
Audience and Purpose of This Paper

For Cloud Service Providers, Hosters and Enterprise IT who are looking to build their own
cloud infrastructure, the decision to use a cloud for the delivery of IT services is best done
by starting with the knowledge and experience gained from previous work. This white
paper gathers into one place a complete example of running a Canonical Ubuntu Enterprise
Cloud on Intel®-based servers and is complete with detailed scripts and screen shots. Using
the contents in this paper should significantly reduce the learning curve for building and
operating your first cloud computing instance.

Since the creation and operation of a cloud requires integration and customization to
existing IT infrastructure and business requirements, it is not expected that this paper
can be used as-is. For example, adapting to existing network and identify management
requirements are out of scope for this paper. Therefore, it is expected that the user of
this paper will make significant adjustments to the design to meet specific customer
requirements. This paper is assumed to be a starting point for that journey.

Intel® Cloud Builder Guide to Cloud Design
and Deployment on Intel® Platforms
Ubuntu Enterprise Cloud

White Paper
Intel® Cloud
Builder Guide

Intel® Xeon® Processor

Ubuntu Enteprise Cloud

Canonical Ltd.

Eucalyptus Systems, Inc.

2

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Table of Contents

Executive Summary . 3

Introduction . 4

UEC Implementation Overview . 6

Cluster Design Overview . 6

Storage Design Overview . 7

Images and Instances . 7

Testbed Blueprint Overview . 8

Hardware Description . 8

System Design . 9

Technical Review . 10

Server Setup and Configuration Information . 10

Use Case Details . 15

Execution of Use Cases and Results . 16

Things to Consider . 20

Use a SAN Rather Than an iSCSI Server? . 20

Scalability . 20

Would the Use of SSD Drives Improve Performance? . 20

Appendix . 21

Cluster Controller .conf file . 21

Cloud Controller .conf file . 21

Node Controller .conf file . 21

Glossary . 22

References . 23

3

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Executive Summary
The operation of IT using the ideas and principles of the cloud are of
great interest because of the benefits of agility and cost savings. For
those workloads that need to remain under close control of IT, using an
IaaS structure is often the best choice. When the IaaS (Infrastructure as
a Service) is hosted internal to the IT (a Private Cloud) the next question
is how to build this cloud. Given the many choices, trade-offs, and deci-
sions, it is clear that being able to start from a known and understood
point is key. This white paper summarizes a body of work on building a
cloud leveraging the Intel® Xeon® processor 5500 series (codenamed
Nehalem) and the Ubuntu* Enterprise Cloud (UEC) software from
Canonical powered by Eucalyptus Systems Inc. The three companies
worked together to construct the cloud described in this white paper
and offer this as a starting point for building and operating a cloud.

Our cloud implementation is a straightforward, albeit small, cloud:
12 servers and 1.4 TB of storage exposed as a compute service and
a storage service. The interface is similar to that which is exposed by
Amazon Web Services* and as implemented by Eucalyptus. We placed
an emphasis on being able to host virtual machines (VMs) for a number
of logical customers, therefore multi-tenancy, or the isolation of
compute, storage and network was important. Other design require-
ments included self-contained storage and the ability to delegate
management of the logical customer’s compute and storage to the
customer, aka a self service portal.

Our design, as shown in Figure 1, is a simple Eucalyptus setup with
two clusters of compute and a single storage pool. The specific
arrangement shown in the figure below allows for the creation
of 128 virtual machines with associated storage (VMs and data).
This design supports the implementation of multi-tenancy through
the use of KVM (for compute isolation) and virtual dynamic VLAN
(to isolate network traffic).

With this configuration, we were able to start and stop VMs using
command-line tools and connect to the virtual machine via SSH
(Secure Shell). The use of access keys allowed a “customer” to create,
start, stop, terminate an instance independent of other “customers”
in the same cloud. All VM images were stored in the Walrus Storage
Service. The actual storage behind the Walrus was implemented as
iSCSI volumes hosted on the Storage Server. Network traffic was
managed by the Cluster Controller which provides the routing
function to allow hosted VMs access to/from the Internet and
access to the Walrus storage.

The Node Controllers were implemented using Intel Xeon processor
5500 series-based servers. The Intel Xeon processor 5500 series-
based servers are ideal for highly dense cloud architecture applications
because of the optimized power foot print and Intel® Intelligent Power
Node Manager, which provides for node-level power management policy
and enforcement. Intel® Dynamic Data Center Manager was also used
to simplify power management across the entire collection of nodes
for the purpose of power capping or to optimize power usage.

Figure 1 . Reference Cloud Design using Eucalyptus

Block
Storage

Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Caching
Proxy

Customer
Network

Cluster
Controller

Block
Storage

Controller Intel® Data
Center Manager

Cloud Client
(consumer)

PRIVATE NETWORKS

OUT-OF-BAND-MANAGEMENT NETWORK

Cluster
Controller

Power
Manager

Cloud
Controller

Storage
Server

Walrus
Storage ServiceRouter

iSCSI

Node
Controller

Node
Controller

4

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Introduction
The operation of a cloud is often driven by the need to lower operational
cost and/or to improve the ability of IT to respond to sudden changes in
demand. To achieve that goal, the applications in the cloud either need
to change to directly leverage the capabilities in the cloud using distrib-
uted computing tools such as Apache Hadoop* or the applications need
to be virtualized so that the cloud infrastructure can use the flexibility
that virtualization provides to enable optimal placement and recovery in
the event of failures.

To achieve lowest operational costs for the infrastructure, a homo-
geneous pool of compute and storage with uniform connectivity is
the simplest to manage, easiest to troubleshoot, and is the easiest for
adding/removing capacity. This is not to say that a cloud contains only
one kind of server or storage elements. But, instead, we strive to create
pools of uniform compute, storage, and networking to allow new pools
to be added over time, say as new generations of server technology
becomes available. This design approach allows for the automation
of the placement of workloads, the connection to external networks
and storage, and for the delegation of the management of the work-
loads in the cloud (because bare-metal access is not required,
OS-based methods for access can be used uniformly).

Lastly, we need to be able to make the assumption that things will
fail: hardware, software, network, storage, etc. Therefore, we need
either the application or the cloud management software to be able to
perform the necessary recovery actions on the occurrence of failure.
This requires that the state for each compute element be maintained
in shared storage or that the application accept the responsibility
for retrying the actions on a failing device. For the typical non-cloud-
aware enterprise workload this means that the application is wrapped
in a VM and that the VM and all data are stored on shared storage.
This way, if a server fails, the cloud management software can
simply restart the VM on another server.

We used these principles in design and implemented the UEC
reference architecture in the Intel® Cloud Testbed (see Figure 2).
This diagram approximates the physical construction of the cloud.

Hadoop* is a Java software framework that supports
data-intensive distributed applications under a free license.
Hadoop enables applications to work with thousands of
nodes and petabytes of data.

Figure 2 . Physical Cloud Infrastructure

IPSEC VPN
Appliance

SSL VPN
Appliance

Sonic
Wall

1 Gbps SWITCHES

10 Gbps SWITCHES

CONTROLLERS/INFRASTRUCTURE
NODES (INTEL® XEON® PROCESSOR

5500 SERIES)

COMPUTE NODES (UP TO 30)
INTEL XEON PROCESSOR 5500

SERIES, NEHALEM EX, WESTMERE

STORAGE SERVERS/JBODs (INTEL
XEON PROCESSOR 5500 SERIES)

{2 _ M) 34U RACKS

10 Gbps DATA NETWORK
1 Gbps MANAGEMENT NETWORK

Internet

Cloud Testbed Common Lab Infrastructure

Intel® Data
Center Manager

PROXY SERVER

ADMIN, DCHP, AD, DNS,
SHARED STORAGE, ETC.

EXTREME 5i

5

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Figure 3 . Eucalyptus Logical Architecture

Block
Storage

Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Caching
Proxy

Customer
Network

Cluster
Controller

Block
Storage

Controller

Cloud Client
(consumer)

OUT-OF-BAND-MANAGEMENT NETWORK

Cluster
Controller

Power
Manager

Cloud
Controller

Storage
Server

Walrus
Storage ServiceRouter

iSCSI

CLUSTER
BLOCK STORAGE
AND COMPUTE
MANAGERS

COMPUTE CLUSTERS

POWER
MANAGEMENT

LAB
INFRASTRUCTURE

EUCALYPTUS
CLOUD INFRASTRUCTURE

BULK
STORAGE

A set of 12 Intel Xeon processor 5500 series-based servers are
connected using a 1G network to a 1G “top of rack” switch. The switch
was configured to achieve the logical architecture shown in Figure 3. In
this configuration, there are no “special” servers and no special connec-
tions – all servers are configured the same. This uniformity allows for
simple replacement, or reassignment of workloads.

Some of the design considerations used in this design are:

•		The	use	of	the	Cluster	Controllers	to	manage	the	network	traffic	is	
a key component of the multi-tenant design. While the KVM hyper-
visor provides isolation for the workloads on the servers, the network
traffic isolation between virtual machines is implemented by network
packet tagging and routing by the Cluster Controllers.

•		The	use	of	standard	Intel®	server	building	blocks	means	that	any	
server in the rack can be used for any purpose (Cluster Controller,
Walrus Storage Service, etc.).

•		We	chose	to	use	a	flat	layer	2	network	to	reduce	the	implementation	
cost and to retain the flexibility to assign any workload to any server.
This approach is flexible at the cluster level but may create bottle-
necks as this design is aggregated at the data center level. Therefore,
the Cloud Controller will need to assign workloads with the goal of
keeping related workloads together and close to their required data.

•		We	chose	to	implement	the	Walrus	controller	using	local	DAS	(Direct	
Attach Storage). This was merely a convenient and low-cost way to get
a large quantity of storage capacity accessible to the clusters. Other
implementations could connect the Walrus server to a SAN (Storage
Area Network) or NAS (Network Attached Storage) device and not
require local DAS storage.

This implementation provided all the features (e.g., Provisioning,
Monitoring, virtual machine management, etc.) to deliver the required
IaaS functionality. The following sections provide the details on the
software implementation, the hardware testbed, the test cases that
we ran, and some of the things to consider on the design a cloud.

6

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

UEC Implementation Overview
Ubuntu Enterprise Cloud is an open-source software stack that
complements Eucalyptus, allowing for the implementation of a private
cloud infrastructure using a combination of Canonical and Eucalyptus
Systems technologies. The Ubuntu choice of Eucalyptus was made
after a careful study of the cloud market, identifying the EC2, EBS
and S3 API access to the Amazon Web Services* (AWS) as a widely
used industry interface, and selecting the best open-source
component to reproduce it.

Eucalyptus Systems provides and supports an open-source cloud
platform that obeys the same API that AWS uses, but in a way that
automatically translates Amazons AMI image format to the image
format required by the local hypervisor. Thus, a Eucalyptus cloud is
API compatible with AWS regardless of the underlying virtualization
technology that is installed. This is, in itself, a first validation of the
independence that open-source provides in the cloud space. With
Ubuntu 9.04 Server Edition,* Canonical delivered its first integration
of Eucalyptus with its own installation and image repository enhance-
ments for Ubuntu and known as the UEC. This technology preview
allowed deployment of an internal cloud that obeys to the same
API that AWS uses and with an image format that would allow us
to ensure compatibility with AWS. Following up this initial release,
Canonical, the commercial sponsor of Ubuntu, announced a series
of services from consulting to support and training, specific to the
cloud to help the organizations to deploy Ubuntu Enterprise Cloud.

Ubuntu 9.10 Server Edition was the first release to include Ubuntu
Enterprise Cloud and Eucalyptus as a fully supported and maintained
option, with a very simple mechanism to deploy it from the installer.

In order for the Ubuntu Enterprise Cloud to make best use of the hard-
ware that was offered by the testbed and to support the planned test
cases, the installation of Eucalyptus was designed so that:

•	Most	components	of	the	architecture	could	be	installed	on	
separate hardware.

•	Consideration	would	be	given	on	maximum	bandwidth	usage	
and potential bottlenecks.

•	Future	potential	enhancement	of	the	platform	(increasing	number	
of cores per server) can help achieve higher scalability.

The design comprises the following elements:

•	The	general	lab	infrastructure	including	the	Caching	Proxy,	a	router,	
and Power Management (Intel® Data Center Manager). A Caching
Proxy (Squid) was used to accelerate the update process for each
of the Ubuntu Server instances.

•	The	Cloud	Controller	provides	the	primary	interface	point	for	interact-
ing with the cloud. Commands to create or terminate virtual machines
are initiated through the API interface at the Cloud Controller.

•	The	Walrus	Storage	Service	exposes	the	object	store.	The	object	
store is used to hold the virtual machine images prior to instantiation
and to hold user data.

•	The	Storage	Server	hosts	the	actual	bulk	storage	(a	1.4	TB	JBOD	in	
this case). Storage is exposed to the Block Storage Controllers and
the Walrus Controller as a set of iSCSI volumes.

•	The	Cluster	Controllers	manage	a	collection	of	Node	Controllers	and	
provide the traffic isolation.

•	The	Block	Storage	Controllers	(SCs)	manage	dynamic	block	devices	
(e.g., EBS) that VMs can use for persistent storage.

•	And,	the	Node	Controllers	(NCs)	which	are	the	servers	in	the	pools	
that comprise the compute elements of the cloud.

Together, these elements implement the cloud for the purposes of
this white paper.

Cluster Design Overview
In this design, we have chosen to use a Class C address space for each
cluster for simplicity. Therefore, each cluster is limited to 254 machine
instances (one IP address per VM instance). Eucalyptus allows its admin-
istrator to configure the degree of multi-tenancy (i.e., the number
of VMs hosted per machine) that the cloud should implement. In our
Eucalyptus installation, we have chosen to allocate no more than 16
“small” machine instances per server. It is likely that this configuration will
result in underutilization of the server, but it conforms to the published
AWS API specification and simplifies our design. The number of VM
instances allowed per server should be a function of the memory in the
system (since memory is partitioned among instances), the performance
of the system, and the load generated by the VM instances.

To allow for multi-tenancy network security, Eucalyptus supports a
Managed/VLAN networking mode. This mode transforms the Cluster
Controller into a router for all VMs running in the cluster (aka avail-
ability zone) that it controls. This allows the Cluster Controller to
dynamically create tagged VLANs on its private network that it fully
supervises. As a consequence of this, and also to ensure maximum
bandwidth availability, each cluster must have its own dedicated
physical switch or segment of a switch. Additional scaling of our
cloud is easily accomplished by the addition of additional 10 nodes
clusters on separate Cluster Controller.

7

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Storage Design Overview
Ubuntu Enterprise Cloud uses two components for storage:

•	Walrus,	which	is	a	functional	equivalent	of	Amazon	S3,	and

•	Block	Storage	Controller,	which	is	a	functional	equivalent	of	Amazon	
Elastic Block Storage (EBS).

Our storage design used a single large store for all cloud storage. In a
commercial implementation this would provide a convenient place for
backup and replication. For our purposes, the Storage Server exposed
a set of block devices via iSCSI which could be mounted as volumes in
the Walrus or Block Storage Controllers.

Each of the Node Controllers has a local storage device (DAS). The local
storage was only used to hold the VM image at run time and for caching
VM instances. When a VM instance is terminated, the storage on the
Node Controller local storage is released and is, therefore, not persistent.
To maintain persistent data, either a volume from the Block Storage
Manager must be used or the applica-tion must be designed to use
the Walrus object store.

Images and Instances
Each user of the infrastructure prepares machine images and
instantiates as many times as the infrastructure permits. Since the
infrastructure is multi-tenant, multiple machine images from multi-
ple users can be running on the same infrastructure within their own
virtual environment with the hypervisor (KVM), the storage controllers,
and the network providing the isolation. Once a user is approved to
use the infrastructure, instances can be started or stopped at the
request of the user without the need for the operator of the cloud
to get involved.

This infrastructure uses the same API as Amazon EC2. From
the point of view of the user, this API implements semantics
which can be a bit surprising to the first-time users:

•	Instances	are	not	persistent	across	a	server	hardware	reboot	

•	Machine	images	are	the	only	persistent	form	of	a	machine

•	Administrators	define	base	architectures	for	machine	image	
allocation (32 or 64 bits, RAM, etc.), and users decide which
architecture they need

•	Persistent	storage	is	available	through	other	mechanisms	
such as Walrus Storage Service or the Block Storage Controller

The idea is that users prepare templates of VMs (which are called
machine images) which can be instantiated as many times as needed.
A machine image is a template while a machine instance is an actual
instantiation of the template. When the instance is terminated, the
state is lost unless previously saved to disk, exactly the same way a
machine instance is lost if the server is unexpected switched off.

Users can instantiate a machine image, modify the running server
configuration, and then save the result as a new machine image. This
operation is called re-bundling. When an image is instantiated, it is possi-
ble to pass it a block of data, which the instance can then use during
initialization. A common practice is to create a base OS image template
(such as the freely available yet maintained Ubuntu Server Edition), an
invoke a script that customizes the instance based on the data that was
passed to it. Since the process of re-bundling can be time consuming, it is
common practice to use the capability of Eucalyptus to pass scripts and
data to an instance at startup to allow for run time customization of an
instance and avoid the need to continually re-bundle.

It should also be noted that Eucalyptus automatically converts Amazon’s
AMI format to one that is compatible with KVM. This means that the
same image can be moved from UEC’s private cloud to Amazon’s public
one without any modifications, thus allowing hybrid cloud designs where
instances from one cloud can also be started in Amazon’s cloud.

The Walrus Storage Service implements an object store. In
an object store, an item is stored as a named object using
a key. When the object is to be retrieved, the key is used
to identify the object which is subsequently returned. By
contrast, the Block Storage Controller presents mountable
volumes to the VMs running in the cluster. The volumes
presented in this way provide a place for persistent data
to be stored for the VM instances.

8

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Testbed Blueprint Overview
The cloud architecture highlighted in the following diagram is typical
of a cloud data center design: highly efficient Intel Xeon processor
5500 series-based servers, flat layer 2 networks, consolidated
storage, and highly virtualized. These attributes provide for the cost-
effective operation and supports a highly automated infrastructure.

Hardware Description
We used Intel’s latest innovation in processor technology, the Intel
Xeon processor 5500 series code named Nehalem which provides a
foundation for designing new cloud data centers to achieve greater
performance while using less energy and space, and dramatically
reducing operating costs.

The Intel Xeon processor 5500 series offers several features
that help it make the best performing server in the industry.
Some of these features include:

1. Intelligent performance that automatically varies the
processor frequency to meet the business and application
performance requirements.

2. Automated energy efficiency that scales energy usage to the
workload to achieve optimal performance/watt and reduce
operating costs.

3. Intel® Virtualization Technology◊ (Intel® VT) and Intel® VT Flex-
Migration offer best-in-class performance and manageability
in virtualized environments to strengthen the infrastructure
and reduce costs.

4. Intel® Hyper-Threading Technology,† with eight computation engines
and 16 threads per 2-socket platform, helps multi-threaded soft-
ware applications to execute threads in parallel within each
processor core.

Figure 4 . Testbed Physical Topology

Block
Storage

Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Node
Controller

Caching
Proxy

Customer
Network

Cluster
Controller

Block
Storage

Controller Intel® Data
Center Manager

Cloud Client
(consumer)

ALL NODES ARE
NEHALEM EP,
2.93 GHz, 24 GB RAM,
2ea 136 GB HDD

Cluster
Controller

Power
Manager

Cloud
Controller

Storage
Server

Walrus
Storage ServiceRouter

iSCSICLC

JBOD

CISCO 3750

NC1a

NC2a

NC3a

NC4a

NC1b

NC2b

NC3b

NC4b

Node
Controller

Node
Controller

NC5a NC5b

CCb

9

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Table 1 shows the configuration of the systems that were employed
in building the cloud testbed.

System Design
Following the basic tenet of cloud design (keep it simple), we parti-
tioned the cloud design into three functional blocks: cloud controller
and infrastructure control, storage elements (Walrus Storage Service
and Block Storage Controllers), and compute elements (Cluster
Controllers and Node Controllers). We then allocated the server types
listed	above	such	that	the	servers	with	JBODs	were	used	in	the	stor-
age elements and all other servers were used as needed. Then, we
partitioned the network into five networks:

•	One	network	for	the	customer	network,	this	is	the	means	by	which	
the customer accesses the cloud

•	One	network	internal	to	the	cloud,	this	is	the	network	over	which	all	
command and control functions occur from the Cloud Controller to
the Cluster Controllers

•	Two	networks,	one	for	each	of	the	clusters

•	One	network	for	“out	of	band”	access	to	the	servers,	this	network	is	
used for power on/off control and to implement power management

For network configuration, we used three Cisco 3750G* (1G) switches.
All switches were “out of the box” (i.e., no VPN configuration with all
the 48 ports configured onto a single subnet) with a total of three
subnets. We used 1G switches in this design. However, for scalability
and bandwidth considerations, 10G is recommended. This is due to
the fact that all data traffic is concentrated in the cloud network
due to the high density of VMs.

The IP addresses allocated for the networks are shown in Table 2.

Our design reserves static IP addresses for specific nodes: the Cloud
Controller and Cluster Controllers and the servers in the lab infrastruc-
ture. Node Controllers and VM instances used IP addresses obtained
from their respective Cluster Controller.

In the lab infrastructure, we configured a server using Squid to act as
a caching proxy server. This was done specifically to speed the process
by which the servers were able to get up and running. Since each server
is installed with a clean copy of Ubuntu Enterprise Server, each server
will need to get updates and packages from the Internet. The Caching
Proxy (Squid) server is configured to cache these packages to speed
up the process.

Table 1 . Cloud Testbed Systems Configuration

System Processor Configuration Other Info

Cloud Controller [CLC]
Cluster Controller(CC) and
Block Storage Controller
[CCa and CCb]

Intel® Xeon® Processor X5570∆ • Form Factor: 2U Rack Mount Server
• Processor: Intel® Xeon® processor 5500-based series 2.93 GHz; 2-way x 4 cores = 8 cores
• Memory: 24 GB RAM
• Storage: 300 GB HDD

Node Controller
[NC1a-5a and NC1b-NC5b]

Intel Xeon Processor X5570 • Form Factor: 1U Rack Mount Server
• Processor: Intel Xeon processor 5500-based series 2.93 GHz; 2-way x 4 cores = 8 cores
• Memory: 24 GB RAM
• Storage: 136 GB HDD

Walrus Storage Service Intel Xeon Processor X5570 • Form Factor: 2U Rack Mount Server
• Processor: Intel Xeon processor 5500-based series 2.93 GHz; 2-way x 4 cores = 8 cores
• Memory: 48 GB RAM
• Storage: 300 GB HDD

Storage Server Intel Xeon Processor X5570 • Form Factor: 5U Tower
• Processor: Intel Xeon processor 5500-based series 2.93 GHz; 2-way x 4 cores = 8 cores
• Memory: 24 GB RAM
• Storage: 6x300 GB HDD (1.4 TB RAID)

Proxy Server Intel® Xeon® Processor 5140∆ • Form Factor: 1U Rack Mount Server
• Processor: Intel® Xeon® processor 5100-based series 2.33 GHz Xeon; 2-way
• Memory: 4 GB RAM
• Storage: 4x68 GB HDD

Table 2 . Allocated IP Addresses

 IP range Subnet mask Broadcast

Cloud Network 192.168.16.0/20 255.255.240.0 192.168.31.255

Private VM network 10.0.0.0/8 255.0.0.0 10.255.255.255

ClusterController[CCa] 192.168.32.0/24 255.255.255.0 192.168.32.255

ClusterController[CCb] 192.168.33.0/24 255.255.255.0 192.168.33.255

CCa Public IP for instance 192.168.17.1/254 255.255.255.0 192.168.17.255

CCb Public IP for instance 192.168.18.1/254 255.255.255.0 192.168.18.255

10

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Technical Review
This section provides a detailed overview of the actions performed
to implement and operate the cloud. Many of these commands are
unique to our particular design but should provide enough detail to
understand what we did and also to help recreate the cloud design.
For the details on the command and configuration files, please refer
to the Canonical UEC and Eucalyptus documentation.

Server Setup and Configuration Information

Ubuntu Server Installation

Every server in the system had Ubuntu Server Edition installed and
each installation was identical. Only the server name and the packages
loaded on each server were varied. Therefore, the process below for
installing Ubuntu is defined once here, and referred to in each of the
sections that follow. For a more generic installation guide please see
the Ubuntu Enterprise Cloud documentation.

We started each server with the default BIOS settings and selected
to boot using a USB drive onto which the Ubuntu Server image (64 bit)
is installed. The image can be downloaded from www.ubuntu.com/
getubuntu/download-server and installed on the USB drive using the
instructions from help.ubuntu.com/community/Installation/FromUSBStick

Notes:

•	Be	sure	to	configure	the	server	name	and	network	IP	address,	static	
or dynamic, appropriately for the server type as noted below.

•	Be	sure	to	note	the	account	name	and	password	for	later	use.	Note	
that Ubuntu, by default, there is no root account password.

•	Select	automatic	updates	so	that	the	latest	patches	will	be	
obtained automatically.

:$ sudo apt-get update
:$ sudo apt-get dist-upgrade
:$ sudo ntpdate proxy.lab.clbp.com
:$ sudo apt-get install ntp openssh-server
:$ sudo vi/etc/ntp.conf

server proxy.lab.clbp.com

:$ sudo service ntp restart

Proxy/DNS/NTP Installation

Server Information:

•	Server	name:	Proxy

– IP Address: 192.168.16.11

DNS-Bind Configuration:
We installed the package “Bind” in the DNS server by following the
below command sequence.

:$sudo apt-get install bind9

We then added the zones and IP addresses for selected servers.

:$sudo vi /etc/bind/named.conf.local
Zone “lab.clbp.com” in
{ Type master; file
“/etc/bind/db.lab.clbp.com”; };
proxy 1h A 192.168.16.11
san 1h A 192.168.16.10

Finally, we restarted the DNS server.

:$sudo /etc/init.d/bind9 restart

Squid-Proxy Server Configuration:
Using Squid to cache Ubuntu packages allows us to avoid re-down-
loading the same package over the Internet. The Squid configuration
that we used is based on the Ubuntu wiki configuration.

We installed the caching proxy server (Squid).

:$sudo apt-get install squid squid-common

You will need to modify the Squid settings to listen on port 80, to
allow only certain users on the local network access to the Internet,
to allow all HTTP access, and enable the cache.

:$sudo vi /etc/bind/squid.conf

We defined the port for listening for requests:

http _ port 80

In Linux* (and UNIX* in general), there is a superuser-
named root. The Windows equivalent of root is Admini-
strator. The superuser can do anything and everything,
and thus doing daily work as the superuser can be danger-
ous. You could type a command incorrectly and destroy
the system. Ideally, you run as a user that has only the
privileges needed for the task at hand. In some cases,
this is necessarily root, but most of the time it is a
regular user.

By default, the root account password is locked in Ubuntu.
This means that you cannot log in as root directly or use
the sudo command to become the root user. However,
since the root account physically exists it is still possi-
ble to run programs with root-level privileges. This is
where sudo comes in – it allows authorized users to
run certain programs as root without having to know
the root password.

11

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Using Squid’s access control, you may configure use of Internet
services proxied by Squid to be available only to users with certain
Internet Protocol (IP) addresses. For example, we will illustrate
access by users of the 192.168.42.0/24 subnet only.

We added the following to the bottom of the ACL section of the
 /etc/squid/squid.conf file:

acl localnet src 192.168.0.0/16 # RFC1918 possible
internal network

Next, we added the following to the top of the http_access section
of the /etc/squid/squid.conf file:

http _ access allow all

Edited the cache_dir [optional]

Cache _ dir ufs /var/spool/squid3 60000 16 256
Maximum _ object _ size 100000 KB

Modified the refresh pattern to suit Ubuntu packages

refresh pattern for debs and udebs
refresh _ pattern deb$ 129600 100% 129600
refresh _ pattern udeb$ 129600 100% 129600
refresh _ pattern tar.gz$ 129600 100% 129600

handle meta-release and changelogs.ubuntu.com
special
refresh _ pattern changelogs.ubuntu.com/* 0 1% 1

And restarted the squid service to make the changes effective.

:$ sudo /etc/init.d/squid restart

Cloud Controller (CLC) Installation

Server Information:

•	Server	name:	CLC

•	IP	Address:	192.168.16.2

Cloud Controller Installation:
We installed the Eucalyptus cloud controller software.

:$ sudo apt-get install eucalyptus-cloud euca2ools
openssh-server screen nmap

And entered postfix Internet mail server in the wizard and made sure
process Eucalyptus-cloud was running.

:$ ps -edf |grep eucalyptus-cloud

Walrus Storage Service Installation

Server Information:

•	Server	name:	Walrus

•	IP	Address:	192.168.16.3

Walrus Installation Steps:
We installed the Walrus software.

:$ sudo apt-get install eucalyptus-walrus

And made sure that Walrus services were running by using
the following command.

:$ ps -ax | grep eucalyptus

Cluster Controller (CC) and Block Storage Controller Installation

Server Information:

•	Server	name:	CCa	and	CCb

•	IP	Address:	192.168.16.4,	192.168.16.5

Cluster Controller Installation Steps:
We installed the Cluster Controller and the Storage Controller software.

:$ sudo apt-get install eucalyptus-cc
eucalyptus-sc

Next, we entered the name of the new cluster, and finally supplied
the public IP range to use:

Cluster A: 192.168.17.1 - 192.168.17.254
Cluster B: 192.168.18.1 - 192.168.18.254

We then installed multi-cluster software dependencies

:$ apt-get install bridge-utils vtun

Cluster Controller Configuration
We edited /etc/network/interfaces to add eth1 as an interface since
this machine will act as a router. In the installation we were developing,
eth1 is connected to the private network. See the eucalyptus.conf
files for reference in the appendix.

We configured the NIC dedicated to cloud tasks (private network)
with a bridge. The bridge is needed in a multi-cluster setup.

We restarted the service//
:$ sudo /etc/init.d/networking restart

We edited eucalyptus-ipaddr.conf on CCa and CCb. We changed the ip
addr of the SC and CCa private interface manually to allow for auto-
matic discovery of the services using the Avahi protocol.

We edited eucalyptus.conf on CCa and CCb and added
VNET_CLOUDIP=”192.168.16.2”

We then restarted the service with a config reinitialization

:$ sudo restart eucalyptus-cc CLEAN=1

12

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Component Registration:
The Cloud Controller must be aware of all components before
operation can begin.

Here are the steps we used for setting password-less login,
registration and distribution of credentials:

On the Cloud Controller, Walrus, and both Cluster Controller servers, we
set up a password for user Eucalyptus.

:$ sudo passwd eucalyptus

Next, on the Cloud Controller, we set up ssh key-based password-less
login for user Eucalyptus.

:$ sudo -u eucalyptus ssh-copy-id -i
~eucalyptus/.ssh/id _ rsa.pub eucalyptus@<WALIP>
:$ sudo -u eucalyptus ssh-copy-id -i
~eucalyptus/.ssh/id _ rsa.pub eucalyptus@<CCAIP>

We removed the password for user Eucalyptus on the Cloud Controller,
Walrus, and Cluster Controller servers.

:$ sudo passwd -d eucalyptus

To register the components, we used the following on the
Cloud Controller:

:$ sudo euca _ conf --no-rsync --register-walrus
<WALIP>
:$ sudo euca _ conf --no-rsync --register-cluster
<clusterAname> <CCAIP>
:$ sudo euca _ conf --no-rsync --register-sc <cluster-
Aname> <CCAIP>

We listed components just to be sure everything is registered.

:$ sudo euca _ conf --list-walruses
:$ sudo euca _ conf --list-clusters
:$ sudo euca _ conf --list-scs

On the Cloud Controller, we next obtained credentials to be used with
the administration tools.

:$ mkdir -p ~/.euca
:$ chmod 700 ~/.euca
:$ cd ~/.euca
:$ sudo euca _ conf --get-credentials mycreds.zip
:$ unzip mycreds.zip
:$ cd –

Extracting and using your credentials
The next part of the installation involves setting up the EC2 API and
AMI tools on the machine where they would be run. Generally, this will
be on the developers machine.

We sourced the included “eucarc” file to set up your Eucalyptus
environment.

:$. ~/.euca/eucarc

It is possible to add this command to your ~/.bashrc file so that the
Eucalyptus environment is set up automatically when a user logs in.
Eucalyptus treats this set of credentials as “administrator” creden-
tials that allow the holder global privileges across the cloud. As such,
they should be protected in the same way that other elevated-priority
access is protected (e.g., should not be made visible to the general
user population).

:$ echo “[-r ~/.euca/eucarc] && . ~/.euca/eucarc” >>
~/.bashrc

We installed the required cloud user tools:

:$ sudo apt-get install euca2ools

And validated that everything was working correctly by getting the
local cluster availability details:

:$. ~/.euca/eucarc euca-describe-availability-zones
verbose

Output: the cluster information.

Node controller (NC) Installation and Configuration

Server Information:

•	Server	name:	NC1a

•	IP	Address:	192.168.32.2	–	obtained	from	the	associated	
Cluster Controller

Eucalyptus Node Controller Installation
The following steps must be repeated on each Node Controller
in the cloud.

We installed the Eucalyptus-nc package.

:$ sudo apt-get install eucalyptus-nc

13

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

We set up the Node Controller to use an Ethernet bridge to the local
network. The following script should configure a bridge correctly
in many installations.

interface=eth0
bridge=br0
sudo sed -i “s/̂ iface $interface inet \(.*\)$/iface
$interface inet manual\n\nauto br0\niface $bridge inet
\1/” /etc/network/interfaces
sudo tee -a /etc/network/interfaces <<EOF
 bridge _ ports $interface
 bridge _ fd 9
 bridge _ hello 2
 bridge _ maxage 12
 bridge _ stp off
EOF
:$ sudo /etc/init.d/networking restart

We configured /etc/eucalyptus/eucalyptus.conf with the name of the
bridge, and restarted the node controller with the script shown below.

sudo sed -i “s/̂ VNET _ BRIDGE=.*$/VNET _ BRIDGE=$bridge/”
/etc/eucalyptus/eucalyptus.conf
sudo /etc/init.d/eucalyptus-nc restart

Install the right access for user Eucalyptus
To ensure that we have access to the cloud controller machine we
need to do the following. Install the Cluster Controller’s Eucalyptus
user’s public ssh key into the Node Controller’s Eucalyptus user’s
authorized_keys file.

On the Node Controller, we temporarily set a password for the
Eucalyptus user:

:$ sudo passwd eucalyptus

Then, on the Cluster Controller:

:$ sudo -u eucalyptus ssh-copy-id -i ~eucalyptus/.ssh/
id _ rsa.pub eucalyptus@<IP _ OF _ NODE>

We removed the password of the Eucalyptus account on the Node:

:$ sudo passwd -d eucalyptus

Register nodes from the master cluster

:$ sudo euca _ conf --no-rsync –-register-nodes
<IP _ OF _ NODE>

To verify that node registration was successful, we checked for the
existence of the /var/log/eucalyptus/nc.log file on NC1a.

We tested that the nodes were up and running:

:$ euca-describe-availability-zones verbose

To verify the system policies and configuration, we connected to the
web interface: https://<CLC IP>:8443

Storage Server Installation

System Configuration:

•	Server	name:	SM

•	IP	Address:	192.168.16.10

Storage Server Configuration
We installed the iscsi target using following command:

:$ sudo apt-get install iscsitarget

Edited /etc/ietd.conf:

:$ sudo vi /etc/ietd.conf

Added a rule to allow access to the initiator host:

:$ vi /etc/initiators.allow

Added the rule “ALL ALL” in /etc/initiators.deny:

:$ vi /etc/initiators.deny

Finally, we restarted the iscsi target:
:$ /etc/init.d/iscsitarget restart

Configure Walrus and Block Storage Controller as iSCSI clients.
We installed open-iscsi package:

:$ sudo apt-get install open-iscsi

And restarted the service:

:$ /etc/init.d/open-iscsi restart

Note: These steps were required for both Walrus and Block
Storage Controller.

14

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Discovering the target:
We discovered target (has to be done only once per new target host).

:$ iscsiadm -m discovery -t sendtargets -p <ip of
target host>
:$ /etc/init.d/open-iscsi restart

Block device should appear under /dev (check dmesg).

:$ fdisk /dev/sdb and create a new partition.
:$ mkfs.ext3 /dev/sdb1

We mounted it. Let’s call the mount point /mnt/disk0
Edit /etc/fstab and set up /dev/sdb1 to mount at boot.

:$ vi /etc/fstab

Depending on whether the host is Walrus or a Storage Controller,
create a symbolic link:

ln -sf /var/lib/eucalyptus/bukkits /mnt/disk0

(or ln -sf /var/lib/eucalyptus/volumes /mnt/disk0 on the Storage
Controller)

IMPORTANT: User “Eucalyptus” requires read/write permissions to the
mounted disk.

Install UEC image from the store

The simplest way to add an image to UEC is to install it from the Image
Store on the UEC web interface.

1. Access the Cloud Controller web interface. (Make sure you specify
https.) https://<CLC IP>:8443

2. Enter your login and password. Click on the Store tab (Figure 5).

3. Browse available images.

4. Click on install for the image you want.

5. Verify the downloaded image (Figure 6).

Running the image

There are multiple ways to instantiate an image in UEC:

•	Command	line

•	One	of	the	UEC-compatible	management	tools	such	as	Landscape

•	ElasticFox	extension	to	Firefox

In this example we will cover the command-line option.

Before running an instance of your image, first create a keypair (ssh
key) that can be used to log into your instance as root, once it boots.
You will only have to do this once as the key is stored. Run the follow-
ing commands.

:$ if [! -e ~/.euca/mykey.priv]
touch ~/.euca/mykey.priv
chmod 0600 ~/.euca/mykey.priv
euca-add-keypair mykey > ~/.euca/mykey.priv
fi

ubuntu@CLC:~$ if [! -e ~/.euca/kamalkey.priv]; then
> touch ~/.euca/kamalkey.priv
> chmod 0600 ~/.euca/kamalkey.priv
>euca-add-keypair kamalkey > ~/.euca/kamalkey.priv
> fi
ubuntu@CLC:~$ euca-describe-keypairs
KEYPAIR mykey 9f:b9:6c:d7: 32:a2:22:3d:96:74:0d:38:ab:d8:
6f:af:bf:b8:00:cf
KEYPAIR kamalkey d1:09:cb:df:15:4b:7d:94:05:56:f8:7c
:92:a8:ea:36:67:64:1d:71
KEYPAIR paulkey d8:2a:67:31:b3:a4:d2:89:95:d5:63:c5:1e:c5:
e5:e7:f9:71:c3:d8
KEYPAIR neil-key 59:78:ad:3b:89:ce:a3:3e:52:4d:c1:a
8:96:87:84:24:33:ba:03:6b
ubuntu@CLC:~$ _

Figure 5 . Screen shot of the UEC Image Store interface.

Figure 6 . Screen shot showing registered images available to users.

15

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

We allowed access to port 22 in the instances:

:$ euca-describe-groups
:$ euca-authorize default -P tcp -p 22 -s 0.0.0.0/0

Listed the images.

:$ euca-describe-images

And ran the instances of the registered image.

:$ euca-run-instances $EMI -k mykey -t c1.medium

(EMI stands for Eucalyptus Machine Image)

$EMI is taken from euca-describe-images, you can save it in
your .bashrc

ubuntu@CLC :~$ euca-run-instances emi-DCD31053 -k
kamalkey - t c1. medium
RESERVATION r-2B580630 admin admin-default
INSTANCE i-55450A07 emi-DCD31053 0.0.0.0 0.0.0.0
pending kamalkey
2009-12-22T00:11:58.869Z eki-F2F610D2 eri-0769113B

:$ watch -n 2 euca-describe-instances

Get the IP from running instances and ssh by examining the results
from the euca-describe-instances results.

:$ ssh -i ~/.euca/mykey.priv ubuntu@$IP

Use Case Details
To demonstrate the capabilities of the cloud, we implemented the
following use cases with the focus on the IaaS stack.

Key actors for these use cases are:

1. Service Provider (SP)

2. Service Consumers (SC1 and SC2)

Pre-conditions:

1. The cloud management software, UEC software is installed
and ready to go.

2. Compute and storage nodes are installed and registered.

3. SC1 and SC2 application services (Service 1 and Service 2)
are packaged in VMs to be deployed on the compute nodes.

Use Cases:

1. SP: Create two users (SC1, SC2) via the admin portal: Using the
self-service portal, create two users to mimic two customers
accessing the cloud.

2. SC1: Create instance of the Service 1: Instantiate virtual machine’s
that make up the Service 1 including IP address and links to storage.

3. SC1: Monitor state of Service 1: Observe the state of the newly
created VMs.

4. SC1: Scale-out Service 1: Add an app front-end VMs and add to load-
balance pool. Test for application scalability.

5. SC2: Create instance of the Service 2: Instantiate VMs that make up
the Service 2 including IP address and links to storage.

6. SC2: Monitor state of Service 2: Observe the state of the newly
created VMs.

7. SC1: Terminate an app front-end VM: Remove from load-balance
pool and terminate a VM and observe for results.

8. SP: Add bare-metal capacity to existing cluster: Add a new server to
an existing cluster.

9. SC1, SC2: Generate utilization reports: End users requesting for
resource utilization report of their usage.

10. SP: Generate utilization reports: Create reports either via a GUI or
by log files.

•	SP:	Balance	utilization	for	power	(or	other)	metrics	and	adjust	
workload placement policy.

11. SC1, SC2: Scale-out Service 1, Service 2: Add an app front-end VM
and add to load-balance pool. Test for application scalability on both
Service 1 and Service 2.

12. SP: Fail a server; Ensure that the cluster is still operational.

13. SC1, SC2: Shutdown Service 1, Service 2: End the application
service and remote access to users SC1 and SC2.

14. SP: Generate utilization reports: Create resource utilization report
of SC1 and SC2.

16

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Execution of Use Cases and Results

Compute and Storage Nodes installed and registered

SSH to CLC and pass the below command to list the number of Walrus,
Clusters, and Storage controllers.

ubuntu@CLC:~$ sudo euca _ conf --list-walruses
[sudo] password for ubuntu:
registered walruses:
 walrus 192.168.16.3
ubuntu@CLC:~$ sudo euca _ conf --list-clusters
registered clusters:
 CCa 192.168.16.4
 CCb 192.168.16.5
ubuntu@CLC:~$ sudo euca _ conf --list-scs
registered storage controllers:
 CCa 192.168.16.4
 CCb 192.168.16.5
ubuntu@CLC:~$ _

List all the resources

SSH to CLC and pass the below commands to list the availability
zones. This report shows the running instances in the various
availability zones.

:$ sudo euca-describe-availability-zones verbose

ubuntu@CLC:~$ euca-describe-availability-zones verbose
AVAILABILITYZONE CCa 192.168.16.4
AVAILABILITYZONE ¦- vm types free / max cpu ram disk
AVAILABILITYZONE ¦- m1.small 0064 / 0064 1 128 2
AVAILABILITYZONE ¦- c1.medium 0064 / 0064 1 256 5
AVAILABILITYZONE ¦- m1.large 0032 / 0032 2 512 10
AVAILABILITYZONE ¦- m1.xlarge 0032 / 0032 2 1024 20
AVAILABILITYZONE ¦- c1.xlarge 0016 / 0016 4 2048 20
AVAILABILITYZONE CCb 192.168.16.5
AVAILABILITYZONE ¦- vm types free / max cpu ram disk
AVAILABILITYZONE ¦- m1.small 0064 / 0064 1 128 2
AVAILABILITYZONE ¦- c1.medium 0064 / 0064 1 256 5
AVAILABILITYZONE ¦- m1.large 0032 / 0032 2 512 10
AVAILABILITYZONE ¦- m1.xlarge 0032 / 0032 2 1024 20
AVAILABILITYZONE ¦- c1.xlarge 0016 / 0016 4 2048 20
ubuntu@CLC:~$

Create service instances

This test instantiates 20 instances simultaneously.

SSH to CLC and pass below commands to initiate the
20 instances simultaneously.

:$ euca-run-instances –n 20 emi-DCD31053 –k paulkey –t
c1.medium

On the first time this command is used, it may take some to time for
the instances to be in the “running” state..

Monitor state of service (resource distribution)

SSH to CLC and initiate 20 instances and pass below commands to
check the resources distribution across the clusters. In the screen shot
below, the running instances should be split evenly across the clusters.

:$ euca-describe-availability-zones verbose

Check the resources retaining after the instances
are terminated

To terminate the running instances use the below command sequence.

:$ euca-terminate-instances <instance id>

Create two security groups and monitor VMs

Creating security groups will allow groups of images to work on
different sealed networks:

:$ euca-add-group -d “Group Client 3” client _ 3
:$ euca-authorize client _ 1 -P tcp -p 22 -s 0.0.0.0/0
:$ euca-run-instances $EMI -k mykey -t c1.medium -g
client _ 3
:$ euca-run-instances $EMI -k mykey -t c1.medium -g
client _ 3
:$ euca-add-group -d “Group Client 4” client _ 4
:$ euca-authorize client _ 2 -P tcp -p 22 -s 0.0.0.0/0
:$ euca-run-instances $EMI -k mykey -t c1.medium -g
client _ 4
:$ euca-run-instances $EMI -k mykey -t c1.medium -g
client _ 4
:$ euca-describe-instances

In this case, client_3 has two instances running with IP (192.168.18.1
and 192.168.17.1). Client_4 has two instances running with IP
(192.168.18.10 and 192.168.17.10).

ubuntu@CLC:~$ euca-describe-instances

RESERVATION r-47480905 admin client _ 3
INSTANCE i-34DB0608 emi-DCD31053 192.168.18.1
10.0.9.3 pending kamalkey 0 c1.medium
2009-12-22T02:02:35.707Z
CCb eki-F2F610D2 eri-0769113B
RESERVATION r-46620893 admin client _ 3
INSTANCE i-429E0823 emi-DCD31053 192.168.17.1
10.0.9.2
 running kamalkey 0 c1.medium
2009-12-22T02:02:13.876Z
CCa eki-F2F610D2 eri-0769113B
 RESERVATION r-33D406B6 admin client _ 4
 INSTANCE i-50E80959 emi-DCD31053 192.168.18.10
10.0.10.3
pending kamalkey 0 c1.medium
2009-12-22T02:03:34.748Z
CCb eki-F2F610D2 eri-0769113B
RESERVATION r-55030911 admin client _ 4
INSTANCE i-45F60790 emi-DCD31053 192.168.17.10
10.0.10.2
 running kamalkey 0 c1.medium
2009-12-22T02:03:28.757Z
CCa eki-F2F610D2 eri-0769113B
 ubuntu@CLC:~$ _

17

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Check the network isolation between two clusters

SSH to the one of the instances and try to ping CC,CLC, S3.

:$ ssh –i .euca/<key.priv> <instance IP>

ubuntu@10:~$ ping 192.168.16.2
PING 192.168.16.2 (192.168.16.2) 56(84) bytes of data.
64 bytes from 192.168.16.2: icmp _ seq=1 ttl=63
time=0.405 ms
64 bytes from 192.168.16.2: icmp _ seq=2 ttl=63
time=0.248 ms
^C
--- 192.168.16.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss,
time 999ms
rtt min/avg/max/mdev = 0.248/0.326/0.405/0.080 ms
ubuntu@10:~$ ping 192.168.16.4
PING 192.168.16.4 (192.168.16.4) 56(84) bytes of data.
64 bytes from 192.168.16.4: icmp _ seq=1 ttl=63
time=0.338 ms
^C
--- 192.168.16.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.338/0.338/0.338/0.000 ms
ubuntu@10:~$ ping 192.168.16.5
PING 192.168.16.5 (192.168.16.5) 56(84) bytes of data.
64 bytes from 192.168.16.5: icmp _ seq=1 ttl=64
time=0.278 ms
^C
--- 192.168.16.5 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.278/0.278/0.278/0.000 ms
ubuntu@10:~$

Application Scalability
The goal of this use case is to test the deployment of a custom image
proposing an auto-scaling web service. The web service is in fact a
single web page calculating a fractal image, but the various requests
are balanced over a pool of virtual servers.

In preparation for this test, we created a VM comprised of an Ubuntu
server, Apache, and a PHP application for computing the Mandelbrot
fractal. The steps below use that VM image as the input to bundle
the image for use in our cloud.

Image preparation: kernel, ramdisk and image

:$ euca-bundle-image -i fractal _ vmlinuz -r x86 _ 64
--kernel true
:$ euca-upload-bundle -b k-scal -m /tmp/fractal _ vmli-
nuz.manifest.xml
:$ euca-register k-scal/fractal _ vmlinuz.manifest.xml
#note the resulting ID
:$ euca-bundle-image -i fractal _ initrd -r x86 _ 64
--ramdisk true
:$ euca-upload-bundle -b r-scal -m /tmp/fractal _
initrd.manifest.xml
:$ euca-register r-scal/fractal _ initrd.manifest.xml
#note the resulting ID
:$ euca-bundle-image -i fractal _ img -r x86 _ 64
--kernel eki-82650F40 --ramdisk eri-6C020EAC
:$ euca-upload-bundle -b i-scal -m /tmp/fractal _ img.
manifest.xml
:$ euca-register i-scal/fractal _ img.manifest.xml
#note the resulting ID

Figure 7 . Example of auto-scaling web server application.

Initialization

Input: Apache receiving requests

Browser requests

Batch requests

Worker1 host[A,E] computing fractal

Worker2 host[B,F] computing fractal

Worker3 host[C,G] computing fractal

Worker4 host[D,H] computing fractal

Edit/etc/hosts file with host[A,H]

New worker instance initialization

Reload Apache settings

Settings to launch new instance

Master own ID

Output: load balancing Apache module

Analysis: ssh @workers to get load Action: scale up

Auto Scaling
Fractal

18

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Launching 1 master and 1 worker instances, ssh to the master

:$ euca-run-instances -k mykey -n 2 -z CCa emi-68270E9C
-t m1.large # replace with your image ID
:$ euca-describe-instances | grep emi-68270E9C #
replace with your image ID

INSTANCE i-44130714 emi-68270E9C
192.168.17.1 10.0.8.2 running mykey
0 m1.large 2010-01-08T14:24:08.688Z CCa
eki-B89F1068 eri-A2BA0FDC
INSTANCE i-4A1308D3 emi-68270E9C
192.168.17.10 10.0.8.3 running mykey
1 m1.large 2010-01-08T14:24:08.688Z CCa
eki-B89F1068 eri-A2BA0FDC

Copy files to the cluster controller: If CCa is the Cluster Controller of
the cluster where the first two instances where launched:

:$ scp -r /home/ubuntu/.euca/ CCa:~/euca-credentials
:$ scp -r scripts-master CCa:~/scripts-master/

You need to be able to ssh to the instance and make a web request
(port 80), so make sure you have the right security rights:

:$ euca-describe groups
GROUP admin default default group
PERMISSION admin default ALLOWS tcp 22
22 FROM CIDR 0.0.0.0/0
PERMISSION admin default ALLOWS tcp 80
80 FROM CIDR 0.0.0.0/0

Select one of the two instances as the master of your fractal load
balancer; we picked 10.0.8.2 i-44130714. Note that our fractal image
is using the root user account directly (that’s unusual for Ubuntu, so
remember to use “root@”):

:$ scp -i ~/.euca/mykey.priv -r ~/.euca root@10.0.8.2:~/
euca-credentials
:$ scp -i ~/.euca/mykey.priv -r scripts-master
root@10.0.8.2:~/scripts-master
:$ ssh -i ~/.euca/mykey.priv root@10.0.8.2
:$ cd euca-credentials

Master configuration and launch
Create a file called “balance.conf” and add the value BALANCER_EMI
and LOCAL_ID.

:$ echo “export BALANCER _ EMI=emi-68270E9C” > balance.
conf
:$ echo “export LOCAL _ ID=i-44130714” >> balance.conf
:$ cd /root/scripts-master/ ./euca-balancer-init.sh

A few things are hard coded in euca-balancer.pl, like the cluster name
“CCa”, or the keyname. So, if you use different settings then you will
need to edit the perl script.

emi-68270E9C, i-44130714
10.0.8.3 HOSTA
10.0.8.3 HOSTB
10.0.8.3 HOSTC
10.0.8.3 HOSTD
10.0.8.3 HOSTE
10.0.8.3 HOSTF
10.0.8.3 HOSTG
10.0.8.3 HOSTH
127.0.0.1 localhost.localdomain localhost
* Reloading web server config apache2
[OK]
LOAD: 10.0.8.3 = 0.01
AVG: 0.01

Looking at the output above

•	The	image	reference	and	master	instance	information	is	at	the	top

•	Then	a	list	of	worker	IP	addresses	able	to	receive	http	request.	By	
default the eight worker slots are all pointing to the only worker
we’ve launched

•	Apache	is	reloaded	for	each	script	cycle,	reading	the	new	worker	IP	
list. Apache on the master is just load balancing requests for workers

•	The	loads	of	all	worker	is	shown

First load

All we have to do is send requests (from the browser) to the load
balancer at this address: http://192.168.17.1/balanced/fractal.php.

You should see a fractal image. The image creation will increase the
worker image load. The script will detect it, launching a new worker,
creating a new host file with the two workers. The Apache configura-
tion will be reloaded and future requests sent to the two workers.

19

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Power Footprint

Power optimization is an important consideration in cloud implemen-
tations. Not only because of the higher density but also because
reducing the power footprint of a data center reduces the overall oper-
ation cost. One of the simplest forms of power management is to put
servers into a lower power mode when they are idle. UEC implements
a simple form of this power management using a Canonical-sponsored
tool known as PowerNap. PowerNap puts a server into sleep mode
when it determines that the server is no longer being utilized. Then,
when UEC needs the server, UEC uses Wake-on-LAN to wake up the
server so that workloads can subsequently be placed on the server.

One of the factors is the time to put the server to sleep and to wake
the server. Below are the measurements we made on the servers in
our clusters. The time to hibernate and resume will vary depending on
CPU, the amount of memory, and disk performance.

Scenario Time

Time to hibernate the node 1:00 (1 minute)

Time to resume a node from hibernate 3:08

Time to power-on the node using wake-up
command (boot OS without hibernation)

2:40

Based on our particular hardware configuration, it is likely that we will
see the best recovery times by simply powering off the nodes and
starting from fresh rather than using hibernation or sleep modes.

Prerequisites:

1. Your node(s) must support Wake-on-LAN, and have it enabled
in the BIOS.

2. To get PowerNap, do the following.

:$ sudo apt-get install powernap

You run PowerNap on each node that participates in power manage-
ment. Edit the PowerNap configuration file to indicate the priority of
actions.:* /etc/powernap/action.

* pm-suspend
* pm-hibernate
* poweroff

The node should be able to execute at least one of these.

To enable UEC’s Power Management, enable the POWERSAVE
scheduling algorithm in your Cloud Controller’s /etc/eucalyptus/
eucalyptus.conf. (You will need to do this on all CCs.)

: $ sudo sed -i ‘s/̂ SCHEDPOLICY=.*$/
SCHEDPOLICY=”POWERSAVE”/’ /etc/eucalyptus.conf
:$ sudo restart eucalyptus CLEAN=1

By default, Eucalyptus will wait for 300 seconds (5 minutes) of
inactivity on a node before putting it to sleep. You can monitor
the state by watching the cc.log:

:$ tail -f /var/log/eucalyptus/cc.log

Obtain admin account credentials through Web Interface

Connect to Cloud Controller using a Web browser to intialize login
credentials and obtain the admin account certificate.

1. From a Web browser, access the following URL: https://<cloud-
controller-ip-address>:8443/

2. Use username ‘admin’ and password ‘admin’ for the first time login.

3. Then follow the on-screen instructions to update the admin pass-
word and e-mail address.

4. Once the first-time configuration process is completed, click the
“credentials” tab located in the top-left portion of the screen.

5. Click the “Download Credentials” button to get your certificates.

6. Save them to ~/.euca.

7. Unzip the downloaded zipfile into a safe location (~/.euca).

unzip -d ~/.euca mycreds.zip

Other users that are not admin must get their credentials through the
Web interface. Web interface can also be used by administrators to
validate the users.

20

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Things to Consider

Use a SAN Rather Than an iSCSI Server?
We chose to use a Storage Server with local DAS for the bulk storage
requirements in our cloud. We could just as well have connected the
Storage Server to a SAN. The choice in this case was completely arbi-
trary based on the capabilities in our lab setup – we already had
a	server	with	local	storage	(DAS,	JBOD).

The more fundamental requirement is for the Node Controllers to
have access to a shared storage device with sufficient capacity and
performance. A NAS device connected to a SAN would have worked
just as well. The choice is really driven by design factors such as the
back-up strategy, performance, and cost.

Scalability
Consider the case where the cloud we’ve described has been imple-
mented and is in use. But now, there is demand for a considerably
larger cloud. Below are considerations when increasing the capacity
of the cloud.

If the reason to increse the size of the cloud is to get more compute
power, then just add servers to the existing clusters. If the need is
for improved availability, then more clusters are needed, which in
turn, creates new availability zones. With the additional availability
zones, applications can be spread out so that the failure of a Cluster
Controller or a switch will not impact the application.

Increasing the scale of the cloud may have other side effects as well.
Below are some factors to consider as the size of the cloud
is increased.

Network capacity:

•	As	additional	applications	are	added,	the	network	traffic	will	increase.	
The increase will come not only from the application traffic but also
for any storage activities.

•		Network	traffic	will	increase	if	there	is	a	higher	load	on	the	appli-
cations (e.g., maintenance load for DR and data replication) that
causes an increased number of users or changing access patterns.

Cloud Topology:

•		Consider	how	the	cluster/node	topology	will	influence	robustness	
and/or performance of the cloud solution. Consider how network
faults will impact the user-perceived performance of the cloud. Note
that the failure of a switch not only breaks the network connections
but will often leave a segment of the network isolated for a period
of time.

•		Storage	topology	is	also	a	key	consideration	as	a	separate	data	
network and storage solution can limit scale benefits. Be sure to look
at the performance demands that will be placed on the Block Storage
Controllers and the networks that connect to them.

Consider the case of needing to add support for 1,000 virtual
machines to the cloud.

•	Eucalyptus	supports	up	to	eight	clusters	in	a	single	cloud.	Based	on	
analysis of workloads, one might come to a design point where we
average 16 “small” VM instances per server. Note that many servers will
have more VM instances based on server performance and workload
demands. Using the above average, this would mean that we need:

– 1000/16 = 63 Node Controllers (i.e., servers) total in the cloud
to support the incremental 1,000 VMs.

– Assuming we have the maximum number of clusters (eight)
then we have eight Node Controllers per Cluster.

– Or, assuming we stay with the Class C IP address space, we
are limited to 10 Node Controllers per Cluster, we would
need seven Clusters.

Would the Use of SSD Drives Improve Performance?
Using SSDs as hard disk replacements can improve performance in a
cloud. However, to get the best use of the SSDs, there are two loca-
tions in the cloud that can especially benefit.

•	The	Node	Controllers	use	the	local	disk	to	cache	VM	images.	
Therefore, if many copies of the same instance will be run on
the same node, using an SSD as the storage device for a Node
Controller can greatly speed up the loading of VMs.

•		The	Walrus	Storage	Service	is	an	object	store.	This	means	that	
for each request for an object, the location of the object must be
determined from the provided key. This lookup operation is done
frequently from a metadata store. Using SSDs to hold this meta-
data store can greatly improve the performance for the process
of locating the object.

21

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

Comments were removed from the following for brevity.

Cluster Controller .conf file
EUCALYPTUS=”/”
EUCA_USER=”eucalyptus”
DISABLE_DNS=”Y”
ENABLE_WS_SECURITY=”Y”
LOGLEVEL=”DEBUG”
CC_PORT=”8774”
SCHEDPOLICY=”POWERSAVE”
POWER_IDLETHRESH=”300”
POWER_WAKETHRESH=”300”
NODES=” NC1a NC2a NC3a NC4a”
NC_SERVICE=”axis2/services/eucalyptusNC”
NC_PORT=”8775”
HYPERVISOR=”not_configured”
INSTANCE_PATH=”not_configured”
VNET_PUBINTERFACE=”eth0”
VNET_PRIVINTERFACE=”br1”
VNET_BRIDGE=”br0”
VNET_DHCPDAEMON=”/usr/sbin/dhcpd3”
VNET_DHCPUSER=”dhcpd”
VNET_MODE=”MANAGED-NOVLAN”
VNET_SUBNET=”10.0.0.0”
VNET_NETMASK=”255.0.0.0”
VNET_DNS=”192.168.16.11”
VNET_ADDRSPERNET=”256”
VNET_PUBLICIPS=”192.168.17.1-192.168.17.254”
VNET_CLOUDIP=”192.168.16.2”

Cloud Controller .conf file
EUCALYPTUS=”/”
DISABLE_DNS=”Y”
ENABLE_WS_SECURITY=”Y”
LOGLEVEL=”DEBUG”
CC_PORT=”8774”
SCHEDPOLICY=”ROUNDROBIN”
POWER_IDLETHRESH=”300”
POWER_WAKETHRESH=”300”
NODES=””
NC_SERVICE=”axis2/services/eucalyptusNC”
NC_PORT=”8775”

HYPERVISOR=”not_configured”
INSTANCE_PATH=”not_configured”
VNET_PUBINTERFACE=”eth0”
VNET_PRIVINTERFACE=”eth0”
VNET_BRIDGE=”br0”
VNET_DHCPDAEMON=”/usr/sbin/dhcpd3”
VNET_DHCPUSER=”dhcpd”
VNET_MODE=”MANAGED-NOVLAN”

Node Controller .conf file
EUCALYPTUS=”/”
DISABLE_DNS=”Y”
ENABLE_WS_SECURITY=”Y”
LOGLEVEL=”DEBUG”
CC_PORT=”8774”
SCHEDPOLICY=”ROUNDROBIN”
POWER_IDLETHRESH=”300”
POWER_WAKETHRESH=”300”
NODES=””
NC_SERVICE=”axis2/services/eucalyptusNC”
NC_PORT=”8775”
HYPERVISOR=”kvm”
INSTANCE_PATH=”/var/lib/eucalyptus/instances”
VNET_PUBINTERFACE=”eth0”
VNET_PRIVINTERFACE=”eth0”
VNET_BRIDGE=”br0”
VNET_DHCPDAEMON=”/usr/sbin/dhcpd3”
VNET_DHCPUSER=”dhcpd”
VNET_MODE=”MANAGED-NOVLAN”

Appendix

22

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

AWS: Amazon Web Service.

Block Storage Controller (SC): Eucalyptus component that manages
dynamic block storage services (EBS). Each “cluster” in a Eucalyptus
installation can have its own Block Storage Controller. This component
is provided by the “eucalyptus-sc” package.

Cloud Controller (CLC): Eucalyptus component that provides the web
UI (an https server on port 8443), and implements the Amazon EC2
API. There should be only one Cloud Controller in an installation of UEC.
This service is provided by the Ubuntu eucalyptus-cloud package.

Cluster: A collection of nodes, associated with a Cluster Controller.
There can be more than one Cluster in an installation of UEC. Clusters
are sometimes physically separate sets of nodes. (e.g., floor1, floor2,
floor2).

Cluster Controller (CC): Eucalyptus component that manages collec-
tions of node resources. This service is provided by the Ubuntu
eucalyptus-cc package.

DCM: Data Center Manager. DCM is a package from Intel to provide
policy based tools for managing power in the data center.

DCMI: Data Center Manageability Interface: Datacenter Manager
Specifications are derived from Intelligent Platform Management
Interface (IPMI) 2.0, which has been widely adopted by the comput-
ing industry for server management and system-health monitoring.
The Datacenter Manager specifications define a uniform set of moni-
toring, control features and interfaces that target the common and
fundamental hardware management needs of server systems that are
used in large deployments within data centers, such as Internet Portal
data centers. This includes capabilities such as secure power and reset
control, temperature monitoring, event logging, and others.

EBS: Elastic Block Storage.

EC2: Elastic Compute Cloud. Amazon’s pay-by-the-hour public cloud
computing offering.

EKI: Eucalyptus Kernel Image.

EMI: Eucalyptus Machine Image.

ERI: Eucalyptus Ramdisk Image.

Eucalyptus: Elastic Utility Computing Architecture for Linking Your
Programs To Useful Systems. An open-source project originally from
the University of California at Santa Barbara, now supported by
Eucalyptus Systems.

Infrastructure as a Service (IaaS): The delivery of computer infra-
structure (typically a platform virtualization environment) as a service
(From Wikipedia).

KVM: Kernel Virtual Machine. A hypervisor embedded in the Linux
kernel.

Node: A node is a physical machine that’s capable of running
virtual machines, running a node controller. Within Ubuntu, this
generally means that the CPU has VT extensions, and can run
the KVM hypervisor.

Node Controller (NC): Eucalyptus component that runs on nodes
which host the virtual machines that comprise the cloud. This service
is provided by the Ubuntu package eucalyptus-nc.

Power Manager: The function that is responsible for managing the
power utilization in the cloud. DCM was used for the Power Manager.

S3: Simple Storage Service. Amazon’s pay-by-the-gigabyte persistent
storage solution for EC2.

Ubuntu: A Linux distribution sponsored by Canonical.

UEC: Ubuntu Enterprise Cloud. Ubuntu’s cloud computing solution,
based on Eucalyptus.

VM: Virtual Machine.

VT: Virtualization Technology. An optional feature of some modern
CPUs, allowing for accelerated virtual machine hosting.

Walrus: Eucalyptus component that implements the Amazon S3 API,
used for storing VM images and user storage using S3 bucket put/get
abstractions.

Glossary

23

White Paper: Intel® Cloud Builder Guide to Cloud Design and Deployment on Intel® Platforms - Ubuntu Enterprise Cloud

1. Why the Intel® Xeon® Processor 5500 Series is the Ideal Foundation for Cloud Computing,
http://communities.intel.com/docs/DOC-4213.

2. Intel Xeon Processor 5500 Series Software Industry Testimonials, http://www.intel.com/business/
software/testimonials/xeon5500.htm.

3. Intel Virtualization Technology, http://www.intel.com/technology/virtualization/,
http://download.intel.com/business/resources/briefs/xeon5500/xeon_5500_virtualization.pdf.

4 . Baidu POC, http://software.intel.com/sites/datacentermanager/intel_node_manager_v2e.pdf.

 5. Intel in cloud computing Wiki, http://communities.intel.com/docs/DOC-4230.

6. Intel® Cloud Builder Program, http://communities.intel.com/docs/DOC-4292.

7. Hadoop, http://hadoop.apache.org/.

8. Amazon Web Services, http://aws.amazon.com.

9. Eucalyptus Administrator Guide, http://open.eucalyptus.com/wiki/EucalyptusAdministratorGuide.

10. Ubuntu Enterprise Cloud web site, http://www.ubuntu.com/cloud.

11. UEC installation and administration guide, http://help.ubuntu.com/community/UEC.

12. Squid deb proxy documentation, https://wiki.ubuntu.com/SquidDebProxy.

13. Data Center Manager, http://software.intel.com/sites/datacentermanager/.

14. Cloud Storage Power Management Reference Architecture, http://communities.intel.com/servlet/
JiveServlet/downloadBody/4316-102-3-7063/CloudPowerMgt1.02.pdf.	

15. Intel® Xeon® processor 5500 series-based documentation, http://ark.intel.com/ProductCollection.
aspx?codeName=33163, http://www.intel.com/support/processors/xeon5k/.

16. DCMI Specification, http://www.intel.com/technology/product/DCMI/index.htm.

References

To learn more about deployment of cloud solutions,
visit www.intel.com/software/cloudbuilder

 ∆ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.
 †	Hyper-Threading	Technology	requires	a	computer	system	with	an	Intel	processor	supporting	Hyper-Threading	Technology	and	an	HT	Technology	enabled	chipset,	BIOS	and	operating	system.	Performance	will	vary	depending	on	the	specific	

hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.
 ◊ Intel® Virtualization Technology requires a computer system with an enabled Intel®	processor,	BIOS,	virtual	machine	monitor	(VMM)	and,	for	some	uses,	certain	platform	software	enabled	for	it.	Functionality,	performance	or	other	benefits	will	
vary	depending	on	hardware	and	software	configurations	and	may	require	a	BIOS	update.	Software	applications	may	not	be	compatible	with	all	operating	systems.	Please	check	with	your	application	vendor.

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE
OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

	 	Intel	may	make	changes	to	specifications	and	product	descriptions	at	any	time,	without	notice.	Designers	must	not	rely	on	the	absence	or	characteristics	of	any	features	or	instructions	marked	“reserved”	or	“undefined.”	Intel	reserves	these	for	
future	definition	and	shall	have	no	responsibility	whatsoever	for	conflicts	or	incompatibilities	arising	from	future	changes	to	them.	The	information	here	is	subject	to	change	without	notice.	Do	not	finalize	a	design	with	this	information.

	 	The	products	described	in	this	document	may	contain	design	defects	or	errors	known	as	errata	which	may	cause	the	product	to	deviate	from	published	specifications.	Current	characterized	errata	are	available	on	request.	Contact	your	local	Intel	
sales	office	or	your	distributor	to	obtain	the	latest	specifications	and	before	placing	your	product	order.	Copies	of	documents	which	have	an	order	number	and	are	referenced	in	this	document,	or	other	Intel	literature,	may	be	obtained	by	calling	
1-800-548-4725, or by visiting Intel’s Web site at www.intel.com.

	 	Copyright	©	2010	Intel	Corporation.	All	rights	reserved.	Intel,	the	Intel	logo,	Xeon,	and	Xeon	inside	are	trademarks	of	Intel	Corporation	in	the	U.S.	and	other	countries.	
	 	Copyright	©	2010	Canonical	Ltd.	Ubuntu,	Canonical,	and	the	Canonical	logo	are	registered	trademarks	of	Canonical	Ltd.
	 	Copyright	©	2010	Eucalyptus	Systems,	Inc.	Eucalyptus	and	the	Eucalyptus	Systems	logo	are	registered	trademarks	of	Eucalyptus	Systems.
 *Other names and brands may be claimed as the property of others.
 Printed in USA 0310/RH/OCG/XX/PDF Please Recycle 323488-001US

