the request then they are used to create a
LiftResponse that is sent to the user, bypassing any further processing. These are very
useful for building things like REST APIs. The term stateless refers to the fact that at the
time the dispatch function is called, the stateful object, called S, is not available and the
LiftSession is not created yet. Custom dispatch is covered in section ??

5. Create a LiftSession. The LiftSession holds various bits of state for the request, and
is covered in more detail in section ??.

6. Call LiftSession.onSetupSession. This is a mechanism for adding hook functions that
will be called when the LiftSession is created. We’ll get into more details when we discuss
Lift’s session management in section ??.

7. Initialize the S object (section ??). The S object represents the current state of the Request
and Response.

8. Call any LoanWrapper instances that you’ve added through S.addAround. A LoanWrapper
is a way to insert your own processing into the render pipeline, similar to how Filter works
in the Servlet API. This means that when your LoanWrapper implementation is called, Lift
passes you a function allowing you to chain the processing of the request. With this func-
tionality you can execute your own pre- and post-condition code. A simple example of this
would be if you need to make sure that something is configured at the start of processing
and cleanly shut down when processing terminates. LoanWrappers are covered in section
??

9. Process the stateful request

(a) Check the stateful dispatch functions defined in LiftRules.dispatch. This is sim-
ilar to the stateless dispatch in step #4 except that these functions are executed in the
context of a LiftSession and an S object (section ??). The first matching partial func-
tion is used to generate a LiftResponse that is returned to the client. If none of the
dispatch functions match then processing continues. Dispatch functions are covered in
section ??. This flow is wrapped by LiftSession.onBeginServicing/onEndServicing calls

(b) If this is a Comet request, then process it and return the response. Comet is a method
for performing asynchronous updates of the user’s page without a reload. We cover
Comet techniques in chapter ??

(c) If this is an Ajax request, execute the user’s callback function; the specific function
is mapped via a request parameter (essentially a token). The result of the callback is
returned as the response to the user. The response can be a JavaScript snippet, an XML
construct or virtually any LiftResponse. For an overview of LiftResponse please
see section ??. This flow is wrapped by LiftSession.onBeginServicing/onEndServicing
calls.

7.2. THE REQUEST/RESPONSE LIFECYCLE 107

(d) If this is a regular HTTP request, then:

i. Call LiftSession.onBeginServicing hooks. Mostly “onBegin”/”onEnd” func-
tions are used for logging. Note that the LiftRules object also has onBeginServicing
and onEndServicing functions but these are “wrapping” more Lift processing
and not just statefull processing.

ii. Check the user-defined dispatch functions that are set per-session (see S.addHighLevelSessionDispatcher).
This is similar to LiftRules.dispatch except that you can have different func-
tions set up for a different session depending on your application logic. If there is
a function applicable, execute it and return its response. If there is no per-session
dispatch function, process the request by executing the Scala function that user set
up for specific events (such as when clicking a link, or pressing the submit button,
or a function that will be executed when a form field is set etc.). Please see SHtml
obejct ??.

iii. Check the SiteMap and Loc functions. We cover SiteMap extensively in chapter ??.
iv. Lookup the template based on the request path. Lift will locate the templates using

various approaches:
A. Check the partial functions defined in LiftRules.viewDispatch. If there is

a function defined for this path invoke it and return an Either[()⇒ Can[NodeSeq],LiftView].
This allows you to either return the function for handling the view directly, or
delegate to a LiftView subclass. LiftView is covered in section ??

B. If no viewDispatch functions match, then look for the template using the Servlet-
Context’s getResourceAsStream.

C. If Lift still can’t find any templates, it will attempt to locate a View class whose
name matches the first component of the request path under the view folder of
any packages defined by LiftRules.addToPackagesmethod. If an InsecureLiftView
class is found, it will attempt to invoke a function on the class corresponding to
the second component of the request path. If a LiftView class is found, it will
invoke the dispatch method on the second component of the request path.

v. Process the templates by executing snippets, combining templates etc.
A. Merge <head> elements, as described in section e??
B. Update the internal functions map. Basically this associates the user’s Scala

functions with tokens that are passed around in subsequent requests using
HTTP query parameters. We cover this mechanism in detail in section ??

C. Clean up notices (see S.error, S.warning, S.notice) since they were already ren-
dered they are no longer needed. Notices are covered in section ??.

D. Call LiftRules.convertResponse. Basically this glues together different
pieces if information such as the actual markup, the response headers, cookies,
etc into a LiftResponse instance.

E. Check to see if Lift needs to send HTTP redirect. For an overview please see ??
vi. Call LiftSession.onEndServicing hooks, the counterparts to LiftSession.onBeginServicing

(e) Call LiftRules.performTransform. This is actually configured via the LiftRules.responseTransformers
RulesSeq. This is a list of functions on Li f tResponse ⇒ Li f tResponse that allows the
user to modify the response before it’s sent to the client

10. Call LiftRules.onEndServicing hooks. These are the stateless end-servicing hooks,
called after the S object context is destroyed.

108 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

11. Call any functions defined in LiftRules.beforeSend. This is the last place where you
can modify the response before it’s sent to the user

12. Convert the LiftResponse to a raw byte stream and send it to client as an HTTP response.

13. Call any functions defined in LiftRules.afterSend. Typically these would be used for
cleanup.

We realize that this is a lot of information to digest in one pass, so as we continue to cover the
specific details of the rendering pipeline you may want to keep a bookmark here so that you can
come back and process the new information in the greater context of how Lift is working.

7.3 Lift Function Mapping

As we mentioned in section ??, lift utilizes scala closures and functions for almost all processing of
client data. Because of this, Lift’s ability to associate functions with specific form elements, AJAX
calls, etc, is critical to its operation. This association of functions, commonly known as “mapping”
is handled through a combination of request parameters, Scala closures and Session data. We feel
that understanding how mapping works is important if you want to work on advanced topics.

At its most basic, mapping of functions is just that; a map of the user’s currently defined
functions. To simplify things, Lift actually uses one of four subclasses of AFuncHolder2:

BinFuncHolder used for binding functions for file uploading. It will hold a FileParamHolder ⇒
Any function, which is used to process the file data after upload (section ??)

SFuncHolder used for binding String ⇒ Any functions. This function corresponds to a single
HTTP query parameter, except that the parameter name is unique to this request (we’ll cover
naming shortly)

LFuncHolder used for binding List[String] ⇒ Any functions. This is essentially the same as
SFuncHolder but for multiple values

NFuncHolder used for binding () ⇒ Any functions. Typically these are used for event callabcks
(such as form submission)

Wherever Lift takes a function callback it is converted to one of these types behind the scenes. Also
on the backend, each function is assigned a token ID (generated by Helpers.nextFuncName),
which is then added to the session, typically via S.addFunctionMap or S.mapFunc. The token
is generally used as the form element name so that the tokens for a given form are passed back to
Lift when the form is submitted; in AJAX, the token is used as an HTTP query parameter of the
AJAX callback from the client JavaScript code. In either case, Lift processes the query parameters
within LiftSession.runParams and executes each associated function in the function mapping.

As a concrete example, let’s look at a simple binding in a form. Listing ?? shows a small
example snippet that will request a person’s name and print it out when the person clicks the
submit button.

Listing 7.1: Function binding snippet
def greet (xhtml : NodeSeq) : NodeSeq = {
var name = ""

2net.liftweb.http.S.AFuncHolder

7.4. LIFTRESPONSE IN DETAIL 109

def process() = {
println(name)

}
bind("form", xhtml, "name" -> SHtml.text(name, name = _),

"greet" -> SHtml.submit("Greet", process))
}

Listing ?? shows the corresponding template using our sample snippet.

Listing 7.2: Function binding template

<lift:surround with="default" at="content">
<lift:Test.greet form="GET">
<form:name /> <form:greet />

</lift:Test.greet>
</lift:surround>

Finally, listing ?? shows an example of the resulting HTML that’s generated when a user views
the template. As you can see, each of the elements with callbacks has a corresponding form ele-
ment with a token ID for the name value. Since we’ve used the GET CGI method here (we usu-
ally recommend using POST in the real world), when we submit the form our URL would look
like /greet.html?F541542594358JE2=...&F541542594359PM4=Greet. For SFuncHolder
mappings the value of the request parameter is passed directly. For NFuncHolders the presence
of the token in the query parameter list is enough to fire the function. For BinFuncHolder and
LFuncHolder mappings some additional processing is performed to coerce the submitted values
into proper values for the functions to handle.

Listing 7.3: Function binding result

<form method="get" action="/greet.html">
<input name="F541542594358JE2" type="text" value=""/>
<input name="F541542594359PM4" type="submit" value="Greet"/>

</form>

Normally you do not have to directly deal with the function holder classes, since the generator
functions in SHtml handle that internally. However, if you’re in a situation when you need to bind
functions by yourself (such as building your own widget where SHtml doesn’t provided needed
elements), you can use the previously mentioned S.addFunctionMap or S.mapFunc to do the
“registration” for you.

7.4 LiftResponse in Detail

In some cases, particularly when using dispatch functions (section ??), you may want explicit
control over what Lift returns to the user. The LiftResponse trait is the base of a complete hierarchy
of response classes that cover a wide variety of functionality, from simply returning an HTTP
status code to returning a byte stream or your own XML fragments. In this section we’ll cover
some of the more common classes.

110 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

7.4.1 InMemoryResponse

The InMemoryResponse allows you to return an array of bytes directly to the user along with a
set of HTTP headers, cookies and a response code. An example of using InMemoryResponse was
given in section ??, showing how we can directly generate a chart PNG in memory and send it to
the user. This is generally useful as long as the data you need to generate and send is relatively
small; when you start getting into larger buffers you can run into memory constraints as well as
garbage collection pressure if you’re serving a large number of requests.

7.4.2 StreamingResponse

The StreamingResponse class is similar to the InMemoryResponse, except that instead of read-
ing from a buffer, it reads from an input object. The input object is not required to be a subclass
of java.io.InputStream, but rather is only required to implement the method “def read(buf: Ar-
ray[Byte]): Int”3. This allows you to essentially send back anything that can provide an input
stream. Additionally, you can provide a () ⇒ Unit function (cleanup, if you will) that is called
when the input stream is exhausted. As an example, let’s refine the chart code from section ?? to
use piped streams instead of sucking the whole chart into memory. Listing ?? shows how we can
use PipedInputStream and PipedOutputStream from java.io to send the data back to the user.

Listing 7.4: Streaming Charting method
def chart (endDate : String) : Box[LiftResponse] = {

// Query, set up chart , etc ...
val buffered = balanceChart.createBufferedImage(width,height)
val inPipe = new java.io.PipedInputStream()
val outPipe = new java.io.PipedOutputStream(inPipe)
val writer = new Thread {

def run () = { ChartUtilities .writeBufferedImageAsPNG(outPipe, buffered) }
}. start
Full(StreamingResponse(inPipe,

() => { inPipe.close ; outPipe.close },
−1, // We don’t know the size ahead of time
(Content−Type −> image/png) :: Nil,
Nil,
200))

}

Notice that we run the image encoding in a separate thread; if we didn’t do this then we
would block our response thread because the pipe buffer would fill while writing the image data
out. Also note that we use the cleanup function to close the pipes once we’re done so that we
make sure to release resources.

7.4.3 Hierarchy

The Lift framework makes a lot of things really easy and it provides extremly useful abstractions
as you may have already discovered. Responses to clients are also abstacted by LiftResponse
trait. There are numerous response types and here is the simplified view of the class hierarchy:

• LiftResponse

◦ BasicResponse

3This is done with Scala’s structural typing, which we don’t cover in this book. For more info, see
http://scala.sygneca.com/patterns/duck-typing-done-right, or the Scala Language Spec, section 3.2.7

http://scala.sygneca.com/patterns/duck-typing-done-right

7.4. LIFTRESPONSE IN DETAIL 111

* InMemoryResponse

* StreamingResponse

◦ JSonResponse

◦ RedirectResponse

* RedirectWithState

◦ ToResponse

* XhtmlRespomse

* XmlResponse

* XmlMimeResponse

* AtomResponse

* OpenSearchResponse

* AtomCreatedResponse

* AtomCategoryResponse

* AtomServiceResponse

* CreatedResponse

◦ OkResponse

◦ PermRedirectResponse

◦ BadResponse

◦ UnauthorizedResponse

◦ UnauthorizedDigestResponse

◦ NotFoundResponse

◦ MethodNotAllowedResponse

◦ GoneResponse

We won’t get into details right now on what exactly each and every class/object does, although
their purpose is given away by their names. It is important to know that whenever you need to re-
turn a LiftResponse reference from one of your functions, for example LiftRules.dispatch
you can you can use one of these classes. Lift doesn’t really provide the HttpServletResponse
object, instead all responses are impersonated by a LiftResponse instance and it content (the
actual payload, http headers, content-type, cookies etc.) is written internally by Lift to the con-
tainer’s output stream.

Still let’s take a look at a few examples

7.4.4 RedirectWithState

Listing 7.5: RedirectWithState example
// Assume you boot function
import MessageState._
...

def boot = {

LiftRules.dispatch.prepend {

112 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

case Req("redirect1" :: _, _, _) => () =>
Full(RedirectWithState("/page1", "My error" -> Error))

case Req("redirect2" :: _, _, _) => () =>
Full(RedirectWithState("/page2",

RedirectState(() => println("Called on redirect!"),
"My error" -> Error)))

}

First of all we added a DispatchPF function that pattern matches for paths starting with redirect1
and redirect2. Let’s see what happens in each case.

• redirect1 - We are returning a RedirectWithState response. It will do HTTP redirect to-
wards /page1 and the state is impersonated by the tuple “MyError” -> Error. Because Mes-
sageState object holds an implicit conversion function from Tuple2 to MessageState it suffices
to just provide the tuple here. Essentially we are saying here that when the browser sends
the redirect request to server we already have an Error notice set up and the <lift:msgs> tag
from your /page1 will show this “My error” error message.

• redirect2 - Similarly it does an HTTP redirect to browser towards your /page2. But we
are passing now a RedirectState object. This object holds a () => Unit function that will
be executed when browser send the redirect request and the Notices impersonated by a
repeated parameter (String, NoticeType.Value)*. In fact the mapping between the actual
message and its type: Notice, Warning or Error.

7.4.5 XmlResponse

Listing 7.6: XmlResponse example
// Assume you boot function

def boot = {

LiftRules.dispatch.prepend {
case Req("rest" :: Nil, _, _) => () => Full(XmlResponse(

<persons>
<name>John</name>
<name>Jane</name>

</persons>
))

}

When you are receiving a request with the path /rest the code is returning an XML response.
The content-type and everything else is taken care of by XmlResponse. You can build much more
complex REST API’s an return XML response which is probably mot commonly used.

7.5 Session Management

Lift is a stateful framework and naturally this state needs to be managed. You may already be fa-
miliar with HttpSession and and how a J(2)EE web container identifies an HttpSession; either by
a JSESSIONID cookie or by a JSESSIONID URI sequence (in case of URL rewriting). Similarly, Lift

7.5. SESSION MANAGEMENT 113

uses a LiftSession reference which is not actually “persisted” in HttpSession. As a matter of fact
Lift does not really use the HttpSession provided by the web container to maintain conversational
state, but rather uses a bridge between the HttpSession and the LiftSession. This bridge is
impersonated by SessionToServletBridge class which implements javax.servlet.http.HttpSessionBindingListener
and javax.servlet.http.HttpSessionActivationListener and works like this:

1. When receiving an HTTP Request and there was no stateless dispatch function to execute,
Lift does the stateful processing. But before doing that it checks to see if there is a LiftSession
associated with this HTTP session ID. This mapping is kept on a SessionMaster Scala actor.

2. If there is no associated LiftSession in the SessionMaster actor, create it and add a Session-
ToServletBridge attribute on HttpSession. This will make Lift aware of the session when the
container terminates the HttpSession or when the HTTP session is about to be passivated or
activated.

3. When the container terminates the HTTP session, SessionToServletBridge sends a message
to the SessionMaster Actor to terminate the LiftSession, which includes the following steps:

(a) Call any defined LiftSession.onAboutToShutdownSession hooks

(b) Send a ShutDown message to all Comet Actors pertaining to this session

(c) Clean up any internal LiftSession state

(d) Call LiftSession.onShutdownSession hooks

The SessionMaster Actor is also protected by another watcher Actor. This watcher Actor receives
the Exit messages of the watched Actors. When it receives an Exit message it will call the users’
failure functions and restart the watched actor (Please see ActorWatcher.failureFuncs).

Even while Lift is handling session management you still have the ability to manually add
attributes to the HttpSession object. We do not recommend this unless you really must. A sim-
pler way to keep your own session variables, is to use SessionVars. For more details about
SessionVar please see the fundamental chapter ??

The next question would probably be “So we have internal session management, how do we
cope with that in a clustered environment? ... how are sessions replicated?” the answer is, they
aren’t. There is no intention to use the web container’s session replication as these technologies
appears to be inferior to other solutions on the market. Relying on Java serialization brings a lot of
performance concerns and alternative technologies have been investigated and they are still under
investigation. Until there is a standard session replication technology you can still cluster you
application using “sticky session”. This meas that all requests pertaining to a HTTP session must
be processed by the same cluster node. This can be done by software or hardware load balancers,
as they would dispatch the requests based on JSESSIONID cookie. Another approach is that the
dispatching is done based on some URI or query parameters. For example, a query parameter like
serverid=1 is configured in the load balancer to always be dispatched to the node 1 of the cluster,
and so on. There are some downsides for the sticky session approach. For instance you are logged
in the application and do your stuff. Suddenly the node designated to your session crashes. At this
moment you lost your session. The next subsequent request would be automatically dispatched
by the load balancer to another cluster node and depending how your application is built this
may mean that you need to log in again or if part of the state was persisted in DB you may resume
your work from some point avoiding re-login ... but this is application specific behavior that is
beyond the scope of this discussion. The advantages of sticky sessions are related with application

114 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

performance since in this model the state does not need to be replicated in all cluster nodes which
for significant state information can be quite time/resources consuming.

7.5.1 Lift garbage collection

As you have seen, Lift tailors Scala functions with client side artifacts (XHTML input elements,
Ajax requests etc.). Naturally these functions are kept into the session state. Also for every ren-
dered page, a page ID is generated and functions bound for these pages as asociated with this
page ID. In order to prevent accumulation of such mappings, Lift has a mechanism of purging
unused functions. Basically the idea is

1. On client side, a script periodically sends to the server an Ajax request impersonating a lift
GC request.

2. On service side Lift updates the timestamps of the functions associated with this page ID.
The functions older then LiftRules.unusedFunctionsLifeTime (default value is 10
minutes) become eligible for garbage collection as they are de-referenced from the current
session. The frequency of such Ajax requests is given by LiftRules.liftGCPollingInterval.
By default it is set to 75 seconds.

3. Each Ajax request contains includes the page ID as new function may be bound as a result
of processing the Ajax request, dependin on the application code. Such function that are
dynamically bound are automatically associated with the same page ID.

You can of course turn off this garbage collection mechanism by setting LiftRules.enableLiftGC
= false typically in your Boot. You can also fine tune the garbage collection mechanims to fit
your application needs, by changing the default LiftRules variables.

Listing 7.7: LiftRules gabage collection variables
/**
* By default lift uses a garbage-collection mechanism of removing unused bound functions from LiftSesssion

* Setting this to false will disable this mechanims and there will be no Ajax polling request attempted.

*/
var enableLiftGC = true;

/**
* If Lift garbage collection is enabled, functions that are not seen in the page for this period of time

* (given in milliseonds) will be discarded, hence eligible for garbage collection.

* The default value is 10 minutes.

*/
var unusedFunctionsLifeTime: Long = 10 minutes

/**
* The polling interval for background Ajax requests to prevent functions of being garbage collected.

* Default value is set to 75 seconds.

*/
var liftGCPollingInterval: Long = 75 seconds

/**
* The polling interval for background Ajax requests to prevent functions of being garbage collected.

* This will be applied if the Ajax request will fail. Default value is set to 15 seconds.

*/

7.6. MISCELLANEOUS LIFT FEATURES 115

var liftGCFailureRetryTimeout: Long = 15 seconds

7.6 Miscellaneous Lift Features

In this section we will discuss various features that can prove helpful in building rich Lift appli-
cations.

7.6.1 Wrapping Lift’s processing logic

Lift provides the ability to allow user functions to be part of processing lifecycle. In these cases
Lift allows you to provide your own functions and the actual Lift’s processing function is passed
to your function. Hence your own function is responsible of calling the actual Lift’s processing
logic.

But let’s see how exactly you can do this.

Listing 7.8: LoanWrapper example
class Boot {
def boot {
...
S.addAround(new LoanWrapper { // Y
def apply[T](f: => T): T = {
println("Y -> hello to the request!")
val result = f // Let Lift do normal request processing.

println("Y -> goodbye!")
result

}
})
S.addAround(new LoanWrapper { // X
def apply[T](f: => T): T = {
println("X -> hello to the request!")
val result = f // Let Lift do normal request processing.
println("X -> goodbye!")
result

}
})

}

The code looks pretty straight-forward in the sense that we add two LoanWrapper instances
to the S object. (Note that we’re using the S object not LiftRules meaning that LoanWrappers
are applicable only for stateful processing. See ?? for when exactly LoanWrappers are invoked.)

So let’s see what happens when the above code processess a request from a client. You can
think of the invocation sequence as X(Y(f)) where f is the Lift function that impersonates the
core processing. Therefore you’ll see the following output in the console:

X -> hello to the request!
Y -> hello to the request!
<Lift’s logic ... whatever is printed here>
Y -> goodbye!
X -> goodbye!

116 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

This feature allows you use a resource before Lift does and release them after Lift has finished
processing the stateful request and before the LiftResponse object is constructed.

7.6.2 Additional Snippet Features

By now you already have a fairly good idea how snippets work, how you can use them etc. There
are a few things that were not revealed yet to you, such as:

1. Ability to pass parameters to snippets:

Listing 7.9: Snippet attributes
<lift:Ledger.balance default="10">
<ledger:balance/> as of <ledger:time />

</lift:Ledger.balance>

How do we read the default attribute from the snippet code? Actualy it is only about calling
S.attr function.

Listing 7.10: Snippet attributes
class Ledger {
def balance (content : NodeSeq) : NodeSeq = {

val dflt = S.attr("default") openOr "0";
bind ("ledger", content,

"balance" -> Text(currentLegdger.formattedBalance),
"time" -> Text((new java.util.Date).toString))

}
}

2. Use snippets for tag attributes:

Listing 7.11: Attribute Snippet
// In your page you can have
<div lift:snippet="MyDivThing:calcDir"> ... </div>

...
// Your snippet
class MyDivThing {
def calcDir = new UnprefixedAttribute("dir", "rtl", Null)

}

The utility of this support is quite obvious in so many situations. For instance when sup-
porting right-to-left languages you can add the direction of the page to be rtl quite easily.

Now we have seen how we can pass xml parameters to snippets but what if we want to pass
parameters to the nodes that will be bound? For instance in Listing 1.3 we also want to pass the
am/pm information:

<ledger:time ampm=”true”/> where the time will be displayed in AM-PM format as
opposed to 24h format. But how can we access the ampm parameter?

7.7. ADVANCED S OBJECT FEATURES 117

Listing 7.12: Snippet attributes
class Ledger {
def balance (content : NodeSeq) : NodeSeq = {

val dflt = S.attr("default") openOr "0";
bind ("ledger", content,

"balance" -> Text(currentLegdger.formattedBalance),
"time" -> {node: NodeSeq => println(BindHelpers.attr("ampm")); Text((new java.util.Date).toString))}

}
}

The key aspect here is the BindHelpers object. You can use it for obtaining information about
node attributes. This context is maintained internally using ThreadLocals and closures. Note that
the context is cleared after bind method is executed. In our example above for “time” node we are
actually binding a function that takes the child nodes of the <ledger:time> node. When our
function is called by Lift we can access the BindHelpers, such ass the attributes of the current node.
The sequence <string> -> <right-hand-side-expression> is turned into a BindParam
object using implicit conversions. It is important to note that BindParam.calcValue function is
called in the correct context so that BindHelpers can be safely used.

It is sometimes more convenient to just put node attributes in the markup and just not worry
about them in the Scala code. Consider Listing ??:

Listing 7.13: Snippet mixin attributes
// the markup
<lift:Ledger.balance>
<ledger:time ledger:id="myId"/>

</lift:Ledger.balance>

// The snippet class

class Ledger {
def balance (content : NodeSeq) : NodeSeq = {

bind ("ledger", content,
"time" -> {(new java.util.Date).toString})

}
}

Now what we just did was to prefix the id attribute for the time node. Lift will automatically
add the attributes preffixed with the same node preffix to the resulting bind element for time.
Thefore the resulting node will be something like Sat Mar 28 16:43:48
EET 2009.

7.7 Advanced S Object Features

The S, or Stateful, object is a very important part of Lift. The S context is created when a client
request is recieved that needs to be handled as a stateful reuest. Please see ?? for more details
on the state creation and handling. The actual state information is kept inside the S object using
ThreadLocal4 variables since S is a singleton. This means that if you have any code that is executed
in the stateful context you can safely use any S object goodies, which include:

4java.lang.ThreadLocal

118 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

7.7.1 Managing cookies

You can retrieve cookies from the request or set cookies to be sent in the response. Cookies are
covered in section ??.

7.7.2 Localization and Internationalization

Localization (also called L10N) and Internationalization (also called I18N) are very important as-
pects of many web applications that deal with different languages. These topics are covered in
chapter ??.

7.7.3 Managing the Timezone

The S.timeZone function returns the current timezone as computed by the LiftRules.timeZoneCalculator
function. By default, the LiftRules method simply executes TimeZone.getDefault, but you can
provide your own Box[HttpServletRequest] ⇒ TimeZone partial function to define your own be-
havior. Examples would include allowing users to choose their own timezone, or to use geo-
graphic lookup of the user’s IP address.

7.7.4 Per-session DispatchPF functions

You can set DispatchPF functions that operate in the context of a current session. Essentially you
can bind DispatchPF functions with a given name. Relevant functions are:

• S.highLevelSessionDispatcher - returns a List[LiftRules.DispatchPF]

• S.highLevelSessionDispatchList - returns a List[DispatchHolder]

• S.addHighLevelSessionDispatcher - maps a name with a given DispatchPF

• S.removeHighLevelSessionDispatcher - removes the DispatchPF given its name

• S.clearHighLevelSessionDispatcher - removes all DispatchPF associations

7.7.5 Session re-writers

Session re-writers are per session functions that allow you to modify a HTTP request (URI, query
parameters etc.) before the request is actually processed. This is similar with LiftRules.rewrite
variable but you can apply rewriters per a given session. Hence you can have different rewrites
in diferent contexts. The relevant functions are:

• S.sessionRewriter - returns a List[RewriteHolder]

• S.addSessionRewriter - maps a LiftRules.RewritePF with a given name

• S.removeSessionRewriter - removes a rewriter by a name

• S.clearSessionRewriter - remove all session rewriters.

7.8. RESOURCESERVER 119

7.7.6 Access to HTTP headers

Accessing HTTP header parameters from the request and adding HTTP header parameters to the
HTTP response represent very common operations. You can easily perform these operations using
the following functions:

• S.getHeaders - returns a List[(String, String)] containing all HTTP headers grouped
by name and value pair

• S.setHeader - sets a HTTP header parameter by specifying the name and value pair

7.7.7 Manage the document type

You can also read and write the XML document type set for the current response. You can use the
following functions:

• S.getDocType - returns the doc type that was set forthe current response

• S.setDocType - sets a document type for the curent response object.

7.7.8 Other functions

• Access to the raw HttpServletRequest and HttpSession if you really need it.

• Managing the function map. The function map generates an association between a String
and a function. This string represents a query parameter that when Lift receives upon a
HTTP request, it will execute your function. Normally these names are auto-generated by
Lift but you can also provide you own name. Please see ?? for more details.

• Managing wrappers - see ??

• Managing notices - see ??

• Managing HTTP redirects - see S.redirectTo functions and ??

• Using XML attibutes of a snippet - see ??

7.8 ResourceServer

ResourceServer is a Lift component that manages the serving of resources like JS, CSS etc. Well the
web container can do that right? ... still container does not serve these resources if they are inside
jar files. The default URI path for serving such resources is given by LiftRules.resourceServerPath
variable which by default it is set to “classpath”. The folder location where the resource is looked
up inside jar files is given by ResourceServer.baseResourceLocation variable which by
default it is set to “toserve”. Let’s assume the following folder structure inside you Lift project:

lift-proj/src/main/resources/toserve/css/mystyle.css
Maven will create the toserver folder in the jar/war file generated. Then in your web page you

add something like:
<link rel="stylesheet" href="/classpath/css/mystyle.css" type="text/css"/>
Because the first URI part matches with LiftRules.resourceServerPath Lift will tell

ResouceServer to load this resource from ’toserve’ folder. But it will fail. There is one thing left

120 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

to do. We need to tell ResouceServer to allow the loading of mystyle.css resource. We can do this
from Boot by calling:

ResourceServer.allow {
case "css" :: _ => true
}
We basically told Lift here to allow any resource found in css folder under toserve. Note that

toserver comes from ResourceServer.baseResourceLocation which can be changed.

7.9 HTTP Authentication

HTTP authentication is described by RFC 2617 5. It describes the means of protecting server re-
sources and allowing access only to authorized entities. As you may know any J(2)EE web con-
tainer provides HTTP authentication support mostly using JAAS6 . But this appoach is not without
caveats. For instance if you provide your own LoginModule or CallbackHandler implementation
this will not be loaded by the web application classloader but instead by the container classloader
(.. at least in tomcat). This means that if your code has other dependencies that you can not use
these dependencies from your web application since web application classloader sits below con-
tainer’s classloader in the delegation chain. Besides all these using Scala’s power the developer
experience of protecting server resources using HTTP authentication can be simplified a lot. Lift
supports both basic and digest authentications, Basic is shown below:

Listing 7.14: HTTP Authentication example
import auth._

class Boot {
def boot = {
...
LiftRules.protectedResource.append {
case (ParsePath("users" :: _, _, _, _)) => Full(AuthRole("admin"))

}

LiftRules.authentication = HttpBasicAuthentication("lift") {
case ("John", "12test34", req) =>

println("John is authenticated!")
userRoles(AuthRole("admin"))
true

}

...
}

}

Here we just told Lift that /users path is a protected resource and only by users that have the Role
admin. So here we have both authentication and authorization. If this function returns an Empty
box it means that this resource is not bound to any Role meaning that only authentication will be
performed, not authorization. Secondly using LiftRules.authentication we told Lift that

5http://www.isi.edu/in-notes/rfc2617.txt
6Java Authentication and Authorization Service. More informations can be found at

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

http://www.isi.edu/in-notes/rfc2617.txt
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

7.9. HTTP AUTHENTICATION 121

Figure 7.2: Roles hierarchy example

we want BasicAuthentication and of course we are passing the function that actually does the
authentication. This function is actually a PartialFunction[(String, String, Req), Boolean]. First
two members of the tuple are username and password, then the Req object. In the above example
we’re basically saying that if user is authenticating itself as “John” and password is “12test34”
the access to the protected resource will be granted (since our function returns true). But in our
authentication function we also specify the role for user “John” as being “admin”. userRole is a
RequestVar that will be used later on by Lift.

So at runtime when user tries to access /users Lift knows that this is a protected resource
and only an admin can access it. Therefore Lift is sending down to client a 401 HTTP status
(unauthorized response). User will enter the credentials and if they match with username John
and password 12test34 we got a successful authentication and because the role we set is admin
which matches with the role assigned to the protected resource, the /users resource is served to
client.

A Role is an n-ary tree structure. So when we assign a Role to a protectedResource we can
actually provide an entire tree such as:

Assume that your application uses a roles structure as above. The Admin is the all mighty role
for admins that can do what any sub-role can do and more. Then we have the Site-Admin that
can monitor the application, the User-Admin that can manage users, then Romania-Admin that
can manage users from Romania, US-Admin that can manage users from US and UK-Admin that
can only manage users from UK. Now a User-Admin can manage users from anywhere but a Site-
Admin can not manage any users. Neither a Romania-Admin has the priviledges of User-Admin
or Admin, nor it can manage the US or UK users. You got the picture here; the idea is that the
lower a Role is in the hierarchy the less priviledged it is. Let’see how the code looks like based on
the above figure:

Listing 7.15: HTTP Authentication multi-roles example
import auth._

class Boot {

122 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

def boot = {
...

val roles = AuthRole("Admin",
AuthRole("Site-Admin"),
AuthRole("User-Admin",

AuthRole("Romania-Admin"),
AuthRole("US-Admin"),
AuthRole("UK-Admin")

)
)

LiftRules.protectedResource.append {
case (ParsePath("users" :: _, _, _, _)) => roles.getRoleByName("Romania-Admin")

}

LiftRules.authentication = HttpBasicAuthentication("lift") {
case ("John", "12test34", req) =>

println("John is authenticated !")
userRoles(AuthRole("User-Admin"))
true

}

...
}

}

In this case if user is authenticated, authorization will also succeed because the user’s Role
is User-Admin and it is a parent of “Romania-Admin”. If the /users resource would have been
assigned with “User-Admin” role and user John would have “Romania-Admin” role that even if
credentials are correct the authorization fails hence a 401 HTTP status is still sent to client.

In conclusion you have a simple authentication and authorization mechanism and of course
authentication function would typically validate the credentials against a database and fetch the
roles from there.

7.9.0.1 HTTP Digest Authentication

So far we talked about basic authentication and authorization. Lift also support HTTP Digest
authentication. This means that the password information that user enters in the browser is never
propagated on the server. Here is how we use it:

Listing 7.16: HTTP Digest Authentication multi-roles example
import auth._

class Boot {
def boot = {
...

val roles = AuthRole("Admin",
AuthRole("Site-Admin"),
AuthRole("User-Admin",

AuthRole("Romania-Admin"),
AuthRole("US-Admin"),

7.9. HTTP AUTHENTICATION 123

AuthRole("UK-Admin")
)

)
LiftRules.protectedResource.append {
case (ParsePath("users" :: _, _, _, _)) => roles.getRoleByName("Romania-Admin")

}

LiftRules.authentication = HttpDigestAuthentication("lift") {
case ("John", req, func) => if (func("12test34")) {
println("John is authenticated !")
userRoles(AuthRole("useradmin"))
true

} else {
println("Not verified")
false

}
}
...
}

}

Eveything we talked about Roles is still valid. However we’re now using digest authentication.
Note that in this case we’re not provided with a password anymore but our function is provided
with the user name, the Req object and a callback function. Because digest authentication implies
checksum calculations there is no need to burden the user with such things. However our code
calls this callback function by providing the password (which can be retrieved from database as
we know the user name). If this function returns true it means that the digest that client sent
andthe one that Lift calculated matches so we have a successful authentication.

There is also important to know that diget authentication mechanism uses a nonce sequence.
This sequence is generated by the server when sending down the authentication challenge down
to client (401 HTTP status). In order to avoid replay attacks this nonce is valid only for a period of
time. By default this is set to 30 seconds but you can change this by setting:

HttpDigestAuthentication.nonceValidityPeriod = <a value in milliseconds>
If you use Lift’s TimeHelpers you can say:
HttpDigestAuthentication.nonceValidityPeriod = 50 seconds
// where seconds is a function and there are implicit conversion functions

from “primitives” to TimeSpans type.
If this period expires even if the authentication and authorization succeed Lift will challenge

it again by returning 401 HTTP status and a new nonce. So the resource is not served yet.
It is important to know that a user can be assigned with multiple roles, not just one. This can

be done by calling:
userRoles(AuthRole("US-Admin", “Site-Admin”)) // AuthRole overloaded apply

function takes a repeated parameter.
This is pretty much it as far as HTTP authentication and authorization goes but there is one

more thing that is worth to be mentioned. If your application does not persist the user’s password
and only a digest internally calculated, the HTTP digest authentication can not really be used.
The reason is that in order to match the client’s digest, server needs to calculate it and for that it
needs the password in clear but because the application stores a digest, the user’s password can
not be recovered. Hence the HTTP digest can not be calculated. This is a missmatch betwen the
two concepts: HTTP digest authentication given by RFC 2617 and the unrecoverable password

124 CHAPTER 7. ADVANCED LIFT ARCHITECTURE

storage.

Chapter 8

Lift and JavaScript

In this chapter we’ll be discussing some of the techniques that Lift provides for simplifying and
abstracting access to JavaScript on the client side. Using these facilities follows Lift’s model of
separating code from presentation by allowing you to essentially write JavaScript code in Scala.
Lift also provides a layer that allows you to use advanced JavaScript functionality via either the
JQuery1 or YUI2 user interface libraries.

8.1 JavaScript high level abstractions

You may have noticed that Lift already comes with rich client side functionality in the form of
AJAX and COMET support (chapter ??). Whenever you use this support, Lift automatically gen-
erates the proper <script> elements in the returned page so that the libraries are included. Lift
goes one step further, however, by providing a class hierarchy representing JavaScript expressions.
For example, with an AJAX form element in Lift the callback method must return JavaScript code
to update the client side. Instead of just returning a raw JavaScript string to be interpreted by the
client, you return an instance of the JsCmd3 trait (either directly or via implicit conversion) that is
transformed into the proper JavaScript for the client.

JsCmd represents a JavaScript command that can be executed on the client. There is an addi-
tional “base” trait called JsExp that represents a JavaScript expression.The differences between
them are not usually important to the developer, since a JsExp instance is implicitly converted to
a JsCmd. Also note that while Lift’s JavaScript classes attempt to keep things type-safe there are
some limitations; in particular, Lift can’t check semantic things like whether the variable you’re
trying to access from a given JsCmd actually exists. Besides the obvious use in techniques like
AJAX and COMET, Lift also makes it simple to attach JavaScript to regular Scala XML objects,
such as form fields.

As a simple example, let’s look at how we might add a simple alert to a form if it doesn’t
validate. In this example, we’ll assume we have a name form field that shouldn’t be blank.
Listing ?? shows a possible binding from our form snippet. Let’s break this down a bit: the
first thing is that in order to reference form elements (or any elements for that matter) from
JavaScript, they need to have an id attribute. We add the id attribute to our text field by pass-
ing a Pair[String,String]. Next, we need to define our actual validation. We do this by

1http://jquery.com/
2http://developer.yahoo.com/yui/
3net.liftweb.http.js.JsCmd

125

http://jquery.com/
http://developer.yahoo.com/yui/

126 CHAPTER 8. LIFT AND JAVASCRIPT

adding some javascript to the onclick attribute of our submit button. The onclick attribute eval-
uates whatever javascript is assigned when the button is clicked; if the javascript evaluates to true
then submission continues. If it evaluates to false then submission is aborted. In our case, we use
the JsIf case class to check to see if the value of our myName field is equal to an empty string. In
this case the JE object holds an implicit conversion from a Scala string to a Str (JavaScript string)
instance. The second argument to JsIf is the body to be executed if the condition is true. In our case
we want to pop up an alert to the user and stop form submission. The JsCmd trait (which Alert
mixes in) provides a “&” operator which allows you to chain multiple commands together. Here
we follow the Alert with a JsReturn, which returns the specified value; again, there’s an implicit
conversion from Boolean to JsExp, so we can simply provide the “false” value.

Listing 8.1: Simple Form Validation

import JsCmds._
import JE._

var myName = ""
bind(...
"name" -> text(myName, myName = _, "id" -> "myName"),
"submit" -> submit("Save", ..., "onclick" ->
JsIf(JsEq(ValById("myName"), ""),
Alert("You must provide a name") & JsReturn(false))

)
)

8.1.1 JsCmd and JsExp overview

If you peruse the Lift API docs you’ll find a large number of traits and classes under the JsCmds
and JE objects; these provide the vast majority of the functionality you would need to write simple
JavaScript code directly in Lift. Having said that, however, it’s important to realize that the Lift
classes are intended to be used for small code fragments. If you need to write large portions of
JavaScript code for your pages, we recommend writing that code in pure JavaScript in an external
file and then including that file in your pages. In particular, if you write your code as JavaScript
functions, you can use the JE.Call class to execute those functions from your Lift code. Table ??
gives a brief overview of the available JsCmds, while table ?? shows the JE expression abstractions.

8.1. JAVASCRIPT HIGH LEVEL ABSTRACTIONS 127

Command Description
After Executes the given JsCmd fragment after a given amount of time
Alert Corresponds directly to the JavaScript alert function
CmdPair Executes two JsCmd fragments in order
FocusOnLoad Forces focus on the given XML element when the document loads
Function Defines a JavaScript function with name, parameter list, and JsCmd body

JsBreak, JsContinue,
JsReturn

Corresponds directly to the JavaScript “break”, “continue”, and “return”
keywords

JsFor, JsForIn,
JsDoWhile, JsWhile

These define loop constructs in JavaScript with conditions and execution
bodies

JsHideId, JsShowId
Hides or shows the HTML element with the given Id. This is actually
handled via the LiftArtifacts’ hide and show methods

JsIf
Corresponds to the JavaScript “if” statement, with a condition, body to
execute if the condition is true, and optional “else” body statement

JsTry Defines a try/catch block tha can optionally alert if an exception is caught
JsWith Defines a with statement to reduce object references
OnLoad Defines a JavaScript statement that is executed on page load
Noop Defines an empty JavaScript statement
RedirectTo Uses window.location to redirect to a new page
ReplaceOptions Replaces options on a form Select with a new list of options.
Run Executes the given string as raw javascript

Script
Defines a <script> element with proper CDATA escaping, etc to conform
to XHTML JavaScript support

SetElemById
Assigns a statement to a given element by id. Optional parameters allow
you to specify properties on the element

SetExp
Defines an assignment to an arbitrary JavaScript expression from another
JavaScript expression

SetHtml
Sets the contents of a given HTML node by Id to a given NodeSeq. This is
especially useful in Ajax calls that update parts of the page

SetValById Defines an assignment to a given element’s “value” property

Table 8.2: Basic JsCmds

128 CHAPTER 8. LIFT AND JAVASCRIPT

Expression Description
AnonFunc Defines an anonymous JavaScript function
Call Calls a JavaScript function by name, with parameters
ElemById Obtains a DOM element by its Id, with optional property access
FormToJson Converts a given form (by Id) into a JSON representation
Id, Style, Value Represents the “id”, “style” and “value” element attributes
JsArray Constructs a JavaScript array from a given set of JavaScript

expressions
JsEq, JsNotEq, JsGt,
JsGtEq, JsLt, JsLtEq

Comparison tests between two JavaScript expressions. JsExp
instances also have a “===” operator which is equivalent to JsEq

JsTrue, JsFalse, JsNull Represents the “true”, “false”, and “null” values
JsFunc Similar to Call; executes a JavaScript function
JsObj Represents a JavaScript object with a Map for properties
JsRaw Represents a raw JavaScript fragment. You can use this if Lift

doesn’t provide functionality via abstractions
JsVal Represents an abritrary JavaScript value
JsVar Represents a JavaScript variable, with optional property access
Num Represents a JavaScript number. JE contains implicit conversions

from Scala numeric types to Num
Str Represents a Javascript String. JE contains implicit conversions

from a Scala String to Str
Stringify Calls JSON.stringify to convert a JavaScript object into a JSON

string representation
ValById Represents the “value” property of a given element by Id

Table 8.4: Basic JE abstractions

8.1.2 JavaScript Abstraction Examples

As you can see, Lift provides a large coverage of JavaScript functionality through its abstraction
layer. Even if you’ve done a lot of JavaScript, however, the abstractions don’t always map one-
to-one and it can take some effort to wrap your head around it. We’re going to provide a few
examples to help you understand how it works. We’ll start off with a simple example of an Ajax
callback (Ajax is covered in chapter ??). Listing ?? shows how we can update an HTML element
with new content via the Ajax call. In this case, we’re changing a chart image based on some
passed parameters. Our HTML needs to contain an element with an id of “tx_graph”; this element
will have its children replaced with whatever NodeSeq we pass as the second argument.

Listing 8.2: Using SetHtml
def updateGraph() = {
val dateClause : String = ...
val url = "/graph/" + acctName + "/" + graphType + dateClause
JsCmds.SetHtml("tx_graph",)

}

As a more complex example, we could add some JavaScript behavior combining Ajax with
some client-side state, as shown in listing ??.

8.2. JQUERY AND OTHER JAVASCRIPT FRAMEWORKS 129

Listing 8.3: Client-side comparisons

import js.JE._ // for implicit conversions
def moreComplexCallback (value : String) = {
JsIf(ValById("username") === value.toLowerCase, {
JsFunc("logAccess", "Self-share attempted").cmd & Alert("You can’t share with yourself!")

})
}

8.2 JQuery and other JavaScript frameworks

We’ve mentioned earlier that Lift uses the JQuery JavaScript framework by default. Lift wouldn’t
be Lift, however, if it didn’t provide a mechanism for using other frameworks. The way that
lift determines which JavaScript framework to use is via the JSArtifacts4 trait along with the
LiftRules.jsArtifacts var. Lift comes with two default implementations of JSArtifacts: JQueryArtifacts5

and YUIArtifacts6. If you want to use a different framework, you must provide a concrete im-
plementation of the JSArtifacts trait specific to that framework. The JQuery support in Lift extends
beyond just the JSArtifacts, support; there are also a number of JSExp and JsCmd traits and classes
in the net.liftweb.http.js.jquery package that provide JQuery specific implementations
for standard expressions and commands.

Changing one implementation or another can be done from LiftRules.jsArtifacts variable, which
by default points to JQueryArtifacts. Typically this is done in Boot, as shown in listing ??.

Listing 8.4: Configuring Lift YUI

import net.liftweb.http.js.yui.YUIArtifacts

class Boot {
def boot = {
...
LiftRules.jsArtifacts = YUIArtifacts
...

}

In addition to changing LiftRules, you also need to take into account that other frameworks
have their own scripts and dependencies that you’ll need to include in your pages. For YUI you
would need to include the following scripts (at minimum):

Listing 8.5: Lift YUI scripts

<script src="/classpath/yui/yahoo.js" type="text/javascript"/>
<script src="/classpath/yui/event.js" type="text/javascript"/>
<script src="/classpath/yui/dom.js" type="text/javascript"/>
<script src="/classpath/yui/connection.js" type="text/javascript"/>
<script src="/classpath/yui/json.js" type="text/javascript"/>
<script src="/classpath/liftYUI.js" type="text/javascript"/>

4net.liftweb.http.js.JSArtifacts
5net.liftweb.http.js.jquery.JQueryArtifacts
6net.liftweb.http.js.yui.YUIArtifacts

130 CHAPTER 8. LIFT AND JAVASCRIPT

Of course, to keep things simple you could either place all of these items in a template that you
could embed, or you could combine the files into a single JavaScript source file.

We have some simple recommendations on using different JavaScript frameworks from within
Lift:

1. If you don’t necessarily need YUI widgets or if you can find similar functionality in JQuery
plugins, we recommend using the JQuery framework. Lift provides much better support
out-of-the-box for JQuery

2. Do not mix JQuery and YUI unless you really know what you are doing. Getting both of
them together leads to a number of collisions.

8.3 XML and JavaScript

What we’ve covered so far is pretty much standard JavaScript behind some Lift facades. There
are situations, however, when you want to do things that are complicated or outside the scope of
typical JavaScript functionality. One example of this is when you need to build dynamic DOM
elements from JavaScript code, say to build an HTML list. Lift has a very nice way of dealing
with such situation; with a few lines of code you can achieve quite a lot. The main functionality
for this is provided via the Jx* classes7, which you can use to transform a scala.xml.NodeSeq into
javascript code that generates the corresponding nodes on the client side. Listing ?? shows a
simple example of emitting a div on a page via JavaScript.

Listing 8.6: Jx trivial example
import net.liftweb.http.js._
import JE._

val div = Jx(<div>Hi there</div>)

This code generates the following JavaScript code:

Listing 8.7: Jx Emitted Code
function(it) {
var df = document.createDocumentFragment();
var vINIJ1YTZG5 = document.createElement(’div’);
df.appendChild(vINIJ1YTZG5);
vINIJ1YTZG5.appendChild(document.createTextNode(’Hi there’));
return df;

}

As you can see, Lift took our XML code and transformed it into a JavaScript function that dy-
namically creates a document fragment containing the given NodeSeq. The it parameter can be
any JavaScript object; we’ll cover how you use it in a moment. The name of the var is automatically
and randomly generated to ensure uniqueness.

Of course, if that was all Lift was doing that’s not much help. At this point we’ve only gener-
ated a function that generates XML. Let’s take a look on a more complex example that shows the
real power of the Jx classes. Assume we have a JSON structure that contains an array of objects
containing firstName and lastName properties. This JSON structure could look something like:

7net.liftweb.http.js.Jx, etc

8.3. XML AND JAVASCRIPT 131

Listing 8.8: Sample JSON Structure

var list = {
persons: [

{name: "Thor", race: "Asgard"},
{name: "Todd", race: "Wraith"},
{name: "Rodney", race: "Human"}

]
}
// Guess what I’ve been watching lately ?

Now we can use a combination of Jx classes to render this content as an HTML dynamic list:

Listing 8.9: Rendering a JSON List Via Jx

def renderPerson =
Jx(<li class="item_header"> {JsVar("it", "name")}

is {JsVar("it", "race")})
Jx({JxMap(JsVar("it.persons"), renderPerson)})

Well what this code does is this:

1. Construct an list that contains a bunch of elements

2. JxMap takes a JavaScript object, in this case it.persons (remember it is the parameter of
the generated function), and iterate for each element of the array and apply the renderPerson
function. Of course each element of the array will be a JSON object containing name and race
properties.

3. The renderPerson function generates a JavaScript function as we’ve already shown, and
renders the JavaScript code that generates the elements containing the name value fol-
lowed by “is” followed by the race value.

4. If we send this generated JavaScript function to client and calling it by pass the list variable
above It will create the following document fragment:

<li class="item_header">Thor is Asgard
<li class="item_header">Todd is Wraith
<li class="item_header">Rodney is Human

With a couple of lines of code we’ve managed to generate the JavaScript code that creates
document fragments dynamically. Here is the list of JX classes that you may find interesting:

132 CHAPTER 8. LIFT AND JAVASCRIPT

Class Description
JxBase The parent trait for all other Jx classes
JxMap Iterates over a JavaScript array and applies a function on

each element
JxMatch Match a JsExp against a sequence of JsCase
JxCase Contains a JsExp for matching purposes and the NodeSeq

to be applied in case the matching succeeds
JxIf Contains a JsExp and a NodeSeq to be applied only if JsExp

is evaluated to true
JxIfElse Similar with JxIf but it contains the else branch
Jx The basic application of the transformation from a NodeSeq

to the JavaScript code

8.4 JSON

JSON8 is a way of structuring information in JavaScript code. One of its most common uses is
to represent structured information on the wire. One example would be a JavaScript AJAX API
where the server response is in fact a JSON construct. Let’s look at an example first in listing ??:

Listing 8.10: Ajax JSON response
class SimpleSnippet {
def ajaxFunc() : JsCmd = {

JsCrVar("myObject", JsObj(("persons", JsArray(
JsObj(("name", "Thor"), ("race", "Asgard")),
JsObj(("name", "Todd"), ("race", "Wraith")),
JsObj(("name", "Rodney"), ("race", "Human"))

)))) & JsRaw("alert(myObject.persons[0].name)")
}

def renderAjaxButton(xhtml: Group): NodeSeq = {
bind("ex", xhtml,

"button" -> SHtml.ajaxButton(Text("Press me"), ajaxFunc _))
}
}

Your template would look like listing ??:

Listing 8.11: AJAX Template
...

<lift:SimpleSnippet.renderAjaxButton>
<ex:button/>

</lift:SimpleSnippet.renderAjaxButton>
...

First off, we have a simple snippet function called renderAjaxButton. Here we’re binding
the ex:button tag and render a XHTML button tag that when pressed will send an Ajax request to
server. When this request is received, the ajaxFunc is executed and the JsCmd response is turned
into a JavaScript content type response. In ajaxFunc we construct a JSON object (the same one

8Java Script Object Notation - http://www.json.org

http://www.json.org

8.4. JSON 133

we used previously for the persons object). We assign the JSON structure to the JavaScript variable
myObject and them call alert on the first element on the persons object. The rendered JavaScript
code that will be send down the wire will be:

Listing 8.12: Generated JavaScript
var myObject = {’persons’: [{’name’: ’Thor’, ’race’: ’Asgard’},

{’name’: ’Todd’, ’race’: ’Wraith’} ,
{’name’: ’Rodney’, ’race’: ’Human’}]};

alert(myObject.persons[0].name);

So in your page when you press the button you’ll get an alert dialog saying “Thor”. Here we
used the JsRaw class which basically renders the exact thing you passed to it: raw JavaScript code.

8.4.1 JSON forms

Now that we’ve covered sending JSON from the server to the client, let’s look at going in the
opposite direction. Lift provides a mechanism for sending form data to the server encapsulated
in a JSON object. In and of itself sending the data in JSON format is relatively simple; where Lift
really adds value is via the JsonHandler9 class. This class provides a framework for simplifying
processing of submitted JSON data. To start, let’s look at some example template code for a JSON
form:

Listing 8.13: A Simple JSON form
<lift:surround with="default" at="content">

<lift:JSONForm.head />
<lift:JSONForm.show>
<input type="text" name="name" />

<input type="text" name="value" />

<input type="radio" name="vehicle" value="Bike" />
<input type="radio" name="vehicle" value="Car" />
<input type="radio" name="vehicle" value="Airplane" />

<select name="cars">
<option value="volvo">Volvo</option>

<option value="saab">Saab</option>
<option value="opel">Opel</option>

<option value="audi">Audi</option>
</select>
<button type="submit">Submit</button>

</lift:JSONForm.show>
<div id="json_result"></div>

</lift:surround>

A you can see, the XHTML template is relatively straightforward. The Snippet code is where
things really get interesting:

Listing 8.14: JSON Form Snippet Code

9net.liftweb.http.JsonHandler

134 CHAPTER 8. LIFT AND JAVASCRIPT

class JSONForm {
def head =

<head>
<script type="text/javascript"

src={"/" + LiftRules.resourceServerPath + "/jlift.js"} />
{Script(json.jsCmd)}
</head>

def show(html: Group): NodeSeq = {
SHtml.jsonForm(json, html)

}

import JsCmds._
object json extends JsonHandler {

def apply(in: Any): JsCmd = SetHtml("json_result", in match {
case JsonCmd("processForm", _, p: Map[String, _], _) => {

// process the form or whatever
println("Cars = " + urlDecode(p("cars")))
println("Name = " + urlDecode(p("name")))
{p}

}
case x => Problem... didn’t handle JSON message {x}

})
}

}

The first thing we define is the head function. Its purpose is simply to generate the JavaScript
functions that set up the form handling on the client side. That means that when the submit but-
ton is clicked, the contents of the form are turned into JSON and submitted via an Ajax call to
the server. The show function defines the connection between the concrete JsonHandler instance
that will process the form and the template HTML that contains the form. We perform this bind-
ing with the SHtml.jsonForm method. This wraps the HTML with a <form> tag and sets the
onsubmit event to do JSON bundling.

The key part of the equation is our JsonHandler object. The apply method is what will be called
when the JSON object is submitted to the server. If the JSON is properly parsed then you’ll get a
JsonCmd instance which you can use Scala’s matching to pick apart. The apply function needs to
return a JsCmd (JavaScript code), which in this case sets the HTML content of the json_result
div element. When the form is stringified into its JSON representation Lift uses a command prop-
erty indicating the action that needs to be done on server and the actual JSON data. In the case of
JSON forms the command is always “processForm” as this is important for pattern matching as
seen above. The actual form content is a Map object that can be easily use to obtain the values for
each form field.

8.5 JqSHtml object

SHtml generated code is independent on the JavaScript framework used. However net.liftweb.http.jquery.JsSHtml
object contains artifacts that are bound with JQuery framework. For instance it contains the au-
tocomplete function that renders an input type text element but when start typing it will suggest
words starting with what you typed already. Please see http://www.pengoworks.com/workshop/jquery/autocomplete.htm
for examples.

http://www.pengoworks.com/workshop/jquery/autocomplete.htm

8.6. A RECAP 135

8.6 A recap

We’ve seen so far how we can abstract JavaScript code at Scala level using Lift’s JS abstraction.
You can model endless cases by using these abstractions. But let’s take a look on another example
a bit more complex. It is about a fast search where you have a text box and when you hit enter it
will return the list of items that contain that sequence. The list of items will be rendered in a DIV
real estate.

Listing 8.15: Example template

<lift:surround with="default" at="content">
<lift:Hello.ajaxian>
<text:show/>

</lift:Hello.ajaxian>
<div id="items_list" style="width: 300px; height: 100px; overflow: auto; border: 1px solid black;">
</div>

</lift:surround>

So we just have a really simple snippet and the div placeholder.

Listing 8.16: Example snippet

import JE._
import net.liftweb.http.js.jquery.JqJE._
import net.liftweb.http.SHtml._
import net.liftweb.util.Helpers._
import JsCmds._

val names = "marius" :: "tyler" :: "derek" :: "dave" :: "jorge" :: "viktor" :: Nil

def ajaxian(html: Group) : NodeSeq = {
bind("text", html,

"show" -> ajaxText("Type something", {value => {
val matches = names.filter(e => e.indexOf(value) > -1)
SetHtml("items_list", NodeSeq.Empty) &
JsCrVar("items", JsArray(matches.map(Str(_)):_*)) &
JsCrVar("func", Jx({

JxMap(JsVar("it"), Jx({JsVar("it")}))
}).toJs) &

(ElemById("items_list") ~> JsFunc("appendChild", Call("func", JsVar("items"))))
}})

)
}

The part with the snippet is probably already familiar to you. We are calling the ajaxText
function which renders an input text element. When you hit enter an Ajax request will be sent
and the anonymous function that we bound here will be executed. Here is what happens:

1. First filter out the names that contain the provided value in the input text. So all element
that contain that sequence.

2. Then return a JsExp that we are building:

136 CHAPTER 8. LIFT AND JAVASCRIPT

(a) SetHtml is clearing out the div element that we’re using as a real estate for our search
results list

(b) Then we re declaring a JavaScript variable which is an array containing the resulting
items that matched the search criteria.

(c) Then we are declaring thr func variable which obviously is a function. We’ve seen
above how to use the Jx artifacts. Now we are building a html list () that for each
element from the it variable will build the sequences. The it variable is actually
the paramter that this function takes which is the items array that we declared above.

(d) After that we are obtaining the HTML node denominated by “items_list” id and call
appendChild function of the Node object. The ~> function is use to call functions of
objects. Of course to the appendChild function we need to provide a parameter. This
parameter is the document fragment returned by func function. When we are caling
the func function we are passing items variable decalred above.

As you noticed already we composed a small JavaScript code by chainin multiple JS expression-
s/commands using the & function.

Chapter 9

AJAX and Comet in Lift

In this chapter we’re going to discuss AJAX and Comet, two approaches to improving the user
experience through dynamic web pages. While a full treatment of the techniques and technologies
behind these approaches is beyond the scope of this book1, we’re going to cover the basics of how
AJAX and Comet work. In particular, we’re going to look at how Lift handles them behind the
scenes to simplify your work.

9.1 What are AJAX and Comet, really?

AJAX and Comet are variations on the traditional model of the web application request/response
lifecycle. In the traditional model, the user starts by making a request for a page. The server
receives this request, performs processing, then sends a response back to the user. The response
is then rendered by the user’s browser. At this point there are no further interactions between
the user and the server until the user clicks on a link or performs some other action that starts
a completely new request/response lifecycle. AJAX and Comet extend this model to allow for
asynchronous updates from either the user to the server (AJAX), or from the server back to the
user (Comet).

If we take the example of adding a comment to a blog post, the traditional model has the user
fill in a form, hit the submit button, and send the request to the server. The server processes and
adds the comment and then sends the updated blog post back to the user with the newly added
comment. At the same time, if other people are viewing the blog post, they won’t see the new
comment until they reload the page.

The AJAX model of this session changes such that the display of the new comment is not tied
to the response from the server. When the user hits submit, the request to add the comment is sent
to the server in the background. While it’s being processed by the server, a JavaScript fragment (the
“J” in AJAX) updates the user’s page via DOM2 and adds the comment without the need for a full
page reload.

Comet changes the traditional model by using a long-polling HTTP request in the background
that allows the server to push data to the browser without requiring additional requests. Essen-
tially this is like AJAX, except in the opposite direction.

While the AJAX model increases the richness of the User Experience for a single client at a
time, Comet can do the same for multiple users. Going back to our example of a blog post, Comet

1There are a number of good resources on the web that you can find by searching for “AJAX”.
2Document Object Model. More information can be found at http://www.w3.org/DOM/

137

http://www.w3.org/DOM/

138 CHAPTER 9. AJAX AND COMET IN LIFT

(a)
Tra-
di-
tional
Ap-
pli-
ca-
tion
Model

(b)
AJAX
Ap-
pli-
ca-
tion
Model

(c)
Comet
Ap-
pli-
ca-
tion
Model

Figure 9.1: Application Model Comparisons

would enable the server to notify anyone viewing the current blog post to automatically have their
pages updated when the new comment is added.

Figures ??, ??, and ?? show graphical representations of how the models differ in terms of
timeline and server interaction.

9.2 Using AJAX in Lift

In previous chapters we’ve shown how to synchronously process forms (chapter ??) and use
JavaScript to perform client-side behavior (chapter??). AJAX blends these Lift techniques to give
you powerful support for asynchronous client-server interaction. As with standard form and link
elements, Lift uses methods on the SHtml object to generate AJAX components in a concise man-
ner. We’ll cover each of the AJAX-specific SHtml methods in a later section, but for now we want
to cover the high-level aspects of using AJAX in Lift.

The first thing we want to point out is that AJAX generators take callback methods just like
regular element generators. The major difference is that while standard SHtml generator callbacks
return scala.Any, AJAX callbacks must return a net.liftweb.http.js.JsCmd. The reason
is that the return from the callback is itself a client-side callback that can be used to update the
client content. An example is shown in Listing ??. In this example we generate a button, that
when clicked, will log a message and then set the contents of the div named my-div to a Text
element. As you can see, adding client-side content changes is trivial.

Listing 9.1: A simple AJAX example
import _root_.net.liftweb.http.SHtml._
// The next two imports are used to get some implicit conversions
// in scope.
import _root_.net.liftweb.http.JE._
import _root_.net.liftweb.http.JsCmds._
// Use logging facilities
import _root_.net.liftweb.util.Log

9.3. A MORE COMPLEX AJAX EXAMPLE 139

// define a snippet method
def myFunc(html: NodeSeq) : NodeSeq = {
bind("hello", html, "button" -> ajaxButton(Text("Press me"), {() =>

Log.info("Got an AJAX call")
SetHtml("my-div", Text("That’s it"))

})
}

The second important aspect of Lift’s AJAX support is that behind the scenes Lift provides a
robust mechanism for AJAX submission. For example, Lift provides its own JavaScript that han-
dles retrying when the submission times out. You can control the timeout duration and retry count
through LiftRule’s ajaxPostTimeout (in milliseconds) and ajaxRetryCount variables, re-
spectively.

The third aspect of Lift’s AJAX support is that it’s so easy to enable. Lift automatically takes
care of adding the proper JavaScript libraries to your templates when they’re rendered, and sets up
the proper callback dispatch for you. By default, dispatch is done relative to the /ajax_request
path in your web context, but Lift allows you change this via the LiftRules.ajaxPath variable.

The final aspect is the flexibility the library provides. Besides standard form elements and
links that can be AJAXified, Lift also provides the SHtml.ajaxCall method which constructs a
JsExp that you can use directly on any element. In addition, it allows you to construct a String
argument to your callback function via JavaScript so that you have full access to client-side data.

9.3 A more complex AJAX example

Let’s take a look on a comparison example. We’ve seen how to use SHtml.ajaxButton, so let’s
see in Listing ?? how can we achieve the same effect using SHtml.ajaxCall and SHtml.ajaxInvoke:

Listing 9.2: AJAX comparison example

class SimpleSnippet {
import _root_.net.liftweb.http.js.{JE,JsCmd,JsCmds}
import JsCmds._ // For implicits
import JE.{JsRaw,Str}

def ajaxFunc1() : JsCmd = JsRaw("alert(’Button1 clicked’)")

def ajaxFunc2(str: String) : JsCmd = {
println("Received " + str)
JsRaw("alert(’Button2 clicked’)")

}

def ajaxFunc3() : JsCmd = JsRaw("alert(’Button3 clicked’)")

def renderAJAXButtons(xhtml: Group): NodeSeq = {
bind("ex", xhtml,

"button1" -> SHtml.ajaxButton("Press me", ajaxFunc1 _),
"button2" ->

// ajaxCall and ajaxInvoke actually returns a pair (String, JsExp).
// The String is used for garbage collection, so we only need
// to use the JsExp element (_2).

140 CHAPTER 9. AJAX AND COMET IN LIFT

<button onclick={SHtml.ajaxCall(Str("Button-2"), ajaxFunc2 _)._2}>
Press me 2</button>,

"button3" ->
<button onclick={SHtml.ajaxInvoke(ajaxFunc3 _)._2}>
Press me 3</button>)

}
}

Basically, in Listing ??, we created three AJAX buttons using three different SHtml functions.
The difference between ajaxCall and ajaxInvoke is that for ajaxCall you can specify a
JsExp parameter that will be executed on the client side. The result of this JsExp will be sent to
the server. In our case this parameter is simply a static String, Str(“Button-2”), but you can
provide any JsExp code here to calculate a client-side value to be passed to your callback. For an
overview of the rest of the SHtml generator functions please see Chapter ??.

9.4 AJAX Generators in Detail

The following table provides a brief synopsis of the AJAX generator methods on the
net.liftweb.http.SHtml object:

Function name Description

ajaxButton Renders a button that will submit an AJAX request to server
a Renders an anchor tag that when clicked will submit an

AJAX request
makeAJAXCall Renders the JavaScript code that will submit an AJAX

request
span Renders a span element that when clicked will execute a

JsCmd
ajaxCall Renders the JavaScript code that will submit an AJAX

request but it will also send the value returned by the
JsExp provided.

ajaxInvole Similar to ajaxCall but there is no value to be computed
and sent to the server

toggleKids Provides the toggle effect on an element. When clicked it
will also send an AJAX call

ajaxText Renders an input text element that will send an AJAX
request on blur.

jsonText Renders an input type text element the will send a JSON
request on blur.

ajaxCheckbox Renders a checkbox element that when clicked will send an
AJAX call

ajaxSelect Renders a select element then sends an AJAX call when the
value changes

ajaxForm Wraps a NodeSeq that represents the form’s content and
makes an AJAX call when the form is submitted.

9.5. COMET AND LIFT 141

Function name Description
jsonForm Similar to ajaxForm, but on the client side, the form is

JSONified and the JSON content sent to the server and
processed by JsonHandler

swappable Renders a span that contains one visible element and the
other hidden. When the visible element is clicked it will be
hidden and the other one will be shown

9.5 Comet and Lift

Figure ?? diagrams the interaction between client and server in the Comet. model. There are
several resources on the web that explain the history and specific techniques related to Comet3, so
we won’t get too detailed here. In essence Comet is not a technology but a technique which allows
a web application to push messages from server to client. There are a couple of approaches used
to make this work, but the approach that Lift uses is long polling, so that’s what we’ll be covering
here. As an example, consider a web chat application where you can chat real-time with friends.
Let’s take a quick look at how receiving a message using Comet works in Lift:

1. The client sends an AJAX request to the server asking for any new messages.

2. The server does not respond immediately but waits until there is a message that needs to be
sent for that client.

3. When a message is available, the server responds to the initial request from the client with
the new message(s).

4. The client receives the response, processes it, and issues another AJAX request, and the
process continues.

Of course, things are more complicated then that. For instance, it may take a while until the re-
sponse is actually returned to the client. During this delay, the connection could be dropped for
any number of reasons. The client should be smart enough to re-establish the connection automat-
ically. But there is another problem - scalability. If we have these long-running connections, the
server would typically put the processing threads into a waiting state until messages are available
to send back to the client. Having many waiting threads is a scalability killer because numerous
threads from the web container’s thread pool will lie in the wait state doing nothing until, before
you know it, your entire thread pool is empty. The immediate consequence is that your server can
not do any other request processing. Because of this, a thread-per-connection approach combined
with long-running connections is totally unacceptable.

The key to scalability is NON-BLOCKING IO. Most operating systems support non-blocking
I/O, which actually means that when you utilize an I/O resource for reading or writing (say the
streams from a socket) there is no blocking operation. So if you read from a stream your read
function would immediately return regardless of whether there is data available or not. In Java,
non-blocking I/O is provided by the Java New I/O (NIO) library using Selectors and perhaps
the Reactor pattern4. This has a major impact on scalability because the threads are only held as
long as there is work to do. Once they’re finished with the available data, they are returned to the

3http://en.wikipedia.org/wiki/Comet_(programming) is a good start.
4A nice overview of NIO is at http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf

http://en.wikipedia.org/wiki/Comet_(programming)
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf

142 CHAPTER 9. AJAX AND COMET IN LIFT

thread pool so that they may be reused for processing other requests. In this model the threads
are allocated to connections only when data is available for processing, which inherently leads to
better resource utilization.

Note: This is somewhat off-topic, but if you’re looking to do a lot of work
with NIO and networking, we recommend looking at the Apache MINA
project at http://mina.apache.org/. MINA provides some nice abstrac-
tions for NIO that allows you use a stateful approach to developing NIO
applications without having to deal with a lot of the underlying details of
using NIO.

Having nonblocking I/O enabled by the web container also has a major impact on applica-
tion scalability with regard to long-lived connections from client to server. In addition, the Lift
framework has support for Jetty Continuations, which work like this:

1. You application receives a request and wants to wait to respond, as there is no message yet.

2. You call suspend on the Jetty Continuation object. Here, Jetty will throw a special exception
that will be caught in the container. The current thread is immediately returned to the thread
pool, so it can process other requests.

3. Assume that, after a while, you have a message for that particular client. You call resume on
the same Continuation object. This time, Jetty will actually replay the initial HTTP request,
and your servlet behaves like that request was just received from the client and, of course,
returns the appropriate response.

More details on Jetty’s Continuations are available on the Jetty web site at http://docs.codehaus.
org/display/JETTY/Continuations.

If you run your Lift application in a Jetty container, Lift will automatically detect that and
utilize the Continuation mechanism. Currently, on other containers, Comet in Lift will still work
but won’t scale as well because Continuations aren’t supported. However, the Servlet 3.0 spec
contains a more generic facility, called Suspended Requests, that will make this feature usable
across a variety of containers.

9.5.1 Actors in Scala

It is important to understand that Comet support in Lift is primarily driven via Scala Actors. We
won’t go into too much detail regarding Scala Actors, as you can find very detailed information
in the paper by Philipp Haller, Actors that Unify Threads And Events5.

Scala Actors are based on the concepts of the Erlang6 Actors model where an Actor is an asyn-
chronous component that receives messages and sends or replies to messages. In Erlang, processes
communicate via a very simple and effective messaging system built into the VM.

In Scala, however, Actors are supported at the library level and not at the language level. While
less integrated, this does provide greater flexibility as the Actors library evolution does not impact
the language itself. Since Scala typically sits on top of the JVM, Scala Actors are not bound to pro-
cesses but rather to JVM threads. The key to understanding the scalability of Scala Actors is that

5http://lamp.epfl.ch/~phaller/doc/haller07coord.pdf
6http://erlang.org/

http://mina.apache.org/
http://docs.codehaus.org/display/JETTY/Continuations
http://docs.codehaus.org/display/JETTY/Continuations
http://lamp.epfl.ch/~phaller/doc/haller07coord.pdf
http://erlang.org/

9.5. COMET AND LIFT 143

there is no one-to-one relationship between Actors and Threads. For instance, when an Actor is
waiting for a message we don’t end up having a thread waiting for a lock. Instead, the Actor body
is impersonated by a closure that captures the rest of the computation. This closure is ’cached’
internally until a message is designated for this Actor to consume. In particular, Scala’s Actor
library leverages the match construct to allow very fine-grained selection of messages for pro-
cessing. Another interesting note is that the Actor body (react function) never returns normally;
in fact, the return type of the react function is Nothing.

Let’s take a look on a simple Actor-based example in Listing ??:

Listing 9.3: PingPong example

import scala.actors._
import scala.actors.Actor._

object PingPong extends Application {
var count = 0;
val pong = actor {
loop {
react {
case Ping => println("Actor Pong Received Ping")
sender ! Pong

case Stop => println("Stopping Pong")
exit()

}
}

}
val ping = actor {
pong ! Ping
loop {
react {
case Pong => println("Actor Ping Received Pong")

count = count + 1;
if (count < 3) {
sender ! Ping

} else {
sender ! Stop
println("Stopping Ping")
exit()

}
}

}
}

}
case object Ping
case object Pong
case object Stop

This is a trivial example in which we have two Actors exchanging Ping, Pong and Stop mes-
sages (note that the messages are case objects for pattern matching purposes). Also note that we
did not explicitly used threads anywhere. We also did not use any thread blocking technique such
as synchronized blocks. The reason is that we don’t have to. Actors’ message-passing mechanism

144 CHAPTER 9. AJAX AND COMET IN LIFT

is generally thread-safe (although deadlock is still possible due to dependent Actors7). Note that
threads are used internally and in this specific example the execution may even occur on the same
thread. The reason is that internally the Actors library uses a thread pool, and when an Actor
receives a message the execution occurs in a thread from the thread pool. This is also a key to
Actors’ scalability, because they allow threads to be used very efficiently and returned to the pool
as soon as the Actor consumes the message.

Getting deeper into the details of actions is beyond the scope of this book, but we recommend
that you read other materials in order to fully understand Scala actors. In particular, Philipp
Haller has a nice page summarizing papers and tutorials on actors at http://lamp.epfl.ch/
~phaller/actors.html.

9.5.2 Building a Comet Application in Lift

As we have seen, Comet support in Lift is provided by Scala Actors. Lift greatly simplifies the
use of Actors by providing a CometActor trait that does almost all the work. You simply ex-
tend CometActor with your own class and fill in some implementation methods. Note that your
CometActor classes needs to exist in a comet subpackage as configured by LiftRules.addToPackages.
For example, if you call LiftRules.addToPackages(“com.myapp”) in your boot method,
your comet actors must exist in the com.myapp.comet package.

Let’s take a look at a simple example. Let’s say that we want to build a Clock snippet where
the server will update the client page with the current server time every 10 seconds. First, we need
a template, as shown in Listing ??.

Listing 9.4: Comet Clock markup example
<lift:surround with="default" at="content">

<lift:comet type="Clock" name="Other">
Current Time: <clk:time>Missing Clock</clk:time>

</lift:comet>
</lift:surround>

In our template, we use the <lift:comet> tag to bind the CometActor to the portion of the
template where it will render content, and the body of the <lift:comet> tag is quite similar to
the body of a snippet. The <clk:time> tag will be bound by the Clock actor. The type attribute
tells Lift which CometActor to call, and the name attribute is the name of this CometActor. The
name attribute is a discriminator that allows you to have more then one CometActor of the same
type on a given page. Next, we need to define our actor as shown in Listing ??.

Listing 9.5: Clock Comet Actor example
class Clock extends CometActor {
override def defaultPrefix = Full("clk")

def render = bind("time" -> timeSpan)

def timeSpan = ({timeNow})

// schedule a ping every 10 seconds so we redraw
ActorPing.schedule(this, Tick, 10000L)

7http://ruben.savanne.be/articles/concurrency-in-erlang-scala

http://lamp.epfl.ch/~phaller/actors.html
http://lamp.epfl.ch/~phaller/actors.html
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

9.5. COMET AND LIFT 145

override def lowPriority : PartialFunction[Any, Unit] = {
case Tick => {
println("Got tick " + new Date());
partialUpdate(SetHtml("time", Text(timeNow.toString)))
// schedule an update in 10 seconds
ActorPing.schedule(this, Tick, 10000L)

}
}

}
case object Tick

First, our actor defines the default prefix, which should be used for all nodes that will be bound
inside <lift:comet> tag. In our case, we’re using the clk prefix.

Next, we have the render function where we do the binding between the <clk:time> node
and the result of the timespan function. Basically, the <clk:time> node will be replaced by
the span element returned by the timespan function. It is important to note that Comet content
rendered by the <lift:comet> tag is a tag by default. This default can be changed by
overriding the parentTag function in your comet actor.

timeNow is a function from the net.liftweb.util.TimeHelpers trait that returns the
current system time. We use the net.liftweb.util.ActorPing.schedule method to send
a Tick message back to our actor after 10 seconds. This method is part of the the Clock class
default constructor, and therefore will be called when the Clock class is instantiated.

Finally, we have the lowPriority function that returns a PartialFunction. To process
messages in your CometActor, you can override the following functions: highPriority,
mediumPriority, and lowPriority. This multiplicity of functions is just a way of prioritizing
application messages. The only thing that we do here is to pattern match the messages. In this
simple example, we have only the Tick object. When a Tick is sent by the ActorPing, our code
gets executed and the following actions occur:

1. We print the current time to the console (just for fun)

2. We call partialUpdate function. With a partial update we can update specific fragments
on the client side and not actually re-render the entire content that the CometActor may
produce. This optimization allows us to send something very specific to be updated on the
client side. If we call reRender(true) instead, the entire real estate on the client side will
be re-rendered. Getting back to our partialUpdate call, we are basically sending a JsCmd
that we use to set the XHTML content for the element that has the id “time”. This is the
span element returned by the timeSpan function. Since partialUpdate takes a JsCmd,
you can use it to do just about anything on the client side accessible from JavaScript.

3. We tell ActorPing to send another Tick message after 10 seconds.

As you have seen, with just a few lines of code, we were able to create a Clock application in which
the server updates the client every 10 seconds. Of course, this is just a trivial example, but now,
you should have a clear picture of how CometActor works, so you can build more complex cases
for your Lift application.

146 CHAPTER 9. AJAX AND COMET IN LIFT

Note: As described earlier It is also possible to use notices (notice/warn-
ing/error) from your comet actor. The CometActor trait already has no-
tice, warning and error methods on it that will properly handle sending
these messages to the client. Do not use the notice/warning/error meth-
ods on S, since they assume a stateful response and will not work from
within a Comet callback.

9.6 Coordinating Between Multiple Comet Clients

So far, our example has only shown a self-contained CometActor for the clock. But what if we
want to have interaction between different clients? Scala’s actors are still the answer, but with a
twist—we can use a singleton actor object that coordinates with the CometActor objects so that it
can send messages to all of them. First, we define our singleton actor, as shown in Listing ??.

Listing 9.6: Singleton Actor
case class SubscribeClock(clock : Clock)
case class UnsubClock(clock : Clock)

object ClockMaster extends Actor {
private var clocks : List[Clock] = Nil
def act = loop {
react {

case SubscribeClock(clk) =>
clocks ::= clk

case UnsubClock(clk) =>
clocks -= clk

case Tick =>
clocks.foreach(_ ! Tick)

}
}

}

We’ve defined two case classes representing messages for subscribing and unsubscribing to
the ClockMaster actor. The ClockMaster itself is a simple Actor (not a CometActor) that
defines a simple message loop. It can either subscribe a new clock, unsubscribe to an existing
clock, or distribute a Tick to all subscribed clocks. The other half of this equation slightly modifies
our Clock class (as shown in Listing ??) so that it subscribes and unsubscribes to the ClockMaster
at initialization and shutdown, respectively.

Listing 9.7: Modified Clock Class
...
def localSetup {
ClockMaster ! SubscribeClock(this)
super.localSetup()

}
def localShutdown {
ClockMaster ! UnsubClock(this)
super.localShutdown()

}

9.7. SUMMARY 147

Now, we can add an AJAX button (to an administration page, of course) that would allow the
administrator to update everyone’s clocks at once. Listing ?? shows how we would bind in the
button.

Listing 9.8: The Admin Tick
bind("admin", xhtml, "tick" ->

SHtml.ajaxButton("Tock!", {
() => ClockMaster ! Tick

}))

Here’s what’s happening behind the scenes in our modified Clock application. Lift first identi-
fies a Comet request by matching against the path given by the LiftRules.cometPath variable.
Essentially the flow is as follows:

1. Lift gets a Comet request.

2. Lift checks the CometActors to see if there are any messages. If there are no messages to be
sent to this client, and the application is running in a Jetty container, the Jetty continuation
is suspended, but no response is actually sent to client.

3. Later, when your Comet actor is asked to render or partially update, the response is calcu-
lated, and the Jetty continuation is resumed.

4. When Lift gets the resumed request from the container it returns the response calculated by
the CometActor to the client.

Note that CometActors work even if you are not using Jetty container; the only issue is that you
won’t benefit from the improved scalability of the suspend/resume mechanism offered by the
Jetty container.

9.7 Summary

In this chapter, we explored how easily you can create AJAX and Comet interfaces in Lift. We dis-
cussed the underlying techniques used for AJAX and Comet, as well as how Lift provides support
functions and classes to simplify writing apps that utilize these techniques. We showed exam-
ples of how to use the SHtml object to create AJAX-enabled form elements and how to customize
things like the AJAX request path in Lift. We reviewed Scala actors and how the CometActor
trait is used to make a Comet event handler. We also discussed how Lift works to alleviate scal-
ability issues with Comet on supported containers. Finally, we wrote a simple Clock application
and showed how you can mix AJAX and Comet in the same application.

148 CHAPTER 9. AJAX AND COMET IN LIFT

Chapter 10

JPA Integration

This chapter is still under active development. The contents will change.

The Java Persistence API1, or JPA for short, is the evolution of a number of frameworks in Java to
provide a simple database access layer for plain java objects (and, transitively, Scala objects). JPA
was developed as part of the Enterprise Java Beans 3 (EJB3) specification, with the goal of simpli-
fying the persistence model. Prior versions had used the Container Managed Persistence (CMP)
framework, which required many boilerplate artifacts in the form of interfaces and XML descrip-
tors. As part of the overarching theme of EJB3 to simplify and use convention over configuration,
JPA uses sensible defaults and annotations heavily, while allowing for targetted overrides of be-
havior via XML descriptors. JPA also does away with many of the interfaces used in CMP and
provides a single javax.persistence.EntityManager class for all persistence operations.
An additional benefit is that JPA was designed so that it could be used both inside and outside of
the Enterprise container, and several projects (Hibernate, TopLink, JPOX, etc) provide standalone
implementations of EntityManager.

As we’ve seen in chapter ??, Lift already comes with a very capable database abstraction layer,
so why would we want to use something else? There are a number of reasons:

1. JPA is easily accessible from both Java and Scala. If you are using Lift to complement part
of a project that also contains Java components, JPA allows you to use a common database
layer between both and avoid duplication of effort. It also means that if you have an existing
project based on JPA, you can easily integrate it into Lift

2. JPA gives you more flexibility with complex and/or large schemas. While Lift’s Mapper pro-
vides most of the functionality you would need, JPA provides additional lifecycle methods
and mapping controls when you have complex needs. Additionally, JPA has better support
for joins and relationships between entities.

3. JPA can provide additional performance improvements via second-level object caching. It’s
possible to roll your own in Lift, but JPA allows you to cache frequently-accessed objects in
memory so that you avoid hitting the database entirely

1http://java.sun.com/javaee/overview/faq/persistence.jsp

149

http://java.sun.com/javaee/overview/faq/persistence.jsp

150 CHAPTER 10. JPA INTEGRATION

10.1 Introducing JPA

In order to provide a concrete example to build on while learning how to integrate JPA, we’ll be
building a small Lift app to manage a library of books. The completed example is available under
the Lift Git repository in the sites directory, and is called “JPADemo”. Basic coverage of the JPA
operations is in section ??; if you want more detail on JPA, particularly with advanced topics like
locking and hinting, there are several very good tutorials to be found online2. Our first step is
to set up a master project for Maven. This project will have two modules under it, one for the
JPA library and one for the Lift application. In a working directory of your choosing, issue the
following command:

mvn archetype:generate \
-DarchetypeRepository=http://scala-tools.org/repo-snapshots \
-DarchetypeGroupId=net.liftweb \
-DarchetypeArtifactId=lift-archetype-jpa-basic \
-DarchetypeVersion=1.1-SNAPSHOT \
-DgroupId=com.foo.jpaweb \
-DartifactId=JPADemo \
-Dversion=1.0-SNAPSHOT

This will use the JPA archetype to create a new project for you with modules for the persistence
and web portions of the project.

Note: The reason we have split the module out into two projects is that
it aids deployment on Jave EE servers to have the Persistence module be
an independent JAR file. If you don’t need that, you can simply merge
the contents of the two modules into a single project and it will work
standalone. Note that you’ll need to merge the pom.xml file’s depen-
dencies and plugin configurations from all three POMs. Lift comes with
an archetype that handles this already, albeit without the demo code we
show here. Simply use the lift-archetype-jpa-blank-single archetype and
you’ll get a blank project (with minimal files for JPA and Lift) that you can
use for your app. There’s also a blank archetype that uses two modules if
you want that, called lift-archetype-jpa-blank.

You will get a prompt asking you to confirm the settings we’ve chosen; just hit <enter>. As
of this writing we have to use the snapshot version of the archetype because it didn’t make the
Lift 1.0 deadline, but otherwise it’s a stable archetype. You will also see some Velocity warnings
about invalid references; these can be safely ignored and will hopefully be fixed by 1.1. After the
archetype is generated, you should have the following tree structure:

JPADemo
|-- README
|-- pom.xml
|-- spa
| |-- pom.xml

2http://java.sun.com/developer/technicalArticles/J2EE/jpa/, http://www.jpox.org/docs/
1_2/tutorials/jpa_tutorial.html

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.jpox.org/docs/1_2/tutorials/jpa_tutorial.html
http://www.jpox.org/docs/1_2/tutorials/jpa_tutorial.html

10.1. INTRODUCING JPA 151

| ‘-- src ...
‘-- web

|-- pom.xml
‘-- src ...

If you look at the source directories, you’ll see that our code is already in place! If you’re making
your own application you can either use the previously mentioned blank archetypes to start from
scratch, or use the basic archetype and modify the POMs, Scala code and templates to match your
needs. For now, let’s go over the contents of the project.

10.1.1 Using Entity Classes in Scala

The main components of a JPA library are the entity classes that comprise your data model. For
our example application we need two primary entities: Author and Book. Let’s take a look at the
Author class first, shown in listing ??. The listing shows our import of the entire javax.persistence
package as well as several annotations on a basic class. For those of you coming from the Java
world in JPA, the annotations should look very familiar. The major difference between Java and
Scala annotations is that each parameter in a Scala annotation is considered a val, which explains
the presence of the val keyword in lines 12, 15 and 17-18. In line 17 you may also note that we must
specify the target entity class; although Scala uses generics, the generic types aren’t visible from
Java, so the Java JPA libraries can’t deduce the correct type. You may also notice that on line 18
we need to use the Java collections classes for Set, List, etc. With a little bit of implicit conversion
magic (to be shown later), this has very little impact on our code. On final item item to note is that
the Scala compiler currently does not support nested annotations 3, so where we would normally
use them (join tables, named queries, etc), we will have to use the orm.xml descriptor, which we
cover next.

10.1.2 Using the orm.xml descriptor

As we stated in the last section, there are some instances where the Scala compiler doesn’t fully
cover the JPA annotations (nested annotations in particular). Some would also argue that queries
and other ancillary data (table names, column names, etc) should be separate from code. Because
of that, JPA allows you to specify an external mapping descriptor to define and/or override the
mappings for your entity classes. The basic orm.xml file starts with the DTD type declaration,
as shown in listing ??. Following the preamble, we can define a package that will apply to all
subsequent entries so that we don’t need to use the fully-qualified name for each class. In our
example, we would like to define some named queries for each class. Putting them in the orm.xml
allows us to modify them without requiring a recompile. The complete XML Schema Definition
can be found at http://java.sun.com/xml/ns/persistence/orm_1_0.xsd.

In this case we have used the orm.xml file to augment our entity classes. If, however, we would
like to override the configuration, we may use that as well on a case-by-case basis. Suppose we
wished to change the column name for the Author’s name property. We can add (per the XSD) a
section to the Author entity element as shown in listing ??. The attribute-override element
lets us change anything that we would normally specify on the @Column annotation. This gives
us an extremely powerful method for controlling our schema mapping outside of the source code.
We can also add named queries in the orm.xml so that we have a central location for defining or
altering the queries.

3https://lampsvn.epfl.ch/trac/scala/ticket/294

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
https://lampsvn.epfl.ch/trac/scala/ticket/294

152 CHAPTER 10. JPA INTEGRATION

Listing 10.1: Author override
<entity class="Author">
<named-query name="findAllAuthors">
<query><![CDATA[from Author a order by a.name]]></query>

</named-query>
<attribute-override name="name">
<column name="author_name" length="30" />

</attribute-override>
</entity>

10.1.3 Working with Attached and Detached Objects

JPA operates with entities in one of two modes: attached and detached. An attached object is one
that is under the direct control of a live JPA session. That means that the JPA provider monitors
the state of the object and writes it to the database at the appropriate time. Objects can be attached
either explicitly via the persist and merge methods (section ??), or implicitly via query results,
the getReference method or the find method.

As soon as the session ends, any formerly attached objects are now considered detached. You
can still operate on them as normal objects but any changes are not directly applied to the database.
If you have a detached object, you can re-attach it to your current session with the merge method;
any changes since the object was detached, as well as any subsequent changes to the attached
object, will be applied to the database at the appropriate time. The concept of object attachment
is particularly useful in Lift because it allows us to generate or query for an object in one request
cycle and then make modifications and merge in a different cycle.

As an example, our library application provides a summary listing of authors on one page
(src/main/webapp/authors/list.html) and allows editing of those entities on another (src/main/webapp/authors/add.html).
We can use the SHtml.link generator on our list page, combined with a RequestVar, to pass
the instance (detached once we return from the list snippet) to our edit snippet. Listing ?? shows
excerpts from our library application snippets demonstrating how we hand off the instance and
do a merge within our edit snippets submission processing function (doAdd).

Listing 10.2: Passing Detached Instances Around an Application

// in src/main/scala/net/liftweb/jpademo/snippets/Author.scala
...package and imports ...
class AuthorOps {
def list (xhtml : NodeSeq) : NodeSeq = {
val authors = ...
authors.flatMap(author => bind("author", xhtml, ...

// use the link closure to capture the current
// instance for edit insertion
"edit" -> SHtml.link("add.html",

() => authorVar(author), Text(?("Edit")))))
}
...
// Set up a requestVar to track the author object for edits and adds
object authorVar extends RequestVar(new Author())
// helper def
def author = authorVar.is

10.2. OBTAINING A PER-SESSION ENTITYMANAGER 153

def add (xhtml : NodeSeq) : NodeSeq = {
def doAdd () = {
...
// merge and save the detached instance

Model.mergeAndFlush(author)
...

}
// Hold a val here so that the closure grabs it instead of the def
val current = author
// Use a hidden element to reinsert the instance on form submission
bind("author", xhtml,
"id" -> SHtml.hidden(() => authorVar(current)), ...,
"submit" -> SHtml.submit(?("Save"), doAdd))

}
}

10.2 Obtaining a Per-Session EntityManager

Ideally, we would like our JPA access to be as seamless as possible, particularly when it comes
to object lifecycle. In JPA, objects can be attached to a current persistence session, or they can be
detached from a JPA session. This gives us a lot of flexibility (which we’ll use later) in dealing
with the objects themselves, but it also means that we need to be careful when we’re accessing
object properties. JPA can use lazy retrieval for instance properties; in particular, this is the default
behavior for collection-based properties. What this means is that if we’re working on a detached
object and we attempt to access a collection contained in the instance, we’re going to get an excep-
tion that the session that the object was loaded in is no longer live. What we’d really like to do is
have some hooks into Lift’s request cycle that allows us to set up a session when the request starts
and properly close it down when the request ends. We still have to be careful with objects that
have been passed into our request (from form callbacks, for instance), but in general this will guar-
antee us that once we’ve loaded an object in our snippet code we have full access to all properties
at any point within our snippets.

Fortunately for us, Lift provides just such a mechanism. In fact, Lift supports several re-
lated mechanisms for lifecycle management4, but for now we’re going to focus on just one: the
RequestVar. A RequestVar represents a variable associated with the lifetime of the request.
This is in contrast to SessionVar, which defines a variable for the lifetime of the user’s session.
RequestVar gives us several niceties over handling request parameters ourselves, including type
safety and a default value. We go into more detail on RequestVars and SessionVars in sec-
tion ??. In addition to the Lift facilities, we also use the ScalaJPA project5 to handle some of the boil-
erplate of utilizing JPA. ScalaJPA provides some nice traits that “Scalafy” the JPA EntityManager
and Query interfaces, as well as accessors that make retrieving an EM simple. To use ScalaJPA we
simply add the following dependency to our POM.

<dependency>
<groupId>org.scala-tools</groupId>
<artifactId>scalajpa</artifactId>

4Notably, S.addAround with the LoanWrapper
5http://scala-tools.org/mvnsites-snapshots/scalajpa/, source code available at

http://github.com/dchenbecker/scalajpa/tree

http://scala-tools.org/mvnsites-snapshots/scalajpa/
http://github.com/dchenbecker/scalajpa/tree

154 CHAPTER 10. JPA INTEGRATION

Listing 10.3: Setting up an EntityManager via RequestVar
1 import _root_.org.scala_libs.jpa._
2 object Model extends LocalEMF("jpaweb") with RequestVarEM

<version>1.0-SNAPSHOT</version>
</dependency>

Note that at the time of writing the library is at 1.0-SNAPSHOT, but should be promoted to 1.0
soon.

We leverage ScalaJPA’s LocalEMF and RequestVarEM traits to provide a simple RequestVar
interface to obtain the EM via local lookup (i.e. via the javax.persistence.Persistence
class), as shown in listing ??. It’s trivial to use JNDI instead by substituting the JndiEMF trait
for the LocalEMF trait, but the details of setting up the JNDI persistence module are beyond the
scope of this book.

Once we have this object set up, we can access all of the ScalaEntityManager methods
directly on Model.

10.3 Handling Transactions

We’re not going to go into too much detail here; there are better documents available6 if you want
to go into depth on how the Java Transaction API (JTA) or general transactions work. Essentially,
a transaction is a set of operations that are performed atomically; that is, they either all complete
successfully or none of them do. The classic example is transferring funds between two bank
accounts: you subtract the amount from one account and add it to the other. If the addition fails
and you’re not operating in the context of a transaction, the client has lost money!

In JPA, transactions are required. If you don’t perform your operations within the scope of a
transaction you will either get an exception (if you’re using JTA), or you will spend many hours
trying to figure out why nothing is being saved to the database. There are two ways of handling
transactions under JPA: resource local and JTA. Resource local transactions are what you use if
you are managing the EM factory yourself (corresponding to the LocalEMF trait). Similarly, JTA
is what you use when you obtain your EM via JNDI. Technically it’s also possible to use JTA with
a locally managed EM, but that configuration is beyond the scope of this book.

Generally, we would recommend using JTA where it’s free (i.e., when deploying to a Java EE
container) and using resource-local when you’re using a servlet container such as Jetty or Tomcat.
If you will be accessing multiple databases or involving resources like EJBs, it is much safer to
use JTA so that you can utilize distributed transactions. Choosing between the two is as simple as
setting a property in your persistence.xml file (and changing the code to open and close the EM).
Listing ?? shows examples of setting the transaction-type attribute to RESOURCE_LOCAL and
to JTA. If you want to use JTA, you can also omit the transaction-type attribute since JTA is
the default.

You must make sure that your EM setup code matches what you have in your persistence.xml.
Additionally, the database connection must match; with JTA, you must use a jta-data-source
(obtained via JNDI) for your database connection. For resource-local, you can either use a non-jta-datasource
element or you can set the provider properties, as shown in listing ??. In this particular example

6http://java.sun.com/developer/EJTechTips/2005/tt0125.html

http://java.sun.com/developer/EJTechTips/2005/tt0125.html

10.4. SCALAENTITYMANAGER AND SCALAQUERY 155

Listing 10.4: Setting the transaction type
<persistence-unit name="jpaweb" transaction-type="RESOURCE_LOCAL">
<non-jta-datasource>myDS</non-jta-datasource>

<persistence-unit name="jpaweb" transaction-type="JTA">
<jta-datasource>myDS</jta-datasource>

Listing 10.5: Setting resource-local properties for Hibernate
1 <persistence>
2 <persistence-unit name="jpaweb" transaction-type="RESOURCE_LOCAL">
3 <properties>
4 <property name="hibernate.dialect" value="org.hibernate.dialect.

PostgreSQLDialect"/>
5 <property name="hibernate.connection.driver_class" value="org.

postgresql.Driver"/>
6 <property name="hibernate.connection.username" value="somUser"/>
7 <property name="hibernate.connection.password" value="somePass"/>
8 <property name="hibernate.connection.url" value="jdbc:postgresql:jpaweb

"/>
9 </properties>

10 </persistence-unit>
11 </persistence>

we’re setting the properties for Hibernate, but similar properties exist for TopLink7, JPOX8, and
others.

If you’ll be deploying into a JEE container, such as JBoss or GlassFish, then you get JTA sup-
port almost for free since JTA is part of the JEE spec. If you want to deploy your application on a
lightweight container like Jetty or Tomcat, we would recommend that you look into using an ex-
ternal JTA coordinator such as JOTM, Atomikos, or JBoss Transaction Manager, since embedding
a JTA provider in your container is a nontrivial task.

One final note in regard to transactions is how they’re affected by Exceptions. Per the spec, any
exceptions thrown during the scope of a transaction, other than
javax.persistence.NoResultException or javax.persistence.NonUniqueResultException,
will cause the transaction to be marked for rollback.

10.4 ScalaEntityManager and ScalaQuery

Now that we’ve gone through setting up our EntityManager, let’s look at how we actually use
them in an application. As a convenience, ScalaJPA defines two thin wrappers on the existing
EntityManager9 and Query10 interfaces to provide more Scala-friendly methods. This means

7http://www.oracle.com/technology/products/ias/toplink/JPA/essentials/
toplink-jpa-extensions.html

8http://www.jpox.org/docs/1_2/persistence_unit.html
9http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html

10http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

http://www.oracle.com/technology/products/ias/toplink/JPA/essentials/toplink-jpa-extensions.html
http://www.oracle.com/technology/products/ias/toplink/JPA/essentials/toplink-jpa-extensions.html
http://www.jpox.org/docs/1_2/persistence_unit.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

156 CHAPTER 10. JPA INTEGRATION

that we get Scala’s collection types (i.e. List instead of java.util.List) and generic signatures
so that we can avoid explicit casting. The ScalaEntityManager trait provides a wrapper on the
EntityManager class, and is included as part of the RequestVarEM trait that we’ve mixed into
our Model object. The API for ScalaEntityManager can be found at http://scala-tools.
org/mvnsites/scalajpa/scaladocs/org/scala_libs/jpa/ScalaEntityManager.html.

Next, we have the ScalaQuery trait, with API docs at http://scala-tools.org/mvnsites/
scalajpa/scaladocs/org/scala_libs/jpa/ScalaQuery.html. Like ScalaEntityManager,
this is a thin wrapper on the Query interface. In particular, methods that return entities are typed
against the ScalaQuery itself, so that you don’t need to do any explicit casting in your client
code. We also have some utility methods to simplify setting a parameter list as well as obtaining
the result(s) of the query.

10.5 Operating on Entities

In this section we’ll demonstrate how to work with entities and cover some important tips on
using JPA effectively.

10.5.1 Persisting, Merging and Removing Entities

The first step to working with any persistent entities is to actually persist them. If you have a
brand new object, you can do this with the persist method:

val myNewAuthor = new Author; myNewAuthor.name = "Wilma"
Model.persist(myNewAuthor)

This attaches the myNewAuthor object to the current persistence session. Once the object is at-
tached it should be visible in any subsequent queries, although it may not be written to the
database just yet (see section ??). Note that the persist method is only intended for brand
new objects. If you have a detached object and you try to use persist you will most likely get an
EntityExistsException as the instance you’re merging is technically conflicting with itself.
Instead, you want to use the merge method to re-attach detached objects:

val author = Model.merge(myOldAuthor)

An important thing to note is that the merge method doesn’t actually attach the object passed to
it; instead, it makes an attached copy of the passed object and returns the copy. If you mistakenly
merge without using the returned value:

Model.merge(myOldAuthor)
myOldAuthor.name = “Fred”

you’ll find that subsequent changes to the object won’t be written to the database. One nice aspect
of the merge method is that it intelligently detects whether the entity you’re merging is a new
object or a detached object. That means that you can use merge everywhere and let it sort out the
semantics. For example, in our library application, using merge allows us to combine the adding
and editing functionality into a single snippet; if we want to edit an existing Author we pass
it into the method. Otherwise, we pass a brand new Author instance into the method and the
merge takes care of either case appropriately.

Removing an object is achieved by calling the remove method:

http://scala-tools.org/mvnsites/scalajpa/scaladocs/org/scala_libs/jpa/ScalaEntityManager.html
http://scala-tools.org/mvnsites/scalajpa/scaladocs/org/scala_libs/jpa/ScalaEntityManager.html
http://scala-tools.org/mvnsites/scalajpa/scaladocs/org/scala_libs/jpa/ScalaQuery.html
http://scala-tools.org/mvnsites/scalajpa/scaladocs/org/scala_libs/jpa/ScalaQuery.html

10.5. OPERATING ON ENTITIES 157

Model.remove(myAuthor)

The passed entity is detached from the session immediately and will be removed from the database
at the appropriate time. If the entity has any associations on it (to collections or other entities),
they will be cascaded as indicated by the entity mapping. An example of a cascade is shown in
the Author listing on page ??. The books collection has the cascade set to REMOVE, which means
that if an author is deleted, all of the books by that author will be removed as well. The default is
to not cascade anything, so it’s important that you properly set the cascade on collections to avoid
constraint violations when you remove entities. It’s also useful to point out that you don’t actually
need to have an entity loaded to remove it. You can use the getReference method to obtain a
proxy that will cause the corresponding database entry to be removed:

Model.remove(Model.getReference(classOf[Author], someId))

10.5.2 Loading an Entity

There are actually three ways to load an entity object in your client code: using find, getReference
or a query. The simplest is to use the find method:

val myBook = Model.find(classOf[Book], someId)

The find method takes two parameters: the class that you’re trying to load and the value of the
ID field of the entity. In our example, the Book class uses the Long type for its ID, so we would put
a Long value here. It returns either a Full Box (section ??) if the entity is found in the database,
otherwise it returns Empty. With find, the entity is loaded immediately from the database and
can be used in both attached and detached states.

The next method you can use is the getReference method:

val myBook = Model.getReference(classOf[Book], someId)

This is very similar to the findmethod with a few key differences. First, the object that is returned
is a lazy proxy for the entity. That means that no database load is required to occur when you
execute the method, although providers may do at least a check on the existence of the ID. Because
this is a lazy proxy, you usually don’t want to use the returned object in a detached state unless
you’ve accessed its fields while the session was open. The normal use of getReference is when
you want to set up a relationship between two (or more) entities, since you don’t need to query all
of the fields just to set a foreign key. For example:

myBook.author = Model.getReference(classOf[Author], authorId)

When myBook is flushed to the database the EM will correctly set up the relationship. The final
difference is in how unknown entities are handled. Recall that the find method returns Empty if
the entity cannot be found; with getReference, however, we don’t query the database until the
reference is used. Because of this, the javax.persistence.EntityNotFoundException is
thrown when you try to access an undefined entity for the first time (this also marks the transaction
for rollback).

The third method for loading an entity would be to use a query (named or otherwise) to fetch
the entity. As an example, here’s a query equivalent of the find method:

158 CHAPTER 10. JPA INTEGRATION

val myBook =
Model.createQuery[Book]("from Book bk where bk.id = :id")

.setParams("id" -> someId).findOne

The advantage here is that we have more control over what is selected by using the query language
to specify other properties. One caveat is that when you use the findOne method you need
to ensure that the query will actually result in a unique entity; otherwise, the EM will throw a
NonUniqueResultException.

10.5.3 Loading Many Entities

Corresponding to the findOne method is the findAll method, which returns all entities based
on a query. There are two ways to use findAll; the first is to use the convenience findAll
method defined in the ScalaEntityManager class:

val myBooks = Model.findAll("booksByYear", "year" -> myYear)

This requires the use of a named query for the first arg, and subsequent args are of the form
(“paramName” -> value). Named queries can be defined in your orm.xml, as shown in section ??.
Named queries are highly recommended over ad-hoc queries since they allow you to keep the
queries in one location instead of being scattered all over your code. Named queries can also be
pre-compiled by the JPA provider, which will catch errors at startup (or in your unit tests, hint
hint) instead of when the query is run inside your code.

The second method is to create a ScalaQuery instance directly and then set parameters and
execute it. In reality this is exactly what the Model.findAll method is doing. The advantage
here is that with the ScalaQuery instance you can do things like set hinting, paging, and so on.
For instance, if you wanted to do paging on the books query, you could do

val myBooks = Model.createNamedQuery(“booksByYear”)
.setParams(“year” -> myYear)
.setMaxResults(20)
.setFirstResult(pageOffset).findAll

10.5.4 Using Queries Wisely

In general we recommend that you use named queries throughout your code. In our experience,
the extra effort involved in adding a named query is more than offset by the time it saves you if
you ever need to modify the query. Additionally, we recommend that you use named parameters
in your queries. Named parameters are just that: parameters that are inserted into your query by
name, in contrast to positional parameters. As an example, here is the same query using named
and positional parameters:

Named parameters select user from User where (user.name like :searchString
or user.email like :searchString) and user.widgets > :widgetCount

Positional parameters select user from User where (user.name like ? or user.email
like ?) and user.widgets > ?

This example shows several advantages of named parameters over positional parameters:

10.5. OPERATING ON ENTITIES 159

1. You can reuse the same parameter within the same query and you only set it once. In the
example about we would set the same parameter twice using positional params

2. The parameters can have meaningful names.

3. With positional params you may have to edit your code if you need to alter your query to
add or remove parameters

In any case, you should generally use the parameterized query types as opposed to hand con-
structing your queries; using things like string concatenation opens up your site to SQL injec-
tion attacks unless you’re very careful. For more information on queries there’s an excellent ref-
erence for the EJBQL on the Hibernate website at http://www.hibernate.org/hib_docs/
entitymanager/reference/en/html/queryhql.html.

10.5.5 Converting Collection Properties

The ScalaEntityManager and ScalaQuery methods are already defined so that they return
Scala-friendly collections such as scala.collection.jcl.BufferWrapper or SetWrapper.
We have to use Java Collections11 “under the hood” and then wrap them because JPA doesn’t
understand Scala collections. For the same reason, collections in your entity classes must also
use the Java Collections classes. Fortunately, Scala has a very nice framework for wrapping Java
collections. In particular, the scala.collection.jcl.Conversions class contains a number
of implicit conversions; all you have to do is import them at the top of your source file like so:

import scala.collection.jcl.Conversions._

Once you’ve done that the methods are automatically in scope and you can use collections in your
entities as if they were real Scala collections. For example, we may want to see if our Author has
written any mysteries:

val suspenseful = author.books.exists(_.genre = Genre.Mystery)

10.5.6 The importance of flush() and Exceptions

It’s important to understand that in JPA the provider isn’t required to write to the database until
the session closes or is flushed. That means that constraint violations aren’t necessarily checked at
the time that you persist, merge or remove and object. Using the flush method forces the provider
to write any pending changes to the database and immediately throw any exceptions resulting
from any violations. As a convenience, we’ve written the mergeAndFlush, persistAndFlush,
and removeAndFlush methods to do persist, merge and remove with a subsequent flush, as
shown in listing ??, taken from the Author snippet code. You can also see that because we flush at
this point, we can catch any JPA-related exceptions and deal with them here. If we don’t flush at
this point, the exception would be thrown when the transaction commits, which is often very far
(in code) from where you would want to handle it.

Listing 10.6: Auto-flush methods
def doAdd () = {
if (author.name.length == 0) {

11http://java.sun.com/docs/books/tutorial/collections/index.html

http://www.hibernate.org/hib_docs/entitymanager/reference/en/html/queryhql.html
http://www.hibernate.org/hib_docs/entitymanager/reference/en/html/queryhql.html
http://java.sun.com/docs/books/tutorial/collections/index.html

160 CHAPTER 10. JPA INTEGRATION

error("emptyAuthor", "The author’s name cannot be blank")
} else {

try {
Model.mergeAndFlush(author)
redirectTo("list.html")

} catch {
case ee : EntityExistsException => error("Author already exists")
case pe : PersistenceException =>

error("Error adding author"); Log.error("Error adding author", pe)
}

}
}

Although the combo methods simplify things, we recommend that if you will be doing multi-
ple operations in one session cycle that you use a single flush at the end:

Listing 10.7: Multiple JPA ops
val container = Model.find(classOf[Container], containerId)
Model.remove(container.widget)
container.widget = new Widget("Foo!")
// next line only required if container.widget doesn’t cascade PERSIST
Model.persist(container.widget)
Model.flush()

10.5.7 Validating Entities

Since we’ve already covered the Mapper framework and all of the extra functionality that it pro-
vides beyond being a simple ORM, we felt that we should discuss one of the more important
aspects of data handling as it pertains to JPA: validation of data.

JPA itself doesn’t come with a built-in validation framework, although the upcoming JPA 2.0
may use the JSR 303 (Bean Validation) framework as its default. Currently, Hibernate Valida-
tor is one of the more popular libraries for validating JPA entities, and can be used with any JPA
provider. More information is available at the project home page: http://www.hibernate.org/412.html.

The validation of entities with Hibernate Validator is achieved, like the JPA mappings, with
annotations. Listing ?? shows a modified Author class with validations for the name. In this case
we have added a NotNull validation as well as a Length check to ensure we are within limits.

Note: Unfortunately, due to the way that the validator framework
extracts entity properties, we have to rework our entity to use a
getter/setter for any properties that we want to validate; even the
scala.reflect.BeanProperty annotation won’t work.

Validation can be performed automatically via the org.hibernate.validator.event.JPAValidateListener
EntityListener, or programmatically via the org.hibernate.validator.ClassValidator
utility class. In the listing we use ClassValidator and match on the array returned from
getInvalidValues for processing. Further usage and configuration is beyond the scope of
this book.

http://www.hibernate.org/412.html

10.6. SUPPORTING USER TYPES 161

Listing 10.8: The Author class with Hibernate Validations
...
class Author {
...
var name : String = ""
@Column{val unique = true, val nullable = false}
@NotNull
@Length{val min = 3, val max = 100}
def getName() = name
def setName(nm : String) { name = nm }
...

}
// In the snippet class
class AuthorOps {
...
val authorValidator = new ClassValidator(classOf[Author])
def add (xhtml : NodeSeq) : NodeSeq = {
def doAdd () = {
authorValidator.getInvalidValues(author) match {

case Array() =>
try {
Model.mergeAndFlush(author)

...
} catch {
...

}
case errors => {

errors.foreach(err => S.error(err.toString))
}

}
...

}
}

10.6 Supporting User Types

JPA can handle any Java primitive type, their corresponding Object versions (java.lang.Long,
java.lang.Integer, etc), and any entity classes comprised of these types 12. Occasionally, though,
you may have a requirement for a type that doesn’t fit directly with those specifications. One ex-
ample in particular would be Scala’s enumerations. Unfortunately, the JPA spec currently doesn’t
have a means to handle this directly, although the various JPA providers such as Toplink and Hi-
bernate provide mechanisms for resolving custom user types. JPA does provide direct support for
Java enumerations, but that doesn’t help us here since Scala enumerations aren’t an extension of
Java enumerations. In this example, we’ll be using Hibernate’s UserType to support an enumer-
ation for the Genre of a Book.

We begin by implementing a few helper classes besides the Genre enumeration itself. First, we
define an Enumv trait, shown in listing ??. Its main purpose is to provide a valueOf method that
we can use to resolve the enumerations database value to the actual enumeration. We also add

12It can technically handle more; see the JPA spec, section 2.1.1 for details

162 CHAPTER 10. JPA INTEGRATION

Listing 10.9: Genre and GenreType
3 object Genre extends Enumeration with Enumv {
4 val Mystery = Value("Mystery", "Mystery")
5 val Science = Value("Science", "Science")
6 val Theater = Value("Theater", "Drama literature")
7 // more values here...
8 }
9

10 class GenreType extends EnumvType(Genre) {}

Listing 10.10: Using the @Type annotation
@Type{val ‘type‘ = "com.foo.jpaweb.model.GenreType"}
var genre : Genre.Value = Genre.unknown

some extra methods so that we can encapsulate a description along with the database value. Scala
enumerations can use either Ints or Strings for the identity of the enumeration value (unique
to each val), and in this case we’ve chosen Strings. By adding a map for the description (since
Scala enumeration values must extend the Enumeration#Value class and therefore can’t carry
the additional string) we allow for the additional info. We could extend this concept to make the
Map carry additional data, but for our purposes this is sufficient.

In order to actually convert the Enumeration class into the proper database type (String,
Int, etc), we need to implement the Hibernate UserType interface, shown in listing ??. We can
see on line 18 that we will be using a varchar column for the enumeration value. Since this is
based on the Scala Enumeration’s Value method, we could technically use either Integer or
character types here. We override the sqlTypes and returnedClassmethods to match our pre-
ferred type, and set the equals and hashCode methods accordingly. Note that in Scala, the “==”
operator on objects delegates to the equals method, so we’re not testing reference equality here.
The actual resolution of database column value to Enumeration is done in the nullSafeGet
method; if we decided, for instance, that the null value should be returned as unknown, we could
do this here with some minor modifications to the Enumv class (defining the unknown value, for
one).The rest of the methods are set appropriately for an immutable object (Enumeration). The
great thing about the EnumvType class, is that it can easily be used for a variety of types due to the
“et” constructor argument; as long as we mix in the Enumv trait to our Enumeration objects, we
get persistence essentially for free. If we determined instead that we want to use Integer enu-
meration IDs, we need to make minor modifications to the EnumvType to make sure arguments
match and we’re set.

Finally, the Genre object and the associated GenreType is shown in listing ??. You can see
that we create a singleton Genre object with specific member values for each enumeration value.
The GenreType class is trivial now that we have the EnumvType class defined. To use the Genre
type in our entity classes, we simply need to add the proper var and annotate it with the @Type
annotation, as shown in listing ??. We need to specify the type of the var due to the fact that the
actual enumeration values are of the type Enumeration.Val, which doesn’t match our valueOf
method in the Enumv trait. We also want to make sure we set the enumeration to some reasonable
default; in our example we have an unknown value to cover that case.

10.7. RUNNING THE APPLICATION 163

10.7 Running the Application

Now that we’ve gone over everything, it’s time to run the application. Because we’ve split up the
app into separate SPA and WEB modules, we need to first run

mvn install

From the SPA module directory to get the persistence module added to your maven repository.
Once that is done, you can go to the WEB module directory and run

mvn jetty:run

To get it started.

10.8 Summing Up

As we’ve shown in this chapter, the Java Persistence API provides a robust, flexibile framework
for persisting data to your database, and does so in a manner that integrates fairly well with Lift.
We’ve demonstrated how you can easily write entities using a combination of annotations and the
orm.xml descriptor, how to define your own custom user types to handle enumerations, the intri-
cacies of working with transactions in various contexts, and leveraging the ScalaJPA framework
to simplify your persistence setup.

164 CHAPTER 10. JPA INTEGRATION

Chapter 11

Third Party Integrations

In this chapter we’ll explore how you can integrate Lift with some well-known third party libraries
and applications

11.1 OpenID Integration

The OpenID Foundation1 explain OpenID as:
“OpenID eliminates the need for multiple usernames across different websites, simplifying

your online experience.
You get to choose the OpenID Provider that best meets your needs and most importantly that

you trust. At the same time, your OpenID can stay with you, no matter which Provider you
move to. And best of all, the OpenID technology is not proprietary and is completely free. For
businesses, this means a lower cost of password and account management, while drawing new
web traffic. OpenID lowers user frustration by letting users have control of their login. For geeks,
OpenID is an open, decentralized, free framework for user-centric digital identity. OpenID takes
advantage of already existing internet technology (URI, HTTP, SSL, Diffie-Hellman) and realizes
that people are already creating identities for themselves whether it be at their blog, photostream,
profile page, etc. With OpenID you can easily transform one of these existing URIs into an account
which can be used at sites which support OpenID logins.

OpenID is still in the adoption phase and is becoming more and more popular, as large orga-
nizations like AOL, Microsoft, Sun, Novell, etc. begin to accept and provide OpenIDs. Today it
is estimated that there are over 160-million OpenID enabled URIs with nearly ten-thousand sites
supporting OpenID logins.”

Lift provides openId support using onepID4Java2. It provides two fundamental traits net.liftweb.openId.OpenIdVendor
and net.liftweb.openId.OpenIdConsumer. OpenIdVendor contains variables such as:

• PathRoot - The path sequence for processing OpenID requests. The default value is “openid”

• LoginPath - The path sequence for processing login requests. The default value is “login”.
The login path will be /openid/login

• LogoutPath - The path sequence for processing logout requests. The default value is “lo-
gout”. The login path will be /openid/logour

1http://openid.net/
2http://code.google.com/p/openid4java/

165

http://openid.net/

166 CHAPTER 11. THIRD PARTY INTEGRATIONS

• ResponsePath - The path sequence for processing login requests. The default value is “re-
sponse”. The login path will be /openid/response

• PostParamName - The form parameter name containing the OpeID identity URL entered by
the user

Also the vendor trait contains the loginForm function that returns the login form containing an in-
put text field for the OpenID identity and the submit button. The form will point to /<PathRoot>/<LoginPath>
where PathRoot and LoginPath are the variables described above. Here is an example:

Listing 11.1: OpenID example
// Your template

<lift:OpenID.form>
<openId:renderForm/>

</lift:OpenID.form>

// Your snippet

class OpenID {

def renderForm(xhtml: NodeSeq) : NodeSeq = {
SimpleOpenIdVendor.loginForm

}

}

class Boot {

...
// This is needed in order to process the login and logout requests and also to process
// the response comming from OpenID provider
LiftRules.dispatch.append(SimpleOpenIdVendor.dispatchPF)
...

}

That is pretty much all you need to add into your Lift application. The authentication flow is:

1. User accesses your lift page that contains the OpenID form

2. User enters his/her OpenID identity URL and submits the form. Note that you don’t have
to use the default login form asyou can construct your own as long as the form is submitted
to the correct path and contains the correct input text parameter name.

3. The dispatchPF function that we appended above will process the /openid/login request
and will send the authentication request to the Identity Provider site

4. Identity Provider will validate the user and redirect back to your Lift application to /openid/re-
sponse path.

5. The response is validated using OpenId4Java library

6. OpenIdConsumer.postLogin gets called.

11.2. AMQP 167

The SimpleOpenIDVendor looks like:

Listing 11.2: SimpleOpenIDVendor
trait SimpleOpenIdVendor extends OpenIdVendor {
type UserType = Identifier
type ConsumerType = OpenIdConsumer[UserType]

def currentUser = OpenIdUser.is
def postLogin(id: Box[Identifier],res: VerificationResult): Unit = {
id match {
case Full(id) => S.notice("Welcome "+id)
case _ => S.error("Failed to authenticate")

}
OpenIdUser(id)

}
def logUserOut() {
OpenIdUser.remove

}
def displayUser(in: UserType): NodeSeq = Text("Welcome "+in)
def createAConsumer = new AnyRef with OpenIDConsumer[UserType]

}
object SimpleOpenIdVendor extends SimpleOpenIdVendor

Note the postLogin implementation. Of course if you need a more complex post-login pro-
cessing you can extend OpenIdVendor by yourself.

During this message exchange between the Identity Provider ans your Lift application, Lift
utilizes a couple of SessionVars:

• OpenIdObject - holds an OpenIdConsumer

• OpenIdUser - holding an org.openid4java.discovery.Identifier

11.2 AMQP

AMQP stands for Advanced Message Queuing Protocol3. It is an open Internet protocol for mes-
saging. It is concepted as a binary representation of messages. Lift facilitates the work with AMQP
using the RabbitMQ4 Java implementation. There are two fundamental classes:

• net.liftweb.amqp.AMQPSender - used for sending AMQP messages

• net.liftweb.amqp.AMQPDispatcher - used for receiving AMQP messages

Let’s see how we can use Lift to send AMQP messages

Listing 11.3: AMQP sending messages example

import net.liftweb.amqp._
import com.rabbitmq.client._

3http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
4http://www.rabbitmq.com/

168 CHAPTER 11. THIRD PARTY INTEGRATIONS

val params = new ConnectionParameters
// All of the params, exchanges, and queues are all just example data.
params.setUsername("guest")
params.setPassword("guest")
params.setVirtualHost("/")
params.setRequestedHeartbeat(0)
val factory = new ConnectionFactory(params)
val amqp = new StringAMQPSender(factory, "localhost", 5672, "mult", "routeroute")
amqp.start
amqp ! AMQPMessage("hi")

As you can see the AMQSender is leveraging Scala actors to send messages. Scala actors and
AMQP messaging concepts play very well together.

Now let’s see how we can receive and process AMQP messages:

Listing 11.4: AMQP receiving messages example

import net.liftweb.amqp._
import com.rabbitmq.client._

/**
* Example Dispatcher that listens on an example queue and exchange. Use this

* as your guiding example for creating your own Dispatcher.

*
*/
class ExampleSerializedAMQPDispatcher[T](factory: ConnectionFactory, host: String, port: Int)

extends AMQPDispatcher[T](factory, host, port) {

override def configure(channel: Channel) {
// Get the ticket.
val ticket = channel.accessRequest("/data")
// Set up the exchange and queue
channel.exchangeDeclare(ticket, "mult", "direct")
channel.queueDeclare(ticket, "mult_queue")
channel.queueBind(ticket, "mult_queue", "mult", "routeroute")
// Use the short version of the basicConsume method for convenience.
channel.basicConsume(ticket, "mult_queue", false, new SerializedConsumer(channel, this))

}
}

/**
* Example class that accepts Strings coming in from the

* ExampleSerializedAMQPDispatcher.

*/
class ExampleStringAMQPListener {
val params = new ConnectionParameters
params.setUsername("guest")
params.setPassword("guest")
params.setVirtualHost("/")
params.setRequestedHeartbeat(0)
val factory = new ConnectionFactory(params)
// thor.local is a machine on your network with rabbitmq listening on port 5672
val amqp = new ExampleSerializedAMQPDispatcher[String](factory, "thor.local", 5672)

11.3. PAYPAL 169

amqp.start

// Example Listener that just prints the String it receives.
class StringListener extends Actor {
def act = {
react {

case msg@AMQPMessage(contents: String) => println("received: " + msg); act
}

}
}
val stringListener = new StringListener()
stringListener.start
amqp ! AMQPAddListener(stringListener)

}

First of all don’t get scarred about this. The above classes are already existent so you can
just reuse them. However the point of showing them here is to understand how to use a AMQP
consumer, how to configure it to match the client settings from the Listing 1.3??. The key here is
to see how the actual messages are consumed. Note the StringListener actor is consumming the
AMQPMessage but the actor itself it provided to AMQPDispatcher. What happens is that when a
real AMQP message is received by AMQPDispatcher it will just forward it to the user’sActor for
actuall processing. SerializedConsumer class is actually doing the transformation of the raw data
(array of byte-s) into AMQPMessage messages.

11.3 PayPal

Paypal5 is the notorious service that allows you to do online payment transactions. Lift supports
both

PDT(Payment Data Transferr)6as well as
IPN(Instant Payment Notification)7 API’ sprovided by PayPal. We won’t be getting into PayPal

API details as this information can be found on PayPal site. However let’s see how we’d use PDT
and IPN.

Listing 11.5: PDT Example
import net.liftweb.paypal._

object MyPayPalPDT extends PayPalPDT {
override def pdtPath = "paypal_complete"
def paypalAuthToken = Props.get("paypal.authToken") openOr "cannot find auth token from props file"

def pdtResponse: PartialFunction[(PayPalInfo, Req), LiftResponse] = {
case (info, req) => println("--- in pdtResponse"); DoRedirectResponse("/account_admin/index");

}
}

// in Boot

5https://www.paypal.com
6https://www.paypal.com/en_US/i/IntegrationCenter/scr/scr_ppPDTDiagram_513x282.gif
7https://www.paypal.com/en_US/i/IntegrationCenter/scr/scr_ppIPNDiagram_555x310.gif

170 CHAPTER 11. THIRD PARTY INTEGRATIONS

def boot(){
...
LiftRules.statelessDispatchTable.append(MyPayPalPDT)
...

}

That is pretty much it. pdtResponse function allows you to determine the behavior of you
application upon receiving the reponse from PayPal.

Listing 11.6: IPN Example
import net.liftweb.paypal._

object MyPayPalIPN extends PayPalIPN {
def actions = {

case (ClearedPayment, info, req) => // do your processing here
case (RefundedPayment, info, req) => // do refund processing

}
}

// in Boot

def boot(){
...
LiftRules.statelessDispatchTable.append(MyPayPalIPN)
...

}

As you can see everything is pretty strightforward. Just pattern match on the PaypalTransactionStatus.
It is worth to note sthat IPN is a ’machine-to-machine’ API which happens in the background
without the end user interraction.

11.4 Facebook

Facebook8 is the well known site that simply allows people to easily interract, build social graphs
share photos etc. Facebook also exposes HTTP API’s9 that allows other applications to interract
with it. Lift framework allows your application to easily interract with Facebook by providing an
abstraction layer over the Facebook API. Here is an example:

Listing 11.7: Facebook example

import net.liftweb.ext_api.facebook._

FacebookRestApi.apiKey = <your API key>;
FacebookRestApi.secret = <your secret>;

// The api key is ontained from System.getProperty("com.facebook.api_key")
// The secreat is obtained from System.setProperty("com.facebook.secret", key)

8http://www.facebook.com
9http://wiki.developers.facebook.com/index.php/API

11.5. XMPP 171

// Invoke stateless calls
val respNode: Node = FacebookClient !? AuthCreateToken
val authToken = // extract authToken from respNode

// Obtain a stateful client based on the authToken
val faceBookClient = FacebookClient fromAuthToken(authToken)

faceBookClient !? GetFriendLists

Once you have the FacebookClient you can invoke numerous API methods described by
FacebookMethod or SessionlessFacebookMethod. In the above examplewe are creating
the FaceBook context by first obtaining an authToken and then obtaining a faceBookClient
reference bound to the newly created session. After that we’re just ontaining the friends list.

11.5 XMPP

XMPP10 stand for eXtensible Messaging and Presence Protocol. It is an XML based protocol pres-
ence and realtime communication such as instance messaging. It is developer by Jabber11 open-
source community. Lift provides an XMPP dispatcher implementation that you application can
use to receive instant messages, manage rosters etc. This support realies on Smack 12 XMPP client
library and Scala actors as the actors model fits like a glove. Here is an example:

Listing 11.8: XMPP Example
import net.liftweb.xmpp._

/**
* An example Chat application that prints to stdout.

*
* @param username is the username to login to at Google Talk: format: something@gmail.com

* @param password is the password for the user account at Google Talk.

*/
class ConsoleChatActor(val username: String, val password: String) extends Actor {
def connf() = new ConnectionConfiguration("talk.google.com", 5222, "gmail.com")
def login(conn: XMPPConnection) = conn.login(username, password)
val xmpp = new XMPPDispatcher(connf, login)
xmpp.start

val chats: Map[String, List[Message]] = new HashMap[String, List[Message]]
val rosterMap: HashMap[String, Presence] = new HashMap[String, Presence]
var roster: Roster = null
def act = loop

def loop {
react {

case Start => {
xmpp ! AddListener(this)
xmpp ! SetPresence(new Presence(Presence.Type.available))

10http://xmpp.org/
11http://xmpp.org/about/jabber.shtml
12http://www.igniterealtime.org/downloads/index.jsp

172 CHAPTER 11. THIRD PARTY INTEGRATIONS

loop
}
case NewChat(c) => {
chats += (c.getParticipant -> Nil)
loop

}
case RecvMsg(chat, msg) => {
println("RecvMsg from: " + msg.getFrom + ": " + msg.getBody);
loop

}
case NewRoster(r) => {
println("getting a new roster: " + r)
this.roster = r
val e: Array[Object] = r.getEntries.toArray.asInstanceOf[Array[Object]]
for (entry <- e) {
val user: String = entry.asInstanceOf[RosterEntry].getUser
rosterMap += (user -> r.getPresence(user))

}
loop

}

case RosterPresenceChanged(p) => {
val user = StringUtils.parseBareAddress(p.getFrom)
println("Roster Update: " + user + " " + p)
// It’s best practice to ask the roster for the presence. This is because
// multiple presences can exist for one user and the roster knows which one
// has priority.
rosterMap += (user -> roster.getPresence(user))
loop

}
case RosterEntriesDeleted(e) => {
println(e)
loop

}
case RosterEntriesUpdated(e) => {
println(e)
loop

}
case RosterEntriesAdded(e) => {
println(e)
loop

}
case a => println(a); loop

}
}
def createChat(to: String) {
xmpp ! CreateChat(to)

}
def sendMessage(to: String, msg: String) {
xmpp ! SendMsg(to, msg)

}

/**
* @returns an Iterable of all users who aren’t unavailable along with their Presence

11.6. LUCENE/COMPASS INTEGRATION 173

*/
def availableUsers: Iterable[(String, Presence)] = {
rosterMap.filter((e) => e._2.getType() != Presence.Type.unavailable)

}
}

object ConsoleChatHelper {
/**
* @param u is the username

* @param p is the password

*/
def run(u: String, p: String) = {
val ex = new ConsoleChatActor(u, p)
ex.start
ex ! Start
ex

}
}

// To start the dispatcher just call:

ConsoleChatHelper.run(userName, password);

...

The above is an example how you can integrate your application with an XMPP server and
how messages are pocessed. We won;t be detailing each line of code in this example as it is pretty
much self explanatory and straight forward.

11.6 Lucene/Compass Integration

This chapter is still under active development. The contents will change.

174 CHAPTER 11. THIRD PARTY INTEGRATIONS

Chapter 12

Lift Widgets

In this chapter we’re going to discuss widgets in Lift. A widget is essentially a library of Scala
and JavaScript code that together provide packaged XHTML fragments for display on the client
browser. In other web frameworks (JSF, Struts, etc) these are sometimes called components. An
example of a widget would be small library that automatically embeds a Calendar instance (sec-
tion ??), or a helper library to sort HTML tables (section ??). Typically widgets embody dynamic
behavior on the client side, which is what makes them so attractive; static client-side content is
already dead simple to generate in Lift with snippets, so the extra sauce of JavaScript binding and
Ajax callbacks really makes advanced functionality easy.

Lift’s widgets are intended to minimize effort on your part. Unlike some other frameworks
where widgets/components require the use of specific traits or special XML binding, Lift (and
Scala’s) inherent flexibility with XML, JavaScript abstraction, and snippet generators make using
widgets as simple as dropping in a few lines of code to your existing snippets or views.

12.1 Current Lift Widgets

To start, we’ll cover the current set of widgets included in Lift at the time of writing this book.
These widgets are contained in the lift-widgets module, which means you’ll need to add the de-
pendency to your pom.xml if you want to use them (section ??). While this list will likely grow
over time, remember that widgets are based on the fundamentals of Scala’s XML functionality as
well as Lift’s JavaScript support (chapter ??), so the same general rules apply to all of them. At the
end of the chapter we’ll cover writing your own widgets (section ??).

Figure 12.1: TableSorter widget

175

176 CHAPTER 12. LIFT WIDGETS

12.1.1 TableSorter widget

The TableSorter widget is based on the TableSorter jQuery plugin1. Basically, the TableSorter wid-
get allows you to take an existing HTML table (THEAD and TBODY tags are required) and add
sorting to columns in the table. By default, the widget handles sorting of numeric, currency, and
other value types automatically. The full capabilities of the plugin are beyond the scope of the
widget, however; if you need more features you’ll have to set up the JavaScript yourself instead
of using the widget.

The first step in using the widget is to call the TableSorter.init function in your Boot
class to make Lift aware of the resources used by this widget. Then, you need to set up a table in
your page (either statically in the template or via a snippet):

Listing 12.1: TableSorter Template
<lift:surround with="default" at="content">

<lift:TableSorterDemo/>
<table id="table-id" class="tablesorter"> ... </table>

</lift:surround>

Note that you need to have an id attribute on the table and add the tablesorter class to the
table element. Next you simply call the TableSorter widget from a snippet:

Listing 12.2: TableSorter Snippet
class TableSorterDemo {
def render(xhtml: NodeSeq): NodeSeq = TableSorter("table-id")
}

The argument to TableSorter is the HTML element id of the table you want sorted. The Ta-
bleSorter code relies on head merge (section ??) to put the appropriate JavaScript and jQuery
functions into the returned page.

12.1.2 Calendar widgets

There are three calendar widgets corresponding to month, week and day views. These widgets
display calendars with a similar look and feel to Microsoft Outlook or Google Calendar.They pro-
vide basic functionality for display, but you can easily customize CSS and JavaScript hooks for
calendar items to fit your application requirements.

Calendar Month-View This widget allows you to create month view calendars in your web
page, manage your calendar events etc. The first thing you need to do is call the CalendarMonthView.init
function in your Boot class; this performs initialization by telling Lift’s ResourceServer about
the paths to JavaScripts and stylesheets needed by this widget since these dependencies are em-
bedded in the same jar file (we’ll cover this topic more in section ??).

The template for our widget example is relatively straightforward, as shown in listing ??. Ba-
sically, we provide a binding element where the calendar will be rendered.

Listing 12.3: Month view template
<lift:surround with="default" at="content">

1http://tablesorter.com/docs/

http://tablesorter.com/docs/

12.1. CURRENT LIFT WIDGETS 177

Figure 12.2: Calendar Month-View

<h2>Calendar Month View Demo</h2>
<lift:CalendarMonthViewDemo>

<cal:widget/>
</lift:CalendarMonthViewDemo>

</lift:surround>

In our snippet code, listing ??, we first perform some setup of the widget. The Calendar wid-
get takes a java.util.Calendar instance telling it which month to display. Additionally, it
takes a Seq[CalendarItem] of items to be displayed on the calendar. Finally, it takes three argu-
ments containing optional JavaScript functions to be called when an item, day, or week is clicked,
respectively. In our example we’re not showing any events or setting up any callbacks.

Listing 12.4: Month view snippet
class CalendarMonthViewDemo {
def render(html: Group) : NodeSeq = {
val c = Calendar.getInstance;
c.set(MONTH, 0)
bind("cal", html,

"widget" -> CalendarMonthView(c, Nil, Empty, Empty, Empty)
)

}

In addition, CalendarMonthView can also take a MonthViewMeta instance as the second ar-
gument so that you can control the first day of the week and the locale used for formatting dates
and times. For instance, we could set the calendar to use Monday as the first day of the week:

"widget" -> CalendarMonthView(c,
MonthViewMeta(Calendar.MONDAY, Locale.getDefault),
Nil, Empty, Empty, Empty)

Of course, without anything to display or do this isn’t very useful, so let’s look at how you
create CalendarItems.

Listing ?? shows how we can create a calendar item for a meeting on June 5th at 2:30 pm.

178 CHAPTER 12. LIFT WIDGETS

We have to set up another Calendar instance to hold the time of the meeting, then we use the
CalendarItem helper object to set up the actual item instance. The first parameter is the id of
the div that will be created for the item. This can be used from other scripts if needed. The
second argument is the time of the event. The third argument is the CalendarType of the event, in
this case, a meeting. The optional method on CalendarItem allows you to set optional attributes
essentially via a sequence of (CalendarItem) ⇒ CalendarItem functions. This technique is used
since CalendarItems are immutable and modifying them returns new instances.

Listing 12.5: CalendarItem example
val time = Calendar.getInstance
time.setTime(DateFormat.pars("2009-06-05 2:30pm"))
val meeting = CalendarItem("4", time, CalendarType.MEETING) optional (

_ end(time),
_ subject("Important Meeting!"))

The widget renders not only the XHTML to display the calendar, but it generates the <script>
and CSS tags using head merge to control display. One common customization of the widget
would be to override the CSS used; to do this, provide your own style.css file under the WEB-
INF/classes/calendars/monthview directory in your project. Because Lift uses the classpath to
load resources, your style.css file will be “found” before the default one bundled in the lift-widgets
jar file. You can use the default style.css as a starting point2.

The final thing we’d like to cover for the Month view is the JavaScript callbacks. These call-
backs are constructed using the AnonFunc JavaScript artifact, which essentially constructs an
anonymous function on the client side. Listing ?? shows an example of using the callbacks to
redirect to an event view page for the given event when the item is clicked. In this example we
assume that the id of each calendar item is its unique id in the ORM (section ??) and that we have
a rewrite rule set up to handle item viewing (section ??).

Listing 12.6: Calendar callback example
import JsCmds._
val itemClick = Full(
AnonFunc("elem, param", JsRaw("alert(elem);")

Calendar Week-View The CalendarWeekView widget provides a weekly view of the calendar.
The same general principles apply as for month view. Again, you need to initialize the Calendar-
WeekView by calling the CalendarWeekView.init function in your Boot class.

Listing ?? shows a snippet returning a week view. As you can see, we still use a Calendar
instance to set the time, and we also provide a WeekViewMeta in this example to set the first day
of the week and the locale. The list argument is a Seq[CalendarItem], constructed exactly the
same as for a month view. Finally, we provide a JavaScript item callback. Note that there aren’t
day or week callbacks available.

Listing 12.7: Week view example

class CalendarWeekViewDemo {
def render(html: Group) : NodeSeq = {

2http://github.com/dpp/liftweb/tree/master/lift-widgets/src/main/resources/toserve/calendars/monthview/style.css

http://github.com/dpp/liftweb/tree/master/lift-widgets/src/main/resources/toserve/calendars/monthview/style.css

12.1. CURRENT LIFT WIDGETS 179

Figure 12.3: Calendar Week-View

Figure 12.4: Calendar Day-View

val c = Calendar.getInstance
c.set(DAY_OF_MONTH, 17)
c.set(MONTH, 4)
bind("cal", html,

"widget" -> CalendarWeekView(c,
WeekViewMeta(MONDAY, Locale.getDefault()),
list,
itemClick))

}
}

Calendar Day-View The CalendarDayView widget renders a calendar for a single day. The
usage is essentially the same as for the month and week views, as shown in listing ??:

180 CHAPTER 12. LIFT WIDGETS

Listing 12.8: Day view example
class CalendarDayViewDemo {
def render(html: Group) : NodeSeq = {
val c = Calendar.getInstance
c.set(DAY_OF_MONTH, 17)
c.set(MONTH, 4)
bind("cal", html,

"widget" -> CalendarDayView(c,
DayViewMeta(Locale.getDefault()),
list, itemClick)

)
}

The parameters are essentially the same, except that the Calendar object represents the day that
we want to render and we pass a DayViewMeta containing just the Locale for internationalization
purposes. Again, only an item click callback is available.

12.1.3 RSS Feed widget

Figure 12.5: RSSFeed widget

The RSS feed widget, like its name implies, simply renders RSS feeds. This widget does not need
initialization in Boot since it has no dependencies on JavaScript, CSS, etc. In your snippet you
simply use the RSSFeed helper object with the RSS feed URL:

Listing 12.9: RSSFeed example
class RSSFeedDemo {
def render(xhtml: NodeSeq): NodeSeq = {
RSSFeed("http://www.praytothemachine.com/evil/index.php/feed/")

}
}

Although the RSSFeed widget doesn’t provide its own CSS, the generated elements do have
CSS classes attached to them that you can provide styling for:

rsswidget This class is attached to the outer div that contains all of the feed elements

12.1. CURRENT LIFT WIDGETS 181

Figure 12.6: TreeView widget

rsswidgettitle This class is attached to the that holds the title of the feed

rsswidgetitem This class is attached to each element that holds an RSS item

12.1.4 Gravatar widget

Gravatars are globally recognized avatars3. You can add your picture at the Gravatar website and
associate it with one or more email addresses. Sites that interact with Gravatar can fetch your
picture and display it, which is what the Gravatar widget does. Listing ?? shows an example
snippet that will render the Gravatar for the currentUser into a <div>, if available. The default
size of the Gravatar is 42x42 pixels, but you can override this with additional parameters on the
Gravatar.apply method. Additionally, you can filter the Gravatar based on its rating (the default
rating is “G” only).

Listing 12.10: Gravatar example
class GravatarDemo {
def render(xhtml: NodeSeq) :NodeSeq = {
Gravatar(currentUser.email)
}

}

12.1.5 TreeView widget

The TreeView widget transforms an unordered list () into a tree-like structure using the Tree-
View JQuery plugin 4. Each nested unordered list gets decorated with a +/- sign that allows you
to collapse or expand the entire sublist, as shown in figure ??.

To use this widget you first need to initialize the widget by calling the TreeView.init func-
tion in your Boot class. For basic usage, your snippet looks like listing ??. The first argument is
the id of the unordered list that you want transformed into a tree. The second argument is a JSON

3http://gravatar.com
4http://docs.jquery.com/Plugins/Treeview

http://gravatar.com
http://docs.jquery.com/Plugins/Treeview

182 CHAPTER 12. LIFT WIDGETS

object that is used to configure the tree view. In our example, we’re setting the treeview to ani-
mate opening and closing of nodes with a 90 millisecond delay; for more options see the treeview
jQuery documentation page.

Listing 12.11: TreeView snippet
class TreeViewDemo {
def render(xhtml: Group): NodeSeq = {
TreeView("example", JsObj(("animated" -> 90)))

}
}

In addition to transforming static lists into trees, the TreeView widget also supports asyn-
chronous loading of trees and nodes via Ajax calls. In order to do this, you still need to provide
an empty element with an id attribute; this is essentially modified in place as portions of the
tree are loaded. Next, you provide two functions that are used to retrieve the Tree data:

1. A function () ⇒ List[Tree] to load the initial view of the tree. This is what will be displayed
to the client when the page loads, so if you want some nodes to be available without having
to make an Ajax call this is where you define it.We will explain the Tree class in a moment.

2. A function (String) ⇒ List[Tree] to load the children of a given node (the String argument
is the node’s id)

The Tree class defines each node in the tree and contains several values that define the appearance
and behavior of the node:

text The text to be displayed in the list item.

id The optional HTML id of the element

classes An optional string defining CSS classes to be assigned to the element

expanded A boolean controlling whether the element will be expanded initially (only valid if the
haschildren is true or if the children list is populated)

hasChildren If this is set to true but the children value is Nil, then the TreeView widget will
dynamically load the children of this node as described in item #2 above

children A List[Tree] defining the children of this element. Setting this value will prevent Ajax
from being used to retrieve the list of children from the server on expansion

The Tree companion object has a number of overloaded apply methods that make it easy to set
one or more of these values without having to set all of them.

To provide a concrete example, listing ?? shows implementations of the loadTree and loadNode
functions corresponding to the two Ajax functions used to dynamically construct the tree.

Listing 12.12: Tree example
def loadTree () = {
Tree("No children") ::
Tree("One static child", Tree("Lone child") :: Nil) ::
Tree("Dynamic node", "myDynamic", true) :: Nil

}

12.1. CURRENT LIFT WIDGETS 183

Figure 12.7: Sparklines bar chart

def loadNode (id : String) : List[Tree] = id match {
case "myDynamic" =>
Tree("Child one") ::
Tree("Child two") :: Nil

case _ => Nil
}

In this example the initial view will show three nodes; the third node (“Dynamic node”) will
fetch its children via an Ajax call when expanded. The loadNode method will then handle this
call by adding two static leaf nodes to the tree.

12.1.6 Sparklines widget

The Sparklines widget is based on Will Larson’s excellent Sparklines JavaScript library5. Sparklines
are essentially small, high resolution charts embedded in text that provide a wealth of information
in a compact representation6.

As with our other widgets, you need to initialize the widget in your Boot class by calling
Sparklines.init. Listing ?? shows a simple snippet utilizing the widget to produce the graph
shown in figure ??. In your template you need to provide a canvas element with an id attribute
that will be used by the widget for its content. In our example we provide a JsArray (an abstracted
JavaScript array) with our data, as well as a JSON object containing options for the chart7. We’ve
set our options to draw percentage lines for the bar chart as well as filling in the area between
the percentage lines. Finally, we call the Sparklines.onLoad method to generate the chart drawing
code (the chart will be drawn when the page is loaded). The Sparklines library currently handles
bar and line charts, which are chosen via the SparklineStyle enumeration.

Listing 12.13: Sparklines snippet
class SparklinesDemo {
def render(html: NodeSeq): NodeSeq = {
val data = JsArray(100,500,300,200,400,500,400,400,

100,200, 345, 412, 111, 234, 490);
val opts = JsObj(("percentage_lines" -> JsArray(0.5, 0.75)),

("fill_between_percentage_lines" -> true),
("extend_markings" -> false));

5http://www.willarson.com/code/sparklines/sparklines.html
6The term “Sparkline” was introduced by Edward Tufte in his book Beautiful Evidence. Dr. Tufte’s work is a must

read for anyone who si working with visualizing large volumes of data.
7More options can be found on Will Larson’s Sparklines web page

http://www.willarson.com/code/sparklines/sparklines.html

184 CHAPTER 12. LIFT WIDGETS

Sparklines.onLoad("bar", SparklineStyle.BAR, data, opts);
}

}

12.2 How to build a widget

As we explained in the introduction, there is no magic formula when building a widget since Lift
and Scala provide so much base functionality without having to resort to restrictions like traits
or static XML binding. However, there are a few items to note if you want to design your own
widgets

Generally it’s useful to make your widget a self-contained JAR file to simplify dependency
management and deployment. Including things like style sheets and javascript libraries in your
package is quite straightforward if you’re using Maven, but the question then becomes how do
you access these resources from a Lift application. Fortunately, Lift provides some very sim-
ple mechanisms for using class loaders to retrieve resources. The basic functionality is handled
through the ResourceServer object8, which we cover in detail in section ??. This object controls
resource loading, and in particular handles where resources can be loaded from. Listing ?? shows
an example init method (similar to those that we’ve previously used for the existing widgets) that
tells the ResourceServer that it can load resources from the path “/classpath/mywidget”. You
would locate these resources under the mywidget package in your widget project.

Listing 12.14: Adding ResourceServer permissions
import _root_.net.liftweb.http.ResourceServer
def init() {
ResourceServer.allow{
case "iframewidget" :: _ => true

}
}

Once you’ve set up the appropriate permissions, your widget can generate links or scripts that
load from within the classpath, as shown in listing ??. In this example we’ve defined a simple (and
slightly ridiculous) widget that renders a given URL into an IFrame element.

Listing 12.15: Sample widget rendering
class IFrameWidget {
def render(url : String) =
<head>
<link type="text/css" rel="stylesheet"

href={LiftRules.resourceServerPath + "/iframewidget/style.css"/>
</head>
<div class="iframeDiv">
<iframe src={url}>
<p>Your browser doesn’t support IFrames</p>

</iframe>
</div>

}

8net.liftweb.http.ResourceServer

12.2. HOW TO BUILD A WIDGET 185

Note the path that we used uses the LiftRules.resourceServerPath variable. It’s prefer-
able to use this mechanism instead of hardcoding “/classpath” to allow for end-user flexibility. We
also use head merge to make sure the proper stylesheet is loaded for the page.

As you can see, defining your own widget is not much different than writing a snippet. The
major difference is in making resources accessible while bundling and making sure that you avoid
hardcoding properties that are configurable by the end-users of your widget.

186 CHAPTER 12. LIFT WIDGETS

Chapter 13

Web Services

13.1 Why Add an API to Your Web Application?

Many web applications today offer an API1 that allows others to extend the functionality of the
application. An API is a set of exposed functions that is meant to allow third parties to reuse
elements of the application. There is a number of sites that catalog the available APIs, such as
ProgrammableWeb (see http://www.programmableweb.com/). An example of a site that has
combined the GoogleMaps and Flickr APIs is FlickrVision.com2. FlickrVision allows users to visu-
alize where in the world recent photos have been taken by combining the geolocation information
embedded in the photos and the mapping system of GoogleMaps. This is just one example of an
API mashup, and there are countless other examples.

We’re going to focus on what it takes to offer a simple RESTful web api for PocketChange.

13.2 A Little Bit about HTTP

As we build our web service, it will to be helpful to know a few things about HTTP3 requests and
responses. If you’re comfortable with the Request-Response cycle then feel free to jump to ?? to
get down to business.

A simplification of how the web works is that clients, typically web browsers, send HTTP Re-
quests to servers, which respond with HTTP Responses. Let’s take a look at an exchange between
a client and a server.

We’re going to send a GET request to the URI http://demo.liftweb.net/ using the cURL
utility. We’ll enable dumping the HTTP protocol header information so that you can see all of the
information associated with the request and response. The cURL utility sends the output shown
in Listing ??:

Listing 13.1: cURL Request
]> curl -v http://demo.liftweb.net/

* About to connect() to demo.liftweb.net port 80 (#0)

* Trying 64.27.11.183... connected

* Connected to demo.liftweb.net (64.27.11.183) port 80 (#0)
> GET / HTTP/1.1

1Application Programming Interface
2http://flickrvision.com/
3Hypertext Transfer Protocol

187

http://www.programmableweb.com/
http://demo.liftweb.net/
http://flickrvision.com/

188 CHAPTER 13. WEB SERVICES

> User-Agent: curl/7.19.0 (i386-apple-darwin9.5.0) libcurl/7.19.0 zlib/1.2.3
> Host: demo.liftweb.net
> Accept: */*

And gets the corresponding response, shown in Listing ??, from the server:

Listing 13.2: cURL Response
< HTTP/1.1 200 OK
< Server: nginx/0.6.32
< Date: Tue, 24 Mar 2009 20:52:55 GMT
< Content-Type: text/html
< Connection: keep-alive
< Expires: Mon, 26 Jul 1997 05:00:00 GMT
< Set-Cookie: JSESSIONID=5zrn24obipm5;Path=/
< Content-Length: 8431
< Cache-Control: no-cache; private; no-store;
must-revalidate; max-stale=0; post-check=0; pre-check=0; max-age=0

< Pragma: no-cache
< X-Lift-Version: 0.11-SNAPSHOT
<
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:lift="http://liftweb.net" xmlns="http://www.w3.org/1999/xhtml">
<head>....

This seems pretty straightforward: we ask for a resource, and the server returns it to us. Take
a look at the HTTP request. We’d like to point out the method called, in this case a “GET”, and
the URI, which is “http://demo.liftweb.net/”. Method calls and addresses are what make the
web work. You can think of the web as a series of method calls on varying resources, where the
URI (Uniform Resource Identifier) identifies the resource upon which the method will be called.

Methods are defined as part of the HTTP standard, and we’ll use them in our API. In addition
to GET, the other HTTP methods are POST, DELETE, PUT, HEAD, and OPTIONS. You may also see
methods referred to as actions or verbs. In this chapter, we will focus on using GET and PUT for
our API.

As do Requests, Responses come with a few important pieces of information. Of note are the
Response Code and the Entity Body. In the above example, the Response Code is “200 OK” and
the Entity Body is the HTML content of the webpage, which is shown as the last two lines starting
with “<!DOCTYPE.” We’ve truncated the HTML content here to save space.

This was a quick overview of HTTP, but if you’d like to learn more, take a look at the protocol
definition found at4. We wanted to point out a few of the interesting parts of the cycle before we
got into building a REST API.

13.3 Defining REST

Roy Fielding defined REST in his dissertation and defined the main tenet of the architecture to be
a uniform interface to resources. “Resources” refers to pieces of information that are named and
have representations. Examples include an image, a Twitter status, or a timely item such as a stock

4http://www.ietf.org/rfc/rfc2616.txt

13.4. COMPARING XML-RPC TO REST ARCHITECTURES 189

quote or the current temperature. The uniform interface is supported by a set of constraints that
include the following:

• Statelessness of communication: This is built on top of HTTP, which is also stateless.

• Client-server–style interaction: Again, just as the Web consists of browsers talking to servers,
REST discusses machines or applications talking to servers in the same way.

• Support for caching: REST uses the caching headers of HTTP to support the caching of
resources.

These features are shared by both the web and by RESTful services. REST adds additional con-
straints regarding interacting with resources:

• Naming: As we mentioned, a resource must be identified, and this is done using URLs.

• Descriptive actions: Using the HTTP actions, GET, PUT, and DELETE makes it obvious what
action is being performed on the resource.

• URL addressability: URLs should allow for the addressing of representation of a resource.

Fielding’s goal was to define a method that allowed machine-to-machine communication to mimic
that of browser-to-server communication and to take advantage of HTTP as the underlying pro-
tocol. You can find Fielding’s dissertation at http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm.

You’ll see how Lift allows you to create RESTful web services in the rest of this chapter.

13.4 Comparing XML-RPC to REST Architectures

What, then, is the difference between a RESTful architecture and a traditional RPC5 architecture?
An RPC application follows a more traditional software development pattern. It ignores most

of the features offered by HTTP, such as the HTTP methods. Instead, the scoping and data to be
used by the call are contained in the body of a POST request. XML-RPC works similarly to the
web for getting resources, but breaks from the HTTP model for everything else by overloading the
POST request. You will often see the term SOAP when referring to an XML-RPC setup, because
SOAP permits the developer to define the action and the resource in the body of the request and
ignore the HTTP methods.

RESTful architectures embrace HTTP. We’re using the web; we may as well take advantage of
it.

13.5 A Simple API for PocketChange

We’re going to start with a simple example, but we’re going to skip some of the more complex
steps of building a web service, such as authorization.

We’re going to model two calls to the server: a GET request that responds with the details of
an expense, and a PUT to add a new expense.The URLs will be:

• A GET request sent to URI:

5Remote Procedure Call

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

190 CHAPTER 13. WEB SERVICES

http://www.pocketchangeapp.com/api/expense/<expense_id>

where expense_id is the Expense ID

• A PUT request + an XML Body sent to URI:

http://www.pocketchangeapp.com/api/expense

The URLs are almost the same and as we will show, we can pattern-match on the type of request
in addition to the URI.

Note that a URL (Uniform Resource Locator) is a type of URI in which
the URI also serves to locate the resource on the web. A URN (Uniform
Resource Name) is another type of URI that provides a unique name to a
resource without specifying an actual location, though it may look a lot
like a URL. For more information on the distinctions among URIs, see
http://en.wikipedia.org/wiki/Uniform_Resource_Name.

13.6 Pattern Matching for the URLs

Now that we’ve discussed our design, let’s see the code that will handle the routing. In the pack-
age com.pocketchangeapp.api, we have an object named RestAPI, which we’ve defined
in com/pocketchangeapp/api/RestAPI.scala.

The block of code to handle the routing is shown in Listing ??:

Listing 13.3: REST Method Routing
package com.pocketchangeapp.api

... standard imports...
import net.liftweb.http.rest.XMLApiHelper

object RestAPI extends XMLApiHelper {
def dispatch: LiftRules.DispatchPF = {
case Req(List("api", "expense", eid), "", GetRequest) =>
() => showExpense(eid)

case r @ Req(List("api", "expense", "", PutRequest) =>
() => addExpense(r)

// Invalid API request - route to our error handler
case Req(List("api", _), "", _) => failure _

}
}

The server will now service GET requests with showExpense and will handle PUT requests
with the addExpense method (which we’ll define later in this chapter). One thing to note is we
are pattern matching on the Req object and in the PUT request, we extract the Req and pass it as a
parameter to addExpense. This is because we’re passing in an XML body with the information
for the Expense.

As we discussed in Section ??, Lift uses dispatch rules to route requests. Because we want to
intercept and reroute requests to certain URLs, we need to update the dispatch rules.

http://en.wikipedia.org/wiki/Uniform_Resource_Name

13.7. API SERVICE CODE 191

This is accomplished by adding the code shown in Listing to Boot.scala:

Listing 13.4: Setting up REST Dispatch
import com.pocketchangeapp.api.RestAPI

class Boot {
def boot {
...
LiftRules.dispatch.prepend(RestAPI.dispatch)
...

}
}

This will cause Lift to intercept incoming requests to URIs beginning with /api/ and to pass
them along to the appropriate methods.

13.7 API Service Code

Now that we’re handling the API calls, we’ll need to write the code to process and respond to
requests. In RestAPI.scala, we’ll add the methods shown in Listing ?? to the RestAPI object:

Listing 13.5: REST Handler Methods
// reacts to the GET Request
def showExpense(eid: String): LiftResponse = {
val e: Box[NodeSeq] =
for(r <- Expense.find(By(Expense.id, eid.toLong))) yield {
wrapXmlBody(
<operation id="show_expense" success="true">{e.toXML}</operation>)

}

e
}

private def getAccount(e: String, n: String): Account = {
val u = User.find(By(User.email, e))
val a = Account.findByName(u.open_!, n) match {
case acct :: Nil => acct
case _ => new Account

}

a
}

// reacts to the PUT Request
def addExpense(req: Req): LiftResponse = {
var tempEmail = ""
var tempAccountName = ""
var expense = new Expense
req.xml match {
case Full(<expense>{parameters @ _*}</expense>) => {
for(parameter <- parameters){
parameter match {

192 CHAPTER 13. WEB SERVICES

case <email>{email}</email> => tempEmail = email.text
case <accountName>{name}</accountName> => tempAccountName = name.text
case <dateOf>{dateof}</dateOf> =>
expense.dateOf(new java.util.Date(dateof.text)

case <amount>{value}</amount> => expense.amount(BigDecimal(value.text))
case <desc>{description}</desc> => expense.description(description.text)
case _ =>

}
}
try {
val currentAccount = getAccount(tempEmail, tempAccountName)
expense.account(currentAccount.id.is)

val (entrySerial,entryBalance) = Expense.getLastExpenseData(currentAccount,
expense.dateOf)

expense.account(currentAccount).serialNumber(entrySerial + 1)
.tags("api").currentBalance(entryBalance + expense.amount)

expense.validate match {
case Nil =>
Expense.updateEntries(entrySerial + 1, expense.amount.is)
expense.save

val newBalance = currentAccount.balance.is + expense.amount.is
currentAccount.balance(newBalance).save

CreatedResponse(
wrapXmlBody(<operation id="add_expense" success="true"></operation>),
"text/xml")

case _ =>
CreatedResponse(wrapXmlBody(<operation id="add_expense"
success="false"></operation>), "text/xml")

}
}
catch {
case e => Log.error("Could not add expense", e); BadResponse()

}
}
case _ => Log.error("Request was malformed"); BadResponse()

}
}

13.8 A Helper Method for the Expense Model Object

To make it easier to get the name of the Account we care about, we’ll add a helper function to our
Expense model object, as shown in Listing :

Listing 13.6: Expense Entity REST Helper
// look up the account name for the expense

13.9. THE REQUEST AND RESPONSE CYCLES FOR OUR API 193

private def getAccountName(id: Long): String = {
Account.find(By(Account.id, id)) match {
case Empty => "No Account Name"
case Full(a) => a.name.is

}
}

// get a list of tags of the form <tag>tagname1</tag><tag>tagname2</tag>
def showXMLTags: NodeSeq = tags.map(t => <tag>{t.name.is}</tag>)

//
def toXML: NodeSeq = {
val id = "http://www.pocketchangeapp.com/api/expense/" + this.id
val formatter = new java.text.SimpleDateFormat("yyyy-MM-dd’T’HH:mm:ss’Z’")
val edate = formatter.format(this.dateOf.is)

<expense>
<id>{id}</id>
<accountname>{getAccountName(account.is)}</accountname>
<date>{edate}</date>
<description>{description.is}</description>
<amount>{amount.is.toString}</amount>
<tags>{showXMLTags}</tags>

</expense>
}

13.9 The Request and Response Cycles for Our API

At the beginning of this chapter, we showed you a request and response conversation for
http://demo.liftweb.net/. Let’s see what that looks like for a request to our API; see Listing
??.

Listing 13.7: Request and Response for GET for Our API
Request:
http://www.pocketchangeapp.com/api/expense/3 GET

Response:
<?xml version="1.0" encoding="UTF-8"?>
<pca_api operation="expense" success="true" >
<operation success="true" id="show_expense">
<expense>
<id>http://www.pocketchangeapp.com/api/expense/3</id>
<accountname>Home</accountname>
<date>2009-03-26T00:00:00Z</date>
<description>MacHeist Apps</description>
<amount>35.00</amount>
<tags>
<tag>software</tag>
<tag>apps</tag>
<tag>mac</tag>
</tags>

194 CHAPTER 13. WEB SERVICES

</expense>
</operation>
</pca_api>

Listing ?? shows the output for a PUT conversation:

Listing 13.8: Request and Response for PUT for Our API
Request:
http://www.pocketchangeapp.com/api/expense - PUT - addEntry(request) + XML Body

Request Body:
<expense>
<email>tyler.weir@pocketchangeapp.com</email>
<accountName>Home</accountName>
<dateOf>2009/03/26</dateOf>
<amount>45.00</amount>
<desc>I buy food</desc>

</expense>

Response:

HTTP/1.1 201 Created
<?xml version="1.0" encoding="UTF-8"?>
<pca_api>
<operation success="true" id="add_expense"></operation>

</pca_api>

13.10 Extending the API to Return Atom Feeds

What if you’d like to return your data in a different format than XML? For this example, we’ll
add support for Atom6. Atom is a simple publishing standard for content syndication. To change
the data output format, you’ll have to do two things. First, define the helper or helpers that are
common across output formats. After that, update the dispatch rules to allow users to request the
alternate data formats.

In our case, we’ll first add toAtom to the model as shown in Listing ??.

Listing 13.9: The toAtom Method
def toAtom = {
val id = "http://www.pocketchangeapp.com/api/expense/" + this.id
val formatter = new SimpleDateFormat("yyyy-MM-dd’T’HH:mm:ss’Z’")
val edate = formatter.format(this.dateOf.is)

<entry xmlns="http://www.w3.org/2005/Atom">
<expense>
<id>{id}</id>
<accountname>{getAccountName(account.is)}</accountname>
<date>{edate}</date>
<description>{description.is}</description>
<amount>{amount.is.toString}</amount>

6http://tools.ietf.org/html/rfc4287

http://tools.ietf.org/html/rfc4287

13.10. EXTENDING THE API TO RETURN ATOM FEEDS 195

<tags>{showXMLTags}</tags>
</expense>

</entry>
}

And we’ll have to modify the dispatch rules to add a format selection in the URI. We’ll leave
plain XML as the default response, and we’ll add a way to select XML or Atom.

The URIs for GET will now be as shown in Listing ??:

Listing 13.10: New Format Selection URLs
http://www.pocketchangeapp.com/api/expense/<eid>
http://www.pocketchangeapp.com/api/expense/<eid>/xml
http://www.pocketchangeapp.com/api/expense/<eid>/atom

And the additions to the dispatch are shown in Listing ??:

Listing 13.11: The Modified Dispatch Function
object RestAPI extends XMLApiHelper {
def dispatch: LiftRules.DispatchPF = {
case Req(List("api", "expense", eid), "", GetRequest) =>
() => showExpenseXml(eid) // old

case Req(List("api", "expense", eid, "xml"), "", GetRequest) =>
() => showExpenseXml(eid) // new

case Req(List("api", "expense", eid, "atom"), "", GetRequest) =>
() => showExpenseAtom(eid) // new

case r @ Req(List("api", "expense", eid), "", PutRequest) =>
() => addExpense(eid, r)

// Invalid API request - route to our error handler
case Req(List("api", _), "", _) => failure _

}
}

Finally, we’ll add showExpenseAtom, and rename showExpense to showExpenseXml, as
shown in Listing ??:

Listing 13.12: New Show Methods
def showExpenseXml(eid: String): LiftResponse = {
val e: Box[NodeSeq] = for(e <- Expense.find(By(Expense.id, eid.toLong)))
yield {
XmlResponse(
<operation id="show_expense_xml" success="true">{r.toXML}</operation>)

}
e

}

def showExpenseAtom(eid: String): AtomResponse = {
val e: Box[Node] = for(e <- Expense.find(By(Expense.id, eid.toLong))) yield {
e.toAtom

}
AtomResponse(e.open_!)

}

196 CHAPTER 13. WEB SERVICES

Let’s take a look at a request and response for an Atom-ized entry, as shown in Listing .

Listing 13.13: Atom Request and Response
Request:
GET http://localhost:8080/api/expense/10/atom

Response:
Expires Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie JSESSIONID=1bq219bmoevv1;Path=/
Content-Length 353
Content-Type application/atom+xml
X-Lift-Version
0.11-SNAPSHOT Server
Jetty(6.1.15.rc3)

<entry xmlns="http://www.w3.org/2005/Atom">
<expense>
<id>http://www.pocketchangeapp.com/api/expense/10</id>
<accountname>Home</accountname>
<date>2009-03-26T00:00:00Z</date>
<description>I buy food</description>
<amount>45.00</amount>
<tags>
<tag>api</tag>
</tags>
</expense>
</entry>

13.11 Conclusion

In this chapter, we outlined a RESTful API for a web application and showed how to implement
one using Lift. We then extended that API to return Atom in addition to XML. If you want to
expand the API beyond what we’ve done here, some logical extensions would be a full authenti-
cation layer or transforming the data to another format, such as JSON.

Part III

Appendices

197

Appendix A

A Brief Tour of Maven

In this chapter we’ll discuss the Maven build tool and some of the basics of configuration and
usage. Maven is what Lift uses for build management, so becoming acquainted with Maven is
important to getting the most out of Lift. If you’re already familiar with Maven you can safely
skip this chapter.

A.1 What is Maven?

Maven is a project management tool, as opposed to simply a build tool. The Maven site1 describes
the goals of Maven as:

• Make the build process easy

• Provide a uniform build system

• Provide quality project information

• Provide guidelines for best practices

• Allow transparent migration to new features

As a project management tool, Maven goes beyond just controlling compilation of your code.
By default, Maven comes equipped not only to perform development-centric tasks, but it can
generate documentation from your code and for your project website. Everything in Maven is
controlled via the pom.xml (Project Object Model) file, which contains both information and con-
figuration details on the project. We’ll be covering some of the basic aspects of the POM through
the rest of this chapter2.

A.2 Lifecycles, Phases and Goals

Maven is designed around the concept of project lifecycles. While you can define your own, there
are three built-in lifecycles: default, clean and site. The default lifecycle builds and
deploys your project. The clean lifecycle cleans (deletes) compiled objects or anything else that
needs to be removed or reset to get the project to a pristine pre-build state. Finally, the site
lifecycle generates the project documentation.

1http://maven.apache.org/
2A complete POM reference is available at http://maven.apache.org/pom.html

199

http://maven.apache.org/
http://maven.apache.org/pom.html

200 APPENDIX A. A BRIEF TOUR OF MAVEN

Within each lifecycle there are a number of phases that define various points in the develop-
ment process. The most interesting lifecycle (from the perspective of writing code) is default.
The most commonly used phases in the default lifecycle are3:

• compile - compiles the main source code of the project

• test - tests the main code using a suitable unit testing framework. These tests should not
require that the code is packaged or deployed. This phase implicitly calls the testCompile
goal to compile the test case source code

• package - packages the compiled code into its distributable format, such as a JAR. The POM
controls how a project is packaged through the <packaging/> element

• install - installs the package into the local repository (see section ??), for use as a depen-
dency in other projects locally

• deploy - used in an integration or release environment. Copies the final package to the
remote repository for sharing with other developers and projects.

Maven is typically run from the command line4 by executing command “mvn <phase>”, where
<phase> is one of the phases listed above. Since phases are defined in order, all phases up to
the one you specify will be run. For example, if you want to package your code, simply run
“mvn package” and the compile and test phases will automatically be run. You can also
execute specific goals for the various plugins that Maven uses. Execution of a specific goal is
done with the command “mvn <plugin>:<goal>”. For instance, the compile phase actually
calls the compiler:compile goal by default. A common usage of executing a goal for Lift is
the jetty:run goal, which compiles all of your code and then runs an instance of the Jetty5 web
server so that you can exercise your app. The jetty plugin is not directly bound to any lifecycle or
phase, so we have to execute the goal directly.

One final note is that you can specify multiple phases/goals in one command line, and Maven
will execute them in order. This is useful, for instance, if you want to do a clean build of your
project. Simply run “mvn clean jetty:run” and the clean lifecycle will run, followed by the
jetty:run goal (and all of the prerequisites for jetty:run, such as compile).

A.3 Repositories

Repositories are one of the key features of Maven. A repository is a location that contains plugins
and packages for your project to use. There are two types of repository: local and remote. Your
local repository is, as the name suggests, local to your machine, and represents a cache of artifacts
downloaded from remote repositories as well as packages that you’ve installed from your own
projects. The default locations of your local repo will be:

• Unix: ~/.m2/repository

• Windows: C:\Documents and Settings\<user>\.m2\repository

You can override the local repository location by setting the M2_REPO environment variable, or
by editing the <home>/.m2/settings.xml file6.

3A full listing of lifecycles and their phases is at http://maven.apache.org/guides/introduction/introduction-to-
the-lifecycle.html

4There are IDE plugins for Maven for most major IDEs as well
5http://www.mortbay.org/jetty/
6Details on customizing your Maven installation are available at http://maven.apache.org/settings.html

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://www.mortbay.org/jetty/
http://maven.apache.org/settings.html

A.4. PLUGINS 201

Remote repositories are repositories that are reachable via protocols like http and ftp and are
generally where you will find the dependencies needed for your projects. Repositories are defined
in the POM; listing ?? shows the definition of the scala-tools.org release repository where Lift is
found7. Maven has an internal default set of repositories so usually you don’t need to define too
many extra repos.

Listing A.1: Defining a repository

<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>

</repository>
</repositories>

As a final note, sometimes you may not have net access or the remote repos will be offline for
some reason. In this case, make sure to specify the “-o” (offline) flag so that Maven skips checking
the remote repos.

A.4 Plugins

Plugins add functionality to the Maven build system. Lift is written in Scala, so the first plugin
that we need to add is the Maven Scala Plugin; this adds the ability to compile Scala code in your
project. Listing ?? shows how we configure the plugin in the pom.xml file for a Lift application.
You can see the Scala plugin adds a compile and testCompile goal for the build phase, which
makes Maven execute this plugin when those goals are called (explicitly or implicitly). In addition,
the configuration element allows you to set properties of the plugin executions; in this case, we’re
explicitly specifying the version of Scala that should be used for compilation.

Listing A.2: Configuring the Maven Scala Plugin

<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>

</goals>
</execution>

</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>

</configuration>
</plugin>

7scala-tools.org also has a snapshots repository where nightly builds of the scala-tools projects are kept

202 APPENDIX A. A BRIEF TOUR OF MAVEN

A.5 Dependencies

Dependency management is one of the more useful features of Maven. Listing ?? shows a decla-
ration of the Jetty dependency for the default Lift application. The details of the specification are
straightforward:

• The groupId and artifactId specify the artifact. A given group may have many artifacts
under it; for instance, Lift uses net.liftweb for its groupId and the core artifacts are lift-core
and life-util

• The version is specified either directly or with a range, as we’ve used in this example. A
range is defined as <left>min,max<right> where left and right indicate an inclusive or ex-
clusive range: [and] are inclusive, (and) are exclusive. Omitting a version in a range leaves
that portion of the range unbounded. Here we configure the pom so that Jetty 6.1.6 or higher
is used

• The scope of the dependency is optional8, and controls exactly where the dependency is
used. In this case we specify a test scope which means that the package will only be available
to test phases

Listing A.3: Adding a Dependency
<dependency>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
<version>[6.1.6,)</version>
<scope>test</scope>

</dependency>

A.5.1 Adding a Dependency

As an example, let’s say that you’d like to add a new library and you want Maven to make sure
you’ve got the most up-to-date version. We’re going to add Configgy9 as a dependency. Configgy
is “a library for handling config files and logging for a scala daemon. The idea is that it should
be simple and straightforward, allowing you to plug it in and get started quickly, writing small
useful daemons without entering the shadowy world of java frameworks.”

First we need to tell Maven where we can get Configgy, so in the <repositories> section
add the following:

Listing A.4: Adding the Configgy repo
<repository>
<id>http://www.lag.net/repo/</id>
<name>http://www.lag.net/repo/</name>
<url>http://www.lag.net/repo/</url>

</repository>

Then in the <dependencies> section add:
8Scope is discussed in detail at http://maven.apache.org/guides/introduction/introduction-to-dependency-

mechanism.html
9Configgy’s home is http://www.lag.net/configgy/

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://www.lag.net/configgy/

A.6. FURTHER RESOURCES 203

Listing A.5: Adding the Configgy dependency
<dependency>
<groupid>net.lag</groupid>
<artifactid>configgy</artifactid>
<version>[1.2,)</version>

</dependency>

That’s it, you’re done. The next time you run Maven for your project, it will pull down the
Configgy jars into your local repository. Maven will periodically check for new versions of depen-
dencies when you build, but you can always force a check with the “-U” (update) flag.

A.6 Further Resources

Obviously we’ve only scratched the surface on what you can with Maven and how to configure
it. We’ve found the following set of references useful in learning and using Maven:

• http://maven.apache.org - The Maven home page

• http://maven.apache.org/what-is-maven.html - A brief description of Maven’s goals

• http://maven.apache.org/guides/introduction/introduction-to-the-pom.html - An introduc-
tion to the pom file

• http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html- An overview
of the lifecycles

• http://suereth.blogspot.com/2008/10/maven-for-beginners.html- A brief Maven usage tu-
torial

• http://scala-blogs.org/2008/01/maven-for-scala.html- A brief tutorial on using Maven geared
toward Scala

• http://mvnrepository.com/- A website that lets you search for Maven dependencies by
name. Invaluable when you’re trying to add libraries to your project

A.7 Project Layout

One of the things that allows Maven to work so well is that there is a standardized layout for
projects. We’re not going to cover all of the standard locations for parts of your Maven project, but
we do want to highlight a few locations that are important to Lift applications specifically:

<application_root>/src/main/scala This directory is where you place your Scala source, such as
snippets, model objects, and any libraries you write. The subfolder structure follows the
traditional Java packaging style.

<application_root>/src/main/resources This directory is where you would place any resources
that you want to go into the WAR file. Typically this is used if you want to add entries to the
META-INF directory in the WAR, since normal web resources should be placed under the
webapp/WEB-INF directory.

http://maven.apache.org
http://maven.apache.org/what-is-maven.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://suereth.blogspot.com/2008/10/maven-for-beginners.html
http://scala-blogs.org/2008/01/maven-for-scala.html
http://mvnrepository.com/

204 APPENDIX A. A BRIEF TOUR OF MAVEN

<application_root>/src/main/webapp All of the web and static content for your application, such
as images, XHTML templates, JavaScript and CSS are placed under this directory. This is also
where your WEB-INF directory (and the configuration files it contains) goes. This directory
is essentially what is packaged into the WAR in addition to the output from your Scala
sources.

<application_root>/src/main/webapp/templates-hidden This is a special location for templates.
As we discuss more in sections ?? and ??, templates placed in this directory cannot be viewed
directly by clients, but are available to other templates.

<application_root>/src/test/scala This directory is where you can put all of your test code. As
with src/main/scala, the subfolder structure follows the traditional Java packaging style.

Appendix B

Message Handling

When we talk about message handling in Lift, we’re talking about how you provide feedback to
the users of your application. While there are already a lot of mechanisms for displaying data
to the user via snippets, views, etc, properly binding and setting up HTML-level elements can
get complicated, especially when you’re dealing with callback functions or error handling. Lift
provides an alternate mechanism for displaying messages to users that is easy to use and allows
flexibility in display on the client side.

B.1 Sending Messages

Messages for non-Comet requests are handled via the S object (yes, even Ajax is handled automat-
ically); specifically, the error, notice and warning methods allow you to send a String or a NodeSeq
back to the user for display, with or without an association with a particular element id. The error
method also provides an overload that takes a List[FieldError], the type returned from Mapper
field validation (section ??). The messages that you send are held by a RequestVar (section ??) in
the S object, so you can send messages from anywhere in your stateful request/response lifecycle
without breaking the flow of your code. Listing ?? shows how you could use messages in form
processing to send feedback on missing fields.

Listing B.1: Using messages in form processing
object data extends RequestVar[String]("")

def addNote (xhtml : NodeSeq) : NodeSeq = {
def doAdd () = {
//validate
if (data.is == "") {
S.error("noteField", "You need to provide a note")

} else {
Note.create.note(data).save
S.notice("Note added")
redirectTo("/viewNotes")

}
}
bind("form", xhtml,

"note" -> SHtml.text(data.is, data(_), "id" -> "noteField"),
"add" -> SHtml.submit("Add", doAdd))

}

205

206 APPENDIX B. MESSAGE HANDLING

In this particular case we use two different messages. One is an error to be displayed when the
form is re-shown; this error is associated with the “noteField” element. The second message is a
simple notice to let the user know that the data was successfully saved.

For Comet the only difference in sending messages is that the error, notice and warning meth-
ods are defined in the CometActor class, so you just use those directly and Lift handles the rest.

B.2 Displaying Messages

The display of messages is handled by two builtin snippets, <lift:Msgs/> and <lift:Msg/>. The
Msgs snippet displays all messages not associated with a particular element Id. The messages are
displayed as an unordered list, but Lift allows customization of the messages via XML that you
embed within the snippet. For each of the three message types, you can specify a <lift:TYPE_msg>
and <lift:TYPE_class> element that controls the message label and CSS class, respectively. The
default label is simply the title-case type (Error, Notice, Warning). For example, listing ?? shows
how we could change the error and notice messages.

Listing B.2: Custom message labels
<lift:Msgs>
<lift:error_msg>Danger, Will Robinson! </lift:error_msg>
<lift:error_class>redtext</lift:error_class>
<lift:notice_msg>FYI: </lift:notice_msg>

</lift:Msgs>

The Msg snippet is used to display all messages associated with a particular Id by specifying
the id attribute on the <lift:Msg/> element. With Msg, you don’t get a message label, so there’s no
override mechanism for it. You do, however, have the ability to to change the message class on a
per-type basis by setting the noticeClass, errorClass, or warningClass attributes on the <lfit:Msg/>
element. Listing ?? shows usage of Msg corresponding to our snippet in listing ??.

Listing B.3: Per-id messages
<lift:Stuff.addNote form="POST">
<form:note /><lift:Msg id="noteField" errorClass="redtext" />
<form:add />

</lift:Stuff.addNote>

Appendix C

Lift Helpers

C.1 Introduction

Lift provides a fairly useful collection of helper artifacts. The helpers are essentially utility func-
tions that minimize the need for boilerplate code. This appendix is intended to introduce some of
the more common utility classes and objects to you so that you’re familiar with them. If you would
like more details, you can look at the API documentation for the net.liftweb.util package.

C.2 Box (or Scala’s Option class on steroids)

net.liftweb.util.Box (or Scala’s scala.Option class on steroids) is a utility class that mim-
ics Scala’s Option type (also heavily used inside Lift). To understand some of the underlying
concepts and assumptions, let’s take a quick look at Option class first. The Option class allows
a type-safe way of dealing with a situation where you may or may not have a result. Option has
two values, either Some(value), where value is actually the value, and None, which is used
to represent nothing. A typical example for Option is outlined using Scala’s Map type. Listing
?? shows a definition of a Map, a successful attempt to get the value of key a, and an attempt to
get the value of key i. Notice that when we retrieved the existing key-value pair for a, the value
returned was Some(A) and when we asked for the value of key i, we received None.

Listing C.1: Option and Map example
scala> val cap = Map("a" -> "A", "b" -> "B")
cap: scala.collection.immutable.Map[java.lang.String,java.lang.String] =
Map(a -> A, b -> B)

scala> cap.get("a")
res1: Option[java.lang.String] = Some(A)

scala> cap.get("i")
res2: Option[java.lang.String] = None

Getting the value out of an Option is usually handled via Scala’s matching mechanism or via
the getOrElse function, as shown in Listing ??:

207

208 APPENDIX C. LIFT HELPERS

Listing C.2: Fetch value from an Option
def prettyPrint(foo: Option[String]): String = foo match {
case Some(x) => x
case None => "Nothing found."

}
Which would be used in conjunction with the previous code:

scala> prettyPrint(cap.get("a"))
res7: String = A

scala> prettyPrint(cap.get("i"))
res8: String = Nothing found.

Box in Lift covers the same base functionality as Option but expands the semantics for miss-
ing values. If we have an Option that is None at some point, we can’t really tell why that Option
is None, although in many situations, knowing why would be quite helpful. With Box, on the
other hand, you have either have a Full instance (corresponding to Some with Option) or an
instance that subclasses EmptyBox (corresponding to None). EmptyBox can either be an Empty
instance or a Failure instance incorporating the cause for the failure. So you can think of Box
as a container with three states: full, empty, or empty for a particular reason. The Failure case
class takes three arguments: a String message to describe the failure, a Box[Throwable] for
an optional exception related to the failure, and a Box[Failure] for chaining based on earlier
Failures.

As an example of how we can use Box instances in real code, consider the case where we have
to do a bunch of null checks, perform an operation, and then perform more null checks, other
operations, and so on. Listing ?? shows an example of this sort of structure.

Listing C.3: Pseudocode nested operations example
x = getSomeValue();
if (x != null) {
y = getSomeOtherValue();
if (y != null) {
compute(x, y);
}
}

This is tedious and error-prone in practice. Now let’s see if we can do better by combining
Lift’s Box with Scala’s for comprehensions as shown in Listing ??.

Listing C.4: Box nested operations example

def getSomeValue(): Box[Int] = Full(12)
def getSomeOtherValue(): Box[Int] = Full(2)

def compute(x: Int, y: Int) = x * y

val res = for (x <- getSomeValue();
y <- getSomeOtherValue() if x > 10) yield compute(x, y)

println(res)

In Listing ??, we have two values, x and y, and we want to do some computation with these
values. But we must ensure that computation is done on the correct data. For instance, the compu-

C.2. BOX (OR SCALA’S OPTION CLASS ON STEROIDS) 209

tation cannot be done if getSomeValue returns no value. In this context, the two functions return
a Box[Int]. The interesting part is that if either or both of the two functions return an Empty
Box instead of Full (Empty impersonating the nonexistence of the value), the res value will also
be Empty. However, if both functions return a Full (like in Listing ??), the computation is called.
In our example the two functions return Full(12) and Full(2), so res will be a Full(24).

But we have something else interesting here: the if x > 10 statement (this is called a “guard”
in Scala). If the call to getSomeValue returns a value less than or equal to 10, the y variable won’t
be initialized, and the res value will be Empty. This is just a taste of some of the power of using
Box for comprehensions; for more details on for comprehensions, see The Scala Language Specifica-
tion, section 6.19, or one of the many Scala books available.

Lift’s Box extends Option with a few ideas, mainly the fact that you can add a message about
why a Box is Empty. Empty corresponds to Option’s None and Full to Option’s Some. So you
can pattern match against a Box as shown in Listing ??.

Listing C.5: Box example

a match {
Full(author) => Text("I found the author " + author.niceName)
Empty => Text("No author by that name.")
// message may be something like "Database disconnected."
Failure(message, _, _) => Text("Nothing found due to " + message)

}
def confirmDelete {
(for (val id <- param("id"); // get the ID

val user <- User.find(id)) // find the user
yield {
user.delete_!
notice("User deleted")
redirectTo("/simple/index.html")

}) getOrElse {error("User not found"); redirectTo("/simple/index.html")}
}

In conjunction with Listing ??, we can use other Box functions, such as the openOr function
shown in Listing ??.

Listing C.6: openOr example

lazy val UserBio = UserBio.find(By(UserBio.id, id)) openOr (new UserBio)
def view (xhtml: NodeSeq): NodeSeq = passedAuthor.map({ author =>
// do bind, etc here and return a NodeSeq

}) openOr Text("Invalid author")

We won’t be detailing all of the Box functions here, but a few words on the most common
function might be benficial.

210 APPENDIX C. LIFT HELPERS

Function
name

Description Short example. Assume
myBox is a Box

openOr Returns the value contained by this Box.
If the Box is Empty

myBox openOr “The box is
Empty”

map Apply a function on the values of this
Box and return something else.

myBox map (value => value
+ “ suffix”)

dmap Equivalent with map(..) openOr
default_value. The default value will be
returned in case the map is Empty

myBox
dmap(“default”)(value =>
value + “ suffix”)

!! If the argument is null in will return an
Empty, otherwise a Full containing the
arguent’s value. Note this this is a
method on the Box object, not a given
Box instance.

Box !! (<a reference>)

?~ Transforms an Empty to a Failure and
passing a message. If the Box is a Full it
will just return this.

myBox ?~ (“Error message”)

isDefined Returns true if this Box contains a value myBox isDefined
isEmpty Retun true is this Boxis empty myBox isEmpty
asA[B] Return a Full[B] if the content of this Box

is of type B, otherwise return Empty
myBox asA[Person]

isA[B] Return a Full[B] if the contents of this
Box is an instance of the specified class,
otherwise return Empty

myBox isA[Person]

Note that Box contains a set of implicit conversion functions from/to Option and from/to
Iterable.

Remember that Box is heavily used in Lift and most of the Lift’s API’s operates with Boxes.
The rationale is to avoid null references and to operate safely in context where values may be
missing. Of course, a Box can be set to null manually but we strongly recommend against doing
so. There are cases, however, where you are using some third party Java libraries with APIs that
return null values. To cope with such cases in Lift you can use the !! function to Box that value.
Listing ?? shows how we can deal with a possible null value.

Listing C.7: Null example

var x = getSomeValueThatMayBeNull();

var boxified = Box !! x

In this case the boxified variable will be Empty if x is null or Full(x) if x is a valid
value/reference..

C.3 ActorPing

It provides convenient functionality to schedule messages to Actors.

Listing C.8: ActorPing example

C.4. CLASSHELPERS 211

// Assume myActor an existing Actor
// And a case object MyMessage

// Send the MyMessage message after 15 seconds
ActorPing.schedule(myActor, MyMessage, 15 seconds)

// Send the MyMessage message every 15 seconds. The cycle is stopped
// if recipient actor exits or replied back with UnSchedule message
ActorPing.scheduleAtFixedRate(myActor, MyMessage, 0 seconds, 15 secods)

C.4 ClassHelpers

Provides convenient functions for loading classes using Java reflection, instantiating dinamically
loaded classes, invoking methods vis reflection etc.

Listing C.9: ClassHelper example
import _root_.net.liftweb.util.Helpers._

// lookup the class Bar in the three packages specified in th list
findClass("Bar", "com.foo" :: "com.bar" :: "com.baz" :: Nil)

invokeMethod(myClass, myInstance, "doSomething")

C.5 CodeHelpers

Provides a convenient way of telling why a boolean expression failed. For instance we are seeing
manytime code like:

Listing C.10: Expression example
var isTooYoung = false;
var isTooBig = false;
var isTooLazy = true;

var exp = isTooYoung && isTooBig && isTooLazy

As you can see we have no way of telling if the exp was false because of isTooYoung, isTooBig
or isTooLazy unless we test them again. But let’s see this:

Listing C.11: CodeHelpers example

import net.liftweb.util._
import net.liftweb.util.MonadicConversions._

val exp = (isTooYoung ~ "too young") &&
(isTooBad ~ "too bad") &&
(isToLazy ~ "too lazy")

212 APPENDIX C. LIFT HELPERS

println(exp match {
case False(msgs) =>
msgs mkString("Test failed because it is ’", "’ and ’", "’.")

case _ => "success"
})

Now if exp is a False we can tell why it failed as we have the messages now.

C.6 ControlHelpers

Provides convenient functions for try/catch situations. For example:

Listing C.12: ControlHelpers example

tryo {
// code here. Any exception thrown here will be silently caught

}

tryo((e: Throwable) => println(e)) {
// code here. Any exception here willbe caught add passed to
// the above function.

}

tryo(List(classOf[ClassNotFoundException], classOf[IOException])) {
// code here. If IOException or ClassNotFoundException is thrown
// (or a subclass of the two) they will be ignored. Any other
// exception will be rethrown.

}

C.7 CSSHelpers

This provide a convenient functionality to fix relative root paths in CSS (Cascade Stylesheet) files.
Here is an example:

Listing C.13: CSSHelper example
Assume this entry in a CSS file:

.boxStyle {
background-image: url(’/img/bkg.png’)

}

//in your code you can say

CSSHelpers.fixCSS(reader, "/myliftapp")

// where reader is a java.io.Reader that provides the
// content of the CSS file.

C.8. BINDHELPERS 213

Now if your application is not deployed in the ROOT context path (“/”) and say it is deployed
with the context root /myliftapp then the background picture will probably notbe found. Say
http://my.domain.com/img/bkg.png is an unknown path. However http://my.domain.com/myliftapp/img/bkg.png
is known. In the example above we are calling fixCSS so that it will automatically replace the root
relative paths such that background-image: url(’/img/bkg.png’) becomes background-image:
url(’/myliftapp/img/bkg.png’). To use that in your lift application you can do:

Listing C.14: fixCSS example
def boot(){

...
LiftRules.fixCSS("styles" :: "theme" :: Nil, Empty)

...
}

When the /styles/theme.css file Lift will apply the prefix specified. But in this case we
provided an Empty Box. This actually means that Lift will apply the context path returned by
S.contextPath function which as you know returns the context path from the HttpSession.

Internally when you call fixCSS a dispatch function is automatically created and pre-pended
to LiftRules.dispatch. This is needed in order to intercept the browser request to this .css
resource. Also internally we are telling Lift the this resource must be server by Lift and not by
container.

The way it works internally is that we are using Scala combinator parsers to augment only the
root relative paths with the given prefix.

C.8 BindHelpers

Binders are extensiveley discussed in other chapters so we won’t reiterate them here.

Listing C.15: Choose template XML
<lift:CountGame.run form="post">
<choose:guess>
Guess a number between 1 and 100.

Last guess: <count:last/>

Guess: <count:input/>

<input type="submit" value="Guess"/>

</choose:guess>
<choose:win>
You Win!!

You guessed <count:number/> after <count:count/> guesses.

</choose:win>
</lift:CountGame.run>

You can use the Helpers.chooseTemplate method to extract portions of a given XML in-
put:

Listing C.16: Choose template Scala code
import net.liftweb.util._
import Helpers._

class CountGame {

214 APPENDIX C. LIFT HELPERS

def run(xhtml: NodeSeq): NodeSeq = {
...
chooseTemplate("choose", "win", xhtml);

}
}

So in the snippet conditionally we can choose between parts of the snippet template. In the
case above only the childs of <choose:win> node will be returned by the snippetfunction, hence
rendered.

C.9 HttpHelpers

This provides helper functions for HTTP parameters manipulation, URL encoding/decoding etc.
However there is some interesting functionality available that lets you choose between tags of a
snippet.

C.10 JSON

Lift provides its own JSON parser if you ever need one. At a first glance it may be a bit redundant
with Scala’s JSON parser but infact Scala’sparser has its own problems with large JSON objects
hence List’s uses its own JSON parser implemented of course using combinator parsers.

C.11 LD

Provides utility functions for calculating the distance between words 1

C.12 ListHelpers

Provides utility functions for manipulating lists that are not provided by Scala libraries.

C.13 NamedPartialFunctions

Provides extremly useful functions for invoking partial functions that are chained in lists of func-
tions.

Listing C.17: NamedPF example
var f1: PartialFunction[Int,Int] = {
case 10 => 11
case 12 => 14

}

var f2: PartialFunction[Int,Int] = {
case 20 => 11
case 22 => 14

}

1http://en.wikipedia.org/wiki/Levenshtein_distance

C.14. SECURITYHELPERS 215

NamedPF(10, f1 :: f2 :: Nil)

Remember that many LiftRules variable are RuleSeq-s. Meaning that most of the times we
re talking about lists of partial functions. Hence internally lift uses NamedPF for invoking such
functions that are ultimately provided by the user. Please see LiftRules.dispatch

C.14 SecurityHelpers

Provides various functions used for random number generation, encryption/decriptions (blow-
fish), hash calculations (MD5, SHA, SHA-256) and so on.

C.15 TimeHelpers

Utility functions for time operations. For instance if also provides a set of implicit conversion
functions that allow you to type “10 seconds” and returns the value in milliseconds.

216 APPENDIX C. LIFT HELPERS

Appendix D

Internationalization

The ability to display pages to users of multiple languages is a common feature of many web
frameworks. Lift builds on the underlying Java I18N foundations1 to provide a simple yet flex-
ible means for using Locales and translated strings in your app. Locales are used to control not
only what language the text is in that’s presented to the user, but also number and date formatting,
among others. If you want more details on the underlying foundation of Java I18N we suggest you
visit the Internationalization Homepage at http://java.sun.com/javase/technologies/core/basic/intl/.

D.1 Resource Bundles

Resource bundles are sets of property files2 that contain keyed strings for your application to
use in messages. In addition to the key/value pair contents of the files, the filename itself is
significant. When a ResourceBundle is specified by name, the base name is used as the default,
and additional files with names of the form “<base name>_<ISO language code>” can be used to
specify translations of the default strings in a given language. As an example, consider listing ??,
which specifies a default resource bundle for an application that reports the status of a door (open
or closed).

Listing D.1: Default door bundle
openStatus=The door is open
closedStatus=The door is closed

Suppose this file is called “DoorMessages.properties”; we can provide an additional transla-
tion for Spanish by creating a file called “DoorMessages_es.properties”, shown in listing ??.

Listing D.2: Spanish door bundle
openStatus=La puerta está abierta
closedStatus=La puerta está cerrada

When you want to retrieve a message (covered in the next two sections) Lift will check the
current Locale and see if there’s a specialized ResourceBundle available for it. If so, it uses the
messages in that file; otherwise, it uses the default bundle.

1Primarily java.util.Locale and java.util.ResourceBundle
2Technically, they can have other formats, but Lift generally only deals with PropertyResourceBundles

217

http://java.sun.com/javase/technologies/core/basic/intl/

218 APPENDIX D. INTERNATIONALIZATION

Lift supports using multiple resource bundle files so that you can break your messages up into
functional groups. You specify this by setting the LiftRules.resourceNames property to a list
of the base names (without a language or “.properties” extension):

LiftRules.resourceNames = "DoorMessages" ::
"DoorknobMessages" :: Nil

The order that you define the resource bundle names is the order that they’ll be searched for keys.
The message properties files should be located in your WEB-INF/classes folder so that they are
accessible from Lift’s classloader3; if you’re using Maven this will happen if you put your files in
the src/main/resources directory.

D.2 Localized Strings in Scala Code

Retrieving localized strings in your Scala code is primarily performed using the S.? method.
When invoked with one argument the resource bundles are searched for a key matching the
given argument. If a matching value is found it’s returned. If it can’t be found then Lift calls
LiftRules.localizationLookupFailureNotice on the (key, current Locale) pair and then
simply returns the key. If you call S.? with more than one argument, the first argument is still the
key to look up, but any remaining arguments are used as format parameters for String.format exe-
cuted on the retrieved value. For example, listing ?? shows a sample bundle file and the associated
Scala code for using message formatting.

Listing D.3: Formatted bundles
// bundle
tempMsg=The current temperature is %0.1 degrees
// code
var currentTmp : Double = getTemp()
Text(S.?("tempMsg", currentTemp))

Lift also provides the S.?? method, which is similar to S.? but uses the ResourceBundle
for internal Lift strings. Lift’s resource-bundles are located in the i18n folder with the name lift-
core.properties The resource-bundle name is given by LiftRules.liftCoreResourceName variable.
Generally you won’t use this method.

D.3 Localized Strings in Templates

You can add localized strings directly in your templates through the <lift:loc /> tag. You can
either provide a locid attribute on the tag which is used as the lookup key, or if you don’t provide
one, the contents of the tag will be used as the key. In either case, if the key can’t be found in any
resource bundles, the contents of the tag will be used. Listing ?? shows some examples of how you
could use lift:loc. In both examples, assume that we’re using the resource bundle shown in listing
??. The fallthrough behavior lets us put a default text (English) directly in the template, although
for consistency you should usually provide an explicit bundle for all languages.

Listing D.4: Using the loc tag

3The properties files are retrieved with ClassLoader.getResourceAsStream

D.4. CALCULATING LOCALE 219

<!-- using explicit key -->
<lift:loc locid="openStatus">The door is open</lift:loc>

<!-- should be the same result -->
<lift:loc>openStatus</lift:loc>

D.4 Calculating Locale

The Locale for a given request is calculated by the function set in LiftRules.localeCalculator,
a (Box[HttpServletRequest])⇒ Locale. The default behavior is to call getLocale on the HttpServle-
tRequest, which allows the server to set it if your clients send locale preferences. If that call returns
null, then Locale.getDefault is used. You can provide your own function for calculating locales if
you desire.

220 APPENDIX D. INTERNATIONALIZATION

Appendix E

Logging in Lift

Logging is a useful part of any application, Lift app or otherwise. Logging can be used to audit
user actions, give insight into runtime performance and operation, and even to troubleshoot and
debug issues. Lift comes with a thin logging facade that sits on top of the log4j library1. This
facade provides simple access to most common logging functions and aims to be easy to use,
flexible, and most important, inconspicuous. If you do decide that Lift’s logging facilities don’t
meet your needs, it’s possible to use any Java logging framework you desire, but it’s still useful to
understand Lift’s framework since Lift uses it internally for logging.

E.1 Logging Configuration

Out of the box Lift sets up a log4j logging hierarchy using a cascading setup as defined in the
LogBoot._log4jSetup method. First, it checks to see if log4j is already configured; this is com-
monly the case when a Lift application is deployed on a J2EE app server that uses log4j (JBoss, for
example). If not, then it attempts to locate a log4j.props or log4j.xml configuration file in
the class path and if it finds either it will use them for configuration. Failing that, it will fall back to
configuring log4j using the
LogBoot.defaultProps variable. Usually it’s simplest to just provide a log4j.props or
log4j.xml file in your resources to configure logging. If you prefer, you can provide your own
LogBoot.loggerSetup function to use instead of _log4jSetup if you want to do something
special, like configureAndWatch.

If you would prefer, Lift’s logging framework also supports slf4j2. Enabling slf4j is as simple
as calling Slf4jLogBoot.enable in your boot method, as shown in listing ??. Note that you need to
add both slf4j and a backend as dependencies in your pom.xml, and you should configure slf4j
before enabling it.

Listing E.1: Enabling slf4j
class Boot {
def boot {
Slf4jLogBoot.enable()
...

}
}

1http://logging.apache.org/log4j/
2http://www.slf4j.org/

221

http://logging.apache.org/log4j/
http://www.slf4j.org/

222 APPENDIX E. LOGGING IN LIFT

E.2 Basic Logging

Logging in Lift is performed via the net.liftweb.util.Log object. This object provides some basic
log methods which we’ll summarize here. Each log method comes in two forms: one with just
an Object argument, and one with Object and Throwable arguments. These correspond one-to-
one with the log4j log methods, although the parameters are passed by-name; this is done so that
computation of the log message can be deferred. This is useful to avoid processing messages for
log statements below the current logging threshold, a topic we’ll cover more in section ??.

trace This logs a message at trace level. Trace level is generally intended for very detailed “trac-
ing” of processing, even more detailed than debug level.

debug Logs a message at debug level. This level is usually used to output internal variable values
or other information that is useful in debugging and troubleshooting an app.

info Logs a message at info level. This level is appropriate for general information about the app.

warn Logs a message at warning level. This level should be used for reporting issues that are in
error but can be handled cleanly, such as someone trying to submit a character string for a
numeric field value.

error Logs a message at error level. This level should be used for messages relating to errors that
can’t be handled cleanly, such as a failure to connect to a backing database.

fatal Logs a message at the fatal level. This level should be used for messages that relate to con-
ditions under which the application cannot continue to function, such as an OutOfMemory
exception.

never This essentially throws away the passed message. This is useful for some of Lift’s function-
ality that requires a log output function (Schemifier.schemify, for example, in section ??).

assertLog This allows you to test an assertion condition and if true, logs the assertion as well as a
given message.

Listing ?? shows an example of using a few different Logging methods within a form processing
function that handles logins. We start out with some tracing of method entry (and corresponding
exit at the end), then add an assertion to log the case where someone is logging in a second time.
We add a debug statement that uses a function to generate the message so that the string concate-
nation won’t take place if debug logging is disabled. Finally, we log an error message if a problem
ocurred during authentication.

Listing E.2: Some example logging
import net.liftweb.util.Log
def processLogin(name : String, password : String) = {
Log.trace("Starting login process")
try {
...
Log.assertLog(User.currentUser.isDefined,

"Redundant authentication!")
...
Log.debug(() => ("Retreiving auth data for " + name))
...

E.3. LOG LEVEL GUARDS 223

if (!authenticated) {
Log.error("Authentication failed for " + name)

}
} finally {
Log.trace("Login process complete")

}
}

E.3 Log Level Guards

We want to provide a brief discussion on the use of log guards and why they’re usually not needed
with Lift’s log framework. A log guard is a simple test to see if a given log statement will actually
be processed. The Log object provides a test method (returning a boolean) for each log level:

• isDebugEnabled

• isErrorEnabled

• isInfoEnabled

• isTraceEnabled

• isWarnEnabled

Fatal logging is always enabled, so there is no test for that level. Log guards are fairly common in
logging frameworks to avoid expensive computation of log message that won’t actually be used.
This is particularly relevant with debug logging, since they often cover a large section of code and
usually aren’t enabled in production. The Log object can implicitly do log guards for you because
of the pass-by-name message parameters. As we showed in listing ??, simply converting your
log message into a closure allows the Log object decide whether to execute the closure based on
the current log level. You get the flexibility and simplicity of adding log statements anywhere
you want without explicit log guards, without losing the performance benefit of the guards. To
explain it a bit more, let’s assume for instace that the debug method would have been declared
as def debug(msg:AnyRef): Unit. When debug would be called the parameter will be
first evaluated and then passed to the method. Inside the method we have the test to see if the
debug i enabled to know if we actaully need to trace that message or not. Well in this case even if
the debugging level is turned off we still have the evaluation of the parameters and that leads to
unnecessary computing and in an application that heaviliy uses logging that would likely leads to
relevant performance impact. So in this “eagerly” evaluation situation we have to test if the debug
level is on even before calling the debug method. Something like if (Log.isDebugEnabled)
{debug(“Retreiving auth data”)}. Not very convenient. So because the logging functions
take pass-by-name functions as parameter they will be evaluated lazily and only if the appropriate
debugging level is set.

E.4 Logging Mapper Queries

In addition to application-level logging, the Mapper framework provides a simple interface for
logging queries. The DB.addLogFunc method takes a function (String, Long)⇒ Any that can log
the actual query string along with its execution time in milliseconds. Listing ?? shows a trivial log
function example.

224 APPENDIX E. LOGGING IN LIFT

Listing E.3: Mapper Logging
DB.addLogFunc((query, time) =>
Log.debug(() => (query + ":" + time + "ms")))

Appendix F

Sending Email

Sending email is a common enough task (user registration, notifications, etc) within a web appli-
cation that we’ve decided to cover it here. Although email isn’t Lift’s primary focus, Lift does
provide some facilities to simplify email transmission.

F.1 Setup

Configuration of the mailer is handled in a few different ways. The net.liftweb.util.Mailer
object defines a hostFunc function var, () ⇒ String, that is used to compute the hostname of
your SMTP server to be used for transmission. The default value is a function that looks up the
mail.smtp.host system property and uses that String. If that property isn’t defined then the
mailer defaults to localhost. Setting the system property is the simplest way to change your
SMTP relay, although you could also define your own function to return a custom hostname and
assign it to Mailer.hostFunc.

F.2 Sending Emails

The mailer interface is simple but covers a wide variety of cases. The Mailer object defines a
number of case classes that correspond to the components of an RFC822 email. The addressing and
subject cases classes, From, To, CC, BCC, ReplyTo and Subject should all be self-explanatory.
For the body of the email you have three main options:

PlainMailBodyType Represents a plain-text email body based on a given String

XHTMLMailBodyType Represents an XHTML email body based on a given NodeSeq

XHTMLPlusImages Similar to XHTMLMailBodyType, but in addition to the NodeSeq, you can
provide one or more PlusImageHolder instances that represent images to be attached to the
email (embedded images, so to speak)

The Mailer.sendMail function is used to generate and send an email. It takes three arguments:
the From sender address, the Subject of the email, and a varargs list of recipient addresses
and body components. The mailer creates MIME/Multipart messages, so you can send more
than one body (i.e. plain text and XHMTL) if you would like. Listing ?? shows an example of
sending an email to a group of recipients in both plain text and XHTML format. The Mailer object
defines some implicit conversions to PlainMailBodyType and XHTMLMailBodyType, which we

225

226 APPENDIX F. SENDING EMAIL

use here. We also have to do a little List trickery to be able to squeeze multiple arguments into the
final vararg argument since Scala doesn’t support mixing regular values and coerced sequences
in vararg arguments.

Listing F.1: Sending a two-part email
import net.liftweb.util.Mailer
import Mailer._
...
val myRecips : List[String] = ...
val plainContent : String = "..."
val xhtmlContent : NodeSeq = ...

Mailer.sendMail(From("no-reply@foo.com"), Subject("Just a test"),
(plainContent :: xhtmlContent :: myRecips.map(To(_))) : _*)

When you call sendMail you’re actually sending a message to an actor in the background
that will handle actual mail delivery; because of this, you shouldn’t expect to see a synchronous
relay of the message through your SMTP server.

Appendix G

JPA Code Listings

To conserve space and preserve flow in the main text, we’ve placed full code listings for the JPA
chapter in this appendix.

G.1 JPA Library Demo

The full library demo is available under the main Lift Git repository at http://github.com/
dpp/liftweb/tree/master. To illustrate some points, we’ve included selected listings from
the project.

227

http://github.com/dpp/liftweb/tree/master
http://github.com/dpp/liftweb/tree/master

228 APPENDIX G. JPA CODE LISTINGS

G.1.1 Author Entity

Listing G.1: Author.scala
1 package com.foo.jpaweb.model

3 import javax.persistence._

5 /**
An author is someone who writes books.

7 */
@Entity

9 class Author {
@Id

11 @GeneratedValue(){val strategy = GenerationType.AUTO}
var id : Long = _

13

@Column{val unique = true, val nullable = false}
15 var name : String = ""

17 @OneToMany(){val mappedBy = "author", val targetEntity = classOf[Book],
val cascade = Array(CascadeType.REMOVE)}

19 var books : java.util.Set[Book] = new java.util.HashSet[Book]()
}

G.1. JPA LIBRARY DEMO 229

G.1.2 orm.xml Mapping

Listing G.2: orm.xml
1 <?xml version="1.0" encoding="UTF−8" ?>
2 <entity−mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
4 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
5 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
6

7 <package>com.foo.jpaweb.model</package>
8

9 <entity class="Book">
10 <named−query name="findBooksByAuthor">
11 <query><![CDATA[from Book b where b.author.id = :id order by b.title]]></query>
12 </named−query>
13 <named−query name="findBooksByDate">
14 <query><![CDATA[from Book b where b.published between :startDate and :endDate]]></query>
15 </named−query>
16 <named−query name="findBooksByTitle">
17 <query><![CDATA[from Book b where lower(b.title) like :title order by b. title]]></query>
18 </named−query>
19 <named−query name="findAllBooks">
20 <query><![CDATA[from Book b order by b.title]]></query>
21 </named−query>
22 </entity>
23

24 <entity class="Author">
25 <named−query name="findAllAuthors">
26 <query><![CDATA[from Author a order by a.name]]></query>
27 </named−query>
28 </entity>
29

30 </entity−mappings>

230 APPENDIX G. JPA CODE LISTINGS

G.1.3 Enumv Trait

Listing G.3: Enumv Trait
5 trait Enumv {
6

7 this : Enumeration =>
8

9 private var nameDescriptionMap = scala.collection.mutable.Map[String, String]()
10

11 /* store a name and description for forms */
12 def Value(name: String, desc: String) : Value = {
13 nameDescriptionMap += (name −> desc)
14 new Val(name)
15 }
16

17 /* get description if it exists else name */
18 def getDescriptionOrName(ev: this.Value) = {
19 try {
20 nameDescriptionMap(""+ev)
21 } catch {
22 case e: NoSuchElementException => ev.toString
23 }
24 }
25

26 /* get name description pair list for forms */
27 def getNameDescriptionList = this.elements.toList .map(v => (v.toString, getDescriptionOrName(v))).toList
28

29 /* get the enum given a string */
30 def valueOf(str: String) = this .elements.toList . filter (_. toString == str) match {
31 case Nil => null
32 case x => x.head
33 }
34 }

G.1. JPA LIBRARY DEMO 231

G.1.4 EnumerationType

Listing G.4: EnumvType class
15 abstract class EnumvType(val et: Enumeration with Enumv) extends UserType {
16

17 val SQL_TYPES = Array({Types.VARCHAR})
18

19 override def sqlTypes() = SQL_TYPES
20

21 override def returnedClass = classOf[et .Value]
22

23 override def equals(x: Object, y: Object) : Boolean = {
24 return x == y
25 }
26

27 override def hashCode(x: Object) = x.hashCode
28

29 override def nullSafeGet(resultSet : ResultSet, names: Array[String], owner: Object): Object = {
30 val value = resultSet .getString(names(0))
31 if (resultSet .wasNull()) return null
32 else {
33 return et .valueOf(value)
34 }
35 }

232 APPENDIX G. JPA CODE LISTINGS

G.1.5 JPA web.xml

This shows the LiftFilter setup as well as the persistence-context-ref.

Listing G.5: JPA web.xml
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
<filter>
<filter-name>LiftFilter</filter-name>
<display-name>Lift Filter</display-name>
<description>The Filter that intercepts lift calls</description>
<filter-class>net.liftweb.http.LiftFilter</filter-class>
<persistence-context-ref>
<description>
Persistence context for the library app

</description>
<persistence-context-ref-name>
persistence/jpaweb

</persistence-context-ref-name>
<persistence-unit-name>
jpaweb

</persistence-unit-name>
</persistence-context-ref>

</filter>

<filter-mapping>
<filter-name>LiftFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

