Table of Contents
arguments[] — an array of function argumentsArguments — arguments and other properties of a functionArguments.callee — the function that is currently runningArguments.length — the number of arguments passed to a functionArray — built-in support for arraysArray.concat() — concatenate arraysArray.every() — test whether a predicate is true for every elementArray.filter() — return array elements that pass a predicateArray.forEach() — invoke a function for each array elementArray.indexOf() — search an arrayArray.join() — concatenate array elements to form a stringArray.lastIndexOf() — search backward through an arrayArray.length — the size of an arrayArray.map() — compute new array elements from oldArray.pop() — remove and return the last element of an arrayArray.push() — append elements to an arrayArray.reduce() — compute a value from the elements of an arrayArray.reduceRight() — reduce an array from right-to-leftArray.reverse() — reverse the elements of an arrayArray.shift() — shift array elements downArray.slice() — return a portion of an arrayArray.some() — test whether a predicate is true for any elementArray.sort() — sort the elements of an arrayArray.splice() — insert, remove, or replace array elementsArray.toLocaleString() — convert an array to a localized stringArray.toString() — convert an array to a stringArray.unshift() — insert elements at the beginning of an arrayBoolean — support for boolean valuesBoolean.toString() — convert a boolean value to a stringBoolean.valueOf() — the boolean value of a Boolean objectDate — manipulate dates and timesDate.getDate() — return the day-of-the-month field of a DateDate.getDay() — return the day-of-the-week field of a DateDate.getFullYear() — return the year field of a DateDate.getHours() — return the hours field of a DateDate.getMilliseconds() — return the milliseconds field of a DateDate.getMinutes() — return the minutes field of a DateDate.getMonth() — return the month field of a DateDate.getSeconds() — return the seconds field of a DateDate.getTime() — return a Date in millisecondsDate.getTimezoneOffset() — determine the offset from GMTDate.getUTCDate() — return the day-of-the-month field of a Date (universal time)Date.getUTCDay() — return the day-of-the-week field of a Date (universal time)Date.getUTCFullYear() — return the year field of a Date (universal time)Date.getUTCHours() — return the hours field of a Date (universal time)Date.getUTCMilliseconds() — return the milliseconds field of a Date (universal time)Date.getUTCMinutes() — return the minutes field of a Date (universal time)Date.getUTCMonth() — return the month-of-the-year field of a Date (universal time)Date.getUTCSeconds() — return the seconds field of a Date (universal time)Date.getYear() — return the year field of a DateDate.now() — return the current time in millisecondsDate.parse() — parse a date/time stringDate.setDate() — set the day-of-the-month field of a DateDate.setFullYear() — set the year and, optionally, the month and date fields of a DateDate.setHours() — set the hours, minutes, seconds, and milliseconds fields of a DateDate.setMilliseconds() — set the milliseconds field of a DateDate.setMinutes() — set the minutes, seconds, and milliseconds fields of a DateDate.setMonth() — set the month and day fields of a DateDate.setSeconds() — set the seconds and milliseconds fields of a DateDate.setTime() — set a Date in millisecondsDate.setUTCDate() — set the day-of-the-month field of a Date (universal time)Date.setUTCFullYear() — set the year, month, and day fields of a Date (universal time)Date.setUTCHours() — set the hours, minutes, seconds, and milliseconds fields of a Date (universal time)Date.setUTCMilliseconds() — set the milliseconds field of a Date (universal time)Date.setUTCMinutes() — set the minutes, seconds, and milliseconds fields of a Date (universal time)Date.setUTCMonth() — set the month and day fields of a Date (universal time)Date.setUTCSeconds() — set the seconds and milliseconds fields of a Date (universal time)Date.setYear() — set the year field of a DateDate.toDateString() — return the date portion of a Date as a stringDate.toGMTString() — convert a Date to a universal time stringDate.toISOString() — convert a Date to an ISO8601-formatted stringDate.toJSON — JSON-serialize a Date objectDate.toLocaleDateString() — return the date portion of a Date as a locally formatted stringDate.toLocaleString() — convert a Date to a locally formatted stringDate.toLocaleTimeString() — return the time portion of a Date as a locally formatted stringDate.toString() — convert a Date to a stringDate.toTimeString() — return the time portion of a Date as a stringDate.toUTCString() — convert a Date to a string (universal time)Date.UTC() — convert a Date specification to millisecondsDate.valueOf() — convert a Date to millisecond representationdecodeURI() — unescape characters in a URIdecodeURIComponent() — unescape characters in a URI componentencodeURI() — escape characters in a URIencodeURIComponent() — escape characters in a URI componentError — a generic exceptionError.message — a human-readable error messageError.name — the type of an errorError.toString() — convert an Error object to a stringescape() — encode a stringeval() — execute JavaScript code from a stringEvalError — thrown when eval() is used improperlyFunction — a JavaScript functionFunction.apply() — invoke a function as a method of an objectFunction.arguments[] — arguments passed to a functionFunction.bind() — return a function that invokes this as a methodFunction.call() — invoke a function as a method of an objectFunction.caller — the function that called this oneFunction.length — the number of declared argumentsFunction.prototype — the prototype for a class of objectsFunction.toString() — convert a function to a stringGlobal — the global objectInfinity — a numeric property that represents infinityisFinite() — determine whether a number is finiteisNaN() — check for not-a-numberJSON — JSON parsing and stringificationJSON.parse() — parse a JSON-formatted stringJSON.stringify() — serialize an object, array or primitive valueMath — mathematical functions and constantsMath.abs() — compute an absolute valueMath.acos() — compute an arccosineMath.asin() — compute an arcsineMath.atan() — compute an arctangentMath.atan2() — compute the angle from the X axis to a pointMath.ceil() — round a number upMath.cos() — compute a cosineMath.E — the mathematical constant eMath.exp() — compute e xMath.floor() — round a number downMath.LN10 — the mathematical constant log e 10Math.LN2 — the mathematical constant log e 2Math.log() — compute a natural logarithmMath.LOG10E — the mathematical constant log10eMath.LOG2E — the mathematical constant log2eMath.max() — return the largest argumentMath.min() — return the smallest argumentMath.PI — the mathematical constant πMath.pow() — compute x yMath.random() — return a pseudorandom numberMath.round() — round to the nearest integerMath.sin() — compute a sineMath.sqrt() — compute a square rootMath.SQRT1_2 — the mathematical constant 1/√2Math.SQRT2 — the mathematical constant √2Math.tan() — compute a tangentNaN — the not-a-number propertyNumber — support for numbersNumber.MAX_VALUE — the maximum numeric valueNumber.MIN_VALUE — the minimum numeric valueNumber.NaN — the special not-a-number valueNumber.NEGATIVE_INFINITY — negative infinityNumber.POSITIVE_INFINITY — infinityNumber.toExponential() — format a number using exponential notationNumber.toFixed() — format a number using fixed-point notationNumber.toLocaleString() — convert a number to a locally formatted stringNumber.toPrecision() — format the significant digits of a numberNumber.toString() — convert a number to a stringNumber.valueOf() — return the primitive number valueObject — a superclass that contains features of all JavaScript objectsObject.constructor — an object’s constructor functionObject.create() — create an object with specified prototype and propertiesObject.defineProperties() — create or configure multiple object propertiesObject.defineProperty() — create or configure an object propertyObject.freeze() — make an object immutableObject.getOwnPropertyDescriptor() — query property attributesObject.getOwnPropertyNames() — return the names of non-inherited propertiesObject.getPrototypeOf() — return the prototype of an objectObject.hasOwnProperty() — check whether a property is inheritedObject.isExtensible() — can new properties be added to an object?Object.isFrozen() — is an object immutable?Object.isPrototypeOf() — is one object the prototype of another?Object.isSealed() — can properties be added to or deleted from an object?Object.keys() — return own enumerable property namesObject.preventExtensions() — don’t allow new properties on an objectObject.propertyIsEnumerable() — will property be seen by a for/in loop?Object.seal() — prevent the addition or deletion of propertiesObject.toLocaleString() — return an object’s localized string representationObject.toString() — define an object’s string representationObject.valueOf() — the primitive value of the specified objectparseFloat() — convert a string to a numberparseInt() — convert a string to an integerRangeError — thrown when a number is out of its legal rangeReferenceError — thrown when reading a variable that does not existRegExp — regular expressions for pattern matchingRegExp.exec() — general-purpose pattern matchingRegExp.global — whether a regular expression matches globallyRegExp.ignoreCase — whether a regular expression is case-insensitiveRegExp.lastIndex — the starting position of the next matchRegExp.source — the text of the regular expressionRegExp.test() — test whether a string matches a patternRegExp.toString() — convert a regular expression to a stringString — support for stringsString.charAt() — get the ‘n’th character from a stringString.charCodeAt() — get the nth character code from a stringString.concat() — concatenate stringsString.fromCharCode() — create a string from character encodingsString.indexOf() — search a stringString.lastIndexOf() — search a string backwardString.length — the length of a stringString.localeCompare() — compare one string to another, using locale-specific orderingString.match() — find one or more regular-expression matchesString.replace() — replace substring(s) matching a regular expressionString.search() — search for a regular expressionString.slice() — extract a substringString.split() — break a string into an array of stringsString.substr() — extract a substringString.substring() — return a substring of a stringString.toLocaleLowerCase() — convert a string to lowercaseString.toLocaleUpperCase() — convert a string to uppercaseString.toLowerCase() — convert a string to lowercaseString.toString() — return the stringString.toUpperCase() — convert a string to uppercaseString.trim() — strip leading and trailing whitespaceString.valueOf() — return the stringSyntaxError — thrown to signal a syntax errorTypeError — thrown when a value is of the wrong typeundefined — the undefined valueunescape() — decode an escaped stringURIError — thrown by URI encoding and decoding methodsApplicationCache — application cache management APIArrayBuffer — a fixed-length sequence of bytesArrayBufferView — common properties for types based on ArrayBuffersAttr — an element attributeAudio — an HTML <audio> elementBeforeUnloadEvent — Event object for unload eventsBlob — an opaque chunk of data, such as file contentsBlobBuilder — create new BlobsButton — an HTML <button>Canvas — an HTML element for scripted drawingCanvasGradient — a color gradient for use in a canvasCanvasPattern — an image-based pattern for use in a CanvasCanvasRenderingContext2D — the object used for drawing on a canvasClientRect — an element bounding boxCloseEvent — specifies whether a WebSocket closed cleanlyComment — an HTML or XML commentConsole — debugging outputConsoleCommandLine — global utilities for the console windowCSS2Properties — see CSSStyleDeclarationCSSRule — a rule in a CSS stylesheetCSSStyleDeclaration — a set of CSS attributes and their valuesCSSStyleSheet — a CSS stylesheetDataTransfer — a transfer of data via drag-and-dropDataView — read and write values from an ArrayBufferDocument — an HTML or XML documentDocumentFragment — adjacent nodes and their subtreesDocumentType — the <!DOCTYPE> declaration of a documentDOMException — an exception thrown by a Web APIDOMImplementation — global DOM methodsDOMSettableTokenList — a token list with a settable string valueDOMTokenList — a set of space-separated tokensElement — a document elementErrorEvent — an uncaught exception from a worker threadEvent — details for standard events, IE events and jQuery eventsEventSource — a Comet connection to an HTTP serverEventTarget — an object that receives eventsFieldSet — a <fieldset> in an HTML formFile — a file in the local filesystemFileError — error while reading a fileFileReader — asynchronously read a File or BlobFileReaderSync — synchronously read a File or BlobForm — a <form> in an HTML documentFormControl — common features of all form controlsFormData — an HTTP multipart/form-data request bodyFormValidity — the validity of a form controlGeocoordinates — a geographical positionGeolocation — obtain the user’s latitude and longitudeGeolocationError — an error while querying the user’s locationGeoposition — a timestamped position reportHashChangeEvent — event object for hashchange eventsHistory — the browsing history of a WindowHTMLCollection — an element collection accessible by name or numberHTMLDocument — see DocumentHTMLElement — see ElementHTMLFormControlsCollection — a array-like object of form controlsHTMLOptionsCollection — a collection of Option elementsIFrame — an HTML <iframe>Image — an in an HTML documentImageData — an array of pixel data from a <canvas>Input — an HTML <input> elementjQuery — the jQuery libraryKeyEvent — see EventLabel — a <label> for a form controlLink — an HTML hyperlinkLocation — represents and controls browser locationMediaElement — a media player elementMediaError — an <audio> or <video> errorMessageChannel — a pair of connected MessagePortsMessageEvent — a message from another execution contextMessagePort — pass asynchronous messagesMeter — a graphical meter or gaugeMouseEvent — see EventNavigator — information about the web browserNodeList — a read-only array-like object of NodesOption — an <option> in a Select elementOutput — an HTML form <output> elementPageTransitionEvent — event object for pageshow and pagehide eventsPopStateEvent — history transition eventProcessingInstruction — a processing instruction in an XML documentProgress — a progress barProgressEvent — downloading, uploading, or file reading progressScreen — information about the display screenScript — an HTML <script> elementSelect — a graphical selection listStorage — client-side storage of name/value pairsStyle — an HTML <style> elementTable — an HTML <table>TableCell — a cell in an HTML tableTableRow — a <tr> element in an HTML tableTableSection — a header, footer, or body section of a tableText — a run of text in a documentTextArea — a multiline text input areaTextMetrics — measurements of a string of textTimeRanges — a set of media time rangesTypedArray — fixed-size binary arraysURL — Blob URL methodsVideo — an HTML <video> elementWebSocket — a bidirectional socket-like network connectionWindow — a web browser window, tab, or frameWorker — a worker threadWorkerLocation — the URL of a worker’s main scriptWorkerNavigator — browser information for workersXMLHttpRequest — An HTTP request and response
Copyright © 2011 David Flanagan
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. JavaScript: The Definitive Guide, the image of a Javan rhinoceros, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.
Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596805531/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
This book covers the JavaScript language and the JavaScript APIs implemented by web browsers. I wrote it for readers with at least some prior programming experience who want to learn JavaScript and also for programmers who already use JavaScript but want to take their understanding to a new level and really master the language and the web platform. My goal with this book is to document the JavaScript language and platform comprehensively and definitively. As a result, this is a large and detailed book. My hope, however, is that it will reward careful study, and that the time you spend reading it will be easily recouped in the form of higher programming productivity.
This book is divided into four parts. Part I covers the JavaScript language itself. Part II covers client-side JavaScript: the JavaScript APIs defined by HTML5 and related standards and implemented by web browsers. Part III is the reference section for the core language, and Part IV is the reference for client-side JavaScript. Chapter 1 includes an outline of the chapters in Parts I and II (see Core JavaScript).
This sixth edition of the book covers both ECMAScript 5 (the latest version of the core language) and HTML5 (the latest version of the web platform). You’ll find ECMAScript 5 material throughout Part I. The new material on HTML5 is mostly in the chapters at the end of Part II, but there is also some in other chapters as well. Completely new chapters in this edition include Chapter 11, JavaScript Subsets and Extensions; Chapter 12, Server-Side JavaScript ; Chapter 19, The jQuery Library; and Chapter 22, HTML5 APIs.
Readers of previous editions may notice that I have completely rewritten many of the chapters in this book for the sixth edition. The core of Part I—the chapters covering objects, arrays, functions, and classes—is all new and brings the book in line with current programming styles and best practices. Similarly, key chapters of Part II, such as those covering documents and events, have been completely rewritten to bring them up-to-date.
If you are reading a digital version of this book that you (or your employer) did not pay for (or borrow from someone who did) then you probably have an illegally pirated copy. Writing the sixth edition of this book was a full-time job, and it took more than a year. The only way I get paid for that time is when readers actually buy the book. And the only way I can afford to work on a seventh edition is if I get paid for the sixth.
I do not condone piracy, but if you have a pirated copy, go ahead and read a couple of chapters. I think that you’ll find that this is a valuable source of information about JavaScript, better organized and of higher quality than what you can find freely (and legally) available on the Web. If you agree that this is a valuable source of information, then please pay for that value by purchasing a legal copy (either digital or print) of the book. On the other hand, if you find that this book is no more valuable than the free information on the web, then please discard your pirated copy and use those free information sources.
I use the following typographical conventions in this book:
Is used for emphasis and to indicate the first use of a term. Italic is also used for email addresses, URLs and file names.
Constant width
Is used in all JavaScript code and CSS and HTML listings, and generally for anything that you would type literally when programming.
Constant width italic
Is used for the names of function parameters, and generally as a placeholder to indicate an item that should be replaced with an actual value in your program.
The examples in this book are available online. You can find them linked from the book’s catalog page at the publisher’s website:
http://oreilly.com/catalog/9780596805531/ |
This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact O’Reilly for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
If you use the code from this book, I appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “JavaScript: The Definitive Guide, by David Flanagan (O’Reilly). Copyright 2011 David Flanagan, 978-0-596-80552-4.”
For more details on the O’Reilly code reuse policy, see http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html. If you feel your use of the examples falls outside of the permission given above, feel free to contact O’Reilly at permissions@oreilly.com.
The publisher maintains a public list of errors found in this book. You can view the list, and submit the errors you find, by visiting the book’s web page:
http://oreilly.com/catalog/9780596805531 |
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com |
For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see our website at:
http://www.oreilly.com |
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
Many people have helped me with the creation of this book. I’d like to thank my editor, Mike Loukides, for trying to keep me on schedule and for his insightful comments. Thanks also to my technical reviewers: Zachary Kessin, who reviewed many of the chapters in Part I, and Raffaele Cecco, who reviewed Chapter 19 and the <canvas>
material in Chapter 21. The production team at O’Reilly has done their usual fine job: Dan Fauxsmith managed the production process, Teresa Elsey was the production editor, Rob Romano drew the figures, and Ellen Troutman Zaig created the index.
In this era of effortless electronic communication, it is impossible to keep track of all those who influence and inform us. I’d like to thank everyone who has answered my questions on the es5, w3c, and whatwg mailing lists, and everyone who has shared their insightful ideas about JavaScript programming online. I’m sorry I can’t list you all by name, but it is a pleasure to work within such a vibrant community of JavaScript programmers.
Editors, reviewers, and contributors to previous editions of this book have included: Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis, Brendan Eich, Christian Heilmann, Dan Shafer, Dave C. Mitchell, Deb Cameron, Douglas Crockford, Dr. Tankred Hirschmann, Dylan Schiemann, Frank Willison, Geoff Stearns, Herman Venter, Jay Hodges, Jeff Yates, Joseph Kesselman, Ken Cooper, Larry Sullivan, Lynn Rollins, Neil Berkman, Nick Thompson, Norris Boyd, Paula Ferguson, Peter-Paul Koch, Philippe Le Hegaret, Richard Yaker, Sanders Kleinfeld, Scott Furman, Scott Issacs, Shon Katzenberger, Terry Allen, Todd Ditchendorf, Vidur Apparao, and Waldemar Horwat.
This edition of the book is substantially rewritten and kept me away from my family for many late nights. My love to them and my thanks for putting up with my absences.
— David Flanagan (davidflanagan.com), March 2011
JavaScript is the programming language of the Web. The overwhelming majority of modern websites use JavaScript, and all modern web browsers—on desktops, game consoles, tablets, and smart phones—include JavaScript interpreters, making JavaScript the most ubiquitous programming language in history. JavaScript is part of the triad of technologies that all Web developers must learn: HTML to specify the content of web pages, CSS to specify the presentation of web pages, and JavaScript to specify the behavior of web pages. This book will help you master the language.
If you are already familiar with other programming languages, it may help you to know that JavaScript is a high-level, dynamic, untyped interpreted programming language that is well-suited to object-oriented and functional programming styles. JavaScript derives its syntax from Java, its first-class functions from Scheme, and its prototype-based inheritance from Self. But you do not need to know any of those languages, or be familiar with those terms, to use this book and learn JavaScript.
The name “JavaScript” is actually somewhat misleading. Except for a superficial syntactic resemblance, JavaScript is completely different from the Java programming language. And JavaScript has long since outgrown its scripting-language roots to become a robust and efficient general-purpose language. The latest version of the language (see the sidebar) defines new features for serious large-scale software development.
JavaScript was created at Netscape in the early days of the Web, and technically, “JavaScript” is a trademark licensed from Sun Microsystems (now Oracle) used to describe Netscape’s (now Mozilla’s) implementation of the language. Netscape submitted the language for standardization to ECMA—the European Computer Manufacturer’s Association—and because of trademark issues, the standardized version of the language was stuck with the awkward name “ECMAScript.” For the same trademark reasons, Microsoft’s version of the language is formally known as “JScript.” In practice, just about everyone calls the language JavaScript. This book uses the name “ECMAScript” only to refer to the language standard.
For the last decade, all web browsers have implemented version 3 of the ECMAScript standard and there has really been no need to think about version numbers: the language standard was stable and browser implementations of the language were, for the most part, interoperable. Recently, an important new version of the language has been defined as ECMAScript version 5 and, at the time of this writing, browsers are beginning to implement it. This book covers all the new features of ECMAScript 5 as well as all the long-standing features of ECMAScript 3. You’ll sometimes see these language versions abbreviated as ES3 and ES5, just as you’ll sometimes see the name JavaScript abbreviated as JS.
When we’re speaking of the language itself, the only version numbers that are relevant are ECMAScript versions 3 or 5. (Version 4 of ECMAScript was under development for years, but proved to be too ambitious and was never released.) Sometimes, however, you’ll also see a JavaScript version number, such as JavaScript 1.5 or JavaScript 1.8. These are Mozilla’s version numbers: version 1.5 is basically ECMAScript 3, and later versions include nonstandard language extensions (see Chapter 11). Finally, there are also version numbers attached to particular JavaScript interpreters or “engines.” Google calls its JavaScript interpreter V8, for example, and at the time of this writing the current version of the V8 engine is 3.0.
To be useful, every language must have a platform or standard library or API of functions for performing things like basic input and output. The core JavaScript language defines a minimal API for working with text, arrays, dates, and regular expressions but does not include any input or output functionality. Input and output (as well as more sophisticated features, such as networking, storage, and graphics) are the responsibility of the “host environment” within which JavaScript is embedded. Usually that host environment is a web browser (though we’ll see two uses of JavaScript without a web browser in Chapter 12). Part I of this book covers the language itself and its minimal built-in API. Part II explains how JavaScript is used in web browsers and covers the sprawling browser-based APIs loosely known as “client-side JavaScript.”
Part III is the reference section for the core API. You can read about the JavaScript array manipulation API by looking up “Array” in this part of the book, for example. Part IV is the reference section for client-side JavaScript. You might look up “Canvas” in this part of the book to read about the graphics API defined by the HTML5 <canvas>
element, for example.
This book covers low-level fundamentals first, and then builds on those to more advanced and higher-level abstractions. The chapters are intended to be read more or less in order. But learning a new programming language is never a linear process, and describing a language is not linear either: each language feature is related to other features and this book is full of cross-references—sometimes backward and sometimes forward to material you have not yet read. This chapter makes a quick first pass through the core language and the client-side API, introducing key features that will make it easier to understand the in-depth treatment in the chapters that follow.
When learning a new programming language, it’s important to try the examples in the book, and then modify them and try them again to test your understanding of the language. To do that, you need a JavaScript interpreter. Fortunately, every web browser includes a JavaScript interpreter, and if you’re reading this book, you probably already have more than one web browser installed on your computer.
We’ll see later on in this chapter that you can embed JavaScript code within <script>
tags in HTML files, and when the browser loads the file, it will execute the code. Fortunately, however, you don’t have to do that every time you want to try out simple snippets of JavaScript code. Spurred on by the powerful and innovative Firebug extension for Firefox (pictured in Figure 1-1 and available for download from http://getfirebug.com/), today’s web browsers all include web developer tools that are indispensable for debugging, experimenting, and learning. You can usually find these tools in the Tools menu of the browser under names like “Developer Tools” or “Web Console.” (Firefox 4 includes a built-in “Web Console,” but at the time of this writing, the Firebug extension is better.) Often, you can call up a console with a keystroke like F12 or Ctrl-Shift-J. These console tools often appear as panes at the top or bottom of the browser window, but some allow you to open them as separate windows (as pictured in Figure 1-1), which is often quite convenient.
A typical “developer tools” pane or window includes multiple tabs that allow you to inspect things like HTML document structure, CSS styles, network requests, and so on. One of the tabs is a “JavaScript console” that allows you to type in lines of JavaScript code and try them out. This is a particularly easy way to play around with JavaScript, and I recommend that you use it as you read this book.
There is a simple console API that is portably implemented by modern browsers. You can use the function console.log()
to display text on the console. This is often surprisingly helpful while debugging, and some of the examples in this book (even in the core language section) use console.log()
to perform simple output. A similar but more intrusive way to display output or debugging messages is by passing a string of text to the alert()
function, which displays it in a modal dialog box.
This section is a tour of the JavaScript language, and also a tour of Part I of this book. After this introductory chapter, we dive into JavaScript at the lowest level: Chapter 2, Lexical Structure, explains things like JavaScript comments, semicolons, and the Unicode character set. Chapter 3, Types, Values, and Variables, starts to get more interesting: it explains JavaScript variables and the values you can assign to those variables. Here’s some sample code to illustrate the highlights of those two chapters:
Two other very important types that JavaScript programs can manipulate are objects and arrays. These are the subject of Chapter 6, Objects, and Chapter 7, Arrays, but they are so important that you’ll see them many times before you reach those chapters.
The syntax illustrated above for listing array elements within square braces or mapping object property names to property values inside curly braces is known as an initializer expression, and it is just one of the topics of Chapter 4, Expressions and Operators. An expression is a phrase of JavaScript that can be evaluated to produce a value. The use of .
and []
to refer to the value of an object property or array element is an expression, for example. You may have noticed in the code above that when an expression stands alone on a line, the comment that follows it begins with an arrow (=>
) and the value of the expression. This is a convention that you’ll see throughout this book.
One of the most common ways to form expressions in JavaScript is to use operators like these:
If the phrases of JavaScript are expressions, then the full sentences are statements, which are the topic of Chapter 5, Statements. In the code above, the lines that end with semicolons are statements. (In the code below, you’ll see multiline statements that do not end with semicolons.) There is actually a lot of overlap between statements and expressions. Roughly, an expression is something that computes a value but doesn’t do anything: it doesn’t alter the program state in any way. Statements, on the other hand, don’t have a value (or don’t have a value that we care about), but they do alter the state. You’ve seen variable declarations and assignment statements above. The other broad category of statement is control structures, such as conditionals and loops. Examples are below, after we cover functions.
A function is a named and parameterized block of JavaScript code that you define once, and can then invoke over and over again. Functions aren’t covered formally until Chapter 8, Functions, but like objects and arrays, you’ll see them many times before you get to that chapter. Here are some simple examples:
When we combine functions with objects, we get methods:
Now, as promised, here are some functions whose bodies demonstrate common JavaScript control structure statements:
JavaScript is an object-oriented language, but it is quite different than most. Chapter 9, Classes and Modules, covers object-oriented programming in JavaScript in detail, with lots of examples, and is one of the longest chapters in the book. Here is a very simple example that demonstrates how to define a JavaScript class to represent 2D geometric points. Objects that are instances of this class have a single method named r()
that computes the distance of the point from the origin:
Chapter 9 is really the climax of Part I, and the chapters that follow wrap up some loose ends and bring our exploration of the core language to a close. Chapter 10, Pattern Matching with Regular Expressions, explains the regular expression grammar and demonstrates how to use these “regexps” for textual pattern matching. Chapter 11, JavaScript Subsets and Extensions, covers subsets and extensions of core JavaScript. Finally, before we plunge into client-side JavaScript in web browsers, Chapter 12, Server-Side JavaScript, introduces two ways to use JavaScript outside of web browsers.
Client-side JavaScript does not exhibit the nonlinear cross-reference problem nearly to the extent that the core language does, and it is possible to learn how to use JavaScript in web browsers in a fairly linear sequence. But you’re probably reading this book to learn client-side JavaScript, and Part II is a long way off, so this section is a quick sketch of basic client-side programming techniques, followed by an in-depth example.
Chapter 13, JavaScript in Web Browsers, is the first chapter of Part II and it explains in detail how to put JavaScript to work in web browsers. The most important thing you’ll learn in that chapter is that JavaScript code can be embedded within HTML files using the <script>
tag:
Chapter 14, The Window Object, explains techniques for scripting the web browser and covers some important global functions of client-side JavaScript. For example:
Note that the client-side example code shown in this section comes in longer snippets than the core language examples earlier in the chapter. These examples are not designed to be typed into a Firebug (or similar) console window. Instead you can embed them in an HTML file and try them out by loading them in your web browser. The code above, for instance, works as a stand-alone HTML file.
Chapter 15, Scripting Documents, gets down to the real business of client-side JavaScript, scripting HTML document content. It shows you how to select particular HTML elements from within a document, how to set HTML attributes of those elements, how to alter the content of those elements, and how to add new elements to the document. This function demonstrates a number of these basic document searching and modification techniques:
Chapter 15 shows how JavaScript can script the HTML elements that define web content. Chapter 16, Scripting CSS, shows how you can use JavaScript with the CSS styles that define the presentation of that content. This is often done with the style
or class
attribute of HTML elements:
JavaScript allows us to script the HTML content and CSS presentation of documents in web browsers, but it also allows us to define behavior for those documents with event handlers. An event handler is a JavaScript function that we register with the browser and the browser invokes when some specified type of event occurs. The event of interest might be a mouse click or a key press (or on a smart phone, it might be a two-finger gesture of some sort). Or an event handler might be triggered when the browser finishes loading a document, when the user resizes the browser window, or when the user enters data into an HTML form element. Chapter 17, Handling Events, explains how you can define and register event handlers and how the browser invokes them when events occur.
The simplest way to define event handlers is with HTML attributes that begin with “on”. The “onclick” handler is a particularly useful one when you’re writing simple test programs. Suppose that you had typed in the debug()
and hide()
functions from above and saved them in files named debug.js and hide.js. You could write a simple HTML test file using <button>
elements with onclick
event handler attributes:
Here is some more client-side JavaScript code that uses events. It registers an event handler for the very important “load” event, and it also demonstrates a more sophisticated way of registering event handler functions for “click” events:
Chapters 15, 16, and 17 explain how you can use JavaScript to script the content (HTML), presentation (CSS), and behavior (event handling) of web pages. The APIs described in those chapters are somewhat complex and, until recently, riddled with browser incompatibilities. For these reasons, many or most client-side JavaScript programmers choose to use a client-side library or framework to simplify their basic programming tasks. The most popular such library is jQuery, the subject of Chapter 19, The jQuery Library . jQuery defines a clever and easy-to-use API for scripting document content, presentation, and behavior. It has been thoroughly tested and works in all major browsers, including old ones like IE6.
jQuery code is easy to identify because it makes frequent use of a function named $()
. Here is what the debug()
function used previously looks like when rewritten to use jQuery:
The four chapters of Part II described so far have all really been about web pages. Four more chapters shift gears to focus on web applications. These chapters are not about using web browsers to display documents with scriptable content, presentation, and behavior. Instead, they’re about using web browsers as application platforms, and they describe the APIs that modern browsers provide to support sophisticated client-side web apps. Chapter 18, Scripted HTTP, explains how to make scripted HTTP requests with JavaScript—a kind of networking API. Chapter 20, Client-Side Storage, describes mechanisms for storing data—and even entire applications—on the client side for use in future browsing sessions. Chapter 21, Scripted Media and Graphics, covers a client-side API for drawing arbitrary graphics in an HTML <canvas>
tag. And, finally, Chapter 22, HTML5 APIs, covers an assortment of new web app APIs specified by or affiliated with HTML5. Networking, storage, graphics: these are OS-type services being provided by the web browser, defining a new cross-platform application environment. If you are targeting browsers that support these new APIs, it is an exciting time to be a client-side JavaScript programmer. There are no code samples from these final four chapters here, but the extended example below uses some of these new APIs.
This chapter ends with an extended example that puts many of these techniques together and shows what real-world client-side JavaScript (plus HTML and CSS) programs look like. Example 1-1 lists the code for the simple loan payment calculator application pictured in Figure 1-2.
It is worth reading through Example 1-1 carefully. You shouldn’t expect to understand everything, but the code is heavily commented and you should be able to at least get the big-picture view of how it works. The example demonstrates a number of core JavaScript language features, and also demonstrates important client-side JavaScript techniques:
<canvas>
element. Example 1-1. A loan calculator in JavaScript
This part of the book, Chapters 2 though 12, documents the core JavaScript language and is meant to be a JavaScript language reference. After you read through it once to learn the language, you may find yourself referring back to it to refresh your memory about some of the trickier points of JavaScript.
The lexical structure of a programming language is the set of elementary rules that specifies how you write programs in that language. It is the lowest-level syntax of a language; it specifies such things as what variable names look like, the delimiter characters for comments, and how one program statement is separated from the next. This short chapter documents the lexical structure of JavaScript.
JavaScript programs are written using the Unicode character set. Unicode is a superset of ASCII and Latin-1 and supports virtually every written language currently used on the planet. ECMAScript 3 requires JavaScript implementations to support Unicode version 2.1 or later, and ECMAScript 5 requires implementations to support Unicode 3 or later. See the sidebar in Text for more about Unicode and JavaScript.
JavaScript is a case-sensitive language. This means that language keywords, variables, function names, and other identifiers must always be typed with a consistent capitalization of letters. The while
keyword, for example, must be typed “while,” not “While” or “WHILE.” Similarly, online
, Online
, OnLine
, and ONLINE
are four distinct variable names.
Note, however, that HTML is not case-sensitive (although XHTML is). Because of its close association with client-side JavaScript, this difference can be confusing. Many client-side JavaScript objects and properties have the same names as the HTML tags and attributes they represent. While these tags and attribute names can be typed in any case in HTML, in JavaScript they typically must be all lowercase. For example, the HTML onclick
event handler attribute is sometimes specified as onClick
in HTML, but it must be specified as onclick
in JavaScript code (or in XHTML documents).
JavaScript ignores spaces that appear between tokens in programs. For the most part, JavaScript also ignores line breaks (but see Optional Semicolons for an exception). Because you can use spaces and newlines freely in your programs, you can format and indent your programs in a neat and consistent way that makes the code easy to read and understand.
In addition to the regular space character (\u0020
), JavaScript also recognizes the following characters as whitespace: tab (\u0009
), vertical tab (\u000B
), form feed (\u000C
), nonbreaking space (\u00A0
), byte order mark (\uFEFF
), and any character in Unicode category Zs. JavaScript recognizes the following characters as line terminators: line feed (\u000A
), carriage return (\u000D
), line separator (\u2028
), and paragraph separator (\u2029
). A carriage return, line feed sequence is treated as a single line terminator.
Unicode format control characters (category Cf), such as RIGHT-TO-LEFT MARK (\u200F
) and LEFT-TO-RIGHT MARK (\u200E
), control the visual presentation of the text they occur in. They are important for the proper display of some non-English languages and are allowed in JavaScript comments, string literals, and regular expression literals, but not in the identifiers (e.g., variable names) of a JavaScript program. As a special case, ZERO WIDTH JOINER (\u200D
) and ZERO WIDTH NON-JOINER (\u200C
) are allowed in identifiers, but not as the first character. As noted above, the byte order mark format control character (\uFEFF
) is treated as a space character.
Some computer hardware and software can not display or input the full set of Unicode characters. To support programmers using this older technology, JavaScript defines special sequences of six ASCII characters to represent any 16-bit Unicode codepoint. These Unicode escapes begin with the characters \u
and are followed by exactly four hexadecimal digits (using uppercase or lowercase letters A–F). Unicode escapes may appear in JavaScript string literals, regular expression literals, and in identifiers (but not in language keywords). The Unicode escape for the character é, for example, is \u00E9
, and the following two JavaScript strings are identical:
Unicode escapes may also appear in comments, but since comments are ignored, they are treated as ASCII characters in that context and not interpreted as Unicode.
Unicode allows more than one way of encoding the same character. The string “é”, for example, can be encoded as the single Unicode character \u00E9
or as a regular ASCII e followed by the acute accent combining mark \u0301
. These two encodings may look exactly the same when displayed by a text editor, but they have different binary encodings and are considered different by the computer. The Unicode standard defines the preferred encoding for all characters and specifies a normalization procedure to convert text to a canonical form suitable for comparisons. JavaScript assumes that the source code it is interpreting has already been normalized and makes no attempt to normalize identifiers, strings, or regular expressions itself.
JavaScript supports two styles of comments. Any text between a //
and the end of a line is treated as a comment and is ignored by JavaScript. Any text between the characters /*
and */
is also treated as a comment; these comments may span multiple lines but may not be nested. The following lines of code are all legal JavaScript comments:
A literal is a data value that appears directly in a program. The following are all literals:
Complete details on numeric and string literals appear in Chapter 3. Regular expression literals are covered in Chapter 10. More complex expressions (see Object and Array Initializers) can serve as array and object literals. For example:
An identifier is simply a name. In JavaScript, identifiers are used to name variables and functions and to provide labels for certain loops in JavaScript code. A JavaScript identifier must begin with a letter, an underscore (_
), or a dollar sign ($
). Subsequent characters can be letters, digits, underscores, or dollar signs. (Digits are not allowed as the first character so that JavaScript can easily distinguish identifiers from numbers.) These are all legal identifiers:
For portability and ease of editing, it is common to use only ASCII letters and digits in identifiers. Note, however, that JavaScript allows identifiers to contain letters and digits from the entire Unicode character set. (Technically, the ECMAScript standard also allows Unicode characters from the obscure categories Mn, Mc, and Pc to appear in identifiers after the first character.) This allows programmers to use variable names from non-English languages and also to use mathematical symbols:
Like any language, JavaScript reserves certain identifiers for use by the language itself. These “reserved words” cannot be used as regular identifiers. They are listed below.
JavaScript reserves a number of identifiers as the keywords of the language itself. You cannot use these words as identifiers in your programs:
JavaScript also reserves certain keywords that are not currently used by the language but which might be used in future versions. ECMAScript 5 reserves the following words:
In addition, the following words, which are legal in ordinary JavaScript code, are reserved in strict mode:
Strict mode also imposes restrictions on the use of the following identifiers. They are not fully reserved, but they are not allowed as variable, function, or parameter names:
ECMAScript 3 reserved all the keywords of the Java language, and although this has been relaxed in ECMAScript 5, you should still avoid all of these identifiers if you plan to run your code under an ECMAScript 3 implementation of JavaScript:
JavaScript predefines a number of global variables and functions, and you should avoid using their names for your own variables and functions:
Keep in mind that JavaScript implementations may define other global variables and functions, and each specific JavaScript embedding (client-side, server-side, etc.) will have its own list of global properties. See the Window object in Part IV for a list of the global variables and functions defined by client-side JavaScript.
Like many programming languages, JavaScript uses the semicolon (;
) to separate statements (see Chapter 5) from each other. This is important to make the meaning of your code clear: without a separator, the end of one statement might appear to be the beginning of the next, or vice versa. In JavaScript, you can usually omit the semicolon between two statements if those statements are written on separate lines. (You can also omit a semicolon at the end of a program or if the next token in the program is a closing curly brace }
.) Many JavaScript programmers (and the code in this book) use semicolons to explicitly mark the ends of statements, even where they are not required. Another style is to omit semicolons whenever possible, using them only in the few situations that require them. Whichever style you choose, there are a few details you should understand about optional semicolons in JavaScript.
Consider the following code. Since the two statements appear on separate lines, the first semicolon could be omitted:
Written as follows, however, the first semicolon is required:
Note that JavaScript does not treat every line break as a semicolon: it usually treats line breaks as semicolons only if it can’t parse the code without the semicolons. More formally (and with two exceptions described below), JavaScript treats a line break as a semicolon if the next nonspace character cannot be interpreted as a continuation of the current statement. Consider the following code:
JavaScript interprets this code like this:
JavaScript does treat the first line break as a semicolon because it cannot parse the code var a a
without a semicolon. The second a
could stand alone as the statement a;
, but JavaScript does not treat the second line break as a semicolon because it can continue parsing the longer statement a = 3;
.
These statement termination rules lead to some surprising cases. This code looks like two separate statements separated with a newline:
But the parentheses on the second line of code can be interpreted as a function invocation of f
from the first line, and JavaScript interprets the code like this:
More likely than not, this is not the interpretation intended by the author of the code. In order to work as two separate statements, an explicit semicolon is required in this case.
In general, if a statement begins with (
, [
, /
, +
, or -
, there is a chance that it could be interpreted as a continuation of the statement before. Statements beginning with /
, +
, and -
are quite rare in practice, but statements beginning with (
and [
are not uncommon at all, at least in some styles of JavaScript programming. Some programmers like to put a defensive semicolon at the beginning of any such statement so that it will continue to work correctly even if the statement before it is modified and a previously terminating semicolon removed:
There are two exceptions to the general rule that JavaScript interprets line breaks as semicolons when it cannot parse the second line as a continuation of the statement on the first line. The first exception involves the return
, break
, and continue
statements (see Chapter 5). These statements often stand alone, but they are sometimes followed by an identifier or expression. If a line break appears after any of these words (before any other tokens), JavaScript will always interpret that line break as a semicolon. For example, if you write:
JavaScript assumes you meant:
However, you probably meant:
What this means is that you must not insert a line break between return
, break
or continue
and the expression that follows the keyword. If you do insert a line break, your code is likely to fail in a nonobvious way that is difficult to debug.
The second exception involves the ++
and −−
operators (Arithmetic Expressions). These operators can be prefix operators that appear before an expression or postfix operators that appear after an expression. If you want to use either of these operators as postfix operators, they must appear on the same line as the expression they apply to. Otherwise, the line break will be treated as a semicolon, and the ++
or --
will be parsed as a prefix operator applied to the code that follows. Consider this code, for example:
It is parsed as x; ++y;
, not as x++; y
.
Computer programs work by manipulating values, such as the number 3.14 or the text “Hello World.” The kinds of values that can be represented and manipulated in a programming language are known as types, and one of the most fundamental characteristics of a programming language is the set of types it supports. When a program needs to retain a value for future use, it assigns the value to (or “stores” the value in) a variable. A variable defines a symbolic name for a value and allows the value to be referred to by name. The way that variables work is another fundamental characteristic of any programming language. This chapter explains types, values, and variables in JavaScript. These introductory paragraphs provide an overview, and you may find it helpful to refer to Core JavaScript while you read them. The sections that follow cover these topics in depth.
JavaScript types can be divided into two categories: primitive types and object types. JavaScript’s primitive types include numbers, strings of text (known as strings), and Boolean truth values (known as booleans). A significant portion of this chapter is dedicated to a detailed explanation of the numeric (Numbers) and string (Text) types in JavaScript. Booleans are covered in Boolean Values.
The special JavaScript values null
and undefined
are primitive values, but they are not numbers, strings, or booleans. Each value is typically considered to be the sole member of its own special type. null and undefined has more about null
and undefined
.
Any JavaScript value that is not a number, a string, a boolean, or null
or undefined
is an object. An object (that is, a member of the type object) is a collection of properties where each property has a name and a value (either a primitive value, such as a number or string, or an object). One very special object, the global object, is covered in The Global Object, but more general and more detailed coverage of objects is in Chapter 6.
An ordinary JavaScript object is an unordered collection of named values. The language also defines a special kind of object, known as an array, that represents an ordered collection of numbered values. The JavaScript language includes special syntax for working with arrays, and arrays have some special behavior that distinguishes them from ordinary objects. Arrays are the subject of Chapter 7.
JavaScript defines another special kind of object, known as a function. A function is an object that has executable code associated with it. A function may be invoked to run that executable code and return a computed value. Like arrays, functions behave differently from other kinds of objects, and JavaScript defines a special language syntax for working with them. The most important thing about functions in JavaScript is that they are true values and that JavaScript programs can treat them like regular objects. Functions are covered in Chapter 8.
Functions that are written to be used (with the new
operator) to initialize a newly created object are known as constructors. Each constructor defines a class of objects—the set of objects initialized by that constructor. Classes can be thought of as subtypes of the object type. In addition to the Array and Function classes, core JavaScript defines three other useful classes. The Date class defines objects that represent dates. The RegExp class defines objects that represent regular expressions (a powerful pattern-matching tool described in Chapter 10). And the Error class defines objects that represent syntax and runtime errors that can occur in a JavaScript program. You can define your own classes of objects by defining appropriate constructor functions. This is explained in Chapter 9.
The JavaScript interpreter performs automatic garbage collection for memory management. This means that a program can create objects as needed, and the programmer never needs to worry about destruction or deallocation of those objects. When an object is no longer reachable—when a program no longer has any way to refer to it—the interpreter knows it can never be used again and automatically reclaims the memory it was occupying.
JavaScript is an object-oriented language. Loosely, this means that rather than having globally defined functions to operate on values of various types, the types themselves define methods for working with values. To sort the elements of an array a
, for example, we don’t pass a
to a sort()
function. Instead, we invoke the sort()
method of a
:
Method definition is covered in Chapter 9. Technically, it is only JavaScript objects that have methods. But numbers, strings, and boolean values behave as if they had methods (Wrapper Objects explains how this works). In JavaScript, null
and undefined
are the only values that methods cannot be invoked on.
JavaScript’s types can be divided into primitive types and object types. And they can be divided into types with methods and types without. They can also be categorized as mutable and immutable types. A value of a mutable type can change. Objects and arrays are mutable: a JavaScript program can change the values of object properties and array elements. Numbers, booleans, null
, and undefined
are immutable—it doesn’t even make sense to talk about changing the value of a number, for example. Strings can be thought of as arrays of characters, and you might expect them to be mutable. In JavaScript, however, strings are immutable: you can access the text at any index of a string, but JavaScript provides no way to alter the text of an existing string. The differences between mutable and immutable values are explored further in Immutable Primitive Values and Mutable Object References.
JavaScript converts values liberally from one type to another. If a program expects a string, for example, and you give it a number, it will automatically convert the number to a string for you. If you use a nonboolean value where a boolean is expected, JavaScript will convert accordingly. The rules for value conversion are explained in Type Conversions. JavaScript’s liberal value conversion rules affect its definition of equality, and the ==
equality operator performs type conversions as described in Conversions and Equality.
JavaScript variables are untyped: you can assign a value of any type to a variable, and you can later assign a value of a different type to the same variable. Variables are declared with the var
keyword. JavaScript uses lexical scoping. Variables declared outside of a function are global variables and are visible everywhere in a JavaScript program. Variables declared inside a function have function scope and are visible only to code that appears inside that function. Variable declaration and scope are covered in Variable Declaration and Variable Scope.
Unlike many languages, JavaScript does not make a distinction between integer values and floating-point values. All numbers in JavaScript are represented as floating-point values. JavaScript represents numbers using the 64-bit floating-point format defined by the IEEE 754 standard,[1] which means it can represent numbers as large as ±1.7976931348623157 × 10308 and as small as ±5 × 10−324.
The JavaScript number format allows you to exactly represent all integers between −9007199254740992 (−253) and 9007199254740992 (253), inclusive. If you use integer values larger than this, you may lose precision in the trailing digits. Note, however, that certain operations in JavaScript (such as array indexing and the bitwise operators described in Chapter 4) are performed with 32-bit integers.
When a number appears directly in a JavaScript program, it’s called a numeric literal. JavaScript supports numeric literals in several formats, as described in the following sections. Note that any numeric literal can be preceded by a minus sign (-) to make the number negative. Technically, however, - is the unary negation operator (see Chapter 4) and is not part of the numeric literal syntax.
In a JavaScript program, a base-10 integer is written as a sequence of digits. For example:
In addition to base-10 integer literals, JavaScript recognizes hexadecimal (base-16) values. A hexadecimal literal begins with “0x” or “0X”, followed by a string of hexadecimal digits. A hexadecimal digit is one of the digits 0 through 9 or the letters a (or A) through f (or F), which represent values 10 through 15. Here are examples of hexadecimal integer literals:
Although the ECMAScript standard does not support them, some implementations of JavaScript allow you to specify integer literals in octal (base-8) format. An octal literal begins with the digit 0 and is followed by a sequence of digits, each between 0 and 7. For example:
Since some implementations support octal literals and some do not, you should never write an integer literal with a leading zero; you cannot know in this case whether an implementation will interpret it as an octal or decimal value. In the strict mode of ECMAScript 5 (“use strict”), octal literals are explicitly forbidden.
Floating-point literals can have a decimal point; they use the traditional syntax for real numbers. A real value is represented as the integral part of the number, followed by a decimal point and the fractional part of the number.
Floating-point literals may also be represented using exponential notation: a real number followed by the letter e (or E), followed by an optional plus or minus sign, followed by an integer exponent. This notation represents the real number multiplied by 10 to the power of the exponent.
More succinctly, the syntax is:
digits
][.digits
][(E|e)[(+|-)]digits
]For example:
JavaScript programs work with numbers using the arithmetic operators that the language provides. These include +
for addition, -
for subtraction, *
for multiplication, /
for division, and %
for modulo (remainder after division). Full details on these and other operators can be found in Chapter 4.
In addition to these basic arithmetic operators, JavaScript supports more complex mathematical operations through a set of functions and constants defined as properties of the Math
object:
See the Math object in the reference section for complete details on all the mathematical functions supported by JavaScript.
Arithmetic in JavaScript does not raise errors in cases of overflow, underflow, or division by zero. When the result of a numeric operation is larger than the largest representable number (overflow), the result is a special infinity value, which JavaScript prints as Infinity
. Similarly, when a negative value becomes larger than the largest representable negative number, the result is negative infinity, printed as -Infinity
. The infinite values behave as you would expect: adding, subtracting, multiplying, or dividing them by anything results in an infinite value (possibly with the sign reversed).
Underflow occurs when the result of a numeric operation is closer to zero than the smallest representable number. In this case, JavaScript returns 0. If underflow occurs from a negative number, JavaScript returns a special value known as “negative zero.” This value is almost completely indistinguishable from regular zero and JavaScript programmers rarely need to detect it.
Division by zero is not an error in JavaScript: it simply returns infinity or negative infinity. There is one exception, however: zero divided by zero does not have a well-defined value, and the result of this operation is the special not-a-number value, printed as NaN
. NaN
also arises if you attempt to divide infinity by infinity, or take the square root of a negative number or use arithmetic operators with non-numeric operands that cannot be converted to numbers.
JavaScript predefines global variables Infinity
and NaN
to hold the positive infinity and not-a-number value. In ECMAScript 3, these are read/write values and can be changed. ECMAScript 5 corrects this and makes the values read-only. The Number
object defines alternatives that are read-only even in ECMAScript 3. Here are some examples:
The not-a-number value has one unusual feature in JavaScript: it does not compare equal to any other value, including itself. This means that you can’t write x == NaN
to determine whether the value of a variable x
is NaN
. Instead, you should write x != x
. That expression will be true if, and only if, x is NaN
. The function isNaN()
is similar. It returns true
if its argument is NaN
, or if that argument is a non-numeric value such as a string or an object. The related function isFinite()
returns true
if its argument is a number other than NaN
, Infinity
, or -Infinity
.
The negative zero value is also somewhat unusual. It compares equal (even using JavaScript’s strict equality test) to positive zero, which means that the two values are almost indistinguishable, except when used as a divisor:
There are infinitely many real numbers, but only a finite number of them (18437736874454810627, to be exact) can be represented exactly by the JavaScript floating-point format. This means that when you’re working with real numbers in JavaScript, the representation of the number will often be an approximation of the actual number.
The IEEE-754 floating-point representation used by JavaScript (and just about every other modern programming language) is a binary representation, which can exactly represent fractions like 1/2
, 1/8
, and 1/1024
. Unfortunately, the fractions we use most commonly (especially when performing financial calculations) are decimal fractions 1/10
, 1/100
, and so on. Binary floating-point representations cannot exactly represent numbers as simple as 0.1
.
JavaScript numbers have plenty of precision and can approximate 0.1
very closely. But the fact that this number cannot be represented exactly can lead to problems. Consider this code:
Because of rounding error, the difference between the approximations of .3 and .2 is not exactly the same as the difference between the approximations of .2 and .1. It is important to understand that this problem is not specific to JavaScript: it affects any programming language that uses binary floating-point numbers. Also, note that the values x
and y
in the code above are very close to each other and to the correct value. The computed values are adequate for almost any purpose: the problem arises when we attempt to compare values for equality.
A future version of JavaScript may support a decimal numeric type that avoids these rounding issues. Until then you might want to perform critical financial calculations using scaled integers. For example, you might manipulate monetary values as integer cents rather than fractional dollars.
Core JavaScript includes a Date()
constructor for creating objects that represent dates and times. These Date objects have methods that provide an API for simple date computations. Date objects are not a fundamental type like numbers are. This section presents a quick tutorial on working with dates. Full details can be found in the reference section:
[1] This format should be familiar to Java programmers as the format of the double
type. It is also the double
format used in almost all modern implementations of C and C++.
A string is an immutable ordered sequence of 16-bit values, each of which typically represents a Unicode character—strings are JavaScript’s type for representing text. The length of a string is the number of 16-bit values it contains. JavaScript’s strings (and its arrays) use zero-based indexing: the first 16-bit value is at position 0, the second at position 1 and so on. The empty string is the string of length 0. JavaScript does not have a special type that represents a single element of a string. To represent a single 16-bit value, simply use a string that has a length of 1.
JavaScript uses the UTF-16 encoding of the Unicode character set, and JavaScript strings are sequences of unsigned 16-bit values. The most commonly used Unicode characters (those from the “basic multilingual plane”) have codepoints that fit in 16 bits and can be represented by a single element of a string. Unicode characters whose codepoints do not fit in 16 bits are encoded following the rules of UTF-16 as a sequence (known as a “surrogate pair”) of two 16-bit values. This means that a JavaScript string of length 2 (two 16-bit values) might represent only a single Unicode character:
The various string-manipulation methods defined by JavaScript operate on 16-bit values, not on characters. They do not treat surrogate pairs specially, perform no normalization of the string, and do not even ensure that a string is well-formed UTF-16.
To include a string literally in a JavaScript program, simply enclose the characters of the string within a matched pair of single or double quotes ('
or "
). Double-quote characters may be contained within strings delimited by single-quote characters, and single-quote characters may be contained within strings delimited by double quotes. Here are examples of string literals:
In ECMAScript 3, string literals must be written on a single line. In ECMAScript 5, however, you can break a string literal across multiple lines by ending each line but the last with a backslash (\
). Neither the backslash nor the line terminator that follow it are part of the string literal. If you need to include a newline character in a string literal, use the character sequence \n
(documented below):
Note that when you use single quotes to delimit your strings, you must be careful with English contractions and possessives, such as can’t and O’Reilly’s. Since the apostrophe is the same as the single-quote character, you must use the backslash character (\
) to “escape” any apostrophes that appear in single-quoted strings (escapes are explained in the next section).
In client-side JavaScript programming, JavaScript code may contain strings of HTML code, and HTML code may contain strings of JavaScript code. Like JavaScript, HTML uses either single or double quotes to delimit its strings. Thus, when combining JavaScript and HTML, it is a good idea to use one style of quotes for JavaScript and the other style for HTML. In the following example, the string “Thank you” is single-quoted within a JavaScript expression, which is then double-quoted within an HTML event-handler attribute:
The backslash character (\
) has a special purpose in JavaScript strings. Combined with the character that follows it, it represents a character that is not otherwise representable within the string. For example, \n
is an escape sequence that represents a newline character.
Another example, mentioned above, is the \'
escape, which represents the single quote (or apostrophe) character. This escape sequence is useful when you need to include an apostrophe in a string literal that is contained within single quotes. You can see why these are called escape sequences: the backslash allows you to escape from the usual interpretation of the single-quote character. Instead of using it to mark the end of the string, you use it as an apostrophe:
Table 3-1 lists the JavaScript escape sequences and the characters they represent. Two escape sequences are generic and can be used to represent any character by specifying its Latin-1 or Unicode character code as a hexadecimal number. For example, the sequence \xA9
represents the copyright symbol, which has the Latin-1 encoding given by the hexadecimal number A9. Similarly, the \u
escape represents an arbitrary Unicode character specified by four hexadecimal digits; \u03c0
represents the character π, for example.
Table 3-1. JavaScript escape sequences
Sequence	Character represented
The NUL character (
Backspace (
Horizontal tab (
Newline (
Vertical tab (
Form feed (
Carriage return (
Double quote (
Apostrophe or single quote (
Backslash (
The Latin-1 character specified by the two hexadecimal digits	
The Unicode character specified by the four hexadecimal digits	
If the \	
character precedes any character other than those shown in Table 3-1, the backslash is simply ignored (although future versions of the language may, of course, define new escape sequences). For example, \#	
is the same as #	
. Finally, as noted above, ECMAScript 5 allows a backslash before a line break to break a string literal across multiple lines.	
One of the built-in features of JavaScript is the ability to concatenate strings. If you use the +	
operator with numbers, it adds them. But if you use this operator on strings, it joins them by appending the second to the first. For example:	
To determine the length of a string—the number of 16-bit values it contains—use the length	
property of the string. Determine the length of a string s	
like this:	
In addition to this length	
property, there are a number of methods you can invoke on strings (as always, see the reference section for complete details):	
Remember that strings are immutable in JavaScript. Methods like replace()	
and toUpper	
Case()	
return new strings: they do not modify the string on which they are invoked.	
In ECMAScript 5, strings can be treated like read-only arrays, and you can access individual characters (16-bit values) from a string using square brackets instead of the charAt()	
method:	
Mozilla-based web browsers such as Firefox have allowed strings to be indexed in this way for a long time. Most modern browsers (with the notable exception of IE) followed Mozilla’s lead even before this feature was standardized in ECMAScript 5.	
JavaScript defines a RegExp()	
constructor for creating objects that represent textual patterns. These patterns are described with regular expressions, and JavaScript adopts Perl’s syntax for regular expressions. Both strings and RegExp objects have methods for performing pattern matching and search-and-replace operations using regular expressions.	
RegExps are not one of the fundamental types of JavaScript. Like Dates, they are simply a specialized kind of object, with a useful API. The regular expression grammar is complex and the API is nontrivial. They are documented in detail in Chapter 10. Because RegExps are powerful and commonly used for text processing, however, this section provides a brief overview.	
Although RegExps are not one of the fundamental data types in the language, they do have a literal syntax and can be encoded directly into JavaScript programs. Text between a pair of slashes constitutes a regular expression literal. The second slash in the pair can also be followed by one or more letters, which modify the meaning of the pattern. For example:	
RegExp objects define a number of useful methods, and strings also have methods that accept RegExp arguments. For example:	
A boolean value represents truth or falsehood, on or off, yes or no. There are only two possible values of this type. The reserved words true	
and false	
evaluate to these two values.	
Boolean values are generally the result of comparisons you make in your JavaScript programs. For example:	
This code tests to see whether the value of the variable a	
is equal to the number 4	
. If it is, the result of this comparison is the boolean value true	
. If a	
is not equal to 4	
, the result of the comparison is false	
.	
Boolean values are commonly used in JavaScript control structures. For example, the if/else	
statement in JavaScript performs one action if a boolean value is true	
and another action if the value is false	
. You usually combine a comparison that creates a boolean value directly with a statement that uses it. The result looks like this:	
This code checks whether a	
equals 4	
. If so, it adds 1	
to b	
; otherwise, it adds 1	
to a	
.	
As we’ll discuss in Type Conversions, any JavaScript value can be converted to a boolean value. The following values convert to, and therefore work like, false	
:	
All other values, including all objects (and arrays) convert to, and work like, true	
. false	
, and the six values that convert to it, are sometimes called falsy values, and all other values are called truthy	
. Any time JavaScript expects a boolean value, a falsy value works like false	
and a truthy value works like true	
.	
As an example, suppose that the variable o	
either holds an object or the value null	
. You can test explicitly to see if o	
is non-null with an if	
statement like this:	
The not-equal operator !==	
compares o	
to null	
and evaluates to either true	
or false	
. But you can omit the comparison and instead rely on the fact that null	
is falsy and objects are truthy:	
In the first case, the body of the if	
will be executed only if o	
is not null	
. The second case is less strict: it will execute the body of the if	
only if o is not false	
or any falsy value (such as null	
or undefined	
). Which if	
statement is appropriate for your program really depends on what values you expect to be assigned to o	
. If you need to distinguish null	
from 0	
and ""	
, then you should use an explicit comparison.	
Boolean values have a toString()	
method that you can use to convert them to the strings “true” or “false”, but they do not have any other useful methods. Despite the trivial API, there are three important boolean operators.	
The &&	
operator performs the Boolean AND operation. It evaluates to a truthy value if and only if both of its operands are truthy; it evaluates to a falsy value otherwise. The	
operator is the Boolean OR operation: it evaluates to a truthy value if either one (or both) of its operands is truthy and evaluates to a falsy value if both operands are falsy. Finally, the unary !	
operator performs the Boolean NOT operation: it evaluates to true	
if its operand is falsy and evaluates to false	
if its operand is truthy. For example:	
Full details on these operators are in Logical Expressions.	
null	
is a language keyword that evaluates to a special value that is usually used to indicate the absence of a value. Using the typeof	
operator on null	
returns the string “object”, indicating that null	
can be thought of as a special object value that indicates “no object”. In practice, however, null	
is typically regarded as the sole member of its own type, and it can be used to indicate “no value” for numbers and strings as well as objects. Most programming languages have an equivalent to JavaScript’s null	
: you may be familiar with it as null	
or nil	
.	
JavaScript also has a second value that indicates absence of value. The undefined value represents a deeper kind of absence. It is the value of variables that have not been initialized and the value you get when you query the value of an object property or array element that does not exist. The undefined value is also returned by functions that have no return value, and the value of function parameters for which no argument is supplied. undefined	
is a predefined global variable (not a language keyword like null	
) that is initialized to the undefined value. In ECMAScript 3, undefined	
is a read/write variable, and it can be set to any value. This error is corrected in ECMAScript 5 and undefined	
is read-only in that version of the language. If you apply the typeof	
operator to the undefined value, it returns “undefined”, indicating that this value is the sole member of a special type.	
Despite these differences, null	
and undefined	
both indicate an absence of value and can often be used interchangeably. The equality operator ==	
considers them to be equal. (Use the strict equality operator ===	
to distinguish them.) Both are falsy values—they behave like false	
when a boolean value is required. Neither null	
nor undefined	
have any properties or methods. In fact, using .	
or []	
to access a property or method of these values causes a TypeError.	
You might consider undefined	
to represent a system-level, unexpected, or error-like absence of value and null	
to represent program-level, normal, or expected absence of value. If you need to assign one of these values to a variable or property or pass one of these values to a function, null	
is almost always the right choice.	
The sections above have explained JavaScript’s primitive types and values. Object types—objects, arrays, and functions—are covered in chapters of their own later in this book. But there is one very important object value that we must cover now. The global object is a regular JavaScript object that serves a very important purpose: the properties of this object are the globally defined symbols that are available to a JavaScript program. When the JavaScript interpreter starts (or whenever a web browser loads a new page), it creates a new global object and gives it an initial set of properties that define:	
undefined	
, Infinity	
, and NaN	
isNaN()	
, parseInt()	
(Explicit Conversions), and eval()	
(Evaluation Expressions). Date()	
, RegExp()	
, String()	
, Object()	
, and Array()	
(Explicit Conversions) The initial properties of the global object are not reserved words, but they deserve to be treated as if they are. Reserved Words lists each of these properties. This chapter has already described some of these global properties. Most of the others will be covered elsewhere in this book. And you can look them all up by name in the core JavaScript reference section, or look up the global object itself under the name “Global”. For client-side JavaScript, the Window object defines other globals that you can look up in the client-side reference section.	
In top-level code—JavaScript code that is not part of a function—you can use the JavaScript keyword this	
to refer to the global object:	
In client-side JavaScript, the Window object serves as the global object for all JavaScript code contained in the browser window it represents. This global Window object has a self-referential window	
property that can be used instead of this	
to refer to the global object. The Window object defines the core global properties, but it also defines quite a few other globals that are specific to web browsers and client-side JavaScript.	
When first created, the global object defines all of JavaScript’s predefined global values. But this special object also holds program-defined globals as well. If your code declares a global variable, that variable is a property of the global object. Variables As Properties explains this in more detail.	
JavaScript objects are composite values: they are a collection of properties or named values. We refer to the value of a property using the .	
notation. When the value of a property is a function, we call it a method. To invoke the method m	
of an object o	
, we write o.m()	
.	
We’ve also seen that strings have properties and methods:	
Strings are not objects, though, so why do they have properties? Whenever you try to refer to a property of a string s	
, JavaScript converts the string value to an object as if by calling new String(s)	
. This object inherits (see Inheritance) string methods and is used to resolve the property reference. Once the property has been resolved, the newly created object is discarded. (Implementations are not required to actually create and discard this transient object: they must behave as if they do, however.)	
Numbers and booleans have methods for the same reason that strings do: a temporary object is created using the Number()	
or Boolean()	
constructor, and the method is resolved using that temporary object. There are not wrapper objects for the null	
and undefined	
values: any attempt to access a property of one of these values causes a TypeError	
.	
Consider the following code and think about what happens when it is executed:	
When you run this code, the value of t	
is undefined	
. The second line of code creates a temporary String object, sets its len	
property to 4, and then discards that object. The third line creates a new String object from the original (unmodified) string value and then tries to read the len	
property. This property does not exist, and the expression evaluates to undefined	
. This code demonstrates that strings, numbers, and boolean values behave like objects when you try to read the value of a property (or method) from them. But if you attempt to set the value of a property, that attempt is silently ignored: the change is made on a temporary object and does not persist.	
The temporary objects created when you access a property of a string, number, or boolean are known as wrapper objects, and it may occasionally be necessary to distinguish a string value from a String object or a number or boolean value from a Number or Boolean object. Usually, however, wrapper objects can be considered an implementation detail and you don’t have to think about them. You just need to know that string, number, and boolean values differ from objects in that their properties are read-only and that you can’t define new properties on them.	
Note that it is possible (but almost never necessary or useful) to explicitly create wrapper objects, by invoking the String()	
, Number()	
, or Boolean()	
constructors:	
JavaScript converts wrapper objects into the wrapped primitive value as necessary, so the objects S	
, N	
, and B	
above usually, but not always, behave just like the values s	
, n	
, and b	
. The ==	
equality operator treats a value and its wrapper object as equal, but you can distinguish them with the ===	
strict equality operator. The typeof	
operator will also show you the difference between a primitive value and its wrapper object.	
There is a fundamental difference in JavaScript between primitive values (undefined	
, null	
, booleans, numbers, and strings) and objects (including arrays and functions). Primitives are immutable: there is no way to change (or “mutate”) a primitive value. This is obvious for numbers and booleans—it doesn’t even make sense to change the value of a number. It is not so obvious for strings, however. Since strings are like arrays of characters, you might expect to be able to alter the character at any specified index. In fact, JavaScript does not allow this, and all string methods that appear to return a modified string are, in fact, returning a new string value. For example:	
Primitives are also compared by value: two values are the same only if they have the same value. This sounds circular for numbers, booleans, null	
, and undefined	
: there is no other way that they could be compared. Again, however, it is not so obvious for strings. If two distinct string values are compared, JavaScript treats them as equal if, and only if, they have the same length and if the character at each index is the same.	
Objects are different than primitives. First, they are mutable—their values can change:	
Objects are not compared by value: two objects are not equal even if they have the same properties and values. And two arrays are not equal even if they have the same elements in the same order:	
Objects are sometimes called reference types to distinguish them from JavaScript’s primitive types. Using this terminology, object values are references, and we say that objects are compared by reference: two object values are the same if and only if they refer to the same underlying object.	
As you can see from the code above, assigning an object (or array) to a variable simply assigns the reference: it does not create a new copy of the object. If you want to make a new copy of an object or array, you must explicitly copy the properties of the object or the elements of the array. This example demonstrates using a for	
loop (for):	
Similarly, if we want to compare two distinct objects or arrays, we must compare their properties or elements. This code defines a function to compare two arrays:	
JavaScript is very flexible about the types of values it requires. We’ve seen this for booleans: when JavaScript expects a boolean value, you may supply a value of any type, and JavaScript will convert it as needed. Some values (“truthy” values) convert to true	
and others (“falsy” values) convert to false	
. The same is true for other types: if JavaScript wants a string, it will convert whatever value you give it to a string. If JavaScript wants a number, it will try to convert the value you give it to a number (or to NaN	
if it cannot perform a meaningful conversion). Some examples:	
Table 3-2 summarizes how values convert from one type to another in JavaScript. Bold entries in the table highlight conversions that you may find surprising. Empty cells indicate that no conversion is necessary and none is performed.	
Table 3-2. JavaScript type conversions	
Value	Converted to:
---	---
String	Number
use join() method	
The primitive-to-primitive conversions shown in the table are relatively straightforward. Conversion to boolean was already discussed in Boolean Values. Conversion to strings is well-defined for all primitive values. Conversion to numbers is just a little trickier. Strings that can be parsed as numbers convert to those numbers. Leading and trailing spaces are allowed, but any leading or trailing nonspace characters that are not part of a numeric literal cause the string-to-number conversion to produce NaN
. Some numeric conversions may seem surprising: true
converts to 1, and false
and the empty string ""
convert to 0.
Primitive-to-object conversions are straightforward: primitive values convert to their wrapper object (Wrapper Objects) as if by calling the String()
, Number()
, or Boolean()
constructor. The exceptions are null
and undefined
: any attempt to use these values where an object is expected raises a TypeError exception rather than performing a conversion.
Object-to-primitive conversion is somewhat more complicated, and it is the subject of Object to Primitive Conversions.
Because JavaScript can convert values flexibly, its ==
equality operator is also flexible with its notion of equality. All of the following comparisons are true, for example:
Equality and Inequality Operators explains exactly what conversions are performed by the ==
operator in order to determine whether two values should be considered equal, and it also describes the strict equality operator ===
that does not perform conversions when testing for equality.
Keep in mind that convertibility of one value to another does not imply equality of those two values. If undefined
is used where a boolean value is expected, for example, it will convert to false
. But this does not mean that undefined == false
. JavaScript operators and statements expect values of various types, and perform conversions to those types. The if
statement converts undefined
to false
, but the ==
operator never attempts to convert its operands to booleans.
Although JavaScript performs many type conversions automatically, you may sometimes need to perform an explicit conversion, or you may prefer to make the conversions explicit to keep your code clearer.
The simplest way to perform an explicit type conversion is to use the Boolean()
, Number()
, String()
, or Object()
functions. We’ve already seen these functions as constructors for wrapper objects (in Wrapper Objects). When invoked without the new
operator, however, they work as conversion functions and perform the conversions summarized in Table 3-2:
Note that any value other than null
or undefined
has a toString()
method and the result of this method is usually the same as that returned by the String()
function. Also note that Table 3-2 shows a TypeError if you attempt to convert null
or undefined
to an object. The Object()
function does not throw an exception in this case: instead it simply returns a newly created empty object.
Certain JavaScript operators perform implicit type conversions, and are sometimes used for the purposes of type conversion. If one operand of the +
operator is a string, it converts the other one to a string. The unary +
operator converts its operand to a number. And the unary !
operator converts its operand to a boolean and negates it. These facts lead to the following type conversion idioms that you may see in some code:
Formatting and parsing numbers are common tasks in computer programs and JavaScript has specialized functions and methods that provide more precise control over number-to-string and string-to-number conversions.
The toString()
method defined by the Number class accepts an optional argument that specifies a radix, or base, for the conversion. If you do not specify the argument, the conversion is done in base 10. However, you can also convert numbers in other bases (between 2 and 36). For example:
When working with financial or scientific data, you may want to convert numbers to strings in ways that give you control over the number of decimal places or the number of significant digits in the output, or you may want to control whether exponential notation is used. The Number class defines three methods for these kinds of number-to-string conversions. toFixed()
converts a number to a string with a specified number of digits after the decimal point. It never uses exponential notation. toExponential()
converts a number to a string using exponential notation, with one digit before the decimal point and a specified number of digits after the decimal point (which means that the number of significant digits is one larger than the value you specify). toPrecision()
converts a number to a string with the number of significant digits you specify. It uses exponential notation if the number of significant digits is not large enough to display the entire integer portion of the number. Note that all three methods round the trailing digits or pad with zeros as appropriate. Consider the following examples:
If you pass a string to the Number()
conversion function, it attempts to parse that string as an integer or floating-point literal. That function only works for base-10 integers, and does not allow trailing characters that are not part of the literal. The parseInt()
and parseFloat()
functions (these are global functions, not methods of any class) are more flexible. parseInt()
parses only integers, while parseFloat()
parses both integers and floating-point numbers. If a string begins with “0x” or “0X”, parseInt()
interprets it as a hexadecimal number.[2] Both parseInt()
and parseFloat()
skip leading whitespace, parse as many numeric characters as they can, and ignore anything that follows. If the first nonspace character is not part of a valid numeric literal, they return NaN:
parseInt()
accepts an optional second argument specifying the radix (base) of the number to be parsed. Legal values are between 2 and 36. For example:
Object-to-boolean conversions are trivial: all objects (including arrays and functions) convert to true
. This is so even for wrapper objects: new Boolean(false)
is an object rather than a primitive value, and so it converts to true
.
Object-to-string and object-to-number conversions are performed by invoking a method of the object to be converted. This is complicated by the fact that JavaScript objects have two different methods that perform conversions, and it is also complicated by some special cases described below. Note that the string and number conversion rules described here apply only to native objects. Host objects (defined by web browsers, for example) can convert to numbers and strings according to their own algorithms.
All objects inherit two conversion methods. The first is called toString()
, and its job is to return a string representation of the object. The default toString()
method does not return a very interesting value (though we’ll find it useful in Example 6-4):
Many classes define more specific versions of the toString()
method. The toString()
method of the Array class, for example, converts each array element to a string and joins the resulting strings together with commas in between. The toString()
method of the Function class returns an implementation-defined representation of a function. In practice, implementations usually convert user-defined functions to strings of JavaScript source code. The Date class defines a toString()
method that returns a human-readable (and JavaScript-parsable) date and time string. The RegExp class defines a toString()
method that converts RegExp objects to a string that looks like a RegExp literal:
The other object conversion function is called valueOf()
. The job of this method is less well-defined: it is supposed to convert an object to a primitive value that represents the object, if any such primitive value exists. Objects are compound values, and most objects cannot really be represented by a single primitive value, so the default valueOf()
method simply returns the object itself rather than returning a primitive. Wrapper classes define valueOf()
methods that return the wrapped primitive value. Arrays, functions, and regular expressions simply inherit the default method. Calling valueOf()
for instances of these types simply returns the object itself. The Date class defines a valueOf()
method that returns the date in its internal representation: the number of milliseconds since January 1, 1970:
With the toString()
and valueOf()
methods explained, we can now cover object-to-string and object-to-number conversions. Do note, however, that there are some special cases in which JavaScript performs a different object-to-primitive conversion. These special cases are covered at the end of this section.
To convert an object to a string, JavaScript takes these steps:
toString()
method, JavaScript calls it. If it returns a primitive value, JavaScript converts that value to a string (if it is not already a string) and returns the result of that conversion. Note that primitive-to-string conversions are all well-defined in Table 3-2. toString()
method, or if that method does not return a primitive value, then JavaScript looks for a valueOf()
method. If the method exists, JavaScript calls it. If the return value is a primitive, JavaScript converts that value to a string (if it is not already) and returns the converted value. toString()
or valueOf()
, so it throws a TypeError. To convert an object to a number, JavaScript does the same thing, but it tries the valueOf()
method first:
valueOf()
method that returns a primitive value, JavaScript converts (if necessary) that primitive value to a number and returns the result. toString()
method that returns a primitive value, JavaScript converts and returns the value. The details of this object-to-number conversion explain why an empty array converts to the number 0 and why an array with a single element may also convert to a number. Arrays inherit the default valueOf()
method that returns an object rather than a primitive value, so array-to-number conversion relies on the toString()
method. Empty arrays convert to the empty string. And the empty string converts to the number 0. An array with a single element converts to the same string that that one element does. If an array contains a single number, that number is converted to a string, and then back to a number.
The +
operator in JavaScript performs numeric addition and string concatenation. If either of its operands is an object, JavaScript converts the object using a special object-to-primitive conversion rather than the object-to-number conversion used by the other arithmetic operators. The ==
equality operator is similar. If asked to compare an object with a primitive value, it converts the object using the object-to-primitive conversion.
The object-to-primitive conversion used by +
and ==
includes a special case for Date objects. The Date class is the only predefined core JavaScript type that defines meaningful conversions to both strings and numbers. The object-to-primitive conversion is basically an object-to-number conversion (valueof()
first) for all objects that are not dates, and an object-to-string conversion (toString()
first) for Date objects. The conversion is not exactly the same as those explained above, however: the primitive value returned by valueOf()
or toString()
is used directly without being forced to a number or string.
The <
operator and the other relational operators perform object-to-primitive conversions like ==
does, but without the special case for Date objects: any object is converted by trying valueOf()
first and then toString()
. Whatever primitive value is obtained is used directly, without being further converted to a number or string.
+
, ==
, !=
and the relational operators are the only ones that perform this special kind of string-to-primitive conversions. Other operators convert more explicitly to a specified type and do not have any special case for Date objects. The -
operator, for example, converts its operands to numbers. The following code demonstrates the behavior of +
, -
, ==
, and >
with Date objects:
[2] In ECMAScript 3, parseInt()
may parse a string that begins with “0” (but not “0x” or “0X”) as an octal number or as a decimal number. Because the behavior is unspecified, you should never use parseInt()
to parse numbers with leading zeros, unless you explicitly specify the radix to be used! In ECMAScript 5, parseInt()
only parses octal numbers if you explicitly pass 8 as the second argument.
Before you use a variable in a JavaScript program, you should declare it. Variables are declared with the var
keyword, like this:
You can also declare multiple variables with the same var
keyword:
And you can combine variable declaration with variable initialization:
If you don’t specify an initial value for a variable with the var
statement, the variable is declared, but its value is undefined
until your code stores a value into it.
Note that the var
statement can also appear as part of the for
and for/in
loops (introduced in Chapter 5), allowing you to succinctly declare the loop variable as part of the loop syntax itself. For example:
If you’re used to statically typed languages such as C or Java, you will have noticed that there is no type associated with JavaScript’s variable declarations. A JavaScript variable can hold a value of any type. For example, it is perfectly legal in JavaScript to assign a number to a variable and then later assign a string to that variable:
It is legal and harmless to declare a variable more than once with the var
statement. If the repeated declaration has an initializer, it acts as if it were simply an assignment statement.
If you attempt to read the value of an undeclared variable, JavaScript generates an error. In ECMAScript 5 strict mode (“use strict”), it is also an error to assign a value to an undeclared variable. Historically, however, and in non-strict mode, if you assign a value to an undeclared variable, JavaScript actually creates that variable as a property of the global object, and it works much like (but not exactly the same as, see Variables As Properties) a properly declared global variable. This means that you can get away with leaving your global variables undeclared. This is a bad habit and a source of bugs, however, and you should always declare your variables with var
.
The scope of a variable is the region of your program source code in which it is defined. A global variable has global scope; it is defined everywhere in your JavaScript code. On the other hand, variables declared within a function are defined only within the body of the function. They are local variables and have local scope. Function parameters also count as local variables and are defined only within the body of the function.
Within the body of a function, a local variable takes precedence over a global variable with the same name. If you declare a local variable or function parameter with the same name as a global variable, you effectively hide the global variable:
Although you can get away with not using the var
statement when you write code in the global scope, you must always use var
to declare local variables. Consider what happens if you don’t:
Function definitions can be nested. Each function has its own local scope, so it is possible to have several nested layers of local scope. For example:
In some C-like programming languages, each block of code within curly braces has its own scope, and variables are not visible outside of the block in which they are declared. This is called block scope, and JavaScript does not have it. Instead, JavaScript uses function scope: variables are visible within the function in which they are defined and within any functions that are nested within that function.
In the following code, the variables i
, j
, and k
are declared in different spots, but all have the same scope—all three are defined throughout the body of the function:
JavaScript’s function scope means that all variables declared within a function are visible throughout the body of the function. Curiously, this means that variables are even visible before they are declared. This feature of JavaScript is informally known as hoisting: JavaScript code behaves as if all variable declarations in a function (but not any associated assignments) are “hoisted” to the top of the function. Consider the following code:
You might think that the first line of the function would print “global”, because the var
statement declaring the local variable has not yet been executed. Because of the rules of function scope, however, this is not what happens. The local variable is defined throughout the body of the function, which means the global variable by the same name is hidden throughout the function. Although the local variable is defined throughout, it is not actually initialized until the var
statement is executed. Thus, the function above is equivalent to the following, in which the variable declaration is “hoisted” to the top and the variable initialization is left where it is:
In programming languages with block scope, it is generally good programming practice to declare variables as close as possible to where they are used and with the narrowest possible scope. Since JavaScript does not have block scope, some programmers make a point of declaring all their variables at the top of the function, rather than trying to declare them closer to the point at which they are used. This technique makes their source code accurately reflect the true scope of the variables.
When you declare a global JavaScript variable, what you are actually doing is defining a property of the global object (The Global Object). If you use var
to declare the variable, the property that is created is nonconfigurable (see Property Attributes), which means that it cannot be deleted with the delete
operator. We’ve already noted that if you’re not using strict mode and you assign a value to an undeclared variable, JavaScript automatically creates a global variable for you. Variables created in this way are regular, configurable properties of the global object and they can be deleted:
JavaScript global variables are properties of the global object, and this is mandated by the ECMAScript specification. There is no such requirement for local variables, but you can imagine local variables as the properties of an object associated with each function invocation. The ECMAScript 3 specification referred to this object as the “call object,” and the ECMAScript 5 specification calls it a “declarative environment record.” JavaScript allows us to refer to the global object with the this
keyword, but it does not give us any way to refer to the object in which local variables are stored. The precise nature of these objects that hold local variables is an implementation detail that need not concern us. The notion that these local variable objects exist, however, is an important one, and it is developed further in the next section.
JavaScript is a lexically scoped language: the scope of a variable can be thought of as the set of source code lines for which the variable is defined. Global variables are defined throughout the program. Local variables are defined throughout the function in which they are declared, and also within any functions nested within that function.
If we think of local variables as properties of some kind of implementation-defined object, then there is another way to think about variable scope. Every chunk of JavaScript code (global code or functions) has a scope chain associated with it. This scope chain is a list or chain of objects that defines the variables that are “in scope” for that code. When JavaScript needs to look up the value of a variable x
(a process called variable resolution), it starts by looking at the first object in the chain. If that object has a property named x
, the value of that property is used. If the first object does not have a property named x
, JavaScript continues the search with the next object in the chain. If the second object does not have a property named x
, the search moves on to the next object, and so on. If x
is not a property of any of the objects in the scope chain, then x
is not in scope for that code, and a ReferenceError occurs.
In top-level JavaScript code (i.e., code not contained within any function definitions), the scope chain consists of a single object, the global object. In a non-nested function, the scope chain consists of two objects. The first is the object that defines the function’s parameters and local variables, and the second is the global object. In a nested function, the scope chain has three or more objects. It is important to understand how this chain of objects is created. When a function is defined, it stores the scope chain then in effect. When that function is invoked, it creates a new object to store its local variables, and adds that new object to the stored scope chain to create a new, longer, chain that represents the scope for that function invocation. This becomes more interesting for nested functions because each time the outer function is called, the inner function is defined again. Since the scope chain differs on each invocation of the outer function, the inner function will be subtly different each time it is defined—the code of the inner function will be identical on each invocation of the outer function, but the scope chain associated with that code will be different.
This notion of a scope chain is helpful for understanding the with
statement (with) and is crucial for understanding closures (Closures).
An expression is a phrase of JavaScript that a JavaScript interpreter can evaluate to produce a value. A constant embedded literally in your program is a very simple kind of expression. A variable name is also a simple expression that evaluates to whatever value has been assigned to that variable. Complex expressions are built from simpler expressions. An array access expression, for example, consists of one expression that evaluates to an array followed by an open square bracket, an expression that evaluates to an integer, and a close square bracket. This new, more complex expression evaluates to the value stored at the specified index of the specified array. Similarly, a function invocation expression consists of one expression that evaluates to a function object and zero or more additional expressions that are used as the arguments to the function.
The most common way to build a complex expression out of simpler expressions is with an operator. An operator combines the values of its operands (usually two of them) in some way and evaluates to a new value. The multiplication operator *
is a simple example. The expression x * y
evaluates to the product of the values of the expressions x
and y
. For simplicity, we sometimes say that an operator returns a value rather than “evaluates to” a value.
This chapter documents all of JavaScript’s operators, and it also explains expressions (such as array indexing and function invocation) that do not use operators. If you already know another programming language that uses C-style syntax, you’ll find that the syntax of most of JavaScript’s expressions and operators is already familiar to you.
The simplest expressions, known as primary expressions, are those that stand alone—they do not include any simpler expressions. Primary expressions in JavaScript are constant or literal values, certain language keywords, and variable references.
Literals are constant values that are embedded directly in your program. They look like these:
JavaScript syntax for number literals was covered in Numbers. String literals were documented in Text. The regular expression literal syntax was introduced in Pattern Matching and will be documented in detail in Chapter 10.
Some of JavaScript’s reserved words are primary expressions:
We learned about true
, false
, and null
in Boolean Values and null and undefined. Unlike the other keywords, this
is not a constant—it evaluates to different values in different places in the program. The this
keyword is used in object-oriented programming. Within the body of a method, this
evaluates to the object on which the method was invoked. See Invocation Expressions, Chapter 8 (especially Method Invocation), and Chapter 9 for more on this
.
Finally, the third type of primary expression is the bare variable reference:
When any identifier appears by itself in a program, JavaScript assumes it is a variable and looks up its value. If no variable with that name exists, the expression evaluates to the undefined
value. In the strict mode of ECMAScript 5, however, an attempt to evaluate a nonexistent variable throws a ReferenceError instead.
Object and array initializers are expressions whose value is a newly created object or array. These initializer expressions are sometimes called “object literals” and “array literals.” Unlike true literals, however, they are not primary expressions, because they include a number of subexpressions that specify property and element values. Array initializers have a slightly simpler syntax, and we’ll begin with those.
An array initializer is a comma-separated list of expressions contained within square brackets. The value of an array initializer is a newly created array. The elements of this new array are initialized to the values of the comma-separated expressions:
The element expressions in an array initializer can themselves be array initializers, which means that these expressions can create nested arrays:
The element expressions in an array initializer are evaluated each time the array initializer is evaluated. This means that the value of an array initializer expression may be different each time it is evaluated.
Undefined elements can be included in an array literal by simply omitting a value between commas. For example, the following array contains five elements, including three undefined elements:
A single trailing comma is allowed after the last expression in an array initializer and does not create an undefined element.
Object initializer expressions are like array initializer expressions, but the square brackets are replaced by curly brackets, and each subexpression is prefixed with a property name and a colon:
Object literals can be nested. For example:
The expressions in an object initializer are evaluated each time the object initializer is evaluated, and they need not have constant values: they can be arbitrary JavaScript expressions. Also, the property names in object literals may be strings rather than identifiers (this is useful to specify property names that are reserved words or are otherwise not legal identifiers):
We’ll see object and array initializers again in Chapters 6 and 7.
A function definition expression defines a JavaScript function, and the value of such an expression is the newly defined function. In a sense, a function definition expression is a “function literal” in the same way that an object initializer is an “object literal.” A function definition expression typically consists of the keyword function
followed by a comma-separated list of zero or more identifiers (the parameter names) in parentheses and a block of JavaScript code (the function body) in curly braces. For example:
A function definition expression can also include a name for the function. Functions can also be defined using a function statement rather than a function expression. Complete details on function definition are in Chapter 8.
A property access expression evaluates to the value of an object property or an array element. JavaScript defines two syntaxes for property access:
expression
. identifierThe first style of property access is an expression followed by a period and an identifier. The expression specifies the object, and the identifier specifies the name of the desired property. The second style of property access follows the first expression (the object or array) with another expression in square brackets. This second expression specifies the name of the desired property or the index of the desired array element. Here are some concrete examples:
With either type of property access expression, the expression before the . or [is first evaluated. If the value is null
or undefined
, the expression throws a TypeError, since these are the two JavaScript values that cannot have properties. If the value is not an object (or array), it is converted to one (see Wrapper Objects). If the object expression is followed by a dot and an identifier, the value of the property named by that identifier is looked up and becomes the overall value of the expression. If the object expression is followed by another expression in square brackets, that second expression is evaluated and converted to a string. The overall value of the expression is then the value of the property named by that string. In either case, if the named property does not exist, then the value of the property access expression is undefined
.
The .identifier
syntax is the simpler of the two property access options, but notice that it can only be used when the property you want to access has a name that is a legal identifier, and when you know then name when you write the program. If the property name is a reserved word or includes spaces or punctuation characters, or when it is a number (for arrays), you must use the square bracket notation. Square brackets are also used when the property name is not static but is itself the result of a computation (see Objects As Associative Arrays for an example).
Objects and their properties are covered in detail in Chapter 6, and arrays and their elements are covered in Chapter 7.
An invocation expression is JavaScript’s syntax for calling (or executing) a function or method. It starts with a function expression that identifies the function to be called. The function expression is followed by an open parenthesis, a comma-separated list of zero or more argument expressions, and a close parenthesis. Some examples:
When an invocation expression is evaluated, the function expression is evaluated first, and then the argument expressions are evaluated to produce a list of argument values. If the value of the function expression is not a callable object, a TypeError is thrown. (All functions are callable. Host objects may also be callable even if they are not functions. This distinction is explored in Callable Objects.) Next, the argument values are assigned, in order, to the parameter names specified when the function was defined, and then the body of the function is executed. If the function uses a return
statement to return a value, then that value becomes the value of the invocation expression. Otherwise, the value of the invocation expression is undefined
. Complete details on function invocation, including an explanation of what happens when the number of argument expressions does not match the number of parameters in the function definition, are in Chapter 8 .
Every invocation expression includes a pair of parentheses and an expression before the open parenthesis. If that expression is a property access expression, then the invocation is known as a method invocation. In method invocations, the object or array that is the subject of the property access becomes the value of the this
parameter while the body of the function is being executed. This enables an object-oriented programming paradigm in which functions (known by their OO name, “methods”) operate on the object of which they are part. See Chapter 9 for details.
Invocation expressions that are not method invocations normally use the global object as the value of the this
keyword. In ECMAScript 5, however, functions that are defined in strict mode are invoked with undefined
as their this
value rather than the global object. See “use strict” for more on strict mode.
An object creation expression creates a new object and invokes a function (called a constructor) to initialize the properties of that object. Object creation expressions are like invocation expressions except that they are prefixed with the keyword new
:
If no arguments are passed to the constructor function in an object creation expression, the empty pair of parentheses can be omitted:
When an object creation expression is evaluated, JavaScript first creates a new empty object, just like the one created by the object initializer {}
. Next, it invokes the specified function with the specified arguments, passing the new object as the value of the this
keyword. The function can then use this
to initialize the properties of the newly created object. Functions written for use as constructors do not return a value, and the value of the object creation expression is the newly created and initialized object. If a constructor does return an object value, that value becomes the value of the object creation expression and the newly created object is discarded.
Constructors are explained in more detail in Chapter 9.
Operators are used for JavaScript’s arithmetic expressions, comparison expressions, logical expressions, assignment expressions, and more. Table 4-1 summarizes the operators and serves as a convenient reference.
Note that most operators are represented by punctuation characters such as +
and =
. Some, however, are represented by keywords such as delete
and instanceof
. Keyword operators are regular operators, just like those expressed with punctuation; they simply have a less succinct syntax.
Table 4-1 is organized by operator precedence. The operators listed first have higher precedence than those listed last. Operators separated by a horizontal line have different precedence levels. The column labeled A gives the operator associativity, which can be L (left-to-right) or R (right-to-left), and the column N specifies the number of operands. The column labeled Types lists the expected types of the operands and (after the → symbol) the result type for the operator. The subsections that follow the table explain the concepts of precedence, associativity, and operand type. The operators themselves are individually documented following that discussion.
Table 4-1. JavaScript operators
Operator	Operation	A	N	Types
++ | Pre- or post-increment | R | 1 | lval→num |
-- | Pre- or post-decrement | R | 1 | lval→num |
- | Negate number | R | 1 | num→num |
+ | Convert to number | R | 1 | num→num |
~ | Invert bits | R | 1 | int→int |
! | Invert boolean value | R | 1 | bool→bool |
delete | Remove a property | R | 1 | lval→bool |
typeof | Determine type of operand | R | 1 | any→str |
void | Return undefined value | R | 1 | any→undef |
* , / , % | Multiply, divide, remainder | L | 2 | num,num→num |
+ , - | Add, subtract | L | 2 | num,num→num |
+ | Concatenate strings | L | 2 | str,str→str |
<< | Shift left | L | 2 | int,int→int |
>> | Shift right with sign extension | L | 2 | int,int→int |
>>> | Shift right with zero extension | L | 2 | int,int→int |
< , <= ,> , >= | Compare in numeric order | L | 2 | num,num→bool |
< , <= ,> , >= | Compare in alphabetic order | L | 2 | str,str→bool |
instanceof | Test object class | L | 2 | obj,func→bool |
in | Test whether property exists | L | 2 | str,obj→bool |
== | Test for equality | L | 2 | any,any→bool |
!= | Test for inequality | L | 2 | any,any→bool |
=== | Test for strict equality | L | 2 | any,any→bool |
!== | Test for strict inequality | L | 2 | any,any→bool |
& | Compute bitwise AND | L | 2 | int,int→int |
^ | Compute bitwise XOR | L | 2 | int,int→int |
| | Compute bitwise OR | L | 2 | int,int→int |
&& | Compute logical AND | L | 2 | any,any→any |
|| | Compute logical OR | L | 2 | any,any→any |
?: | Choose 2nd or 3rd operand | R | 3 | bool,any,any→any |
= | Assign to a variable or property | R | 2 | lval,any→any |
*= , /= , %= , += , | Operate and assign | R | 2 | lval,any→any |
-= , &= , ^= , |= , | ||||
<<= , >>= , >>>= | ||||
, | Discard 1st operand, return second | L | 2 | any,any→any |
Operators can be categorized based on the number of operands they expect (their arity). Most JavaScript operators, like the *
multiplication operator, are binary operators that combine two expressions into a single, more complex expression. That is, they expect two operands. JavaScript also supports a number of unary operators, which convert a single expression into a single, more complex expression. The −
operator in the expression −x
is a unary operator that performs the operation of negation on the operand x
. Finally, JavaScript supports one ternary operator, the conditional operator ?:
, which combines three expressions into a single expression.
Some operators work on values of any type, but most expect their operands to be of a specific type, and most operators return (or evaluate to) a value of a specific type. The Types column in Table 4-1 specifies operand types (before the arrow) and result type (after the arrow) for the operators.
JavaScript operators usually convert the type (see Type Conversions) of their operands as needed. The multiplication operator *
expects numeric operands, but the expression "3" * "5"
is legal because JavaScript can convert the operands to numbers. The value of this expression is the number 15, not the string “15”, of course. Remember also that every JavaScript value is either “truthy” or “falsy,” so operators that expect boolean operands will work with an operand of any type.
Some operators behave differently depending on the type of the operands used with them. Most notably, the +
operator adds numeric operands but concatenates string operands. Similarly, the comparison operators such as <
perform comparison in numerical or alphabetical order depending on the type of the operands. The descriptions of individual operators explain their type-dependencies and specify what type conversions they perform.
Notice that the assignment operators and a few of the other operators listed in Table 4-1 expect an operand of type lval
. lvalue is a historical term that means “an expression that can legally appear on the left side of an assignment expression.” In JavaScript, variables, properties of objects, and elements of arrays are lvalues. The ECMAScript specification allows built-in functions to return lvalues but does not define any functions that behave that way.
Evaluating a simple expression like 2 * 3
never affects the state of your program, and any future computation your program performs will be unaffected by that evaluation. Some expressions, however, have side effects, and their evaluation may affect the result of future evaluations. The assignment operators are the most obvious example: if you assign a value to a variable or property, that changes the value of any expression that uses that variable or property. The ++
and --
increment and decrement operators are similar, since they perform an implicit assignment. The delete
operator also has side effects: deleting a property is like (but not the same as) assigning undefined
to the property.
No other JavaScript operators have side effects, but function invocation and object creation expressions will have side effects if any of the operators used in the function or constructor body have side effects.
The operators listed in Table 4-1 are arranged in order from high precedence to low precedence, with horizontal lines separating groups of operators at the same precedence level. Operator precedence controls the order in which operations are performed. Operators with higher precedence (nearer the top of the table) are performed before those with lower precedence (nearer to the bottom).
Consider the following expression:
The multiplication operator *
has a higher precedence than the addition operator +
, so the multiplication is performed before the addition. Furthermore, the assignment operator =
has the lowest precedence, so the assignment is performed after all the operations on the right side are completed.
Operator precedence can be overridden with the explicit use of parentheses. To force the addition in the previous example to be performed first, write:
Note that property access and invocation expressions have higher precedence than any of the operators listed in Table 4-1. Consider this expression:
Although typeof
is one of the highest-priority operators, the typeof
operation is performed on the result of the two property accesses and the function invocation.
In practice, if you are at all unsure about the precedence of your operators, the simplest thing to do is to use parentheses to make the evaluation order explicit. The rules that are important to know are these: multiplication and division are performed before addition and subtraction, and assignment has very low precedence and is almost always performed last.
In Table 4-1, the column labeled A specifies the associativity of the operator. A value of L specifies left-to-right associativity, and a value of R specifies right-to-left associativity. The associativity of an operator specifies the order in which operations of the same precedence are performed. Left-to-right associativity means that operations are performed from left to right. For example, the subtraction operator has left-to-right associativity, so:
is the same as:
On the other hand, the following expressions:
are equivalent to:
because the unary, assignment, and ternary conditional operators have right-to-left associativity.
Operator precedence and associativity specify the order in which operations are performed in a complex expression, but they do not specify the order in which the subexpressions are evaluated. JavaScript always evaluates expressions in strictly left-to-right order. In the expression w=x+y*z
, for example, the subexpression w
is evaluated first, followed by x
, y
, and z
. Then the values of y
and z
are multiplied, added to the value of x
, and assigned to the variable or property specified by expression w
. Adding parentheses to the expressions can change the relative order of the multiplication, addition, and assignment, but not the left-to-right order of evaluation.
Order of evaluation only makes a difference if any of the expressions being evaluated has side effects that affect the value of another expression. If expression x
increments a variable that is used by expression z
, then the fact that x
is evaluated before z
is important.
This section covers the operators that perform arithmetic or other numerical manipulations on their operands. The multiplication, division, and subtraction operators are straightforward and are covered first. The addition operator gets a subsection of its own because it can also perform string concatenation and has some unusual type conversion rules. The unary operators and the bitwise operators are also covered in subsections of their own.
The basic arithmetic operators are *
(multiplication), /
(division), %
(modulo: remainder after division), +
(addition), and -
(subtraction). As noted, we’ll discuss the +
operator in a section of its own. The other basic four operators simply evaluate their operands, convert the values to numbers if necessary, and then compute the product, quotient, remainder, or difference between the values. Non-numeric operands that cannot convert to numbers convert to the NaN
value. If either operand is (or converts to) NaN
, the result of the operation is also NaN
.
The /
operator divides its first operand by its second. If you are used to programming languages that distinguish between integer and floating-point numbers, you might expect to get an integer result when you divide one integer by another. In JavaScript, however, all numbers are floating-point, so all division operations have floating-point results: 5/2
evaluates to 2.5
, not 2
. Division by zero yields positive or negative infinity, while 0/0
evaluates to NaN
: neither of these cases raises an error.
The %
operator computes the first operand modulo the second operand. In other words, it returns the remainder after whole-number division of the first operand by the second operand. The sign of the result is the same as the sign of the first operand. For example, 5 % 2
evaluates to 1
and -5 % 2
evaluates to -1
.
While the modulo operator is typically used with integer operands, it also works for floating-point values. For example, 6.5 % 2.1
evaluates to 0.2
.
The binary +
operator adds numeric operands or concatenates string operands:
When the values of both operands are numbers, or are both strings, then it is obvious what the +
operator does. In any other case, however, type conversion is necessary, and the operation to be performed depends on the conversion performed. The conversions rules for +
give priority to string concatenation: if either of the operands is a string or an object that converts to a string, the other operand is converted to a string and concatenation is performed. Addition is performed only if neither operand is string-like.
Technically, the +
operator behaves like this:
toString()
method, and all other objects are converted via valueOf()
, if that method returns a primitive value. Most objects do not have a useful valueOf()
method, however, so they are converted via toString()
as well. NaN
) and addition is performed. Here are some examples:
Finally, it is important to note that when the +
operator is used with strings and numbers, it may not be associative. That is, the result may depend on the order in which operations are performed. For example:
The first line has no parentheses, and the +
operator has left-to-right associativity, so the two numbers are added first, and their sum is concatenated with the string. In the second line, parentheses alter this order of operations: the number 2 is concatenated with the string to produce a new string. Then the number 1 is concatenated with the new string to produce the final result.
Unary operators modify the value of a single operand to produce a new value. In JavaScript, the unary operators all have high precedence and are all right-associative. The arithmetic unary operators described in this section (+
, -
, ++
, and --
) all convert their single operand to a number, if necessary. Note that the punctuation characters +
and -
are used as both unary and binary operators.
The unary arithmetic operators are the following:
+
)-
)++
)The++
operator increments (i.e., adds 1 to) its single operand, which must be an lvalue (a variable, an element of an array, or a property of an object). The operator converts its operand to a number, adds 1 to that number, and assigns the incremented value back into the variable, element, or property.The return value of the++
operator depends on its position relative to the operand. When used before the operand, where it is known as the pre-increment operator, it increments the operand and evaluates to the incremented value of that operand. When used after the operand, where it is known as the post-increment operator, it increments its operand but evaluates to the unincremented value of that operand. Consider the difference between these two lines of code:var i = 1, j = ++i; // i and j are both 2
var i = 1, j = i++; // i is 2, j is 1Note that the expression++x
is not always the same asx=x+1
. The++
operator never performs string concatenation: it always converts its operand to a number and increments it. Ifx
is the string “1”,++x
is the number 2, butx+1
is the string “11”.Also note that, because of JavaScript’s automatic semicolon insertion, you cannot insert a line break between the post-increment operator and the operand that precedes it. If you do so, JavaScript will treat the operand as a complete statement by itself and insert a semicolon before it.This operator, in both its pre- and post-increment forms, is most commonly used to increment a counter that controls afor
loop (for).
--
)The--
operator expects an lvalue operand. It converts the value of the operand to a number, subtracts 1, and assigns the decremented value back to the operand. Like the++
operator, the return value of--
depends on its position relative to the operand. When used before the operand, it decrements and returns the decremented value. When used after the operand, it decrements the operand but returns the undecremented value. When used after its operand, no line break is allowed between the operand and the operator.
The bitwise operators perform low-level manipulation of the bits in the binary representation of numbers. Although they do not perform traditional arithmetic operations, they are categorized as arithmetic operators here because they operate on numeric operands and return a numeric value. These operators are not commonly used in JavaScript programming, and if you are not familiar with the binary representation of decimal integers, you can probably skip this section. Four of these operators perform Boolean algebra on the individual bits of the operands, behaving as if each bit in each operand were a boolean value (1=true, 0=false). The other three bitwise operators are used to shift bits left and right.
The bitwise operators expect integer operands and behave as if those values were represented as 32-bit integers rather than 64-bit floating-point values. These operators convert their operands to numbers, if necessary, and then coerce the numeric values to 32-bit integers by dropping any fractional part and any bits beyond the 32nd. The shift operators require a right-side operand between 0 and 31. After converting this operand to an unsigned 32-bit integer, they drop any bits beyond the 5th, which yields a number in the appropriate range. Surprisingly, NaN
, Infinity
, and -Infinity
all convert to 0 when used as operands of these bitwise operators.
&
)|
)^
)The^
operator performs a Boolean exclusive OR operation on each bit of its integer arguments. Exclusive OR means that either operand one istrue
or operand two istrue
, but not both. A bit is set in this operation’s result if a corresponding bit is set in one (but not both) of the two operands. For example,0xFF00 ^ 0xF0F0
evaluates to0x0FF0
.
~
)The~
operator is a unary operator that appears before its single integer operand. It operates by reversing all bits in the operand. Because of the way signed integers are represented in JavaScript, applying the~
operator to a value is equivalent to changing its sign and subtracting 1. For example~0x0F
evaluates to0xFFFFFFF0
, or −16.
<<
)The<<
operator moves all bits in its first operand to the left by the number of places specified in the second operand, which should be an integer between 0 and 31. For example, in the operationa << 1
, the first bit (the ones bit) ofa
becomes the second bit (the twos bit), the second bit ofa
becomes the third, etc. A zero is used for the new first bit, and the value of the 32nd bit is lost. Shifting a value left by one position is equivalent to multiplying by 2, shifting two positions is equivalent to multiplying by 4, and so on. For example,7 << 2
evaluates to 28.
>>
)The>>
operator moves all bits in its first operand to the right by the number of places specified in the second operand (an integer between 0 and 31). Bits that are shifted off the right are lost. The bits filled in on the left depend on the sign bit of the original operand, in order to preserve the sign of the result. If the first operand is positive, the result has zeros placed in the high bits; if the first operand is negative, the result has ones placed in the high bits. Shifting a value right one place is equivalent to dividing by 2 (discarding the remainder), shifting right two places is equivalent to integer division by 4, and so on. For example,7 >> 1
evaluates to 3, and−7 >> 1
evaluates to −4.
>>>
)This section describes JavaScript’s relational operators. These operators test for a relationship (such as “equals,” “less than,” or “property of”) between two values and return true
or false
depending on whether that relationship exists. Relational expressions always evaluate to a boolean value, and that value is often used to control the flow of program execution in if
, while
, and for
statements (see Chapter 5). The subsections that follow document the equality and inequality operators, the comparison operators, and JavaScript’s other two relational operators, in
and instanceof
.
The ==
and ===
operators check whether two values are the same, using two different definitions of sameness. Both operators accept operands of any type, and both return true
if their operands are the same and false
if they are different. The ===
operator is known as the strict equality operator (or sometimes the identity operator), and it checks whether its two operands are “identical” using a strict definition of sameness. The ==
operator is known as the equality operator; it checks whether its two operands are “equal” using a more relaxed definition of sameness that allows type conversions.
JavaScript supports =
, ==
, and ===
operators. Be sure you understand the differences between these assignment, equality, and strict equality operators, and be careful to use the correct one when coding! Although it is tempting to read all three operators “equals,” it may help to reduce confusion if you read “gets or is assigned” for =
, “is equal to” for ==
, and “is strictly equal to” for ===
.
The !=
and !==
operators test for the exact opposite of the ==
and ===
operators. The !=
inequality operator returns false
if two values are equal to each other according to ==
and returns true
otherwise. The !==
operator returns false
if two values are strictly equal to each other and returns true
otherwise. As you’ll see in Logical Expressions, the !
operator computes the Boolean NOT operation. This makes it easy to remember that !=
and !==
stand for “not equal to” and “not strictly equal to.”
As mentioned in Immutable Primitive Values and Mutable Object References, JavaScript objects are compared by reference, not by value. An object is equal to itself, but not to any other object. If two distinct objects have the same number of properties, with the same names and values, they are still not equal. Two arrays that have the same elements in the same order are not equal to each other.
The strict equality operator ===
evaluates its operands, and then compares the two values as follows, performing no type conversion:
null
or both values are undefined
, they are equal. true
or both are the boolean value false
, they are equal. NaN
, they are not equal. The NaN
value is never equal to any other value, including itself! To check whether a value x
is NaN
, use x !== x
. NaN
is the only value of x
for which this expression will be true. 0
and the other is -0
, they are also equal. ===
or to the ==
operators. See String
.
locale
Compare()
in Part III for another way to compare strings. The equality operator ==
is like the strict equality operator, but it is less strict. If the values of the two operands are not the same type, it attempts some type conversions and tries the comparison again:
==
operator may still consider them equal. Use the following rules and type conversions to check for equality: null
and the other is undefined
, they are equal. true
, convert it to 1 and try the comparison again. If either value is false
, convert it to 0 and try the comparison again. toString()
method or its valueOf()
method. The built-in classes of core JavaScript attempt valueOf()
conversion before toString()
conversion, except for the Date class, which performs toString()
conversion. Objects that are not part of core JavaScript may convert themselves to primitive values in an implementation-defined way. As an example of testing for equality, consider the comparison:
This expression evaluates to true
, indicating that these very different-looking values are in fact equal. The boolean value true
is first converted to the number 1, and the comparison is done again. Next, the string "1"
is converted to the number 1. Since both values are now the same, the comparison returns true
.
The comparison operators test the relative order (numerical or alphabetics) of their two operands:
<
)>
)<=
)>=
)The operands of these comparison operators may be of any type. Comparison can be performed only on numbers and strings, however, so operands that are not numbers or strings are converted. Comparison and conversion occur as follows:
valueOf()
method returns a primitive value, that value is used. Otherwise, the return value of its toString()
method is used. 0
and -0
are considered equal. Infinity
is larger than any number other than itself, and -Infinity
is smaller than any number other than itself. If either operand is (or converts to) NaN
, then the comparison operator always returns false
. Remember that JavaScript strings are sequences of 16-bit integer values, and that string comparison is just a numerical comparison of the values in the two strings. The numerical encoding order defined by Unicode may not match the traditional collation order used in any particular language or locale. Note in particular that string comparison is case-sensitive, and all capital ASCII letters are “less than” all lowercase ASCII letters. This rule can cause confusing results if you do not expect it. For example, according to the <
operator, the string “Zoo” comes before the string “aardvark”.
For a more robust string-comparison algorithm, see the String.localeCompare()
method, which also takes locale-specific definitions of alphabetical order into account. For case-insensitive comparisons, you must first convert the strings to all lowercase or all uppercase using String.toLowerCase()
or String.toUpperCase()
.
Both the +
operator and the comparison operators behave differently for numeric and string operands. +
favors strings: it performs concatenation if either operand is a string. The comparison operators favor numbers and only perform string comparison if both operands are strings:
Finally, note that the <=
(less than or equal) and >=
(greater than or equal) operators do not rely on the equality or strict equality operators for determining whether two values are “equal.” Instead, the less-than-or-equal operator is simply defined as “not greater than,” and the greater-than-or-equal operator is defined as “not less than.” The one exception occurs when either operand is (or converts to) NaN
, in which case all four comparison operators return false
.
The in
operator expects a left-side operand that is or can be converted to a string. It expects a right-side operand that is an object. It evaluates to true
if the left-side value is the name of a property of the right-side object. For example:
The instanceof
operator expects a left-side operand that is an object and a right-side operand that identifies a class of objects. The operator evaluates to true
if the left-side object is an instance of the right-side class and evaluates to false
otherwise. Chapter 9 explains that, in JavaScript, classes of objects are defined by the constructor function that initializes them. Thus, the right-side operand of instanceof
should be a function. Here are examples:
Note that all objects are instances of Object
. instanceof
considers the “superclasses” when deciding whether an object is an instance of a class. If the left-side operand of instanceof
is not an object, instanceof
returns false
. If the right-hand side is not a function, it throws a TypeError
.
In order to understand how the instanceof
operator works, you must understand the “prototype chain.” This is JavaScript’s inheritance mechanism, and it is described in Inheritance. To evaluate the expression o instanceof f
, JavaScript evaluates f.prototype
, and then looks for that value in the prototype chain of o
. If it finds it, then o is an instance of f (or of a superclass of f) and the operator returns true
. If f.prototype
is not one of the values in the prototype chain of o
, then o
is not an instance of f and instanceof
returns false
.
The logical operators &&
, ||
, and !
perform Boolean algebra and are often used in conjunction with the relational operators to combine two relational expressions into one more complex expression. These operators are described in the subsections that follow. In order to fully understand them, you may want to review the concept of “truthy” and “falsy” values introduced in Boolean Values.
The &&
operator can be understood at three different levels. At the simplest level, when used with boolean operands, &&
performs the Boolean AND operation on the two values: it returns true
if and only if both its first operand and its second operand are true
. If one or both of these operands is false
, it returns false
.
&&
is often used as a conjunction to join two relational expressions:
Relational expressions always evaluate to true
or false
, so when used like this, the &&
operator itself returns true
or false
. Relational operators have higher precedence than &&
(and ||
), so expressions like these can safely be written without parentheses.
But &&
does not require that its operands be boolean values. Recall that all JavaScript values are either “truthy” or “falsy.” (See Boolean Values for details. The falsy values are false
, null
, undefined
, 0
, -0
, NaN
, and ""
. All other values, including all objects, are truthy.) The second level at which &&
can be understood is as a Boolean AND operator for truthy and falsy values. If both operands are truthy, the operator returns a truthy value. Otherwise, one or both operands must be falsy, and the operator returns a falsy value. In JavaScript, any expression or statement that expects a boolean value will work with a truthy or falsy value, so the fact that &&
does not always return true
or false
does not cause practical problems.
Notice that the description above says that the operator returns “a truthy value” or “a falsy value,” but does not specify what that value is. For that, we need to describe &&
at the third and final level. This operator starts by evaluating its first operand, the expression on its left. If the value on the left is falsy, the value of the entire expression must also be falsy, so &&
simply returns the value on the left and does not even evaluate the expression on the right.
On the other hand, if the value on the left is truthy, then the overall value of the expression depends on the value on the right-hand side. If the value on the right is truthy, then the overall value must be truthy, and if the value on the right is falsy, then the overall value must be falsy. So when the value on the left is truthy, the &&
operator evaluates and returns the value on the right:
It is important to understand that &&
may or may not evaluate its right-side operand. In the code above, the variable p
is set to null
, and the expression p.x
would, if evaluated, cause a TypeError. But the code uses &&
in an idiomatic way so that p.x
is evaluated only if p
is truthy—not null
or undefined
.
The behavior of &&
is sometimes called “short circuiting,” and you may sometimes see code that purposely exploits this behavior to conditionally execute code. For example, the following two lines of JavaScript code have equivalent effects:
In general, you must be careful whenever you write an expression with side effects (assignments, increments, decrements, or function invocations) on the right-hand side of &&
. Whether those side effects occur depends on the value of the left-hand side.
Despite the somewhat complex way that this operator actually works, it is most commonly used as a simple Boolean algebra operator that works on truthy and falsy values.
The ||
operator performs the Boolean OR operation on its two operands. If one or both operands is truthy, it returns a truthy value. If both operands are falsy, it returns a falsy value.
Although the ||
operator is most often used simply as a Boolean OR operator, it, like the &&
operator, has more complex behavior. It starts by evaluating its first operand, the expression on its left. If the value of this first operand is truthy, it returns that truthy value. Otherwise, it evaluates its second operand, the expression on its right, and returns the value of that expression.
As with the &&
operator, you should avoid right-side operands that include side effects, unless you purposely want to use the fact that the right-side expression may not be evaluated.
An idiomatic usage of this operator is to select the first truthy value in a set of alternatives:
This idiom is often used in function bodies to supply default values for parameters:
The !
operator is a unary operator; it is placed before a single operand. Its purpose is to invert the boolean value of its operand. For example, if x
is truthy !x
evaluates to false
. If x
is falsy, then !x
is true
.
Unlike the &&
and ||
operators, the !
operator converts its operand to a boolean value (using the rules described in Chapter 3) before inverting the converted value. This means that !
always returns true
or false
, and that you can convert any value x
to its equivalent boolean value by applying this operator twice: !!x
(see Explicit Conversions).
As a unary operator, !
has high precedence and binds tightly. If you want to invert the value of an expression like p && q
, you need to use parentheses: !(p && q)
. It is worth noting two theorems of Boolean algebra here that we can express using JavaScript syntax:
JavaScript uses the =
operator to assign a value to a variable or property. For example:
The =
operator expects its left-side operand to be an lvalue: a variable or object property (or array element). It expects its right-side operand to be an arbitrary value of any type. The value of an assignment expression is the value of the right-side operand. As a side effect, the =
operator assigns the value on the right to the variable or property on the left so that future references to the variable or property evaluate to the value.
Although assignment expressions are usually quite simple, you may sometimes see the value of an assignment expression used as part of a larger expression. For example, you can assign and test a value in the same expression with code like this:
If you do this, be sure you are clear on the difference between the =
and ==
operators! Note that =
has very low precedence and parentheses are usually necessary when the value of an assignment is to be used in a larger expression.
The assignment operator has right-to-left associativity, which means that when multiple assignment operators appear in an expression, they are evaluated from right to left. Thus, you can write code like this to assign a single value to multiple variables:
Besides the normal =
assignment operator, JavaScript supports a number of other assignment operators that provide shortcuts by combining assignment with some other operation. For example, the +=
operator performs addition and assignment. The following expression:
is equivalent to this one:
As you might expect, the +=
operator works for numbers or strings. For numeric operands, it performs addition and assignment; for string operands, it performs concatenation and assignment.
Similar operators include -=
, *=
, &=
, and so on. Table 4-2 lists them all.
Table 4-2. Assignment operators
Operator	Example	Equivalent
+= | a += b | a = a + b |
-= | a -= b | a = a - b |
*= | a *= b | a = a * b |
/= | a /= b | a = a / b |
%= | a %= b | a = a % b |
<<= | a <<= b | a = a << b |
>>= | a >>= b | a = a >> b |
>>>= | a >>>= b | a = a >>> b |
&= | a &= b | a = a & b |
|= | a |= b | a = a | b |
^= | a ^= b | a = a ^ b |
In most cases, the expression:
op=
bwhere op
is an operator, is equivalent to the expression:
op
bIn the first line, the expression a
is evaluated once. In the second it is evaluated twice. The two cases will differ only if a
includes side effects such as a function call or an increment operator. The following two assignments, for example, are not the same:
Like many interpreted languages, JavaScript has the ability to interpret strings of JavaScript source code, evaluating them to produce a value. JavaScript does this with the global function eval()
:
Dynamic evaluation of strings of source code is a powerful language feature that is almost never necessary in practice. If you find yourself using eval()
, you should think carefully about whether you really need to use it.
The subsections below explain the basic use of eval()
and then explain two restricted versions of it that have less impact on the optimizer.
eval()
is a function, but it is included in this chapter on expressions because it really should have been an operator. The earliest versions of the language defined an eval()
function, and ever since then language designers and interpreter writers have been placing restrictions on it that make it more and more operator-like. Modern JavaScript interpreters perform a lot of code analysis and optimization. The problem with eval()
is that the code it evaluates is, in general, unanalyzable. Generally speaking, if a function calls eval()
, the interpreter cannot optimize that function. The problem with defining eval()
as a function is that it can be given other names:
If this is allowed, then the interpreter can’t safely optimize any function that calls g()
. This issue could have been avoided if eval
was an operator (and a reserved word). We’ll learn below (in Global eval() and Strict eval()) about restrictions placed on eval()
to make it more operator-like.
eval()
expects one argument. If you pass any value other than a string, it simply returns that value. If you pass a string, it attempts to parse the string as JavaScript code, throwing a SyntaxError if it fails. If it successfully parses the string, then it evaluates the code and returns the value of the last expression or statement in the string or undefined
if the last expression or statement had no value. If the evaluated string throws an exception, that exception propogates from the call to eval()
.
The key thing about eval()
(when invoked like this) is that it uses the variable environment of the code that calls it. That is, it looks up the values of variables and defines new variables and functions in the same way that local code does. If a function defines a local variable x
and then calls eval("x")
, it will obtain the value of the local variable. If it calls eval("x=1")
, it changes the value of the local variable. And if the function calls eval("var y = 3;")
, it has declared a new local variable y
. Similarly a function can declare a local function with code like this:
If you call eval()
from top-level code, it operates on global variables and global functions, of course.
Note that the string of code you pass to eval()
must make syntactic sense on its own—you cannot use it to paste code fragments into a function. It makes no sense to write eval("return;")
, for example, because return
is only legal within functions, and the fact that the evaluated string uses the same variable environment as the calling function does not make it part of that function. If your string would make sense as a standalone script (even a very short one like x=0
), it is legal to pass to eval()
. Otherwise eval()
will throw a SyntaxError.
It is the ability of eval()
to change local variables that is so problematic to JavaScript optimizers. As a workaround, however, interpreters simply do less optimization on any function that calls eval()
. But what should a JavaScript interpreter do, however, if a script defines an alias for eval()
and then calls that function by another name? In order to simplify the job of JavaScript implementors, the ECMAScript 3 standard declared that interpreters did not have to allow this. If the eval()
function was invoked by any name other than “eval”, it was allowed to throw an EvalError.
In practice, most implementors did something else. When invoked by any other name, eval()
would evaluate the string as if it were top-level global code. The evaluated code might define new global variables or global functions, and it might set global variables, but it could not use or modify any variables local to the calling function, and would not, therefore, interfere with local optimizations.
ECMAScript 5 deprecates EvalError and standardizes the de facto behavior of eval()
. A “direct eval” is a call to the eval()
function with an expression that uses the exact, unqualified name “eval” (which is beginning to feel like a reserved word). Direct calls to eval()
use the variable environment of the calling context. Any other call—an indirect call—uses the global object as its variable environment and cannot read, write, or define local variables or functions. The following code demonstrates:
Notice that the ability to do a global eval is not just an accommodation to the needs of the optimizer, it is actually a tremendously useful feature: it allows you to execute strings of code as if they were independent, top-level scripts. As noted at the beginning of this section, it is rare to truly need to evaluate a string of code. But if you do find it necessary, you are more likely to want to do a global eval than a local eval.
Before IE9, IE differs from other browsers: it does not do a global eval when eval()
is invoked by a different name. (It doesn’t throw an EvalError either: it simply does a local eval.) But IE does define a global function named execScript()
that executes its string argument as if it were a top-level script. (Unlike eval()
, however, execScript()
always returns null
.)
ECMAScript 5 strict mode (see “use strict”) imposes further restrictions on the behavior of the eval()
function and even on the use of the identifier “eval”. When eval()
is called from strict mode code, or when the string of code to be evaluated itself begins with a “use strict” directive, then eval()
does a local eval with a private variable environment. This means that in strict mode, evaluated code can query and set local variables, but it cannot define new variables or functions in the local scope.
Furthermore, strict mode makes eval()
even more operator-like by effectively making “eval” into a reserved word. You are not allowed to overwrite the eval()
function with a new value. And you are not allowed to declare a variable, function, function parameter, or catch block parameter with the name “eval”.
JavaScript supports a number of other miscellaneous operators, described in the following sections.
The conditional operator is the only ternary operator (three operands) in JavaScript and is sometimes actually called the ternary operator. This operator is sometimes written ?:
, although it does not appear quite that way in code. Because this operator has three operands, the first goes before the ?
, the second goes between the ?
and the :
, and the third goes after the :
. It is used like this:
The operands of the conditional operator may be of any type. The first operand is evaluated and interpreted as a boolean. If the value of the first operand is truthy, then the second operand is evaluated, and its value is returned. Otherwise, if the first operand is falsy, then the third operand is evaluated and its value is returned. Only one of the second and third operands is evaluated, never both.
While you can achieve similar results using the if
statement (if), the ?:
operator often provides a handy shortcut. Here is a typical usage, which checks to be sure that a variable is defined (and has a meaningful, truthy value) and uses it if so or provides a default value if not:
This is equivalent to, but more compact than, the following if
statement:
typeof
is a unary operator that is placed before its single operand, which can be of any type. Its value is a string that specifies the type of the operand. The following table specifies the value of the typeof
operator for any JavaScript value:
x | typeof x |
---|---|
undefined | "undefined" |
null | "object" |
true or false | "boolean" |
any number or NaN | "number" |
any string | "string" |
any function | "function" |
any nonfunction native object | "object" |
any host object | An implementation-defined string, but not “undefined”, “boolean”, “number”, or “string”. |
You might use the typeof
operator in an expression like this:
The typeof
operator is also useful when used with the switch
statement (switch). Note that you can place parentheses around the operand to typeof
, which makes typeof
look like the name of a function rather than an operator keyword:
Note that typeof
returns “object” if the operand value is null
. If you want to distinguish null
from objects, you’ll have to explicitly test for this special-case value. typeof
may return a string other than “object” for host objects. In practice, however, most host objects in client-side JavaScript have a type of “object”.
Because typeof
evaluates to “object” for all object and array values other than functions, it is useful only to distinguish objects from other, primitive types. In order to distinguish one class of object from another, you must use other techniques, such as the instanceof
operator (see The instanceof Operator), the class attribute (see The class Attribute), or the constructor
property (see The prototype Attribute and The constructor Property).
Although functions in JavaScript are a kind of object, the typeof
operator considers functions to be sufficiently different that they have their own return value. JavaScript makes a subtle distinction between functions and “callable objects.” All functions are callable, but it is possible to have a callable object—that can be invoked just like a function—that is not a true function. The ECMAScript 3 spec says that the typeof
operator returns “function” for all native object that are callable. The ECMAScript 5 specification extends this to require that typeof
return “function” for all callable objects, whether native objects or host objects. Most browser vendors use native JavaScript function objects for the methods of their host objects. Microsoft, however, has always used non-native callable objects for their client-side methods, and before IE 9 the typeof
operator returns “object” for them, even though they behave like functions. In IE9 these client-side methods are now true native function objects. See Callable Objects for more on the distinction between true functions and callable objects.
delete
is an unary operator that attempts to delete the object property or array element specified as its operand.[3] Like the assignment, increment, and decrement operators, delete
is typically used for its property deletion side effect, and not for the value it returns. Some examples:
Note that a deleted property or array element is not merely set to the undefined
value. When a property is deleted, the property ceases to exist. Attempting to read a nonexistent property returns undefined
, but you can test for the actual existence of a property with the in
operator (The in Operator). Deleting an array element leaves a “hole” in the array and does not change the array’s length. The resulting array is sparse
.
delete
expects its operand to be an lvalue. If it is not an lvalue, the operator takes no action and returns true
. Otherwise, delete
attempts to delete the specified lvalue. delete
returns true
if it successfully deletes the specified lvalue. Not all properties can be deleted, however: some built-in core and client-side properties are immune from deletion, and user-defined variables declared with the var
statement cannot be deleted. Functions defined with the function
statement and declared function parameters cannot be deleted either.
In ECMAScript 5 strict mode, delete
raises a SyntaxError if its operand is an unqualified identifier such as a variable, function, or function parameter: it only works when the operand is a property access expression (Property Access Expressions). Strict mode also specifies that delete
raises a TypeError if asked to delete any nonconfigurable property (see Property Attributes). Outside of strict mode, no exception occurs in these cases and delete
simply returns false
to indicate that the operand could not be deleted.
Here are some example uses of the delete operator:
We’ll see the delete
operator again in Deleting Properties.
void
is a unary operator that appears before its single operand, which may be of any type. This operator is unusual and infrequently used: it evaluates its operand, then discards the value and returns undefined
. Since the operand value is discarded, using the void
operator makes sense only if the operand has side effects.
The most common use for this operator is in a client-side javascript:
URL, where it allows you to evaluate an expression for its side effects without the browser displaying the value of the evaluated expression. For example, you might use the void
operator in an HTML <a>
tag as follows:
This HTML could be more cleanly written using an onclick
event handler rather than a javascript:
URL, of course, and the void
operator would not be necessary in that case.
The comma operator is a binary operator whose operands may be of any type. It evaluates its left operand, evaluates its right operand, and then returns the value of the right operand. Thus, the following line:
evaluates to 2 and is basically equivalent to:
The left-hand expression is always evaluated, but its value is discarded, which means that it only makes sense to use the comma operator when the left-hand expression has side effects. The only situation in which the comma operator is commonly used is with a for
loop (for) that has multiple loop variables:
[3] If you are a C++ programmer, note that the delete
keyword in JavaScript is nothing like the delete
keyword in C++. In JavaScript, memory deallocation is handled automatically by garbage collection, and you never have to worry about explicitly freeing up memory. Thus, there is no need for a C++-style delete
to delete entire objects.
Chapter 4 described expressions as JavaScript phrases. By that analogy, statements are JavaScript sentences or commands. Just as English sentences are terminated and separated from each other with periods, JavaScript statements are terminated with semicolons (Optional Semicolons). Expressions are evaluated to produce a value, but statements are executed to make something happen.
One way to “make something happen” is to evaluate an expression that has side effects. Expressions with side effects, such as assignments and function invocations, can stand alone as statements, and when used this way they are known as expression statements. A similar category of statements are the declaration statements that declare new variables and define new functions.
JavaScript programs are nothing more than a sequence of statements to execute. By default, the JavaScript interpreter executes these statements one after another in the order they are written. Another way to “make something happen” is to alter this default order of execution, and JavaScript has a number of statements or control structures that do just this:
if
and switch
that make the JavaScript interpreter execute or skip other statements depending on the value of an expression.while
and for
that execute other statements repetitively.break
, return
, and throw
that cause the interpreter to jump to another part of the program.The sections that follow describe the various statements in JavaScript and explain their syntax. Table 5-1, at the end of the chapter, summarizes the syntax. A JavaScript program is simply a sequence of statements, separated from one another with semicolons, so once you are familiar with the statements of JavaScript, you can begin writing JavaScript programs.
The simplest kinds of statements in JavaScript are expressions that have side effects. (But see “use strict” for an important expression statement without side effects.) This sort of statement was shown in Chapter 4. Assignment statements are one major category of expression statements. For example:
The increment and decrement operators, ++
and --
, are related to assignment statements. These have the side effect of changing a variable value, just as if an assignment had been performed:
The delete
operator has the important side effect of deleting an object property. Thus, it is almost always used as a statement, rather than as part of a larger expression:
Function calls are another major category of expression statements. For example:
These client-side function calls are expressions, but they have side effects that affect the web browser and are used here as statements. If a function does not have any side effects, there is no sense in calling it, unless it is part of a larger expression or an assignment statement. For example, you wouldn’t just compute a cosine and discard the result:
But you might well compute the value and assign it to a variable for future use:
Note that each line of code in each of these examples is terminated with a semicolon.
Just as the comma operator (The Comma Operator (,)) combines multiple expressions into a single expression, a statement block combines multiple statements into a single compound statement. A statement block is simply a sequence of statements enclosed within curly braces. Thus, the following lines act as a single statement and can be used anywhere that JavaScript expects a single statement:
There are a few things to note about this statement block. First, it does not end with a semicolon. The primitive statements within the block end in semicolons, but the block itself does not. Second, the lines inside the block are indented relative to the curly braces that enclose them. This is optional, but it makes the code easier to read and understand. Finally, recall that JavaScript does not have block scope and variables declared within a statement block are not private to the block (see Function Scope and Hoisting for details).
Combining statements into larger statement blocks is extremely common in JavaScript programming. Just as expressions often contain subexpressions, many JavaScript statements contain substatements. Formally, JavaScript syntax usually allows a single substatement. For example, the while
loop syntax includes a single statement that serves as the body of the loop. Using a statement block, you can place any number of statements within this single allowed substatement.
A compound statement allows you to use multiple statements where JavaScript syntax expects a single statement. The empty statement is the opposite: it allows you to include no statements where one is expected. The empty statement looks like this:
The JavaScript interpreter takes no action when it executes an empty statement. The empty statement is occasionally useful when you want to create a loop that has an empty body. Consider the following for
loop (for
loops will be covered in for):
In this loop, all the work is done by the expression a[i++] = 0
, and no loop body is necessary. JavaScript syntax requires a statement as a loop body, however, so an empty statement—just a bare semicolon—is used.
Note that the accidental inclusion of a semicolon after the right parenthesis of a for
loop, while
loop, or if
statement can cause frustrating bugs that are difficult to detect. For example, the following code probably does not do what the author intended:
When you intentionally use the empty statement, it is a good idea to comment your code in a way that makes it clear that you are doing it on purpose. For example:
The var
and function
are declaration statements—they declare or define variables and functions. These statements define identifiers (variable and function names) that can be used elsewhere in your program and assign values to those identifiers. Declaration statements don’t do much themselves, but by creating variables and functions they, in an important sense, define the meaning of the other statements in your program.
The subsections that follow explain the var
statement and the function
statement, but do not cover variables and functions comprehensively. See Variable Declaration and Variable Scope for more on variables. And see Chapter 8 for complete details on functions.
The var
statement declares a variable or variables. Here’s the syntax:
name_1
[= value_1
] [,..., name_n
[= value_n
]]The var
keyword is followed by a comma-separated list of variables to declare; each variable in the list may optionally have an initializer expression that specifies its initial value. For example:
If a var
statement appears within the body of a function, it defines local variables, scoped to that function. When var
is used in top-level code, it declares global variables, visible throughout the JavaScript program. As noted in Variables As Properties, global variables are properties of the global object. Unlike other global properties, however, properties created with var
cannot be deleted.
If no initializer is specified for a variable with the var
statement, the variable’s initial value is undefined
. As described in Function Scope and Hoisting, variables are defined throughout the script or function in which they are declared—their declaration is “hoisted” up to the start of the script or function. Initialization, however, occurs at the location of the var
statement, and the value of the variable is undefined
before that point in the code.
Note that the var
statement can also appear as part of the for
and for/in
loops. (These variables are hoisted, just like variables declared outside of a loop.) Here are examples repeated from Variable Declaration:
Note that it is harmless to declare the same variable multiple times.
The function
keyword is used to define functions. We saw it in function definition expressions in Function Definition Expressions. It can also be used in statement form. Consider the following two functions:
A function declaration statement has the following syntax:
funcname
([arg1
[, arg2
[..., argn
]]]) {statements
funcname
is an identifier that names the function being declared. The function name is followed by a comma-separated list of parameter names in parentheses. These identifiers can be used within the body of the function to refer to the argument values passed when the function is invoked.
The body of the function is composed of any number of JavaScript statements, contained within curly braces. These statements are not executed when the function is defined. Instead, they are associated with the new function object for execution when the function is invoked. Note that the curly braces are a required part of the function
statement. Unlike statement blocks used with while
loops and other statements, a function body requires curly braces, even if the body consists of only a single statement.
Here are some more examples of function declarations:
Function declaration statements may appear in top-level JavaScript code, or they may be nested within other functions. When nested, however, function declarations may only appear at the top level of the function they are nested within. That is, function definitions may not appear within if
statements, while
loops, or any other statements. Because of this restriction on where function declarations may appear, the ECMAScript specification does not categorize function declarations as true statements. Some JavaScript implementations do allow function declarations to appear anywhere a statement can appear, but different implementations handle the details differently and placing function declarations within other statements is nonportable.
Function declaration statements differ from function definition expressions in that they include a function name. Both forms create a new function object, but the function declaration statement also declares the function name as a variable and assigns the function object to it. Like variables declared with var
, functions defined with function definition statements are implicitly “hoisted” to the top of the containing script or function, so that they are visible throughout the script or function. With var
, only the variable declaration is hoisted—the variable initialization code remains where you placed it. With function declaration statements, however, both the function name and the function body are hoisted: all functions in a script or all nested functions in a function are declared before any other code is run. This means that you can invoke a JavaScript function before you declare it.
Like the var
statement, function declaration statements create variables that cannot be deleted. These variables are not read-only, however, and their value can be overwritten.
Conditional statements execute or skip other statements depending on the value of a specified expression. These statements are the decision points of your code, and they are also sometimes known as “branches.” If you imagine a JavaScript interpreter following a path through your code, the conditional statements are the places where the code branches into two or more paths and the interpreter must choose which path to follow.
The subsections below explain JavaScript’s basic conditional, the if/else
statement, and also cover switch
, a more complicated multiway branch statement.
The if
statement is the fundamental control statement that allows JavaScript to make decisions, or, more precisely, to execute statements conditionally. This statement has two forms. The first is:
expression
)statement
In this form, expression
is evaluated. If the resulting value is truthy, statement
is executed. If expression
is falsy, statement
is not executed. (See Boolean Values for a definition of truthy and falsy values.) For example:
Or similarly:
Note that the parentheses around the expression
are a required part of the syntax for the if
statement.
JavaScript syntax requires a single statement after the if
keyword and parenthesized expression, but you can use a statement block to combine multiple statements into one. So the if
statement might also look like this:
The second form of the if
statement introduces an else
clause that is executed when expression
is false
. Its syntax is:
expression
)statement1
statement2
This form of the statement executes statement1
if expression
is truthy and executes statement2
if expression
is falsy. For example:
When you have nested if
statements with else
clauses, some caution is required to ensure that the else
clause goes with the appropriate if
statement. Consider the following lines:
In this example, the inner if
statement forms the single statement allowed by the syntax of the outer if
statement. Unfortunately, it is not clear (except from the hint given by the indentation) which if
the else
goes with. And in this example, the indentation is wrong, because a JavaScript interpreter actually interprets the previous example as:
The rule in JavaScript (as in most programming languages) is that by default an else
clause is part of the nearest if
statement. To make this example less ambiguous and easier to read, understand, maintain, and debug, you should use curly braces:
Although it is not the style used in this book, many programmers make a habit of enclosing the bodies of if
and else
statements (as well as other compound statements, such as while
loops) within curly braces, even when the body consists of only a single statement. Doing so consistently can prevent the sort of problem just shown.
The if/else
statement evaluates an expression and executes one of two pieces of code, depending on the outcome. But what about when you need to execute one of many pieces of code? One way to do this is with an else if
statement. else if
is not really a JavaScript statement, but simply a frequently used programming idiom that results when repeated if/else
statements are used:
There is nothing special about this code. It is just a series of if
statements, where each following if
is part of the else
clause of the previous statement. Using the else if
idiom is preferable to, and more legible than, writing these statements out in their syntactically equivalent, fully nested form:
An if
statement causes a branch in the flow of a program’s execution, and you can use the else if
idiom to perform a multiway branch. This is not the best solution, however, when all of the branches depend on the value of the same expression. In this case, it is wasteful to repeatedly evaluate that expression in multiple if
statements.
The switch
statement handles exactly this situation. The switch
keyword is followed by an expression in parentheses and a block of code in curly braces:
expression
) {statements
However, the full syntax of a switch
statement is more complex than this. Various locations in the block of code are labeled with the case
keyword followed by an expression and a colon. case
is like a labeled statement, except that instead of giving the labeled statement a name, it associates an expression with the statement. When a switch
executes, it computes the value of expression
and then looks for a case
label whose expression evaluates to the same value (where sameness is determined by the ===
operator). If it finds one, it starts executing the block of code at the statement labeled by the case
. If it does not find a case
with a matching value, it looks for a statement labeled default:
. If there is no default:
label, the switch
statement skips the block of code altogether.
switch
is a confusing statement to explain; its operation becomes much clearer with an example. The following switch
statement is equivalent to the repeated if/else
statements shown in the previous section:
Note the break
keyword used at the end of each case
in the code above. The break
statement, described later in this chapter, causes the interpreter to jump to the end (or “break out”) of the switch
statement and continue with the statement that follows it. The case
clauses in a switch
statement specify only the starting point of the desired code; they do not specify any ending point. In the absence of break
statements, a switch
statement begins executing its block of code at the case
label that matches the value of its expression
and continues executing statements until it reaches the end of the block. On rare occasions, it is useful to write code like this that “falls through” from one case
label to the next, but 99 percent of the time you should be careful to end every case
with a break
statement. (When using switch
inside a function, however, you may use a return
statement instead of a break
statement. Both serve to terminate the switch
statement and prevent execution from falling through to the next case
.)
Here is a more realistic example of the switch
statement; it converts a value to a string in a way that depends on the type of the value:
Note that in the two previous examples, the case
keywords are followed by number and string literals, respectively. This is how the switch
statement is most often used in practice, but note that the ECMAScript standard allows each case
to be followed by an arbitrary expression.
The switch
statement first evaluates the expression that follows the switch
keyword and then evaluates the case
expressions, in the order in which they appear, until it finds a value that matches.[4] The matching case is determined using the ===
identity operator, not the ==
equality operator, so the expressions must match without any type conversion.
Because not all of the case
expressions are evaluated each time the switch
statement is executed, you should avoid using case
expressions that contain side effects such as function calls or assignments. The safest course is simply to limit your case
expressions to constant expressions.
As explained earlier, if none of the case
expressions match the switch
expression, the switch
statement begins executing its body at the statement labeled default:
. If there is no default:
label, the switch
statement skips its body altogether. Note that in the examples above, the default:
label appears at the end of the switch
body, following all the case
labels. This is a logical and common place for it, but it can actually appear anywhere within the body of the statement.
[4] The fact that the case
expressions are evaluated at run-time makes the JavaScript switch
statement much different from (and less efficient than) the switch
statement of C, C++, and Java. In those languages, the case
expressions must be compile-time constants of the same type, and switch
statements can often compile down to highly efficient jump tables.
To understand conditional statements, we imagined the JavaScript interpreter following a branching path through your source code. The looping statements are those that bend that path back upon itself to repeat portions of your code. JavaScript has four looping statements: while
, do/while
, for
, and for/in
. The subsections below explain each in turn. One common use for loops is to iterate over the elements of an array. Iterating Arrays discusses this kind of loop in detail and covers special looping methods defined by the Array class.
Just as the if
statement is JavaScript’s basic conditional, the while
statement is JavaScript’s basic loop. It has the following syntax:
expression
)statement
To execute a while
statement, the interpreter first evaluates expression
. If the value of the expression is falsy, then the interpreter skips over the statement
that serves as the loop body and moves on to the next statement in the program. If, on the other hand, the expression
is truthy, the interpreter executes the statement
and repeats, jumping back to the top of the loop and evaluating expression
again. Another way to say this is that the interpreter executes statement
repeatedly while the expression
is truthy. Note that you can create an infinite loop with the syntax while(true)
.
Usually, you do not want JavaScript to perform exactly the same operation over and over again. In almost every loop, one or more variables change with each iteration of the loop. Since the variables change, the actions performed by executing statement
may differ each time through the loop. Furthermore, if the changing variable or variables are involved in expression
, the value of the expression may be different each time through the loop. This is important; otherwise, an expression that starts off truthy would never change, and the loop would never end! Here is an example of a while
loop that prints the numbers from 0 to 9:
As you can see, the variable count
starts off at 0 and is incremented each time the body of the loop runs. Once the loop has executed 10 times, the expression becomes false
(i.e., the variable count
is no longer less than 10), the while
statement finishes, and the interpreter can move on to the next statement in the program. Many loops have a counter variable like count
. The variable names i
, j
, and k
are commonly used as loop counters, though you should use more descriptive names if it makes your code easier to understand.
The do/while
loop is like a while
loop, except that the loop expression is tested at the bottom of the loop rather than at the top. This means that the body of the loop is always executed at least once. The syntax is:
statement
expression
);The do/while
loop is less commonly used than its while
cousin—in practice, it is somewhat uncommon to be certain that you want a loop to execute at least once. Here’s an example of a do/while
loop:
There are a couple of syntactic differences between the do/while
loop and the ordinary while
loop. First, the do
loop requires both the do
keyword (to mark the beginning of the loop) and the while
keyword (to mark the end and introduce the loop condition). Also, the do
loop must always be terminated with a semicolon. The while
loop doesn’t need a semicolon if the loop body is enclosed in curly braces.
The for
statement provides a looping construct that is often more convenient than the while
statement. The for
statement simplifies loops that follow a common pattern. Most loops have a counter variable of some kind. This variable is initialized before the loop starts and is tested before each iteration of the loop. Finally, the counter variable is incremented or otherwise updated at the end of the loop body, just before the variable is tested again. In this kind of loop, the initialization, the test, and the update are the three crucial manipulations of a loop variable. The for
statement encodes each of these three manipulations as an expression and makes those expressions an explicit part of the loop syntax:
initialize
; test
; increment
)statement
initialize
, test
, and increment
are three expressions (separated by semicolons) that are responsible for initializing, testing, and incrementing the loop variable. Putting them all in the first line of the loop makes it easy to understand what a for
loop is doing and prevents mistakes such as forgetting to initialize or increment the loop variable.
The simplest way to explain how a for
loop works is to show the equivalent while
loop[5]:
initialize
;test
) {statement
increment
;In other words, the initialize
expression is evaluated once, before the loop begins. To be useful, this expression must have side effects (usually an assignment). JavaScript also allows initialize
to be a var
variable declaration statement so that you can declare and initialize a loop counter at the same time. The test
expression is evaluated before each iteration and controls whether the body of the loop is executed. If test
evaluates to a truthy value, the statement
that is the body of the loop is executed. Finally, the increment
expression is evaluated. Again, this must be an expression with side effects in order to be useful. Generally, either it is an assignment expression, or it uses the ++
or --
operators.
We can print the numbers from 0 to 9 with a for
loop like the following. Contrast it with the equivalent while
loop shown in the previous section:
Loops can become a lot more complex than this simple example, of course, and sometimes multiple variables change with each iteration of the loop. This situation is the only place that the comma operator is commonly used in JavaScript; it provides a way to combine multiple initialization and increment expressions into a single expression suitable for use in a for
loop:
In all our loop examples so far, the loop variable has been numeric. This is quite common but is not necessary. The following code uses a for
loop to traverse a linked list data structure and return the last object in the list (i.e., the first object that does not have a next
property):
Note that the code above has no initialize
expression. Any of the three expressions may be omitted from a for
loop, but the two semicolons are required. If you omit the test
expression, the loop repeats forever, and for(;;)
is another way of writing an infinite loop, like while(true)
.
The for/in
statement uses the for
keyword, but it is a completely different kind of loop than the regular for
loop. A for/in
loop looks like this:
variable
in object
)statement
variable
typically names a variable, but it may be any expression that evaluates to an lvalue (Lvalues) or a var
statement that declares a single variable—it must be something suitable as the left side of an assignment expression. object
is an expression that evaluates to an object. As usual, statement
is the statement or statement block that serves as the body of the loop.
It is easy to use a regular for
loop to iterate through the elements of an array:
The for/in
loop makes it easy to do the same for the properties of an object:
To execute a for/in
statement, the JavaScript interpreter first evaluates the object
expression. If it evaluates to null
or undefined
, the interpreter skips the loop and moves on to the next statement.[6] If the expression evaluates to a primitive value, that value is converted to its equivalent wrapper object (Wrapper Objects). Otherwise, the expression is already an object. The interpreter now executes the body of the loop once for each enumerable property of the object. Before each iteration, however, the interpreter evaluates the variable
expression and assigns the name of the property (a string value) to it.
Note that the variable
in the for/in
loop may be an arbitrary expression, as long as it evaluates to something suitable for the left side of an assignment. This expression is evaluated each time through the loop, which means that it may evaluate differently each time. For example, you can use code like the following to copy the names of all object properties into an array:
JavaScript arrays are simply a specialized kind of object and array indexes are object properties that can be enumerated with a for/in
loop. For example, following the code above with this line enumerates the array indexes 0, 1, and 2:
The for/in
loop does not actually enumerate all properties of an object, only the enumerable properties (see Property Attributes). The various built-in methods defined by core JavaScript are not enumerable. All objects have a toString()
method, for example, but the for/in
loop does not enumerate this toString
property. In addition to built-in methods, many other properties of the built-in objects are nonenumerable. All properties and methods defined by your code are enumerable, however. (But in ECMAScript 5, you can make them nonenumerable using techniques explained in Property Attributes.) User-defined inherited properties (see Inheritance) are also enumerated by the for/in
loop.
If the body of a for/in
loop deletes a property that has not yet been enumerated, that property will not be enumerated. If the body of the loop defines new properties on the object, those properties will generally not be enumerated. (Some implementations may enumerate inherited properties that are added after the loop begins, however.)
The ECMAScript specification does not specify the order in which the for/in
loop enumerates the properties of an object. In practice, however, JavaScript implementations from all major browser vendors enumerate the properties of simple objects in the order in which they were defined, with older properties enumerated first. If an object was created as an object literal, its enumeration order is the same order that the properties appear in the literal. There are sites and libraries on the Web that rely on this enumeration order, and browser vendors are unlikely to change it.
The paragraph above specifies an interoperable property enumeration order for “simple” objects. Enumeration order becomes implementation dependent (and noninteroperable) if:
delete
to delete existing properties of the object; orObject.defineProperty()
(Property Attributes) or similar methods to alter property attributes of the object.Typically (but not in all implementations), inherited properties (see Inheritance) are enumerated after all the noninherited “own” properties of an object, but are also enumerated in the order in which they were defined. If an object inherits properties from more than one “prototype” (see Prototypes)—i.e., if it has more than one object in its “prototype chain”—then the properties of each prototype object in the chain are enumerated in creation order before enumerating the properties of the next object. Some (but not all) implementations enumerate array properties in numeric order rather than creation order, but they revert to creation order if the array is given other non-numeric properties as well or if the array is sparse (i.e., if some array indexes are missing).
Another category of JavaScript statements are jump statements. As the name implies, these cause the JavaScript interpreter to jump to a new location in the source code. The break
statement makes the interpreter jump to the end of a loop or other statement. continue
makes the interpreter skip the rest of the body of a loop and jump back to the top of a loop to begin a new iteration. JavaScript allows statements to be named, or labeled, and the break
and continue
can identify the target loop or other statement label.
The return
statement makes the interpreter jump from a function invocation back to the code that invoked it and also supplies the value for the invocation. The throw
statement raises, or “throws,” an exception and is designed to work with the try/catch/finally
statement, which establishes a block of exception handling code. This is a complicated kind of jump statement: when an exception is thrown, the interpreter jumps to the nearest enclosing exception handler, which may be in the same function or up the call stack in an invoking function.
Details of each of these jump statements are in the sections that follow.
Any statement may be labeled by preceding it with an identifier and a colon:
identifier
: statement
By labeling a statement, you give it a name that you can use to refer to it elsewhere in your program. You can label any statement, although it is only useful to label statements that have bodies, such as loops and conditionals. By giving a loop a name, you can use break
and continue
statements inside the body of the loop to exit the loop or to jump directly to the top of the loop to begin the next iteration. break
and continue
are the only JavaScript statements that use statement labels; they are covered later in this chapter. Here is an example of a labeled while
loop and a continue
statement that uses the label.
The identifier
you use to label a statement can be any legal JavaScript identifier that is not a reserved word. The namespace for labels is different than the namespace for variables and functions, so you can use the same identifier as a statement label and as a variable or function name. Statement labels are defined only within the statement to which they apply (and within its substatements, of course). A statement may not have the same label as a statement that contains it, but two statements may have the same label as long as neither one is nested within the other. Labeled statements may themselves be labeled. Effectively, this means that any statement may have multiple labels.
The break
statement, used alone, causes the innermost enclosing loop or switch
statement to exit immediately. Its syntax is simple:
Because it causes a loop or switch
to exit, this form of the break
statement is legal only if it appears inside one of these statements.
You’ve already seen examples of the break
statement within a switch
statement. In loops, it is typically used to exit prematurely when, for whatever reason, there is no longer any need to complete the loop. When a loop has complex termination conditions, it is often easier to implement some of these conditions with break
statements rather than trying to express them all in a single loop expression. The following code searches the elements of an array for a particular value. The loop terminates in the normal way when it reaches the end of the array; it terminates with a break
statement if it finds what it is looking for in the array:
JavaScript also allows the break
keyword to be followed by a statement label (just the identifier, with no colon):
labelname
;When break
is used with a label, it jumps to the end of, or terminates, the enclosing statement that has the specified label. It is a syntax error to use break
in this form if there is no enclosing statement with the specified label. With this form of the break
statement, the named statement need not be a loop or switch
: break
can “break out of” any enclosing statement. This statement can even be a statement block grouped within curly braces for the sole purpose of naming the block with a label.
A newline is not allowed between the break
keyword and the labelname
. This is a result of JavaScript’s automatic insertion of omitted semicolons: if you put a line terminator between the break
keyword and the label that follows, JavaScript assumes you meant to use the simple, unlabeled form of the statement and treats the line terminator as a semicolon. (See Optional Semicolons.)
You need the labeled form of the break
statement when you want to break out of a statement that is not the nearest enclosing loop or a switch. The following code demonstrates:
Finally, note that a break
statement, with or without a label, can not transfer control across function boundaries. You cannot label a function definition statement, for example, and then use that label inside the function.
The continue
statement is similar to the break
statement. Instead of exiting a loop, however, continue
restarts a loop at the next iteration. The continue
statement’s syntax is just as simple as the break
statement’s:
The continue
statement can also be used with a label:
labelname
;The continue
statement, in both its labeled and unlabeled forms, can be used only within the body of a loop. Using it anywhere else causes a syntax error.
When the continue
statement is executed, the current iteration of the enclosing loop is terminated, and the next iteration begins. This means different things for different types of loops:
while
loop, the specified expression
at the beginning of the loop is tested again, and if it’s true
, the loop body is executed starting from the top.do/while
loop, execution skips to the bottom of the loop, where the loop condition is tested again before restarting the loop at the top. for
loop, the increment
expression is evaluated, and the test
expression is tested again to determine if another iteration should be done.for/in
loop, the loop starts over with the next property name being assigned to the specified variable.Note the difference in behavior of the continue
statement in the while
and for
loops: a while
loop returns directly to its condition, but a for
loop first evaluates its increment
expression and then returns to its condition. Earlier we considered the behavior of the for
loop in terms of an “equivalent” while
loop. Because the continue
statement behaves differently for these two loops, however, it is not actually possible to perfectly simulate a for
loop with a while
loop alone.
The following example shows an unlabeled continue
statement being used to skip the rest of the current iteration of a loop when an error occurs:
Like the break
statement, the continue
statement can be used in its labeled form within nested loops, when the loop to be restarted is not the immediately enclosing loop. Also, like the break
statement, line breaks are not allowed between the continue
statement and its labelname
.
Recall that function invocations are expressions and that all expressions have values. A return
statement within a function specifies the value of invocations of that function. Here’s the syntax of the return
statement:
expression
;A return
statement may appear only within the body of a function. It is a syntax error for it to appear anywhere else. When the return
statement is executed, the function that contains it returns the value of expression
to its caller. For example:
With no return
statement, a function invocation simply executes each of the statements in the function body in turn until it reaches the end of the function, and then returns to its caller. In this case, the invocation expression evaluates to undefined
. The return
statement often appears as the last statement in a function, but it need not be last: a function returns to its caller when a return
statement is executed, even if there are other statements remaining in the function body.
The return
statement can also be used without an expression
to make the function return undefined
to its caller. For example:
Because of JavaScript’s automatic semicolon insertion (Optional Semicolons), you cannot include a line break between the return
keyword and the expression that follows it.
An exception is a signal that indicates that some sort of exceptional condition or error has occurred. To throw an exception is to signal such an error or exceptional condition. To catch an exception is to handle it—to take whatever actions are necessary or appropriate to recover from the exception. In JavaScript, exceptions are thrown whenever a runtime error occurs and whenever the program explicitly throws one using the throw
statement. Exceptions are caught with the try/catch/finally
statement, which is described in the next section.
The throw
statement has the following syntax:
expression
;expression
may evaluate to a value of any type. You might throw a number that represents an error code or a string that contains a human-readable error message. The Error class and its subclasses are used when the JavaScript interpreter itself throws an error, and you can use them as well. An Error object has a name
property that specifies the type of error and a message
property that holds the string passed to the constructor function (see the Error class in the reference section). Here is an example function that throws an Error object when invoked with an invalid argument:
When an exception is thrown, the JavaScript interpreter immediately stops normal program execution and jumps to the nearest exception handler. Exception handlers are written using the catch
clause of the try/catch/finally
statement, which is described in the next section. If the block of code in which the exception was thrown does not have an associated catch
clause, the interpreter checks the next highest enclosing block of code to see if it has an exception handler associated with it. This continues until a handler is found. If an exception is thrown in a function that does not contain a try/catch/finally
statement to handle it, the exception propagates up to the code that invoked the function. In this way, exceptions propagate up through the lexical structure of JavaScript methods and up the call stack. If no exception handler is ever found, the exception is treated as an error and is reported to the user.
The try/catch/finally
statement is JavaScript’s exception handling mechanism. The try
clause of this statement simply defines the block of code whose exceptions are to be handled. The try
block is followed by a catch
clause, which is a block of statements that are invoked when an exception occurs anywhere within the try
block. The catch
clause is followed by a finally
block containing cleanup code that is guaranteed to be executed, regardless of what happens in the try
block. Both the catch
and finally
blocks are optional, but a try
block must be accompanied by at least one of these blocks. The try
, catch
, and finally
blocks all begin and end with curly braces. These braces are a required part of the syntax and cannot be omitted, even if a clause contains only a single statement.
The following code illustrates the syntax and purpose of the try/catch/finally
statement:
Note that the catch
keyword is followed by an identifier in parentheses. This identifier is like a function parameter. When an exception is caught, the value associated with the exception (an Error object, for example) is assigned to this parameter. Unlike regular variables, the identifier associated with a catch
clause has block scope—it is only defined within the catch
block.
Here is a realistic example of the try/catch
statement. It uses the factorial()
method defined in the previous section and the client-side JavaScript methods prompt()
and alert()
for input and output:
This example is a try/catch
statement with no finally
clause. Although finally
is not used as often as catch
, it can be useful. However, its behavior requires additional explanation. The finally
clause is guaranteed to be executed if any portion of the try
block is executed, regardless of how the code in the try
block completes. It is generally used to clean up after the code in the try
clause.
In the normal case, the JavaScript interpreter reaches the end of the try
block and then proceeds to the finally
block, which performs any necessary cleanup. If the interpreter left the try
block because of a return
, continue
, or break
statement, the finally
block is executed before the interpreter jumps to its new destination.
If an exception occurs in the try
block and there is an associated catch
block to handle the exception, the interpreter first executes the catch
block and then the finally
block. If there is no local catch
block to handle the exception, the interpreter first executes the finally
block and then jumps to the nearest containing catch
clause.
If a finally
block itself causes a jump with a return
, continue
, break
, or throw
statement, or by calling a method that throws an exception, the interpreter abandons whatever jump was pending and performs the new jump. For example, if a finally
clause throws an exception, that exception replaces any exception that was in the process of being thrown. If a finally
clause issues a return
statement, the method returns normally, even if an exception has been thrown and has not yet been handled.
try
and finally
can be used together without a catch
clause. In this case, the finally
block is simply cleanup code that is guaranteed to be executed, regardless of what happens in the try
block. Recall that we can’t completely simulate a for
loop with a while
loop because the continue
statement behaves differently for the two loops. If we add a try/finally
statement, we can write a while
loop that works like a for
loop and that handles continue
statements correctly:
initialize
; test
; increment
) body;initialize
;test
) {body
; }increment
; }Note, however, that a body
that contains a break
statement behaves slightly differently (causing an extra increment before exiting) in the while
loop than it does in the for
loop, so even with the finally
clause, it is not possible to completely simulate the for
loop with while
.
This section describes the remaining three JavaScript statements—with
, debugger
, and use strict
.
In The Scope Chain, we discussed the scope chain—a list of objects that are searched, in order, to perform variable name resolution. The with
statement is used to temporarily extend the scope chain. It has the following syntax:
object
)statement
This statement adds object
to the front of the scope chain, executes statement
, and then restores the scope chain to its original state.
The with
statement is forbidden in strict mode (see “use strict”) and should be considered deprecated in non-strict mode: avoid using it whenever possible. JavaScript code that uses with
is difficult to optimize and is likely to run more slowly than the equivalent code written without the with
statement.
The common use of the with
statement is to make it easier to work with deeply nested object hierarchies. In client-side JavaScript, for example, you may have to type expressions like this one to access elements of an HTML form:
If you need to write expressions like this a number of times, you can use the with
statement to add the form object to the scope chain:
This reduces the amount of typing you have to do: you no longer need to prefix each form property name with document.forms[0]
. That object is temporarily part of the scope chain and is automatically searched when JavaScript needs to resolve an identifier such as address
. It is just as simple, of course, to avoid the with
statement and write the code above like this:
Keep in mind that the scope chain is used only when looking up identifiers, not when creating new ones. Consider this code:
If the object o
has a property x
, then this code assigns the value 1
to that property. But if x
is not defined in o
, this code is the same as x = 1
without the with
statement. It assigns to a local or global variable named x
, or creates a new property of the global object. A with
statement provides a shortcut for reading properties of o
, but not for creating new properties of o
.
The debugger
statement normally does nothing. If, however, a debugger program is available and is running, then an implementation may (but is not required to) perform some kind of debugging action. In practice, this statement acts like a breakpoint: execution of JavaScript code stops and you can use the debugger to print variables’ values, examine the call stack, and so on. Suppose, for example, that you are getting an exception in your function f()
because it is being called with an undefined argument, and you can’t figure out where this call is coming from. To help you in debugging this problem, you might alter f()
so that it begins like this:
Now, when f()
is called with no argument, execution will stop, and you can use the debugger to inspect the call stack and find out where this incorrect call is coming from.
debugger
was formally added to the language by ECMAScript 5, but it has been implemented by major browser vendors for quite some time. Note that it is not enough to have a debugger available: the debugger
statement won’t start the debugger for you. If a debugger is already running, however, this statement will cause a breakpoint. If you use the Firebug debugging extension for Firefox, for example, you must have Firebug enabled for the web page you want to debug in order for the debugger
statement to work.
"use strict"
is a directive introduced in ECMAScript 5. Directives are not statements (but are close enough that "use strict"
is documented here). There are two important differences between the "use strict"
directive and regular statements:
use
as a true keyword, allowing the quotation marks to be dropped. "use strict"
directive may be followed or preceded by other string literal expression statements, and JavaScript implementations are allowed to interpret these other string literals as implementation-defined directives. String literal expression statements that follow the first regular statement in a script or function are simply ordinary expression statements; they may not be interpreted as directives and they have no effect. The purpose of a "use strict"
directive is to indicate that the code that follows (in the script or function) is strict code. The top-level (nonfunction) code of a script is strict code if the script has a "use strict"
directive. A function body is strict code if it is defined within strict code or if it has a "use strict"
directive. Code passed to the eval()
method is strict code if eval()
is called from strict code or if the string of code includes a "use strict"
directive.
Strict code is executed in strict mode. The strict mode of ECMAScript 5 is a restricted subset of the language that fixes a few important language deficiencies and provides stronger error checking and increased security. The differences between strict mode and non-strict mode are the following (the first three are particularly important):
with
statement is not allowed in strict mode. catch
clause parameter, or property of the global object. (In non-strict mode, this implicitly declares a global variable by adding a new property to the global object.) this
value of undefined
. (In non-strict mode, functions invoked as functions are always passed the global object as their this
value.) This difference can be used to determine whether an implementation supports strict mode:call()
or apply()
, the this
value is exactly the value passed as the first argument to call()
or apply()
. (In nonstrict mode, null
and undefined
values are replaced with the global object and non-object values are converted to objects.) eval()
cannot declare variables or define functions in the caller’s scope as it can in non-strict mode. Instead, variable and function definitions live in a new scope created for the eval()
. This scope is discarded when the eval()
returns. arguments
object (Variable-Length Argument Lists: The Arguments Object) in a function holds a static copy of the values passed to the function. In non-strict mode, the arguments
object has “magical” behavior in which elements of the array and named function parameters both refer to the same value. delete
operator is followed by an unqualified identifier such as a variable, function, or function parameter. (In non-strict mode, such a delete
expression does nothing and evaluates to false
.) delete
expression evaluates to false
.) eval
and arguments
are treated like keywords, and you are not allowed to change their value. You cannot assign a value to these identifiers, declare them as variables, use them as function names, use them as function parameter names, or use them as the identifier of a catch
block. arguments.caller
and arguments.callee
both throw a TypeError within a strict mode function. Strict mode functions also have caller
and arguments
properties that throw TypeError when read. (Some implementations define these nonstandard properties on non-strict functions.) This chapter introduced each of the JavaScript language’s statements. Table 5-1 summarizes them, listing the syntax and purpose of each.
Table 5-1. JavaScript statement syntax
Statement | Syntax | Purpose |
---|---|---|
break | break [| Exit from the innermost loop or |
case | case | Label a statement within a |
continue | continue [| Begin next iteration of the innermost loop or the named loop |
debugger | debugger; | Debugger breakpoint |
default | default: | Label the default statement within a |
do/while | do | An alternative to the |
empty | ; | Do nothing |
for | for(| An easy-to-use loop |
for/in | for (| Enumerate the properties of |
function | function | Declare a function named |
if/else | if (| Execute |
label |
| Give |
return | return [| Return a value from a function |
switch | switch (| Multiway branch to |
throw | throw | Throw an exception |
try | | Handle exceptions |
use strict | "use strict"; | Apply strict mode restrictions to script or function |
var | var | Declare and initialize one or more variables |
while | while (| A basic loop construct |
with | with (|
JavaScript’s fundamental datatype is the object. An object is a composite value: it aggregates multiple values (primitive values or other objects) and allows you to store and retrieve those values by name. An object is an unordered collection of properties, each of which has a name and a value. Property names are strings, so we can say that objects map strings to values. This string-to-value mapping goes by various names: you are probably already familiar with the fundamental data structure under the name “hash,” “hashtable,” “dictionary,” or “associative array.” An object is more than a simple string-to-value map, however. In addition to maintaining its own set of properties, a JavaScript object also inherits the properties of another object, known as its “prototype.” The methods of an object are typically inherited properties, and this “prototypal inheritance” is a key feature of JavaScript.
JavaScript objects are dynamic—properties can usually be added and deleted—but they can be used to simulate the static objects and “structs” of statically typed languages. They can also be used (by ignoring the value part of the string-to-value mapping) to represent sets of strings.
Any value in JavaScript that is not a string, a number, true
, false
, null
, or undefined
is an object. And even though strings, numbers, and booleans are not objects, they behave like immutable objects (see Wrapper Objects).
Recall from Immutable Primitive Values and Mutable Object References that objects are mutable and are manipulated by reference rather than by value. If the variable x
refers to an object, and the code var y = x;
is executed, the variable y
holds a reference to the same object, not a copy of that object. Any modifications made to the object through the variable y
are also visible through the variable x
.
The most common things to do with objects are create them and to set, query, delete, test, and enumerate their properties. These fundamental operations are described in the opening sections of this chapter. The sections that follow cover more advanced topics, many of which are specific to ECMAScript 5.
A property has a name and a value. A property name may be any string, including the empty string, but no object may have two properties with the same name. The value may be any JavaScript value, or (in ECMAScript 5) it may be a getter or a setter function (or both). We’ll learn about getter and setter functions in Property Getters and Setters. In addition to its name and value, each property has associated values that we’ll call property attributes:
Prior to ECMAScript 5, all properties in objects created by your code are writable, enumerable, and configurable. In ECMAScript 5, you can configure the attributes of your properties. Property Attributes explains how to do this.
In addition to its properties, every object has three associated object attributes:
We’ll learn more about prototypes and property inheritance in Prototypes and Inheritance, and we will cover all three attributes in more detail in Object Attributes.
Finally, here are some terms we’ll use to distinguish among three broad categories of JavaScript objects and two types of properties:
Objects can be created with object literals, with the new
keyword, and (in ECMA Script 5) with the Object.create()
function. The subsections below describe each technique.
The easiest way to create an object is to include an object literal in your JavaScript code. An object literal is a comma-separated list of colon-separated name:value pairs, enclosed within curly braces. A property name is a JavaScript identifier or a string literal (the empty string is allowed). A property value is any JavaScript expression; the value of the expression (it may be a primitive value or an object value) becomes the value of the property. Here are some examples:
In ECMAScript 5 (and some ECMAScript 3 implementations), reserved words may be used as property names without quoting. In general, however, property names that are reserved words must be quoted in ECMAScript 3. In ECMAScript 5, a trailing comma following the last property in an object literal is ignored. Trailing commas are ignored in most ECMAScript 3 implementations, but IE considers them an error.
An object literal is an expression that creates and initializes a new and distinct object each time it is evaluated. The value of each property is evaluated each time the literal is evaluated. This means that a single object literal can create many new objects if it appears within the body of a loop in a function that is called repeatedly, and that the property values of these objects may differ from each other.
The new
operator creates and initializes a new object. The new
keyword must be followed by a function invocation. A function used in this way is called a constructor and serves to initialize a newly created object. Core JavaScript includes built-in constructors for native types. For example:
In addition to these built-in constructors, it is common to define your own constructor functions to initialize newly created objects. Doing so is covered in Chapter 9.
Before we can cover the third object creation technique, we must pause for a moment to explain prototypes. Every JavaScript object has a second JavaScript object (or null
, but this is rare) associated with it. This second object is known as a prototype, and the first object inherits properties from the prototype.
All objects created by object literals have the same prototype object, and we can refer to this prototype object in JavaScript code as Object.prototype
. Objects created using the new
keyword and a constructor invocation use the value of the prototype
property of the constructor function as their prototype. So the object created by new Object()
inherits from Object.prototype
just as the object created by {}
does. Similarly, the object created by new Array()
uses Array.prototype
as its prototype, and the object created by new Date()
uses Date.prototype
as its prototype.
Object.prototype
is one of the rare objects that has no prototype: it does not inherit any properties. Other prototype objects are normal objects that do have a prototype. All of the built-in constructors (and most user-defined constructors) have a prototype that inherits from Object.prototype
. For example, Date.prototype
inherits properties from Object.prototype
, so a Date object created by new Date()
inherits properties from both Date.prototype
and Object.prototype
. This linked series of prototype objects is known as a prototype chain.
An explanation of how property inheritance works is in Inheritance. We’ll learn how to query the prototype of an object in The prototype Attribute. And Chapter 9 explains the connection between prototypes and constructors in more detail: it shows how to define new “classes” of objects by writing a constructor function and setting its prototype
property to the prototype object to be used by the “instances” created with that constructor.
ECMAScript 5 defines a method, Object.create()
, that creates a new object, using its first argument as the prototype of that object. Object.create()
also takes an optional second argument that describes the properties of the new object. This second argument is covered in Property Attributes.
Object.create()
is a static function, not a method invoked on individual objects. To use it, simply pass the desired prototype object:
You can pass null
to create a new object that does not have a prototype, but if you do this, the newly created object will not inherit anything, not even basic methods like toString()
(which means it won’t work with the +
operator either):
If you want to create an ordinary empty object (like the object returned by {}
or new Object()
), pass Object.prototype
:
The ability to create a new object with an arbitrary prototype (put another way: the ability to create an “heir” for any object) is a powerful one, and we can simulate it in ECMAScript 3 with a function like the one in Example 6-1.[7]
Example 6-1. Creating a new object that inherits from a prototype
The code in the inherit()
function will make more sense after we’ve covered constructors in Chapter 9. For now, please just accept that it returns a new object that inherits the properties of the argument object. Note that inherit()
is not a full replacement for Object.create()
: it does not allow the creation of objects with null
prototypes, and it does not accept the optional second argument that Object.create()
does. Nevertheless, we’ll use inherit()
in a number of examples in this chapter and again in Chapter 9.
One use for our inherit()
function is when you want to guard against unintended (but nonmalicious) modification of an object by a library function that you don’t have control over. Instead of passing the object directly to the function, you can pass an heir. If the function reads properties of the heir, it will see the inherited values. If it sets properties, however, those properties will only affect the heir, not your original object:
To understand why this works, you need to know how properties are queried and set in JavaScript. These are the topics of the next section.
[7] Douglas Crockford is generally credited as the first to propose a function that creates objects in this way. See http://javascript.crockford.com/prototypal.html.
To obtain the value of a property, use the dot (.
) or square bracket ([]
) operators described in Property Access Expressions. The left-hand side should be an expression whose value is an object. If using the dot operator, the right-hand must be a simple identifier that names the property. If using square brackets, the value within the brackets must be an expression that evaluates to a string that contains the desired property name:
To create or set a property, use a dot or square brackets as you would to query the property, but put them on the left-hand side of an assignment expression:
In ECMAScript 3, the identifier that follows the dot operator cannot be a reserved word: you cannot write o.for
or o.class
, for example, because for
is a language keyword and class
is reserved for future use. If an object has properties whose name is a reserved word, you must use square bracket notation to access them: o["for"]
and o["class"]
. ECMAScript 5 relaxes this restriction (as do some implementations of ECMAScript 3) and allows reserved words to follow the dot.
When using square bracket notation, we’ve said that the expression inside the square brackets must evaluate to a string. A more precise statement is that the expression must evaluate to a string or a value that can be converted to a string. In Chapter 7, for example, we’ll see that it is common to use numbers inside the square brackets.
As explained above, the following two JavaScript expressions have the same value:
The first syntax, using the dot and an identifier, is like the syntax used to access a static field of a struct or object in C or Java. The second syntax, using square brackets and a string, looks like array access, but to an array indexed by strings rather than by numbers. This kind of array is known as an associative array (or hash or map or dictionary). JavaScript objects are associative arrays, and this section explains why that is important.
In C, C++, Java, and similar strongly typed languages, an object can have only a fixed number of properties, and the names of these properties must be defined in advance. Since JavaScript is a loosely typed language, this rule does not apply: a program can create any number of properties in any object. When you use the .
operator to access a property of an object, however, the name of the property is expressed as an identifier. Identifiers must be typed literally into your JavaScript program; they are not a datatype, so they cannot be manipulated by the program.
On the other hand, when you access a property of an object with the []
array notation, the name of the property is expressed as a string. Strings are JavaScript datatypes, so they can be manipulated and created while a program is running. So, for example, you can write the following code in JavaScript:
This code reads and concatenates the address0
, address1
, address2
, and address3
properties of the customer
object.
This brief example demonstrates the flexibility of using array notation to access properties of an object with string expressions. The code above could be rewritten using the dot notation, but there are cases in which only the array notation will do. Suppose, for example, that you are writing a program that uses network resources to compute the current value of the user’s stock market investments. The program allows the user to type in the name of each stock she owns as well as the number of shares of each stock. You might use an object named portfolio
to hold this information. The object has one property for each stock. The name of the property is the name of the stock, and the property value is the number of shares of that stock. So, for example, if a user holds 50 shares of stock in IBM, the portfolio.ibm
property has the value 50
.
Part of this program might be a function for adding a new stock to the portfolio:
Since the user enters stock names at runtime, there is no way that you can know the property names ahead of time. Since you can’t know the property names when you write the program, there is no way you can use the .
operator to access the properties of the portfolio
object. You can use the []
operator, however, because it uses a string value (which is dynamic and can change at runtime) rather than an identifier (which is static and must be hardcoded in the program) to name the property.
Chapter 5 introduced the for/in
loop (and we’ll see it again shortly in Enumerating Properties). The power of this JavaScript statement becomes clear when you consider its use with associative arrays. Here’s how you’d use it when computing the total value of a portfolio:
JavaScript objects have a set of “own properties,” and they also inherit a set of properties from their prototype object. To understand this, we must consider property access in more detail. The examples in this section use the inherit()
function from Example 6-1 in order to create objects with specified prototypes.
Suppose you query the property x
in the object o
. If o
does not have an own property with that name, the prototype object of o
is queried for the property x
. If the prototype object does not have an own property by that name, but has a prototype itself, the query is performed on the prototype of the prototype. This continues until the property x
is found or until an object with a null
prototype is searched. As you can see, the prototype attribute of an object creates a chain or linked list from which properties are inherited.
Now suppose you assign to the property x
of the object o
. If o
already has an own (noninherited) property named x
, then the assignment simply changes the value of this existing property. Otherwise, the assignment creates a new property named x
on the object o
. If o
previously inherited the property x
, that inherited property is now hidden by the newly created own property with the same name.
Property assignment examines the prototype chain to determine whether the assignment is allowed. If o
inherits a read-only property named x
, for example, then the assignment is not allowed. (Details about when a property may be set are in Property Access Errors.) If the assignment is allowed, however, it always creates or sets a property in the original object and never modifies the prototype chain. The fact that inheritance occurs when querying properties but not when setting them is a key feature of JavaScript because it allows us to selectively override inherited properties:
There is one exception to the rule that a property assignment either fails or creates or sets a property in the original object. If o
inherits the property x
, and that property is an accessor property with a setter method (see Property Getters and Setters), then that setter method is called rather than creating a new property x
in o
. Note, however, that the setter method is called on the object o
, not on the prototype object that defines the property, so if the setter method defines any properties, it will do so on o
, and it will again leave the prototype chain unmodified.
Property access expressions do not always return or set a value. This section explains the things that can go wrong when you query or set a property.
It is not an error to query a property that does not exist. If the property x
is not found as an own property or an inherited property of o
, the property access expression o.x
evaluates to undefined
. Recall that our book object has a “sub-title” property, but not a “subtitle” property:
It is an error, however, to attempt to query a property of an object that does not exist. The null
and undefined
values have no properties, and it is an error to query properties of these values. Continuing the above example:
Unless you are certain that both book
and book.subtitle
are (or behave like) objects, you shouldn’t write the expression book.subtitle.length
, since it might raise an exception. Here are two ways to guard against this kind of exception:
To understand why this idiomatic expression works to prevent TypeError exceptions, you might want to review the short-circuiting behavior of the &&
operator in Logical AND (&&).
Attempting to set a property on null
or undefined
also causes a TypeError, of course. Attempts to set properties on other values do not always succeed, either: some properties are read-only and cannot be set, and some objects do not allow the addition of new properties. Curiously, however, these failed attempts to set properties usually fail silently:
This historical quirk of JavaScript is rectified in the strict mode of ECMAScript 5. In strict mode, any failed attempt to set a property throws a TypeError exception.
The rules that specify when a property assignment succeeds and when it fails are intuitive but difficult to express concisely. An attempt to set a property p
of an object o
fails in these circumstances:
o
has an own property p
that is read-only: it is not possible to set read-only properties. (See the defineProperty()
method, however, for an exception that allows configurable read-only properties to be set.)o
has an inherited property p
that is read-only: it is not possible to hide an inherited read-only property with an own property of the same name. o
does not have an own property p
; o
does not inherit a property p
with a setter method, and o
’s extensible
attribute (see The extensible Attribute) is false
. If p
does not already exist on o
, and if there is no setter method to call, then p
must be added to o
. But if o
is not extensible, then no new properties can be defined on it.The delete
operator (The delete Operator) removes a property from an object. Its single operand should be a property access expression. Surprisingly, delete
does not operate on the value of the property but on the property itself:
The delete
operator only deletes own properties, not inherited ones. (To delete an inherited property, you must delete it from the prototype object in which it is defined. Doing this affects every object that inherits from that prototype.)
A delete
expression evaluates to true
if the delete succeeded or if the delete had no effect (such as deleting a nonexistent property). delete
also evaluates to true
when used (meaninglessly) with an expression that is not a property access expression:
delete
does not remove properties that have a configurable attribute of false
. (Though it will remove configurable properties of nonextensible objects.) Certain properties of built-in objects are nonconfigurable, as are properties of the global object created by variable declaration and function declaration. In strict mode, attempting to delete a nonconfigurable property causes a TypeError. In non-strict mode (and in ECMAScript 3), delete
simply evaluates to false
in this case:
When deleting configurable properties of the global object in non-strict mode, you can omit the reference to the global object and simply follow the delete
operator with the property name:
In strict mode, however, delete
raises a SyntaxError if its operand is an unqualified identifier like x
, and you have to be explicit about the property access:
JavaScript objects can be thought of as sets of properties, and it is often useful to be able to test for membership in the set—to check whether an object has a property with a given name. You can do this with the in
operator, with the hasOwnProperty()
and property
IsEnumerable()
methods, or simply by querying the property.
The in
operator expects a property name (as a string) on its left side and an object on its right. It returns true
if the object has an own property or an inherited property by that name:
The hasOwnProperty()
method of an object tests whether that object has an own property with the given name. It returns false
for inherited properties:
The propertyIsEnumerable()
refines the hasOwnProperty()
test. It returns true
only if the named property is an own property and its enumerable
attribute is true
. Certain built-in properties are not enumerable. Properties created by normal JavaScript code are enumerable unless you’ve used one of the ECMAScript 5 methods shown later to make them nonenumerable.
Instead of using the in
operator it is often sufficient to simply query the property and use !==
to make sure it is not undefined:
There is one thing the in
operator can do that the simple property access technique shown above cannot do. in
can distinguish between properties that do not exist and properties that exist but have been set to undefined
. Consider this code:
Note that the code above uses the !==
operator instead of !=
. !==
and ===
distinguish between undefined
and null
. Sometimes, however, you don’t want to make this distinction:
Instead of testing for the existence of individual properties, we sometimes want to iterate through or obtain a list of all the properties of an object. This is usually done with the for/in
loop, although ECMAScript 5 provides two handy alternatives.
The for/in
loop was covered in for/in. It runs the body of the loop once for each enumerable property (own or inherited) of the specified object, assigning the name of the property to the loop variable. Built-in methods that objects inherit are not enumerable, but the properties that your code adds to objects are enumerable (unless you use one of the functions described later to make them nonenumerable). For example:
Some utility libraries add new methods (or other properties) to Object.prototype
so that they are inherited by, and available to, all objects. Prior to ECMAScript 5, however, there is no way to make these added methods nonenumerable, so they are enumerated by for/in
loops. To guard against this, you might want to filter the properties returned by for/in
. Here are two ways you might do so:
Example 6-2 defines utility functions that use for/in
loops to manipulate object properties in helpful ways. The extend()
function, in particular, is one that is commonly included in JavaScript utility libraries.[8]
Example 6-2. Object utility functions that enumerate properties
In addition to the for/in
loop, ECMAScript 5 defines two functions that enumerate property names. The first is Object.keys()
, which returns an array of the names of the enumerable own properties of an object. It works just like the keys()
utility function shown in Example 6-2.
The second ECMAScript 5 property enumeration function is Object.getOwnPropertyNames()
. It works like Object.keys()
but returns the names of all the own properties of the specified object, not just the enumerable properties. There is no way to write this function in ECMAScript 3, because ECMAScript 3 does not provide a way to obtain the nonenumerable properties of an object.
[8] The implementation of extend()
shown here is correct but does not compensate for a well-known bug in Internet Explorer. We’ll see a more robust version of extend()
in Example 8-3.
We’ve said that an object property is a name, a value, and a set of attributes. In ECMAScript 5[9] the value may be replaced by one or two methods, known as a getter and a setter. Properties defined by getters and setters are sometimes known as accessor properties to distinguish them from data properties that have a simple value.
When a program queries the value of an accessor property, JavaScript invokes the getter method (passing no arguments). The return value of this method becomes the value of the property access expression. When a program sets the value of an accessor property, JavaScript invokes the setter method, passing the value of the right-hand side of the assignment. This method is responsible for “setting,” in some sense, the property value. The return value of the setter method is ignored.
Accessor properties do not have a writable attribute as data properties do. If a property has both a getter and a setter method, it is a read/write property. If it has only a getter method, it is a read-only property. And if it has only a setter method, it is a write-only property (something that is not possible with data properties) and attempts to read it always evaluate to undefined
.
The easiest way to define accessor properties is with an extension to the object literal syntax:
Accessor properties are defined as one or two functions whose name is the same as the property name, and with the function
keyword replaced with get
and/or set
. Note that no colon is used to separate the name of the property from the functions that access that property, but that a comma is still required after the function body to separate the method from the next method or data property. As an example, consider the following object that represents a 2D Cartesian point. It has ordinary data properties to represent the X and Y coordinates of the point, and it has accessor properties for the equivalent polar coordinates of the point:
Note the use of the keyword this
in the getters and setter above. JavaScript invokes these functions as methods of the object on which they are defined, which means that within the body of the function this
refers to the point object. So the getter method for the r
property can refer to the x
and y
properties as this.x
and this.y
. Methods and the this
keyword are covered in more detail in Method Invocation.
Accessor properties are inherited, just as data properties are, so you can use the object p
defined above as a prototype for other points. You can give the new objects their own x
and y
properties, and they’ll inherit the r
and theta
properties:
The code above uses accessor properties to define an API that provides two representations (Cartesian coordinates and polar coordinates) of a single set of data. Other reasons to use accessor properties include sanity checking of property writes and returning different values on each property read:
Finally, here is one more example that uses a getter method to implement a property with “magical” behavior.
This section has shown only how to define accessor properties when creating a new object from an object literal. The next section shows how to add accessor properties to existing objects.
In addition to a name and value, properties have attributes that specify whether they can be written, enumerated, and configured. In ECMAScript 3, there is no way to set these attributes: all properties created by ECMAScript 3 programs are writable, enumerable, and configurable, and there is no way to change this. This section explains the ECMAScript 5 API for querying and setting property attributes. This API is particularly important to library authors because:
For the purposes of this section, we are going to consider getter and setter methods of an accessor property to be property attributes. Following this logic, we’ll even say that the value of a data property is an attribute as well. Thus, we can say that a property has a name and four attributes. The four attributes of a data property are value, writable, enumerable, and configurable. Accessor properties don’t have a value attribute or a writable attribute: their writability is determined by the presence or absence of a setter. So the four attributes of an accessor property are get, set, enumerable, and configurable.
The ECMAScript 5 methods for querying and setting the attributes of a property use an object called a property descriptor to represent the set of four attributes. A property descriptor object has properties with the same names as the attributes of the property it describes. Thus, the property descriptor object of a data property has properties named value
, writable
, enumerable
, and configurable
. And the descriptor for an accessor property has get
and set
properties instead of value
and writable
. The writable
, enumerable
, and configurable
properties are boolean values, and the get
and set
properties are function values, of course.
To obtain the property descriptor for a named property of a specified object, call Object.getOwnPropertyDescriptor()
:
As its name implies, Object.getOwnPropertyDescriptor()
works only for own properties. To query the attributes of inherited properties, you must explicitly traverse the prototype chain (see Object.getPrototypeOf()
in The prototype Attribute).
To set the attributes of a property, or to create a new property with the specified attributes, call Object.defineProperty()
, passing the object to be modified, the name of the property to be created or altered, and the property descriptor object:
The property descriptor you pass to Object.defineProperty()
does not have to include all four attributes. If you’re creating a new property, then omitted attributes are taken to be false
or undefined
. If you’re modifying an existing property, then the attributes you omit are simply left unchanged. Note that this method alters an existing own property or creates a new own property, but it will not alter an inherited property.
If you want to create or modify more than one property at a time, use Object.defineProperties()
. The first argument is the object that is to be modified. The second argument is an object that maps the names of the properties to be created or modified to the property descriptors for those properties. For example:
This code starts with an empty object, then adds two data properties and one read-only accessor property to it. It relies on the fact that Object.defineProperties()
returns the modified object (as does Object.defineProperty()
).
We saw the ECMAScript 5 method Object.create()
in Creating Objects. We learned there that the first argument to that method is the prototype object for the newly created object. This method also accepts a second optional argument, which is the same as the second argument to Object.defineProperties()
. If you pass a set of property descriptors to Object.create()
, then they are used to add properties to the newly created object.
Object.defineProperty()
and Object.defineProperties()
throw TypeError if the attempt to create or modify a property is not allowed. This happens if you attempt to add a new property to a nonextensible (see The extensible Attribute) object. The other reasons that these methods might throw TypeError have to do with the attributes themselves. The writable attribute governs attempts to change the value attribute. And the configurable attribute governs attempts to change the other attributes (and also specifies whether a property can be deleted). The rules are not completely straightforward, however. It is possible to change the value of a nonwritable property if that property is configurable, for example. Also, it is possible to change a property from writable to nonwritable even if that property is nonconfigurable. Here are the complete rules. Calls to Object
.
define
Property()
or Object.defineProperties()
that attempt to violate them throw TypeError:
false
to true
, but you can change it from true
to false
. Example 6-2 included an extend()
function that copied properties from one object to another. That function simply copied the name and value of the properties and ignored their attributes. Furthermore, it did not copy the getter and setter methods of accessor properties, but simply converted them into static data properties. Example 6-3 shows a new version of extend()
that uses Object.getOwnPropertyDescriptor()
and Object.defineProperty()
to copy all property attributes. Rather than being written as a function, this version is defined as a new Object method and is added as a nonenumerable property to Object.prototype
.
Example 6-3. Copying property attributes
The object literal syntax for accessor properties described in Property Getters and Setters allows us to define accessor properties in new objects, but it doesn’t allow us to query the getter and setter methods or to add new accessor properties to existing objects. In ECMAScript 5 we can use Object.getOwnPropertyDescriptor()
and Object.defineProperty()
to do these things.
Most JavaScript implementations (with the major exception of the IE web browser) supported the object literal get
and set
syntax even before the adoption of ECMAScript 5. These implementations support a nonstandard legacy API for querying and setting getters and setters. This API consists of four methods available on all objects. __lookupGetter__()
and __lookupSetter__()
return the getter or setter method for a named property. And __defineGetter__()
and __defineSetter__()
define a getter or setter: pass the property name first and the getter or setter method second. The names of each of these methods begin and end with double underscores to indicate that they are nonstandard methods. These nonstandard methods are not documented in the reference section.
Every object has associated prototype, class, and extensible attributes. The subsections that follow explain what these attributes do and (where possible) how to query and set them.
An object’s prototype attribute specifies the object from which it inherits properties. (Review Prototypes and Inheritance for more on prototypes and property inheritance.) This is such an important attribute that we’ll usually simply say “the prototype of o
” rather than “the prototype attribute of o
.” Also, it is important to understand that when prototype
appears in code font, it refers to an ordinary object property, not to the prototype attribute.
The prototype attribute is set when an object is created. Recall from Prototypes that objects created from object literals use Object.prototype
as their prototype. Objects created with new
use the value of the prototype
property of their constructor function as their prototype. And objects created with Object.create()
use the first argument to that function (which may be null
) as their prototype.
In ECMAScript 5, you can query the prototype of any object by passing that object to Object.getPrototypeOf()
. There is no equivalent function in ECMAScript 3, but it is often possible to determine the prototype of an object o
using the expression o.constructor
.
prototype
. Objects created with a new
expression usually inherit a constructor
property that refers to the constructor function used to create the object. And, as described above, constructor functions have a prototype
property that specifies the prototype for objects created using that constructor. This is explained in more detail in Classes and Constructors, which also explains why it is not a completely reliable method for determining an object’s prototype. Note that objects created by object literals or by Object
.
create()
have a constructor
property that refers to the Object()
constructor. Thus, constructor
.
prototype
refers to the correct prototype for object literals, but does not usually do so for objects created with Object.create()
.
To determine whether one object is the prototype of (or is part of the prototype chain of) another object, use the isPrototypeOf()
method. To find out if p
is the prototype of o
write p.isPrototypeOf(o)
. For example:
Note that isPrototypeOf()
performs a function similar to the instanceof
operator (see The instanceof Operator).
Mozilla’s implementation of JavaScript has (since the early days of Netscape) exposed the prototype attribute through the specially named __proto__
property, and you can use this property to directly query or set the prototype of any object. Using __proto__
is not portable: it has not been (and probably never will be) implemented by IE or Opera, although it is currently supported by Safari and Chrome. Versions of Firefox that implement ECMAScript 5 still support __proto__
, but restrict its ability to change the prototype of nonextensible objects.
An object’s class attribute is a string that provides information about the type of the object. Neither ECMAScript 3 nor ECMAScript 5 provide any way to set this attribute, and there is only an indirect technique for querying it. The default toString()
method (inherited from Object.prototype
) returns a string of the form:
class
]So to obtain the class of an object, you can invoke this toString()
method on it, and extract the eighth through the second-to-last characters of the returned string. The tricky part is that many objects inherit other, more useful toString()
methods, and to invoke the correct version of toString()
, we must do so indirectly, using the Function
.
call()
method (see The call() and apply() Methods). Example 6-4 defines a function that returns the class of any object you pass it.
Example 6-4. A classof() function
This classof()
function works for any JavaScript value. Numbers, strings, and booleans behave like objects when the toString()
method is invoked on them, and the function includes special cases for null
and undefined
. (The special cases are not required in ECMAScript 5.) Objects created through built-in constructors such as Array
and Date
have class attributes that match the names of their constructors. Host objects typically have meaningful class attributes as well, though this is implementation-dependent. Objects created through object literals or by Object.create
have a class attribute of “Object”. If you define your own constructor function, any objects you create with it will have a class attribute of “Object”: there is no way to specify the class attribute for your own classes of objects:
The extensible attribute of an object specifies whether new properties can be added to the object or not. In ECMAScript 3, all built-in and user-defined objects are implicitly extensible, and the extensibility of host objects is implementation defined. In ECMAScript 5, all built-in and user-defined objects are extensible unless they have been converted to be nonextensible, and the extensibility of host objects is again implementation defined.
ECMAScript 5 defines functions for querying and setting the extensibility of an object. To determine whether an object is extensible, pass it to Object.isExtensible()
. To make an object nonextensible, pass it to Object.preventExtensions()
. Note that there is no way to make an object extensible again once you have made it nonextensible. Also note that calling preventExtensions()
only affects the extensibility of the object itself. If new properties are added to the prototype of a nonextensible object, the nonextensible object will inherit those new properties.
The purpose of the extensible attribute is to be able to “lock down” objects into a known state and prevent outside tampering. The extensible object attribute is often used in conjunction with the configurable and writable property attributes, and ECMAScript 5 defines functions that make it easy to set these attributes together.
Object.seal()
works like Object.preventExtensions()
, but in addition to making the object nonextensible, it also makes all of the own properties of that object nonconfigurable. This means that new properties cannot be added to the object, and existing properties cannot be deleted or configured. Existing properties that are writable can still be set, however. There is no way to unseal a sealed object. You can use Object.isSealed()
to determine whether an object is sealed.
Object.freeze()
locks objects down even more tightly. In addition to making the object nonextensible and its properties nonconfigurable, it also makes all of the object’s own data properties read-only. (If the object has accessor properties with setter methods, these are not affected and can still be invoked by assignment to the property.) Use Object.isFrozen()
to determine if an object is frozen.
It is important to understand that Object.seal()
and Object.freeze()
affect only the object they are passed: they have no effect on the prototype of that object. If you want to thoroughly lock down an object, you probably need to seal or freeze the objects in the prototype chain as well.
Object.preventExtensions()
, Object.seal()
, and Object.freeze()
all return the object that they are passed, which means that you can use them in nested function invocations:
Object serialization is the process of converting an object’s state to a string from which it can later be restored. ECMAScript 5 provides native functions JSON.stringify()
and JSON.parse()
to serialize and restore JavaScript objects. These functions use the JSON data interchange format. JSON stands for “JavaScript Object Notation,” and its syntax is very similar to that of JavaScript object and array literals:
The native implementation of these functions in ECMAScript 5 was modeled very closely after the public-domain ECMAScript 3 implementation available at http://json.org/json2.js. For practical purposes, the implementations are the same, and you can use these ECMAScript 5 functions in ECMAScript 3 with this json2.js module.
JSON syntax is a subset of JavaScript syntax, and it cannot represent all JavaScript values. Objects, arrays, strings, finite numbers, true
, false
, and null
are supported and can be serialized and restored. NaN
, Infinity
, and -Infinity
are serialized to null
. Date objects are serialized to ISO-formatted date strings (see the Date.toJSON()
function), but JSON.parse()
leaves these in string form and does not restore the original Date object. Function, RegExp, and Error objects and the undefined
value cannot be serialized or restored. JSON.stringify()
serializes only the enumerable own properties of an object. If a property value cannot be serialized, that property is simply omitted from the stringified output. Both JSON.stringify()
and JSON.parse()
accept optional second arguments that can be used to customize the serialization and/or restoration process by specifying a list of properties to be serialized, for example, or by converting certain values during the serialization or stringification process. Complete documentation for these functions is in the reference section.
As discussed earlier, all JavaScript objects (except those explicitly created without a prototype) inherit properties from Object.prototype
. These inherited properties are primarily methods, and because they are universally available, they are of particular interest to JavaScript programmers. We’ve already seen the hasOwnProperty()
, property
Is
Enumerable()
, and isPrototypeOf()
methods. (And we’ve also already covered quite a few static functions defined on the Object
constructor, such as Object
.
create()
and Object.getPrototypeOf()
.) This section explains a handful of universal object methods that are defined on Object.prototype
, but which are intended to be overridden by other, more specialized classes.
The toString()
method takes no arguments; it returns a string that somehow represents the value of the object on which it is invoked. JavaScript invokes this method of an object whenever it needs to convert the object to a string. This occurs, for example, when you use the +
operator to concatenate a string with an object or when you pass an object to a method that expects a string.
The default toString()
method is not very informative (though it is useful for determining the class of an object, as we saw in The class Attribute). For example, the following line of code simply evaluates to the string “[object Object]”:
Because this default method does not display much useful information, many classes define their own versions of toString()
. For example, when an array is converted to a string, you obtain a list of the array elements, themselves each converted to a string, and when a function is converted to a string, you obtain the source code for the function. These customized versions of the toString()
method are documented in the reference section. See Array.toString()
, Date.toString()
, and Function.toString()
, for example.
Standard Conversion Methods describes how to define a custom toString()
method for your own classes.
In addition to the basic toString()
method, objects all have a toLocaleString()
. The purpose of this method is to return a localized string representation of the object. The default toLocaleString()
method defined by Object doesn’t do any localization itself: it simply calls toString()
and returns that value. The Date and Number classes define customized versions of toLocaleString()
that attempt to format numbers, dates, and times according to local conventions. Array defines a toLocaleString()
method that works like toString()
except that it formats array elements by calling their toLocaleString()
methods instead of their toString()
methods.
Object.prototype
does not actually define a toJSON()
method, but the JSON
.
stringify()
method (see Serializing Objects) looks for a toJSON()
method on any object it is asked to serialize. If this method exists on the object to be serialized, it is invoked, and the return value is serialized, instead of the original object. See Date.toJSON()
for an example.
The valueOf()
method is much like the toString()
method, but it is called when JavaScript needs to convert an object to some primitive type other than a string—typically, a number. JavaScript calls this method automatically if an object is used in a context where a primitive value is required. The default valueOf()
method does nothing interesting, but some of the built-in classes define their own valueOf()
method (see Date.
value
Of()
, for example). Standard Conversion Methods explains how to define a valueOf()
method for custom object types you define.
An array is an ordered collection of values. Each value is called an element, and each element has a numeric position in the array, known as its index. JavaScript arrays are untyped: an array element may be of any type, and different elements of the same array may be of different types. Array elements may even be objects or other arrays, which allows you to create complex data structures, such as arrays of objects and arrays of arrays. JavaScript arrays are zero-based and use 32-bit indexes: the index of the first element is 0, and the highest possible index is 4294967294 (232−2), for a maximum array size of 4,294,967,295 elements. JavaScript arrays are dynamic: they grow or shrink as needed and there is no need to declare a fixed size for the array when you create it or to reallocate it when the size changes. JavaScript arrays may be sparse: the elements need not have contiguous indexes and there may be gaps. Every JavaScript array has a length
property. For nonsparse arrays, this property specifies the number of elements in the array. For sparse arrays, length
is larger than the index of all elements.
JavaScript arrays are a specialized form of JavaScript object, and array indexes are really little more than property names that happen to be integers. We’ll talk more about the specializations of arrays elsewhere in this chapter. Implementations typically optimize arrays so that access to numerically indexed array elements is generally significantly faster than access to regular object properties.
Arrays inherit properties from Array.prototype
, which defines a rich set of array manipulation methods, covered in Array Methods and ECMAScript 5 Array Methods. Most of these methods are generic, which means that they work correctly not only for true arrays, but for any “array-like object.” We’ll discuss array-like objects in Array-Like Objects. In ECMAScript 5, strings behave like arrays of characters, and we’ll discuss this in Strings As Arrays.
The easiest way to create an array is with an array literal, which is simply a comma-separated list of array elements within square brackets. For example:
The values in an array literal need not be constants; they may be arbitrary expressions:
Array literals can contain object literals or other array literals:
If an array literal contains multiple commas in a row, with no value between, the array is sparse (see 7.3). Array elements for which values are omitted do not exist, but appear to be undefined
if you query them:
Array literal syntax allows an optional trailing comma, so [,,]
has a lenth of 2, not 3.
Another way to create an array is with the Array()
constructor. You can invoke this constructor in three distinct ways:
[]
. Array()
constructor can be used to preallocate an array when you know in advance how many elements will be required. Note that no values are stored in the array, and the array index properties “0”, “1”, and so on are not even defined for the array. Array()
constructor. You access an element of an array using the []
operator. A reference to the array should appear to the left of the brackets. An arbitrary expression that has a non-negative integer value should be inside the brackets. You can use this syntax to both read and write the value of an element of an array. Thus, the following are all legal JavaScript statements:
Remember that arrays are a specialized kind of object. The square brackets used to access array elements work just like the square brackets used to access object properties. JavaScript converts the numeric array index you specify to a string—the index 1
becomes the string "1"
—then uses that string as a property name. There is nothing special about the conversion of the index from a number to a string: you can do that with regular objects, too:
What is special about arrays is that when you use property names that are non-negative integers less than 232, the array automatically maintains the value of the length
property for you. Above, for example, we created an array a
with a single element. We then assigned values at indexes 1, 2, and 3. The length
property of the array changed as we did so:
It is helpful to clearly distinguish an array index from an object property name. All indexes are property names, but only property names that are integers between 0 and 232–2 are indexes. All arrays are objects, and you can create properties of any name on them. If you use properties that are array indexes, however, arrays have the special behavior of updating their length
property as needed.
Note that you can index an array using numbers that are negative or that are not integers. When you do this, the number is converted to a string, and that string is used as the property name. Since the name is not a non-negative integer, it is treated as a regular object property, not an array index. Also, if you index an array with a string that happens to be a non-negative integer, it behaves as an array index, not an object property. The same is true if you use a floating-point number that is the same as an integer:
The fact that array indexes are simply a special type of object property name means that JavaScript arrays have no notion of an “out of bounds” error. When you try to query a nonexistent property of any object, you don’t get an error, you simply get undefined
. This is just as true for arrays as it is for objects:
Since arrays are objects, they can inherit elements from their prototype. In ECMAScript 5, they can even have array elements defined by getter and setter methods (Property Getters and Setters). If an array does inherit elements or use getters and setters for elements, you should expect it to use a nonoptimized code path: the time to access an element of such an array would be similar to regular object property lookup times.
A sparse array is one in which the elements do not have contiguous indexes starting at 0. Normally, the length
property of an array specifies the number of elements in the array. If the array is sparse, the value of the length
property is greater than the number of elements. Sparse arrays can be created with the Array()
constructor or simply by assigning to an array index larger than the current array length
.
We’ll see later that you can also make an array sparse with the delete
operator.
Arrays that are sufficiently sparse are typically implemented in a slower, more memory-efficient way than dense arrays are, and looking up elements in such an array will take about as much time as regular object property lookup.
Note that when you omit a value in an array literal (using repeated commas as in [1,,3]
) the resulting array is sparse and the omitted elements simply do not exist:
Some older implementations (such as Firefox 3) incorrectly insert the undefined values in array literals with omitted values. In these implementations [1,,3]
is the same as [1,undefined,3]
.
Understanding sparse arrays is an important part of understanding the true nature of JavaScript arrays. In practice, however, most JavaScript arrays you will work with will not be sparse. And, if you do have to work with a sparse array, your code will probably treat it just as it would treat a nonsparse array with undefined
elements.
Every array has a length
property, and it is this property that makes arrays different from regular JavaScript objects. For arrays that are dense (i.e., not sparse), the length
property specifies the number of elements in the array. Its value is one more than the highest index in the array:
When an array is sparse, the length
property is greater than the number of elements, and all we can say about it is that length
is guaranteed to be larger than the index of every element in the array. Or, put another way, an array (sparse or not) will never have an element whose index is greater than or equal to its length
. In order to maintain this invariant, arrays have two special behaviors. The first was described above: if you assign a value to an array element whose index i
is greater than or equal to the array’s current length
, the value of the length
property is set to i+1
.
The second special behavior that arrays implement in order to maintain the length invariant is that if you set the length
property to a non-negative integer n
smaller than its current value, any array elements whose index is greater than or equal to n
are deleted from the array:
You can also set the length
property of an array to a value larger than its current value. Doing this does not actually add any new elements to the array, it simply creates a sparse area at the end of the array.
In ECMAScript 5, you can make the length
property of an array read-only with Object.defineProperty()
(see Property Attributes):
Similarly, if you make an array element nonconfigurable, it cannot be deleted. If it cannot be deleted, then the length
property cannot be set to less than the index of the nonconfigurable element. (See Property Attributes and the Object.seal()
and Object.freeze()
methods in The extensible Attribute.)
We’ve already seen the simplest way to add elements to an array: just assign values to new indexes:
You can also use the push()
method to add one or more values to the end of an array:
Pushing a value onto an array a
is the same as assigning the value to a[a.length]
. You can use the unshift()
method (described in Array Methods) to insert a value at the beginning of an array, shifting the existing array elements to higher indexes.
You can delete array elements with the delete
operator, just as you can delete object properties:
Deleting an array element is similar to (but subtly different than) assigning undefined
to that element. Note that using delete
on an array element does not alter the length
property and does not shift elements with higher indexes down to fill in the gap that is left by the deleted property. If you delete an element from an array, the array becomes sparse.
As we saw above, you can also delete elements from the end of an array simply by setting the length
property to the new desired length. Arrays have a pop()
method (it works with push()
) that reduces the length of an array by 1 but also returns the value of the deleted element. There is also a shift()
method (which goes with unshift()
) to remove an element from the beginning of an array. Unlike delete
, the shift()
method shifts all elements down to an index one lower than their current index. pop()
and shift()
are covered in Array Methods and in the reference section.
Finally, splice()
is the general-purpose method for inserting, deleting, or replacing array elements. It alters the length
property and shifts array elements to higher or lower indexes as needed. See Array Methods for details.
The most common way to loop through the elements of an array is with a for
loop (for):
In nested loops, or other contexts where performance is critical, you may sometimes see this basic array iteration loop optimized so that the array length is only looked up once rather than on each iteration:
These examples assume that the array is dense and that all elements contain valid data. If this is not the case, you should test the array elements before using them. If you want to exclude null
, undefined
, and nonexistent elements, you can write this:
If you only want to skip undefined and nonexistent elements, you might write:
Finally, if you only want to skip indexes for which no array element exists but still want to handle existing undefined elements, do this:
You can also use a for/in
loop (for/in) with sparse arrays. This loop assigns enumerable property names (including array indexes) to the loop variable one at a time. Indexes that do not exist will not be iterated:
As noted in Enumerating Properties, a for/in
loop can return the names of inherited properties, such as the names of methods that have been added to Array.prototype
. For this reason you should not use a for/in
loop on an array unless you include an additional test to filter out unwanted properties. You might use either of these tests:
The ECMAScript specification allows the for/in
loop to iterate the properties of an object in any order. Implementations typically iterate array elements in ascending order, but this is not guaranteed. In particular, if an array has both object properties and array elements, the property names may be returned in the order they were created, rather than in numeric order. Implementations differ in how they handle this case, so if iteration order matters for your algorithm, it is best to use a regular for
loop instead of for/in
.
ECMAScript 5 defines a number of new methods for iterating array elements by passing each one, in index order, to a function that you define. The forEach()
method is the most general of these methods:
forEach()
and related iteration methods enable a simple and powerful functional programming style for working with arrays. They are covered in ECMAScript 5 Array Methods, and we’ll return to them in Functional Programming, when we cover functional programming.
JavaScript does not support true multidimensional arrays, but you can approximate them with arrays of arrays. To access a value in an array of arrays, simply use the []
operator twice. For example, suppose the variable matrix
is an array of arrays of numbers. Every element in matrix[x]
is an array of numbers. To access a particular number within this array, you would write matrix[x][y]
. Here is a concrete example that uses a two-dimensional array as a multiplication table:
ECMAScript 3 defines a number of useful array manipulation functions on Array
.
prototype
, which means that they are available as methods of any array. These ECMAScript 3 methods are introduced in the subsections below. As usual, complete details can be found under Array
in the client-side reference section. ECMAScript 5 adds new array iteration methods; those methods are covered in ECMAScript 5 Array Methods.
The Array.join()
method converts all the elements of an array to strings and concatenates them, returning the resulting string. You can specify an optional string that separates the elements in the resulting string. If no separator string is specified, a comma is used. For example, the following lines of code produce the string “1,2,3”:
The Array.join()
method is the inverse of the String.split()
method, which creates an array by breaking a string into pieces.
The Array.reverse()
method reverses the order of the elements of an array and returns the reversed array. It does this in place; in other words, it doesn’t create a new array with the elements rearranged but instead rearranges them in the already existing array. For example, the following code, which uses the reverse()
and join()
methods, produces the string “3,2,1”:
Array.sort()
sorts the elements of an array in place and returns the sorted array. When sort()
is called with no arguments, it sorts the array elements in alphabetical order (temporarily converting them to strings to perform the comparison, if necessary):
If an array contains undefined elements, they are sorted to the end of the array.
To sort an array into some order other than alphabetical, you must pass a comparison function as an argument to sort()
. This function decides which of its two arguments should appear first in the sorted array. If the first argument should appear before the second, the comparison function should return a number less than zero. If the first argument should appear after the second in the sorted array, the function should return a number greater than zero. And if the two values are equivalent (i.e., if their order is irrelevant), the comparison function should return 0. So, for example, to sort array elements into numerical rather than alphabetical order, you might do this:
Note the convenient use of unnamed function expressions in this code. Since the comparison functions are used only once, there is no need to give them names.
As another example of sorting array items, you might perform a case-insensitive alphabetical sort on an array of strings by passing a comparison function that converts both of its arguments to lowercase (with the toLowerCase()
method) before comparing them:
The Array.concat()
method creates and returns a new array that contains the elements of the original array on which concat()
was invoked, followed by each of the arguments to concat()
. If any of these arguments is itself an array, then it is the array elements that are concatenated, not the array itself. Note, however, that concat()
does not recursively flatten arrays of arrays. concat()
does not modify the array on which it is invoked. Here are some examples:
The Array.slice()
method returns a slice, or subarray, of the specified array. Its two arguments specify the start and end of the slice to be returned. The returned array contains the element specified by the first argument and all subsequent elements up to, but not including, the element specified by the second argument. If only one argument is specified, the returned array contains all elements from the start position to the end of the array. If either argument is negative, it specifies an array element relative to the last element in the array. An argument of -1, for example, specifies the last element in the array, and an argument of -3 specifies the third from last element of the array. Note that slice()
does not modify the array on which it is invoked. Here are some examples:
The Array.splice()
method is a general-purpose method for inserting or removing elements from an array. Unlike slice()
and concat()
, splice()
modifies the array on which it is invoked. Note that splice()
and slice()
have very similar names but perform substantially different operations.
splice()
can delete elements from an array, insert new elements into an array, or perform both operations at the same time. Elements of the array that come after the insertion or deletion point have their indexes increased or decreased as necessary so that they remain contiguous with the rest of the array. The first argument to splice()
specifies the array position at which the insertion and/or deletion is to begin. The second argument specifies the number of elements that should be deleted from (spliced out of) the array. If this second argument is omitted, all array elements from the start element to the end of the array are removed. splice()
returns an array of the deleted elements, or an empty array if no elements were deleted. For example:
The first two arguments to splice()
specify which array elements are to be deleted. These arguments may be followed by any number of additional arguments that specify elements to be inserted into the array, starting at the position specified by the first argument. For example:
Note that, unlike concat()
, splice()
inserts arrays themselves, not the elements of those arrays.
The push()
and pop()
methods allow you to work with arrays as if they were stacks. The push()
method appends one or more new elements to the end of an array and returns the new length of the array. The pop()
method does the reverse: it deletes the last element of an array, decrements the array length, and returns the value that it removed. Note that both methods modify the array in place rather than produce a modified copy of the array. The combination of push()
and pop()
allows you to use a JavaScript array to implement a first-in, last-out stack. For example:
The unshift()
and shift()
methods behave much like push()
and pop()
, except that they insert and remove elements from the beginning of an array rather than from the end. unshift()
adds an element or elements to the beginning of the array, shifts the existing array elements up to higher indexes to make room, and returns the new length of the array. shift()
removes and returns the first element of the array, shifting all subsequent elements down one place to occupy the newly vacant space at the start of the array. For example:
Note the possibly surprising behavior of unshift()
when it’s invoked with multiple arguments. Instead of being inserted into the array one at a time, arguments are inserted all at once (as with the splice()
method). This means that they appear in the resulting array in the same order in which they appeared in the argument list. Had the elements been inserted one at a time, their order would have been reversed.
An array, like any JavaScript object, has a toString()
method. For an array, this method converts each of its elements to a string (calling the toString()
methods of its elements, if necessary) and outputs a comma-separated list of those strings. Note that the output does not include square brackets or any other sort of delimiter around the array value. For example:
Note that the join()
method returns the same string when it is invoked with no arguments.
toLocaleString()
is the localized version of toString()
. It converts each array element to a string by calling the toLocaleString()
method of the element, and then it concatenates the resulting strings using a locale-specific (and implementation-defined) separator string.
ECMAScript 5 defines nine new array methods for iterating, mapping, filtering, testing, reducing, and searching arrays. The subsections below describe these methods.
Before we cover the details, however, it is worth making some generalizations about these ECMAScript 5 array methods. First, most of the methods accept a function as their first argument and invoke that function once for each element (or some elements) of the array. If the array is sparse, the function you pass is not invoked for nonexistent elements. In most cases, the function you supply is invoked with three arguments: the value of the array element, the index of the array element, and the array itself. Often, you only need the first of these argument values and can ignore the second and third values. Most of the ECMAScript 5 array methods that accept a function as their first argument accept an optional second argument. If specified, the function is invoked as if it is a method of this second argument. That is, the second argument you pass becomes the value of the this
keyword inside of the function you pass. The return value of the function you pass is important, but different methods handle the return value in different ways. None of the ECMAScript 5 array methods modify the array on which they are invoked. If you pass a function to these methods, that function may modify the array, of course.
The forEach()
method iterates through an array, invoking a function you specify for each element. As described above, you pass the function as the first argument to for
Each()
. forEach()
then invokes your function with three arguments: the value of the array element, the index of the array element, and the array itself. If you only care about the value of the array element, you can write a function with only one parameter—the additional arguments will be ignored:
Note that forEach()
does not provide a way to terminate iteration before all elements have been passed to the function. That is, there is no equivalent of the break
statement you can use with a regular for
loop. If you need to terminate early, you must throw an exception, and place the call to forEach()
within a try
block. The following code defines a foreach()
function that calls the forEach()
method within such a try block. If the function passed to foreach()
throws foreach.break
, the loop will terminate early:
The map()
method passes each element of the array on which it is invoked to the function you specify, and returns an array containing the values returned by that function. For example:
The function you pass to map()
is invoked in the same way as a function passed to forEach()
. For the map()
method, however, the function you pass should return a value. Note that map()
returns a new array: it does not modify the array it is invoked on. If that array is sparse, the returned array will be sparse in the same way: it will have the same length and the same missing elements.
The filter()
method returns an array containing a subset of the elements of the array on which it is invoked. The function you pass to it should be predicate: a function that returns true
or false
. The predicate is invoked just as for forEach()
and map()
. If the return value is true
, or a value that converts to true
, then the element passed to the predicate is a member of the subset and is added to the array that will become the return value. Examples:
Note that filter()
skips missing elements in sparse arrays, and that its return value is always dense. To close the gaps in a sparse array, you can do this:
And to close gaps and remove undefined and null elements you can use filter
like this:
The every()
and some()
methods are array predicates: they apply a predicate function you specify to the elements of the array, and then return true
or false
.
The every()
method is like the mathematical “for all” quantifier ∀: it returns true
if and only if your predicate function returns true
for all elements in the array:
The some()
method is like the mathematical “there exists” quantifier ∃: it returns true
if there exists at least one element in the array for which the predicate returns true
, and returns false
if and only if the predicate returns false
for all elements of the array:
Note that both every()
and some()
stop iterating array elements as soon as they know what value to return. some()
returns true
the first time your predicate returns true, and only iterates through the entire array if your predicate always returns false
. every()
is the opposite: it returns false
the first time your predicate returns false
, and only iterates all elements if your predicate always returns true
. Note also that by mathematical convention, every()
returns true
and some
returns false
when invoked on an empty array.
The reduce()
and reduceRight()
methods combine the elements of an array, using the function you specify, to produce a single value. This is a common operation in functional programming and also goes by the names “inject” and “fold.” Examples help illustrate how it works:
reduce()
takes two arguments. The first is the function that performs the reduction operation. The task of this reduction function is to somehow combine or reduce two values into a single value, and to return that reduced value. In the examples above, the functions combine two values by adding them, multiplying them, and choosing the largest. The second (optional) argument is an initial value to pass to the function.
Functions used with reduce()
are different than the functions used with forEach()
and map()
. The familiar value, index, and array values are passed as the second, third, and fourth arguments. The first argument is the accumulated result of the reduction so far. On the first call to the function, this first argument is the initial value you passed as the second argument to reduce()
. On subsequent calls, it is the value returned by the previous invocation of the function. In the first example above, the reduction function is first called with arguments 0 and 1. It adds these and returns 1. It is then called again with arguments 1 and 2 and it returns 3. Next it computes 3+3=6, then 6+4=10, and finally 10+5=15. This final value, 15, becomes the return value of reduce()
.
You may have noticed that the third call to reduce()
above has only a single argument: there is no initial value specified. When you invoke reduce()
like this with no initial value, it uses the first element of the array as the initial value. This means that the first call to the reduction function will have the first and second array elements as its first and second arguments. In the sum and product examples above, we could have omitted the initial value argument.
Calling reduce()
on an empty array with no initial value argument causes a TypeError. If you call it with only one value—either an array with one element and no initial value or an empty array and an initial value—it simply returns that one value without ever calling the reduction function.
reduceRight()
works just like reduce()
, except that it processes the array from highest index to lowest (right-to-left), rather than from lowest to highest. You might want to do this if the reduction operation has right-to-left precedence, for example:
Note that neither reduce()
nor reduceRight()
accepts an optional argument that specifies the this
value on which the reduction function is to be invoked. The optional initial value argument takes its place. See the Function.bind()
method if you need your reduction function invoked as a method of a particular object.
It is worth noting that the every()
and some()
methods described above perform a kind of array reduction operation. They differ from reduce()
, however, in that they terminate early when possible, and do not always visit every array element.
The examples shown so far have been numeric for simplicity, but reduce()
and reduceRight()
are not intended solely for mathematical computations. Consider the union()
function from Example 6-2. It computes the “union” of two objects and returns a new object that has the properties of both. This function expects two objects and returns another object, so it works as a reduction function, and we can use reduce()
to generalize it and compute the union of any number of objects:
Recall that when two objects have properties with the same name, the union()
function uses the value of that property from the first argument. Thus reduce()
and reduceRight()
may give different results when used with union()
:
indexOf()
and lastIndexOf()
search an array for an element with a specified value, and return the index of the first such element found, or –1 if none is found. indexOf()
searches the array from beginning to end, and lastIndexOf()
searches from end to beginning.
Unlike the other methods described in this section, indexOf()
and lastIndexOf()
do not take a function argument. The first argument is the value to search for. The second argument is optional: it specifies the array index at which to begin the search. If this argument is omitted, indexOf()
starts at the beginning and lastIndexOf()
starts at the end. Negative values are allowed for the second argument and are treated as an offset from the end of the array, as they are for the splice()
method: a value of –1, for example, specifies the last element of the array.
The following function searches an array for a specified value and returns an array of all matching indexes. This demonstrates how the second argument to indexOf()
can be used to find matches beyond the first.
Note that strings have indexOf()
and lastIndexOf()
methods that work like these array methods.
We’ve seen throughout this chapter that arrays are objects with some special behavior. Given an unknown object, it is often useful to be able to determine whether it is an array or not. In ECMAScript 5, you can do this with the Array.isArray()
function:
Prior to ECMAScript 5, however, distinguishing arrays from nonarray objects was surprisingly difficult. The typeof
operator does not help here: it returns “object” for arrays (and for all objects other than functions). The instanceof
operator works in simple cases:
The problem with using instanceof
is that in web browsers, there can be more than one window or frame open. Each has its own JavaScript environment, with its own global object. And each global object has its own set of constructor functions. Therefore an object from one frame will never be an instance of a constructor from another frame. While interframe confusion does not arise often, it is enough of a problem that the instanceof
operator is not deemed a reliable test for arrays.
The solution is to inspect the class attribute (see The class Attribute) of the object. For arrays, this attribute will always have the value “Array”, and we can therefore write an isArray()
function in ECMAScript 3 like this:
This test of the class attribute is, in fact, exactly what the ECMAScript 5 Array
.
isArray()
function does. The technique for obtaining the class of an object using Object
.
prototype
.
toString()
is explained in The class Attribute and demonstrated in Example 6-4.
As we’ve seen, JavaScript arrays have some special features that other objects do not have:
length
property is automatically updated as new elements are added to the list. length
to a smaller value truncates the array. Array.prototype
. These are the features that make JavaScript arrays distinct from regular objects. But they are not the essential features that define an array. It is often perfectly reasonable to treat any object with a numeric length
property and corresponding non-negative integer properties as a kind of array.
These “array-like” objects actually do occasionally appear in practice, and although you cannot directly invoke array methods on them or expect special behavior from the length
property, you can still iterate through them with the same code you’d use for a true array. It turns out that many array algorithms work just as well with array-like objects as they do with real arrays. This is especially true if your algorithms treat the array as read-only or if they at least leave the array length unchanged.
The following code takes a regular object, adds properties to make it an array-like object, and then iterates through the “elements” of the resulting pseudo-array:
The Arguments object that’s described in Variable-Length Argument Lists: The Arguments Object is an array-like object. In client-side JavaScript, a number of DOM methods, such as document.getElementsByTagName()
, return array-like objects. Here’s a function you might use to test for objects that work like arrays:
We’ll see in Strings As Arrays that ECMAScript 5 strings behave like arrays (and that some browsers made strings indexable before ECMAScript 5). Nevertheless, tests like the one above for array-like objects typically return false
for strings—they are usually best handled as strings, not as arrays.
The JavaScript array methods are purposely defined to be generic, so that they work correctly when applied to array-like objects in addition to true arrays. In ECMAScript 5, all array methods are generic. In ECMAScript 3, all methods except toString()
and toLocaleString()
are generic. (The concat()
method is an exception: although it can be invoked on an array-like object, it does not property expand that object into the returned array.) Since array-like objects do not inherit from Array.prototype
, you cannot invoke array methods on them directly. You can invoke them indirectly using the Function.call
method, however:
We’ve seen this call()
technique before in the isArray()
method of Array Type. The call()
method of Function objects is covered in more detail in The call() and apply() Methods.
The ECMAScript 5 array methods were introduced in Firefox 1.5. Because they were written generically, Firefox also introduced versions of these methods as functions defined directly on the Array
constructor. With these versions of the methods defined, the examples above can be rewritten like this:
These static function versions of the array methods are quite useful when working with array-like objects, but since they are nonstandard, you can’t count on them to be defined in all browsers. You can write code like this to ensure that the functions you need exist before you use them:
In ECMAScript 5 (and in many recent browser implementations—including IE8—prior to ECMAScript 5), strings behave like read-only arrays. Instead of accessing individual characters with the charAt()
method, you can use square brackets:
The typeof
operator still returns “string” for strings, of course, and the Array
.
isArray()
method returns false
if you pass it a string.
The primary benefit of indexable strings is simply that we can replace calls to charAt()
with square brackets, which are more concise and readable, and potentially more efficient. The fact that strings behave like arrays also means, however, that we can apply generic array methods to them. For example:
Keep in mind that strings are immutable values, so when they are treated as arrays, they are read-only arrays. Array methods like push()
, sort()
, reverse()
, and splice()
modify an array in place and do not work on strings. Attempting to modify a string using an array method does not, however, cause an error: it simply fails silently.
A function is a block of JavaScript code that is defined once but may be executed, or invoked, any number of times. You may already be familiar with the concept of a function under a name such as subroutine or procedure. JavaScript functions are parameterized: a function definition may include a list of identifiers, known as parameters, that work as local variables for the body of the function. Function invocations provide values, or arguments, for the function’s parameters. Functions often use their argument values to compute a return value that becomes the value of the function-invocation expression. In addition to the arguments, each invocation has another value—the invocation context—that is the value of the this
keyword.
If a function is assigned to the property of an object, it is known as a method of that object. When a function is invoked on or through an object, that object is the invocation context or this
value for the function. Functions designed to initialize a newly created object are called constructors. Constructors were described in Creating Objects and will be covered again in Chapter 9.
In JavaScript, functions are objects, and they can be manipulated by programs. JavaScript can assign functions to variables and pass them to other functions, for example. Since functions are objects, you can set properties on them, and even invoke methods on them.
JavaScript function definitions can be nested within other functions, and they have access to any variables that are in scope where they are defined. This means that JavaScript functions are closures, and it enables important and powerful programming techniques.
Functions are defined with the function
keyword, which can be used in a function definition expression (Function Definition Expressions) or in a function declaration statement (function). In either form, function definitions begin with the keyword function
followed by these components:
Example 8-1 shows some function definitions using both statement and expression forms. Notice that a function defined as an expression is only useful if it is part of a larger expression, such as an assignment or invocation, that does something with the newly defined function.
Example 8-1. Defining JavaScript functions
Note that the function name is optional for functions defined as expressions. A function declaration statement actually declares a variable and assigns a function object to it. A function definition expression, on the other hand, does not declare a variable. A name is allowed for functions, like the factorial function above, that need to refer to themselves. If a function definition expression includes a name, the local function scope for that function will include a binding of that name to the function object. In effect, the function name becomes a local variable within the function. Most functions defined as expressions do not need names, which makes their definition more compact. Function definition expressions are particularly well suited for functions that are used only once, as in the last two examples above.
Any legal JavaScript identifier can be a function name. Try to choose function names that are descriptive but concise. Striking the right balance is an art that comes with experience. Well-chosen function names can make a big difference in the readability (and thus maintainability) of your code.
Function names are often verbs or phrases that begin with verbs. It is a common convention to begin function names with a lowercase letter. When a name includes multiple words, one convention is to separate words with underscores like_this()
; another convention is to begin all words after the first with an uppercase letter likeThis()
. Functions that are supposed to be internal or hidden (and not part of a public API) are sometimes given names that begin with an underscore.
In some styles of programming, or within well-defined programming frameworks, it can be useful to give frequently used functions very short names. The client-side JavaScript framework jQuery (covered in Chapter 19), for example, makes heavy use in its public API of a function named $()
(yes, just the dollar sign). (Recall from Identifiers and Reserved Words that dollar signs and underscores are the two characters besides letters and numbers that are legal in JavaScript identifiers.)
As described in function, function declaration statements are “hoisted” to the top of the enclosing script or the enclosing function, so that functions declared in this way may be invoked from code that appears before they are defined. This is not true for functions defined as expressions, however: in order to invoke a function, you must be able to refer to it, and you can’t refer to a function defined as an expression until it is assigned to a variable. Variable declarations are hoisted (see Function Scope and Hoisting), but assignments to those variables are not hoisted, so functions defined with expressions cannot be invoked before they are defined.
Notice that most, but not all, of the functions in Example 8-1 contain a return
statement (return). The return
statement causes the function to stop executing and to return the value of its expression (if any) to the caller. If the return
statement does not have an associated expression, it returns the undefined
value. If a function does not contain a return
statement, it simply executes each statement in the function body and returns the undefined
value to the caller.
Most of the functions in Example 8-1 are designed to compute a value, and they use return
to return that value to their caller. The printprops()
function is different: its job is to output the names and values of an object’s properties. No return value is necessary, and the function does not include a return
statement. The value of an invocation of the printprops()
function is always undefined
. (Functions with no return value are sometimes called procedures.)
In JavaScript, functions may be nested within other functions. For example:
The interesting thing about nested functions is their variable scoping rules: they can access the parameters and variables of the function (or functions) they are nested within. In the code above, for example, the inner function square()
can read and write the parameters a
and b
defined by the outer function hypotenuse()
. These scope rules for nested functions are very important, and we’ll consider them again in Closures.
As noted in function, function declaration statements are not true statements, and the ECMAScript specification only allows them as top-level statements. They can appear in global code, or within other functions, but they cannot appear inside of loops, conditionals, or try/catch/finally
or with
statements.[10] Note that this restriction applies only to functions declared as statements. Function definition expressions may appear anywhere in your JavaScript code.
[10] Some JavaScript implementations relax this rule. Firefox, for example, allows “conditional function declarations” that appear within if
statements.
The JavaScript code that makes up the body of a function is not executed when the function is defined but when it is invoked. JavaScript functions can be invoked in four ways:
call()
and apply()
methods. Functions are invoked as functions or as methods with an invocation expression (Invocation Expressions). An invocation expression consists of a function expression that evaluates to a function object followed by an open parenthesis, a comma-separated list of zero or more argument expressions, and a close parenthesis. If the function expression is a property-access expression—if the function is the property of an object or an element of an array—then it is a method invocation expression. That case will be explained below. The following code includes a number of regular function invocation expressions:
In an invocation, each argument expression (the ones between the parentheses) is evaluated, and the resulting values become the arguments to the function. These values are assigned to the parameters named in the function definition. In the body of the function, a reference to a parameter evaluates to the corresponding argument value.
For regular function invocation, the return value of the function becomes the value of the invocation expression. If the function returns because the interpreter reaches the end, the return value is undefined
. If the function returns because the interpreter executes a return
, the return value is the value of the expression that follows the return
or undefined
if the return
statement has no value.
For function invocation in ECMAScript 3 and nonstrict ECMAScript 5, the invocation context (the this
value) is the global object. In strict mode, however, the invocation context is undefined
.
Functions written to be invoked as functions do not typically use the this
keyword at all. It can be used, however, to determine whether strict mode is in effect:
A method is nothing more than a JavaScript function that is stored in a property of an object. If you have a function f
and an object o
, you can define a method named m
of o
with the following line:
Having defined the method m()
of the object o
, invoke it like this:
Or, if m()
expects two arguments, you might invoke it like this:
The code above is an invocation expression: it includes a function expression o.m
and two argument expressions, x
and y
. The function expression is itself a property access expression (Property Access Expressions), and this means that the function is invoked as a method rather than as a regular function.
The arguments and return value of a method invocation are handled exactly as described above for regular function invocation. Method invocations differ from function invocations in one important way, however: the invocation context. Property access expressions consist of two parts: an object (in this case o
) and a property name (m
). In a method invocation expression like this, the object o
becomes the invocation context, and the function body can refer to that object by using the keyword this
. Here is a concrete example:
Most method invocations use the dot notation for property access, but property access expressions that use square brackets also cause method invocation. The following are both method invocations, for example:
Method invocations may also involve more complex property access expressions:
Methods and the this
keyword are central to the object-oriented programming paradigm. Any function that is used as a method is effectively passed an implicit argument—the object through which it is invoked. Typically, a method performs some sort of operation on that object, and the method-invocation syntax is an elegant way to express the fact that a function is operating on an object. Compare the following two lines:
The hypothetical functions invoked in these two lines of code may perform exactly the same operation on the (hypothetical) object rect
, but the method-invocation syntax in the first line more clearly indicates the idea that it is the object rect
that is the primary focus of the operation.
When methods return objects, you can use the return value of one method invocation as part of a subsequent invocation. This results in a series (or “chain” or “cascade”) of method invocations as a single expression. When working with the jQuery library (Chapter 19), for example, it is common to write code like this:
When you write a method that does not have a return value of its own, consider having the method return this
. If you do this consistently throughout your API, you will enable a style of programming known as method chaining[11] in which an object can be named once and then multiple methods can be invoked on it:
Don’t confuse method chaining with constructor chaining, which is described in Constructor and Method Chaining.
Note that this
is a keyword, not a variable or property name. JavaScript syntax does not allow you to assign a value to this
.
Unlike variables, the this
keyword does not have a scope, and nested functions do not inherit the this
value of the containing. If a nested function is invoked as a method, its this
value is the object it was invoked on. If a nested function is invoked as a function then its this
value will be either the global object (non-strict mode) or undefined
(strict mode). It is a common mistake to assume that a nested function invoked as a function can use this
to obtain the invocation context of the outer function. If you want to access the this
value of the outer function, you need to store that value into a variable that is in scope for the inner function. It is common to use the variable self
for this purpose. For example:
Example 8-5, in The bind() Method, includes a more realistic use of the var self=this
idiom.
If a function or method invocation is preceded by the keyword new
, then it is a constructor invocation. (Constructor invocations were introduced in Object Creation Expressions and Creating Objects with new, and constructors will be covered in more detail in Chapter 9.) Constructor invocations differ from regular function and method invocations in their handling of arguments, invocation context, and return value.
If a constructor invocation includes an argument list in parentheses, those argument expressions are evaluated and passed to the function in the same way they would be for function and method invocations. But if a constructor has no parameters, then JavaScript constructor invocation syntax allows the argument list and parentheses to be omitted entirely. You can always omit a pair of empty parentheses in a constructor invocation and the following two lines, for example, are equivalent:
A constructor invocation creates a new, empty object that inherits from the prototype
property of the constructor. Constructor functions are intended to initialize objects and this newly created object is used as the invocation context, so the constructor function can refer to it with the this
keyword. Note that the new object is used as the invocation context even if the constructor invocation looks like a method invocation. That is, in the expression new o.m()
, o
is not used as the invocation context.
Constructor functions do not normally use the return
keyword. They typically initialize the new object and then return implicitly when they reach the end of their body. In this case, the new object is the value of the constructor invocation expression. If, however, a constructor explicitly used the return
statement to return an object, then that object becomes the value of the invocation expression. If the constructor uses return
with no value, or if it returns a primitive value, that return value is ignored and the new object is used as the value of the invocation.
JavaScript functions are objects and like all JavaScript objects, they have methods. Two of these methods, call()
and apply()
, invoke the function indirectly. Both methods allow you to explicitly specify the this
value for the invocation, which means you can invoke any function as a method of any object, even if it is not actually a method of that object. Both methods also allow you to specify the arguments for the invocation. The call()
method uses its own argument list as arguments to the function and the apply()
method expects an array of values to be used as arguments. The call()
and apply()
methods are described in detail in The call() and apply() Methods.
JavaScript function definitions do not specify an expected type for the function parameters, and function invocations do not do any type checking on the argument values you pass. In fact, JavaScript function invocations do not even check the number of arguments being passed. The subsections that follow describe what happens when a function is invoked with fewer arguments than declared parameters or with more arguments than declared parameters. They also demonstrate how you can explicitly test the type of function arguments if you need to ensure that a function is not invoked with inappropriate arguments.
When a function is invoked with fewer arguments than declared parameters, the additional parameters are set to the undefined
value. It is often useful to write functions so that some arguments are optional and may be omitted when the function is invoked. To do this, you must be able to assign a reasonable default value to parameters that are omitted. Here is an example:
Instead of using an if
statement in the first line of this function, you can use the ||
operator in this idiomatic way:
Recall from Logical OR (||) that the ||
operator returns its first argument if that argument is truthy and otherwise returns its second argument. In this case, if any object is passed as the second argument, the function will use that object. But if the second argument is omitted (or null
or another falsy value is passed), a newly created empty array will be used instead.
Note that when designing functions with optional arguments, you should be sure to put the optional ones at the end of the argument list so that they can be omitted. The programmer who calls your function cannot omit the first argument and pass the second: she would have to explicitly pass undefined
the first argument. Also note the use of the comment /* optional */
in the function definition to emphasize the fact that the parameter is optional.
When a function is invoked with more argument values than there are parameter names, there is no way to directly refer to the unnamed values. The Arguments object provides a solution to this problem. Within the body of a function, the identifier arguments
refers to the Arguments object for that invocation. The Arguments object is an array-like object (see Array-Like Objects) that allows the argument values passed to the function to be retrieved by number, rather than by name.
Suppose you define a function f
that expects to be passed one argument, x
. If you invoke this function with two arguments, the first argument is accessible within the function by the parameter name x
or as arguments[0]
. The second argument is accessible only as arguments[1]
. Furthermore, like true arrays, arguments
has a length
property that specifies the number of elements it contains. Thus, within the body of the function f
, invoked with two arguments, arguments.length
has the value 2.
The Arguments object is useful in a number of ways. The following example shows how you can use it to verify that a function is invoked with the expected number of arguments, since JavaScript doesn’t do this for you:
Note that it is often unnecessary to check the number of arguments like this. JavaScript’s default behavior is fine in most cases: missing arguments are undefined
and extra arguments are simply ignored.
One important use of the Arguments object is to write functions that operate on any number of arguments. The following function accepts any number of numeric arguments and returns the value of the largest argument it is passed (see also the built-in function Math.max()
, which behaves the same way):
Functions like this one that can accept any number of arguments are called variadic functions, variable arity functions, or varargs functions. This book uses the most colloquial term, varargs, which dates to the early days of the C programming language.
Note that varargs functions need not allow invocations with zero arguments. It is perfectly reasonable to use the arguments[]
object to write functions that expect some fixed number of named and required arguments followed by an arbitrary number of unnamed optional arguments.
Remember that arguments
is not really an array; it is an Arguments object. Each Arguments object defines numbered array elements and a length
property, but it is not technically an array; it is better to think of it as an object that happens to have some numbered properties. See Array-Like Objects for more on array-like objects.
The Arguments object has one very unusual feature. In non-strict mode, when a function has named parameters, the array elements of the Arguments object are aliases for the parameters that hold the function arguments. The numbered elements of the Arguments object and the parameter names are like two different names for the same variable. Changing the value of an argument with an argument name changes the value that is retrieved through the arguments[]
array. Conversely, changing the value of an argument through the arguments[]
array changes the value that is retrieved by the argument name. Here is an example that clarifies this:
This is emphatically not the behavior you would see if the Arguments object were an ordinary array. In that case, arguments[0]
and x
could refer initially to the same value, but a change to one would have no effect on the other.
This special behavior of the Arguments object has been removed in the strict mode of ECMAScript 5. There are other strict-mode differences as well. In non-strict functions, arguments
is just an identifier. In strict mode, it is effectively a reserved word. Strict-mode functions cannot use arguments
as a parameter name or as a local variable name, and they cannot assign values to arguments
.
In addition to its array elements, the Arguments object defines callee
and caller
properties. In ECMAScript 5 strict mode, these properties are guaranteed to raise a TypeError if you try to read or write them. Outside of strict mode, however, the ECMAScript standard says that the callee
property refers to the currently running function. caller
is a nonstandard but commonly implemented property that refers to the function that called this one. The caller
property gives access to the call stack, and the callee
property is occasionally useful to allow unnamed functions to call themselves recursively:
When a function has more than three parameters, it becomes difficult for the programmer who invokes the function to remember the correct order in which to pass arguments. To save the programmer the trouble of consulting the documentation each time she uses the function, it can be nice to allow arguments to be passed as name/value pairs in any order. To implement this style of method invocation, define your function to expect a single object as its argument and then have users of the function pass an object that defines the required name/value pairs. The following code gives an example and also demonstrates that this style of function invocation allows the function to specify defaults for any arguments that are omitted:
JavaScript method parameters have no declared types, and no type checking is performed on the values you pass to a function. You can help to make your code self-documenting by choosing descriptive names for function arguments and also by including argument types in comments, as in the arraycopy()
method just shown. For arguments that are optional, you can include the word “optional” in the comment. And when a method can accept any number of arguments, you can use an ellipsis:
As described in Type Conversions, JavaScript performs liberal type conversion as needed. So if you write a function that expects a string argument and then call that function with a value of some other type, the value you passed will simply be converted to a string when the function tries to use it as a string. All primitive types can be converted to strings, and all objects have toString()
methods (if not necessarily useful ones), so an error never occurs in this case.
This is not always true, however. Consider again the arraycopy()
method shown earlier. It expects an array as its first argument. Any plausible implementation will fail if that first argument is anything but an array (or possibly an array-like object). Unless you are writing a “throwaway” function that will be called only once or twice, it may be worth adding code to check the types of arguments like this. It is better for a function to fail immediately and predictably when passed bad values than to begin executing and fail later with an error message that is likely to be unclear. Here is an example function that performs type-checking. Note that it uses the isArrayLike()
function from Array-Like Objects:
This sum()
method is fairly strict about the argument it accepts and throws suitably informative errors if it is passed bad values. It does offer a bit of flexibility, however, by working with array-like objects as well as true arrays and by ignoring null
and undefined
array elements.
JavaScript is a very flexible and loosely typed language, and sometimes it is appropriate to write functions that are flexible about the number and type of arguments they are passed. The following flexisum()
method takes this approach (probably to an extreme). For example, it accepts any number of arguments but recursively processes any arguments that are arrays. In this way, it can be used as a varargs method or with an array argument. Furthermore, it tries its best to convert nonnumeric values to numbers before throwing an error:
The most important features of functions are that they can be defined and invoked. Function definition and invocation are syntactic features of JavaScript and of most other programming languages. In JavaScript, however, functions are not only syntax but also values, which means they can be assigned to variables, stored in the properties of objects or the elements of arrays, passed as arguments to functions, and so on.[12]
To understand how functions can be JavaScript data as well as JavaScript syntax, consider this function definition:
This definition creates a new function object and assigns it to the variable square
. The name of a function is really immaterial; it is simply the name of a variable that refers to the function object. The function can be assigned to another variable and still work the same way:
Functions can also be assigned to object properties rather than variables. When you do this, they’re called methods:
Functions don’t even require names at all, as when they’re assigned to array elements:
The syntax of this last example looks strange, but it is still a legal function invocation expression!
Example 8-2 demonstrates the kinds of things that can be done when functions are used as values. This example may be a little tricky, but the comments explain what is going on.
Example 8-2. Using functions as data
As another example of functions as values, consider the Array.sort()
method. This method sorts the elements of an array. Because there are many possible orders to sort by (numerical order, alphabetical order, date order, ascending, descending, and so on), the sort()
method optionally takes a function as an argument to tell it how to perform the sort. This function has a simple job: for any two values it is passed, it returns a value that specifies which element would come first in a sorted array. This function argument makes Array.sort()
perfectly general and infinitely flexible; it can sort any type of data into any conceivable order. Examples are shown in sort().
Functions are not primitive values in JavaScript, but a specialized kind of object, which means that functions can have properties. When a function needs a “static” variable whose value persists across invocations, it is often convenient to use a property of the function, instead of cluttering up the namespace by defining a global variable. For example, suppose you want to write a function that returns a unique integer whenever it is invoked. The function must never return the same value twice. In order to manage this, the function needs to keep track of the values it has already returned, and this information must persist across function invocations. You could store this information in a global variable, but that is unnecessary, because the information is used only by the function itself. It is better to store the information in a property of the Function object. Here is an example that returns a unique integer whenever it is called:
As another example, consider the following factorial()
function that uses properties of itself (treating itself as an array) to cache previously computed results:
[12] This may not seem like a particularly interesting point unless you are familiar with languages such as Java, in which functions are part of a program but cannot be manipulated by the program.
Recall from Function Scope and Hoisting that JavaScript has function scope: variables declared within a function are visible throughout the function (including within nested functions) but do not exist outside of the function. Variables declared outside of a function are global variables and are visible throughout your JavaScript program. JavaScript does not define any way to declare variables that are hidden within a single block of code, and for this reason, it is sometimes useful to define a function simply to act as a temporary namespace in which you can define variables without polluting the global namespace.
Suppose, for example, you have a module of JavaScript code that you want to use in a number of different JavaScript programs (or, for client-side JavaScript, on a number of different web pages). Assume that this code, like most code, defines variables to store the intermediate results of its computation. The problem is that since this module will be used in many different programs, you don’t know whether the variables it creates will conflict with variables used by the programs that import it. The solution, of course, is to put the code into a function and then invoke the function. This way, variables that would have been global become local to the function:
This code defines only a single global variable: the function name “mymodule”. If defining even a single property is too much, you can define and invoke an anonymous function in a single expression:
This technique of defining and invoking a function in a single expression is used frequently enough that it has become idiomatic. Note the use of parentheses in the code above. The open parenthesis before function
is required because without it, the JavaScript interpreter tries to parse the function
keyword as a function declaration statement. With the parenthesis, the interpreter correctly recognizes this as a function definition expression. It is idiomatic to use the parentheses, even when they are not required, around a function that is to be invoked immediately after being defined.
Example 8-3 demonstrates this namespace technique. It defines an anonymous function that returns an extend()
function like the one shown in Example 6-2. The code in the anonymous function tests whether a well-known Internet Explorer bug is present and, if so, returns a patched version of the function. In addition, the anonymous function’s namespace serves to hide an array of property names.
Example 8-3. The extend() function, patched if necessary
Like most modern programming languages, JavaScript uses lexical scoping. This means that functions are executed using the variable scope that was in effect when they were defined, not the variable scope that is in effect when they are invoked. In order to implement lexical scoping, the internal state of a JavaScript function object must include not only the code of the function but also a reference to the current scope chain. (Before reading the rest of this section, you may want to review the material on variable scope and the scope chain in Variable Scope and The Scope Chain.) This combination of a function object and a scope (a set of variable bindings) in which the function’s variables are resolved is called a closure in the computer science literature.[13]
Technically, all JavaScript functions are closures: they are objects, and they have a scope chain associated with them. Most functions are invoked using the same scope chain that was in effect when the function was defined, and it doesn’t really matter that there is a closure involved. Closures become interesting when they are invoked under a different scope chain than the one that was in effect when they were defined. This happens most commonly when a nested function object is returned from the function within which it was defined. There are a number of powerful programming techniques that involve this kind of nested function closures, and their use has become relatively common in JavaScript programming. Closures may seem confusing when you first encounter them, but it is important that you understand them well enough to use them comfortably.
The first step to understanding closures is to review the lexical scoping rules for nested functions. Consider the following code (which is similar to code you’ve already seen in Variable Scope):
The checkscope()
function declares a local variable and then defines and invokes a function that returns the value of that variable. It should be clear to you why the call to checkscope()
returns “local scope”. Now let’s change the code just slightly. Can you tell what this code will return?
In this code, a pair of parentheses has moved from inside checkscope()
to outside of it. Instead of invoking the nested function and returning its result, checkscope()
now just returns the nested function object itself. What happens when we invoke that nested function (with the second pair of parentheses in the last line of code) outside of the function in which it was defined?
Remember the fundamental rule of lexical scoping: JavaScript functions are executed using the scope chain that was in effect when they were defined. The nested function f()
was defined under a scope chain in which the variable scope
was bound to the value “local scope”. That binding is still in effect when f
is executed, wherever it is executed from. So the last line of code above returns “local scope”, not “global scope”. This, in a nutshell, is the surprising and powerful nature of closures: they capture the local variable (and parameter) bindings of the outer function within which they are defined.
Closures are easy to understand if you simply accept the lexical scoping rule: functions are executed using the scope chain that was in effect when they were defined. Some programmers find closures confusing, however, because they get caught up in implementation details. Surely, they think, the local variables defined in the outer function cease to exist when the outer function returns, so how can the nested function execute using a scope chain that does not exist anymore? If you’re wondering about this yourself, then you have probably been exposed to low-level programming languages like C and to stack-based CPU architectures: if a function’s local variables are defined on a CPU stack, then they would indeed cease to exist when the function returned.
But remember our definition of scope chain from The Scope Chain. We described it as a list of objects, not a stack of bindings. Each time a JavaScript function is invoked, a new object is created to hold the local variables for that invocation, and that object is added to the scope chain. When the function returns, that variable binding object is removed from the scope chain. If there were no nested functions, there are no more references to the binding object and it gets garbage collected. If there were nested functions defined, then each of those functions has a reference to the scope chain, and that scope chain refers to the variable binding object. If those nested functions objects remained within their outer function, however, then they themselves will be garbage collected, along with the variable binding object they referred to. But if the function defines a nested function and returns it or stores it into a property somewhere, then there will be an external reference to the nested function. It won’t be garbage collected, and the variable binding object it refers to won’t be garbage collected either.
In Defining Your Own Function Properties we defined a uniqueInteger()
function that used a property of the function itself to keep track of the next value to be returned. A shortcoming of that approach is that buggy or malicious code could reset the counter or set it to a noninteger, causing the uniqueInteger()
function to violate the “unique” or the “integer” part of its contract. Closures capture the local variables of a single function invocation and can use those variables as private state. Here is how we could rewrite the uniqueInteger()
function using closures:
In order to understand this code, you have to read it carefully. At first glance, the first line of code looks like it is assigning a function to the variable uniqueInteger
. In fact, the code is defining and invoking (as hinted by the open parenthesis on the first line) a function, so it is the return value of the function that is being assigned to unique
Integer
. Now, if we study the body of the function, we see that its return value is another function. It is this nested function object that gets assigned to unique
Integer
. The nested function has access to the variables in scope, and can use the counter
variable defined in the outer function. Once that outer function returns, no other code can see the counter
variable: the inner function has exclusive access to it.
Private variables like counter
need not be exclusive to a single closure: it is perfectly possible for two or more nested functions to be defined within the same outer function and share the same scope chain. Consider the following code:
The counter()
function returns a “counter” object. This object has two methods: count()
returns the next integer, and reset()
resets the internal state. The first thing to understand is that the two methods share access to the private variable n
. The second thing to understand is that each invocation of counter()
creates a new scope chain and a new private variable. So if you call counter()
twice, you get two counter objects with different private variables. Calling count()
or reset()
on one counter object has no effect on the other.
It is worth noting here that you can combine this closure technique with property getters and setters. The following version of the counter()
function is a variation on code that appeared in Property Getters and Setters, but it uses closures for private state rather than relying on a regular object property:
Note that this version of the counter()
function does not declare a local variable, but just uses its parameter n
to hold the private state shared by the property accessor methods. This allows the caller of counter()
to specify the initial value of the private variable.
Example 8-4 is a generalization of the shared private state through closures technique we’ve been demonstrating here. This example defines an addPrivateProperty()
function that defines a private variable and two nested functions to get and set the value of that variable. It adds these nested functions as methods of the object you specify:
Example 8-4. Private property accessor methods using closures
We’ve now seen a number of examples in which two closures are defined in the same scope chain and share access to the same private variable or variables. This is an important technique, but it is just as important to recognize when closures inadvertently share access to a variable that they should not share. Consider the following code:
When working with code like this that creates multiple closures using a loop, it is a common error to try to move the loop within the function that defines the closures. Think about the following code, for example:
The code above creates 10 closures, and stores them in an array. The closures are all defined within the same invocation of the function, so they share access to the variable i
. When constfuncs()
returns, the value of the variable i
is 10, and all 10 closures share this value. Therefore, all the functions in the returned array of functions return the same value, which is not what we wanted at all. It is important to remember that the scope chain associated with a closure is “live.” Nested functions do not make private copies of the scope or make static snapshots of the variable bindings.
Another thing to remember when writing closures is that this
is a JavaScript keyword, not a variable. As discussed earlier, every function invocation has a this
value, and a closure cannot access the this
value of its outer function unless the outer function has saved that value into a variable:
The arguments
binding is similar. This is not a language keyword, but it is automatically declared for every function invocation. Since a closure has its own binding for arguments
, it cannot access the outer function’s arguments array unless the outer function has saved that array into a variable by a different name:
Example 8-5, later in this chapter, defines a closure that uses these techniques to refer to both the this
and arguments
values of the outer function.
[13] This is an old term that refers to the fact that the function’s variables have bindings in the scope chain and that therefore the function is “closed over” its variables.
We’ve seen that functions are values in JavaScript programs. The typeof
operator returns the string “function” when applied to a function, but functions are really a specialized kind of JavaScript object. Since functions are objects, they can have properties and methods, just like any other object. There is even a Function()
constructor to create new function objects. The subsections that follow document function properties and methods and the Function()
constructor. You can also read about these in the reference section.
Within the body of a function, arguments.length
specifies the number of arguments that were passed to the function. The length
property of a function itself, however, has a different meaning. This read-only property returns the arity of the function—the number of parameters it declares in its parameter list, which is usually the number of arguments that the function expects.
The following code defines a function named check()
that is passed the arguments
array from another function. It compares arguments.length
(the number of arguments actually passed) to arguments.callee.length
(the number expected) to determine whether the function was passed the right number of arguments. If not, it throws an exception. The check()
function is followed by a test function f()
that demonstrates how check()
can be used:
Every function has a prototype
property that refers to an object known as the prototype object. Every function has a different prototype object. When a function is used as a constructor, the newly created object inherits properties from the prototype object. Prototypes and the prototype
property were discussed in Prototypes and will be covered again in Chapter 9.
call()
and apply()
allow you to indirectly invoke (Indirect Invocation) a function as if it were a method of some other object. (We used the call()
method in Example 6-4 to invoke Object.prototype.toString
on an object whose class we wanted to determine, for example.) The first argument to both call()
and apply()
is the object on which the function is to be invoked; this argument is the invocation context and becomes the value of the this
keyword within the body of the function. To invoke the function f()
as a method of the object o
(passing no arguments), you could use either call()
or apply()
:
Either of the lines of code above are similar to the following (which assume that o
does not already have a property named m
):
In ECMAScript 5 strict mode the first argument to call()
or apply()
becomes the value of this
, even if it is a primitive value or null
or undefined
. In ECMAScript 3 and non-strict mode, a value of null
or undefined
is replaced with the global object and a primitive value is replaced with the corresponding wrapper object.
Any arguments to call()
after the first invocation context argument are the values that are passed to the function that is invoked. For example, to pass two numbers to the function f()
and invoke it as if it were a method of the object o
, you could use code like this:
The apply()
method is like the call()
method, except that the arguments to be passed to the function are specified as an array:
If a function is defined to accept an arbitrary number of arguments, the apply()
method allows you to invoke that function on the contents of an array of arbitrary length. For example, to find the largest number in an array of numbers, you could use the apply()
method to pass the elements of the array to the Math.max()
function:
Note that apply()
works with array-like objects as well as true arrays. In particular, you can invoke a function with the same arguments as the current function by passing the arguments
array directly to apply()
. The following code demonstrates:
This trace()
function is passed an object and a method name. It replaces the specified method with a new method that “wraps” additional functionality around the original method. This kind of dynamic alteration of existing methods is sometimes called “monkey-patching.”
The bind()
method was added in ECMAScript 5, but it is easy to simulate in ECMAScript 3. As its name implies, the primary purpose of bind()
is to bind a function to an object. When you invoke the bind()
method on a function f
and pass an object o
, the method returns a new function. Invoking the new function (as a function) invokes the original function f
as a method of o
. Any arguments you pass to the new function are passed to the original function. For example:
It is easy to accomplish this kind of binding with code like the following:
The ECMAScript 5 bind()
method does more than just bind a function to an object. It also performs partial application: any arguments you pass to bind()
after the first are bound along with the this
value. Partial application is a common technique in functional programming and is sometimes called currying. Here are some examples of the bind()
method used for partial application:
We can bind the this
value and perform partial application in ECMAScript 3. The standard bind()
method can be simulated with code like that shown in Example 8-5. Note that we save this method as Function.prototype.bind
, so that all function objects inherit it. This technique is explained in detail in Augmenting Classes.
Example 8-5. A Function.bind() method for ECMAScript 3
Notice that the function returned by this bind()
method is a closure that uses the variables self
and boundArgs
declared in the outer function, even though that inner function has been returned from the outer function and is invoked after the outer function has returned.
The bind()
method defined by ECMAScript 5 does have some features that cannot be simulated with the ECMAScript 3 code shown above. First, the true bind()
method returns a function object with its length
property properly set to the arity of the bound function minus the number of bound arguments (but not less than zero). Second, the ECMAScript 5 bind()
method can be used for partial application of constructor functions. If the function returned by bind()
is used as a constructor, the this
passed to bind()
is ignored, and the original function is invoked as a constructor, with some arguments already bound. Functions returned by the bind()
method do not have a prototype
property (the prototype
property of regular functions cannot be deleted) and objects created when these bound functions are used as constructors inherit from the prototype
of the original, unbound constructor. Also, a bound constructor works just like the unbound constructor for the purposes of the instanceof
operator.
Like all JavaScript objects, functions have a toString()
method. The ECMAScript spec requires this method to return a string that follows the syntax of the function declaration statement. In practice most (but not all) implementations of this toString()
method return the complete source code for the function. Built-in functions typically return a string that includes something like “[native code]” as the function body.
Functions are usually defined using the function
keyword, either in the form of a function definition statement or a function literal expression. But functions can also be defined with the Function()
constructor. For example:
This line of code creates a new function that is more or less equivalent to a function defined with the familiar syntax:
The Function()
constructor expects any number of string arguments. The last argument is the text of the function body; it can contain arbitrary JavaScript statements, separated from each other by semicolons. All other arguments to the constructor are strings that specify the parameters names for the function. If you are defining a function that takes no arguments, you simply pass a single string—the function body—to the constructor.
Notice that the Function()
constructor is not passed any argument that specifies a name for the function it creates. Like function literals, the Function()
constructor creates anonymous functions.
There are a few points that are important to understand about the Function()
constructor:
Function()
constructor allows JavaScript functions to be dynamically created and compiled at runtime. Function()
constructor parses the function body and creates a new function object each time it is called. If the call to the constructor appears within a loop or within a frequently called function, this process can be inefficient. By contrast, nested functions and function definition expressions that appear within loops are not recompiled each time they are encountered. Function()
constructor is that the functions it creates do not use lexical scoping; instead, they are always compiled as if they were top-level functions, as the following code demonstrates:The Function()
constructor is best thought of as a globally-scoped version of eval()
(see Global eval()) that defines new variables and functions in its own private scope. You should rarely need to use this constructor in your code.
We learned in Array-Like Objects that there are “array-like” objects that are not true arrays but can be treated like arrays for most purposes. A similar situation exists for functions. A callable object is any object that can be invoked in a function invocation expression. All functions are callable, but not all callable objects are functions.
Callable objects that are not functions are encountered in two situations in today’s JavaScript implementations. First, the IE web browser (version 8 and before) implements client-side methods such as Window.alert()
and Document.getElementsById()
using callable host objects rather than native Function objects. These methods work the same in IE as they do in other browsers, but they are not actually Function objects. IE9 switches to using true functions, so this kind of callable object will gradually become less common.
The other common form of callable objects are RegExp objects—in many browsers, you can invoke a RegExp object directly as a shortcut for invoking its exec()
method. This is a completely nonstandard feature of JavaScript that was introduced by Netscape and copied by other vendors for compatibility. Do not write code that relies on the callability of RegExp objects: this feature is likely to be deprecated and removed in the future. The typeof
operator is not interoperable for callable RegExps. In some browsers it returns “function” and in others it returns “object”.
If you want to determine whether an object is a true function object (and has function methods) you can test its class attribute (The class Attribute) using the technique shown in Example 6-4:
Note that this isFunction()
function is quite similar to the isArray()
function shown in Array Type.
JavaScript is not a functional programming language like Lisp or Haskell, but the fact that JavaScript can manipulate functions as objects means that we can use functional programming techniques in JavaScript. The ECMAScript 5 array methods such as map()
and reduce()
lend themselves particularly well to a functional programming style. The sections that follow demonstrate techniques for functional programming in JavaScript. They are intended as a mind-expanding exploration of the power of JavaScript’s functions, not as a prescription for good programming style.[14]
Suppose we have an array of numbers and we want to compute the mean and standard deviation of those values. We might do that in nonfunctional style like this:
We can perform these same computations in concise functional style using the array methods map()
and reduce()
like this (see ECMAScript 5 Array Methods to review these methods):
What if we’re using ECMAScript 3 and don’t have access to these newer array methods? We can define our own map()
and reduce()
functions that use the built-in methods if they exist:
With these map()
and reduce()
functions defined, our code to compute the mean and standard deviation now looks like this:
A higher-order function is a function that operates on functions, taking one or more functions as arguments and returning a new function. Here is an example:
The not()
function above is a higher-order function because it takes a function argument and returns a new function. As another example, consider the mapper()
function below. It takes a function argument and returns a new function that maps one array to another using that function. This function uses the map()
function defined earlier, and it is important that you understand how the two functions are different:
Here is another, more general, example that takes two functions f
and g
and returns a new function that computes f(g())
:
The partial()
and memoize()
functions defined in the sections that follow are two more important higher-order functions.
The bind()
method of a function f
(The bind() Method) returns a new function that invokes f
in a specified context and with a specified set of arguments. We say that it binds the function to an object and partially applies the arguments. The bind()
method partially applies arguments on the left—that is, the arguments you pass to bind()
are placed at the start of the argument list that is passed to the original function. But it is also possible to partially apply arguments on the right:
These partial application functions allow us to easily define interesting functions out of functions we already have defined. Here are some examples:
Partial application becomes even more interesting when we combine it with other higher-order functions. Here, for example, is a way to define the not()
function shown above using composition and partial application:
We can also use composition and partial application to redo our mean and standard deviation calculations in extreme functional style:
In Defining Your Own Function Properties we defined a factorial function that cached its previously computed results. In functional programming, this kind of caching is called memoization. The code below shows a higher-order function, memoize()
that accepts a function as its argument and returns a memoized version of the function:
The memoize()
function creates a new object to use as the cache and assigns this object to a local variable, so that it is private to (in the closure of) the returned function. The returned function converts its arguments array to a string, and uses that string as a property name for the cache object. If a value exists in the cache, it returns it directly. Otherwise, it calls the specified function to compute the value for these arguments, caches that value, and returns it. Here is how we might use memoize()
:
[14] If this piques your interest, you may be interested in using (or at least reading about) Oliver Steele’s Functional JavaScript library. See http://osteele.com/sources/javascript/functional/.
JavaScript objects were covered in Chapter 6. That chapter treated each object as a unique set of properties, different from every other object. It is often useful, however, to define a class of objects that share certain properties. Members, or instances, of the class have their own properties to hold or define their state, but they also have properties (typically methods) that define their behavior. This behavior is defined by the class and is shared by all instances. Imagine a class named Complex to represent and perform arithmetic on complex numbers, for example. A Complex instance would have properties to hold the real and imaginary parts (state) of the complex number. And the Complex class would define methods to perform addition and multiplication (behavior) of those numbers.
In JavaScript, classes are based on JavaScript’s prototype-based inheritance mechanism. If two objects inherit properties from the same prototype object, then we say that they are instances of the same class. JavaScript prototypes and inheritance were covered in Prototypes and Inheritance, and you must be familiar with the material in those sections to understand this chapter. This chapter covers prototypes in Classes and Prototypes.
If two objects inherit from the same prototype, this typically (but not necessarily) means that they were created and initialized by the same constructor function. Constructors have been covered in Object Creation Expressions, Creating Objects with new, and Constructor Invocation, and this chapter has more in Classes and Constructors.
If you’re familiar with strongly-typed object-oriented programming languages like Java or C++, you’ll notice that JavaScript classes are quite different from classes in those languages. There are some syntactic similarities, and you can emulate many features of “classical” classes in JavaScript, but it is best to understand up front that JavaScript’s classes and prototype-based inheritance mechanism are substantially different from the classes and class-based inheritance mechanism of Java and similar languages. Java-Style Classes in JavaScript demonstrates classical classes in JavaScript.
One of the important features of JavaScript classes is that they are dynamically extendable. Augmenting Classes explains how to do this. Classes can be thought of as types, and Classes and Types explains several ways to test or determine the class of an object. That section also covers a programming philosophy known as “duck-typing” that de-emphasizes object type in favor of object capability.
After covering all of these fundamentals of object-oriented programming in JavaScript, the chapter shifts to more practical and less architectural matters. Object-Oriented Techniques in JavaScript includes two nontrivial example classes and demonstrates a number of practical object-oriented techniques for improving those classes. Subclasses demonstrates (with many examples) how to extend or subclass other classes and how to define class hierarchies in JavaScript. Classes in ECMAScript 5 covers some of the things you can do with classes using the new features of ECMAScript 5.
Defining classes is a way of writing modular, reusable code, and the last section of this chapter talks about JavaScript modules more generally.
In JavaScript, a class is a set of objects that inherit properties from the same prototype object. The prototype object, therefore, is the central feature of a class. In Example 6-1 we defined an inherit()
function that returns a newly created object that inherits from a specified prototype object. If we define a prototype object, and then use inherit()
to create objects that inherit from it, we have defined a JavaScript class. Usually, the instances of a class require further initialization, and it is common to define a function that creates and initializes the new object. Example 9-1 demonstrates this: it defines a prototype object for a class that represents a range of values and also defines a “factory” function that creates and initializes a new instance of the class.
Example 9-1. A simple JavaScript class
There are a few things worth noting in the code of Example 9-1. This code defines a factory function range()
for creating new range objects. Notice that we use a property of this range()
function range.methods
as a convenient place to store the prototype object that defines the class. There is nothing special or idiomatic about putting the prototype object here. Second, notice that the range()
function defines from
and to
properties on each range object. These are the unshared, noninherited properties that define the unique state of each individual range object. Finally, notice that the shared, inherited methods defined in range.methods
all use these from
and to
properties, and in order to refer to them, they use the this
keyword to refer to the object through which they were invoked. This use of this
is a fundamental characteristic of the methods of any class.
Example 9-1 demonstrates one way to define a JavaScript class. It is not the idiomatic way to do so, however, because it did not define a constructor. A constructor is a function designed for the initialization of newly created objects. Constructors are invoked using the new
keyword as described in Constructor Invocation. Constructor invocations using new
automatically create the new object, so the constructor itself only needs to initialize the state of that new object. The critical feature of constructor invocations is that the prototype
property of the constructor is used as the prototype of the new object. This means that all objects created with the same constructor inherit from the same object and are therefore members of the same class. Example 9-2 shows how we could alter the range class of Example 9-1 to use a constructor function instead of a factory function:
Example 9-2. A Range class using a constructor
It is worth comparing Example 9-1 and Example 9-2 fairly carefully and noting the differences between these two techniques for defining classes. First, notice that we renamed the range()
factory function to Range()
when we converted it to a constructor. This is a very common coding convention: constructor functions define, in a sense, classes, and classes have names that begin with capital letters. Regular functions and methods have names that begin with lowercase letters.
Next, notice that the Range()
constructor is invoked (at the end of the example) with the new
keyword while the range()
factory function was invoked without it. Example 9-1 uses regular function invocation (Function Invocation) to create the new object and Example 9-2 uses constructor invocation (Constructor Invocation). Because the Range()
constructor is invoked with new
, it does not have to call inherit()
or take any action to create a new object. The new object is automatically created before the constructor is called, and it is accessible as the this
value. The Range()
constructor merely has to initialize this
. Constructors do not even have to return the newly created object. Constructor invocation automatically creates a new object, invokes the constructor as a method of that object, and returns the new object. The fact that constructor invocation is so different from regular function invocation is another reason that we give constructors names that start with capital letters. Constructors are written to be invoked as constructors, with the new
keyword, and they usually won’t work properly if they are invoked as regular functions. A naming convention that keeps constructor functions distinct from regular functions helps programmers to know when to use new
.
Another critical difference between Example 9-1 and Example 9-2 is the way the prototype object is named. In the first example, the prototype was range.methods
. This was a convenient and descriptive name, but arbitrary. In the second example, the prototype is Range.prototype
, and this name is mandatory. An invocation of the Range()
constructor automatically uses Range.prototype
as the prototype of the new Range object.
Finally, also note the things that do not change between Example 9-1 and Example 9-2: the range methods are defined and invoked in the same way for both classes.
As we’ve seen, the prototype object is fundamental to the identity of a class: two objects are instances of the same class if and only if they inherit from the same prototype object. The constructor function that initializes the state of a new object is not fundamental: two constructor functions may have prototype
properties that point to the same prototype object. Then both constructors can be used to create instances of the same class.
Even through constructors are not as fundamental as prototypes, the constructor serves as the public face of a class. Most obviously, the name of the constructor function is usually adopted as the name of the class. We say, for example, that the Range()
constructor creates Range objects. More fundamentally, however, constructors are used with the instanceof
operator when testing objects for membership in a class. If we have an object r
and want to know if it is a Range object, we can write:
The instanceof
operator does not actually check whether r
was initialized by the Range
constructor. It checks whether it inherits from Range.prototype
. Nevertheless, the instanceof
syntax reinforces the use of constructors as the public identity of a class. We’ll see the instanceof
operator again later in this chapter.
In Example 9-2 we set Range.prototype
to a new object that contained the methods for our class. Although it was convenient to express those methods as properties of a single object literal, it was not actually necessary to create a new object. Any JavaScript function can be used as a constructor, and constructor invocations need a prototype
property. Therefore, every JavaScript function (except functions returned by the ECMAScript 5 Function.bind()
method) automatically has a prototype
property. The value of this property is an object that has a single nonenumerable constructor
property. The value of the constructor
property is the function object:
The existence of this predefined prototype object with its constructor
property means that objects typically inherit a constructor
property that refers to their constructor. Since constructors serve as the public identity of a class, this constructor property gives the class of an object:
Figure 9-1 illustrates this relationship between the constructor function, its prototype object, the back reference from the prototype to the constructor, and the instances created with the constructor.
Notice that Figure 9-1 uses our Range()
constructor as an example. In fact, however, the Range class defined in Example 9-2 overwrites the predefined Range.prototype
object with an object of its own. And the new prototype object it defines does not have a constructor
property. So instances of the Range class, as defined, do not have a constructor
property. We can remedy this problem by explicitly adding a constructor to the prototype:
Another common technique is to use the predefined prototype object with its constructor
property, and add methods to it one at a time:
If you have programmed in Java or a similar strongly-typed object-oriented language, you may be accustomed to thinking about four kinds of class members:
These are methods that are shared by all instances of the class that are invoked through individual instances.
These are methods that are associated with the class rather than with instances.
One way JavaScript differs from Java is that its functions are values, and there is no hard distinction between methods and fields. If the value of a property is a function, that property defines a method; otherwise, it is just an ordinary property or “field.” Despite this difference, we can simulate each of Java’s four categories of class members in JavaScript. In JavaScript, there are three different objects involved in any class definition (see Figure 9-1), and the properties of these three objects act like different kinds of class members:
We can reduce the process of class definition in JavaScript to a three-step algorithm. First, write a constructor function that sets instance properties on new objects. Second, define instance methods on the prototype
object of the constructor. Third, define class fields and class properties on the constructor itself. We can even implement this algorithm as a simple defineClass()
function. (It uses the extend()
function of Example 6-2 as patched in Example 8-3):
Example 9-3 is a longer class definition. It creates a class that represents complex numbers and demonstrates how to simulate Java-style class members using JavaScript. It does this “manually”—without relying on the defineClass()
function above.
Example 9-3. Complex.js: A complex number class
With the Complex class of Example 9-3 defined, we can use the constructor, instance fields, instance methods, class fields, and class methods with code like this:
Although JavaScript classes can emulate Java-style class members, there are a number of significant Java features that JavaScript classes do not support. First, in the instance methods of Java classes, instance fields can be used as if they were local variables—there is no need to prefix them with this
. JavaScript does not do this, but you could achieve a similar effect using a with
statement (this is not recommended, however):
Java allows fields to be declared final
to indicate that they are constants, and it allows fields and methods to be declared private
to specify that they are private to the class implementation and should not be visible to users of the class. JavaScript does not have these keywords, and Example 9-3 uses typographical conventions to provide hints that some properties (whose names are in capital letters) should not be changed and that others (whose names begin with an underscore) should not be used outside of the class. We’ll return to both of these topics later in the chapter: private properties can be emulated using the local variables of a closure (see Private State) and constant properties are possible in ECMAScript 5 (see Defining Immutable Classes).
JavaScript’s prototype-based inheritance mechanism is dynamic: an object inherits properties from its prototype, even if the properties of the prototype change after the object is created. This means that we can augment JavaScript classes simply by adding new methods to their prototype objects. Here is code that adds a method for computing the complex conjugate to the Complex class of Example 9-3:
The prototype object of built-in JavaScript classes is also “open” like this, which means that we can add methods to numbers, strings, arrays, functions, and so on. We did this in Example 8-5 when we added a bind()
method to the function class in ECMAScript 3 implementations where it did not already exist:
Here are some other examples:
It is possible to add methods to Object.prototype
, making them available on all objects. This is not recommended, however, because prior to ECMAScript 5, there is no way to make these add-on methods nonenumerable, and if you add properties to Object.prototype
, those properties will be reported by all for/in
loops. In Making Properties Nonenumerable we’ll see an example of using the ECMAScript 5 method Object.defineProperty()
to safely augment Object.prototype
.
It is implementation-dependent whether classes defined by the host environment (such as the web browser) can be augmented in this way. In many web browsers, for example, you can add methods to HTMLElement.prototype
and those methods will be inherited by the objects that represent the HTML tags in the current document. This does not work in current versions of Microsoft’s Internet Explorer, however, which severely limits the utility of this technique for client-side programming.
Recall from Chapter 3 that JavaScript defines a small set of types: null, undefined, boolean, number, string, function, and object. The typeof
operator (The typeof Operator) allows us to distinguish among these types. Often, however, it is useful to treat each class as its own type and to be able to distinguish objects based on their class. The built-in objects of core JavaScript (and often the host objects of client-side JavaScript) can be distinguished on the basis of their class attribute (The class Attribute) using code like the classof()
function of Example 6-4. But when we define our own classes using the techniques shown in this chapter, the instance objects always have a class attribute of “Object”, so the classof()
function doesn’t help here.
The subsections that follow explain three techniques for determining the class of an arbitrary object: the instanceof
operator, the constructor
property, and the name of the constructor function. None of these techniques is entirely satisfactory, however, and the section concludes with a discussion of duck-typing, a programming philosophy that focuses on what an object can do (what methods it has) rather than what its class is.
The instanceof
operator was described in The instanceof Operator. The left-hand operand should be the object whose class is being tested, and the right-hand operand should be a constructor function that names a class. The expression o instanceof c
evaluates to true
if o
inherits from c.prototype
. The inheritance need not be direct. If o
inherits from an object that inherits from an object that inherits from c.prototype
, the expression will still evaluate to true
.
As noted earlier in this chapter, constructors act as the public identity of classes, but prototypes are the fundamental identity. Despite the use of a constructor function with instanceof
, this operator is really testing what an object inherits from, not what constructor was used to create it.
If you want to test the prototype chain of an object for a specific prototype object and do not want to use the constructor function as an intermediary, you can use the is
Prototype
Of()
method. For example, we could test whether an object r
was a member of the range class defined in Example 9-1 with this code:
One shortcoming of the instanceof
operator and the isPrototypeOf()
method is that they do not allow us to query the class of an object, only to test an object against a class we specify. A more serious shortcoming arises in client-side JavaScript where a web application uses more than one window or frame. Each window or frame is a distinct execution context, and each has its own global object and its own set of constructor functions. Two arrays created in two different frames inherit from two identical but distinct prototype objects, and an array created in one frame is not instanceof
the Array()
constructor of another frame.
Another way to identify the class of an object is to simply use the constructor
property. Since constructors are the public face of classes, this is a straightforward approach. For example:
Note that the expressions following the case
keyword in the code above are functions. If we were using the typeof
operator or extracting the class attribute of the object, they would be strings instead.
This technique of using the constructor
property is subject to the same problem as instanceof
. It won’t always work when there are multiple execution contexts (such as multiple frames in a browser window) that share values. In this situation, each frame has its own set of constructor functions: the Array
constructor in one frame is not the same as the Array
constructor in another frame.
Also, JavaScript does not require that every object have a constructor
property: this is a convention based on the default prototype object created for each function, but it is easy to accidentally or intentionally omit the constructor
property on the prototype. The first two classes in this chapter, for example, were defined in such a way (in Examples 9-1 and 9-2) that their instances did not have constructor
properties.
The main problem with using the instanceof
operator or the constructor
property for determining the class of an object occurs when there are multiple execution contexts and thus multiple copies of the constructor functions. These functions may well be identical, but they are distinct objects and are therefore not equal to each other.
One possible workaround is to use the name of the constructor function as the class identifier rather than the function itself. The Array
constructor in one window is not equal to the Array
constructor in another window, but their names are equal. Some JavaScript implementations make the name of a function available through a nonstandard name
property of the function object. For implementations without a name
property, we can convert the function to a string and extract the name from that. (We did this in Augmenting Classes when we showed how to add a getName()
method to the Function class.)
Example 9-4 defines a type()
function that returns the type of an object as a string. It handles primitive values and functions with the typeof
operator. For objects, it returns either the value of the class attribute or the name of the constructor. The type()
function uses the classof()
function from Example 6-4 and the Function.getName()
method from Augmenting Classes. The code for that function and method are included here for simplicity.
Example 9-4. A type() function to determine the type of a value
This technique of using the constructor name to identify the class of an object has one of the same problems as using the constructor
property itself: not all objects have a constructor
property. Furthermore, not all functions have a name. If we define a constructor using an unnamed function definition expression, the getName()
method will return an empty string:
None of the techniques described above for determining the class of an object are problem-free, at least in client-side JavaScript. An alternative is to sidestep the issue: instead of asking “what is the class of this object?” we ask instead, “what can this object do?” This approach to programming is common in languages like Python and Ruby and is called duck-typing after this expression (often attributed to poet James Whitcomb Riley):
When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.
For JavaScript programmers, this aphorism can be understood to mean “if an object can walk and swim and quack like a Duck, then we can treat it as a Duck, even if it does not inherit from the prototype object of the Duck class.”
The Range class of Example 9-2 serves as an example. This class was designed with numeric ranges in mind. Notice, however, that the Range()
constructor does not check its arguments to ensure that they are numbers. It does use the >
operator on them, however, so it assumes that they are comparable. Similarly, the includes()
method uses the <=
operator but makes no other assumptions about the endpoints of the range. Because the class does not enforce a particular type, its includes()
method works for any kind of endpoint that can be compared with the relational operators:
The foreach()
method of our Range class doesn’t explicitly test the type of the range endpoints either, but its use of Math.ceil()
and the ++
operator means that it only works with numeric endpoints.
As another example, recall the discussion of array-like objects from Array-Like Objects. In many circumstances, we don’t need to know whether an object is a true instance of the Array class: it is enough to know that it has a nonnegative integer length
property. The existence of an integer-valued length
is how arrays walk, we might say, and any object that can walk in this way can (in many circumstances) be treated as an array.
Keep in mind, however, that the length
property of true arrays has special behavior: when new elements are added, the length is automatically updated, and when the length is set to a smaller value, the array is automatically truncated. We might say that this is how arrays swim and quack. If you are writing code that requires swimming and quacking, you can’t use an object that only walks like an array.
The examples of duck-typing presented above involve the response of objects to the <
operator and the special behavior of the length
property. More typically, however, when we talk about duck-typing, we’re talking about testing whether an object implements one or more methods. A strongly-typed triathlon()
function might require its argument to be an TriAthlete object. A duck-typed alternative could be designed to accept any object that has walk()
, swim()
, and bike()
methods. Less frivolously, we might redesign our Range class so that instead of using the <
and ++
operators, it uses the compareTo()
and succ()
(successor) methods of its endpoint objects.
One approach to duck-typing is laissez-faire: we simply assume that our input objects implement the necessary methods and perform no checking at all. If the assumption is invalid, an error will occur when our code attempts to invoke a nonexistent method. Another approach does check the input objects. Rather than check their class, however, it checks that they implement methods with the appropriate names. This allows us to reject bad input earlier and can result in more informative error messages.
Example 9-5 defines a quacks()
function (“implements” would be a better name, but implements
is a reserved word) that can be useful when duck-typing. quacks()
tests whether an object (the first argument) implements the methods specified by the remaining arguments. For each remaining argument, if the argument is a string, it checks for a method by that name. If the argument is an object, it checks whether the first object implements methods with the same names as the methods of that object. If the argument is a function, it is assumed to be a constructor, and the function checks whether the first object implements methods with the same names as the prototype object.
Example 9-5. A function for duck-type checking
There are a couple of important things to keep in mind about this quacks()
function. First, it only tests that an object has one or more function-valued properties with specified names. The existence of these properties doesn’t tell us anything about what those functions do or how many and what kind of arguments they expect. This, however, is the nature of duck-typing. If you define an API that uses duck-typing rather than a stronger version of type checking, you are creating a more flexible API but also entrusting the user of your API with the responsibility to use the API correctly. The second important point to note about the quacks()
function is that it doesn’t work with built-in classes. For example, you can’t write quacks(o, Array)
to test that o has methods with the same names as all Array methods. This is because the methods of the built-in classes are nonenumerable and the for/in
loop in quacks()
does not see them. (Note that this can be remedied in ECMAScript 5 with the use of Object.getOwnPropertyNames()
.)
So far in this chapter we’ve covered the architectural fundamentals of classes in JavaScript: the importance of the prototype object, its connections to the constructor function, how the instanceof
operator works, and so on. In this section we switch gears and demonstrate a number of practical (though not fundamental) techniques for programming with JavaScript classes. We begin with two nontrivial example classes that are interesting in their own right but also serve as starting points for the discussions that follow.
A set is a data structure that represents an unordered collection of values, with no duplicates. The fundamental operations on sets are adding values and testing whether a value is a member of the set, and sets are generally implemented so that these operations are fast. JavaScript’s objects are basically sets of property names, with values associated with each name. It is trivial, therefore, to use an object as a set of strings. Example 9-6 implements a more general Set class in JavaScript. It works by mapping any JavaScript value to a unique string, and then using that string as a property name. Objects and functions do not have a concise and reliably unique string representation, so the Set class must define an identifying property on any object or function stored in the set.
Example 9-6. Set.js: An arbitrary set of values
An enumerated type is a type with a finite set of values that are listed (or “enumerated”) when the type is defined. In C and languages derived from it, enumerated types are declared with the enum
keyword. enum
is a reserved (but unused) word in ECMAScript 5 which leaves open the possibility that JavaScript may someday have native enumerated types. Until then, Example 9-7 shows how you can define your own enumerated types in JavaScript. Note that it uses the inherit()
function from Example 6-1 .
Example 9-7 consists of a single function enumeration()
. This is not a constructor function, however: it does not define a class named “enumeration”. Instead, this is a factory function: each invocation creates and returns a new class. Use it like this:
The point of this example is to demonstrate that JavaScript classes are much more flexible and dynamic than the static classes of languages like C++ and Java.
Example 9-7. Enumerated types in JavaScript
The “hello world” of enumerated types is to use an enumerated type to represent the suits in a deck of cards. Example 9-8 uses the enumeration()
function in this way and also defines classes to represents cards and decks of cards.[15]
Example 9-8. Representing cards with enumerated types
Object to Primitive Conversions and Object Methods described important methods used for type conversion of objects, some of which are invoked automatically by the JavaScript interpreter when conversion is necessary. You do not need to implement these methods for every class you write, but they are important methods, and if you do not implement them for your classes, it should be a conscious choice not to implement them rather than mere oversight.
The first, and most important, method is toString()
. The purpose of this method is to return a string representation of an object. JavaScript automatically invokes this method if you use an object where a string is expected—as a property name, for example, or with the +
operator to perform string concatenation. If you don’t implement this method, your class will inherit the default implementation from Object.prototype
and will convert to the useless string “[object Object]”. A toString()
method might return a human-readable string suitable for display to end users of your program. Even if this is not necessary, however, it is often useful to define toString()
for ease of debugging. The Range and Complex classes in Examples 9-2 and 9-3 have toString()
methods, as do the enumerated types of Example 9-7. We’ll define a toString()
method for the Set class of Example 9-6 below.
The toLocaleString()
is closely related to toString()
: it should convert an object to a string in a locale-sensitive way. By default, objects inherit a toLocaleString()
method that simply calls their toString()
method. Some built-in types have useful toLocaleString()
methods that actually return locale-dependent strings. If you find yourself writing a toString()
method that converts other objects to strings, you should also define a toLocaleString()
method that performs those conversions by invoking the toLocaleString()
method on the objects. We’ll do this for the Set class below.
The third method is valueOf()
. Its job is to convert an object to a primitive value. The valueOf()
method is invoked automatically when an object is used in a numeric context, with arithmetic operators (other than +
) and with the relational operators, for example. Most objects do not have a reasonable primitive representation and do not define this method. The enumerated types in Example 9-7 demonstrate a case in which the valueOf()
method is important, however.
The fourth method is toJSON()
, which is invoked automatically by JSON.stringify()
. The JSON format is intended for serialization of data structures and can handle JavaScript primitive values, arrays, and plain objects. It does not know about classes, and when serializing an object, it ignores the object’s prototype and constructor. If you call JSON.stringify()
on a Range or Complex object, for example, it returns a string like {"from":1, "to":3}
or {"r":1, "i":-1}
. If you pass these strings to JSON.parse()
, you’ll obtain a plain object with properties appropriate for Range and Complex objects, but which do not inherit the Range and Complex methods.
This kind of serialization is appropriate for classes like Range and Complex, but for other classes you may want to write a toJSON()
method to define some other serialization format. If an object has a toJSON()
method, JSON.stringify()
does not serialize the object but instead calls toJSON()
and serializes the value (either primitive or object) that it returns. Date objects, for example, have a toJSON()
method that returns a string representation of the date. The enumerated types of Example 9-7 do the same: their toJSON()
method is the same as their toString()
method. The closest JSON analog to a set is an array, so we’ll define a toJSON()
method below that converts a Set object to an array of values.
The Set class of Example 9-6 does not define any of these methods. A set has no primitive representation, so it doesn’t make sense to define a valueOf()
method, but the class should probably have toString()
, toLocaleString()
, and toJSON()
methods. We can do that with code like the following. Note the use of the extend()
function (Example 6-2) to add methods to Set.prototype
:
JavaScript equality operators compare objects by reference, not by value. That is, given two object references, they look to see if both references are to the same object. They do not check to see if two different objects have the same property names and values. It is often useful to be able to compare two distinct objects for equality or even for relative order (as the <
and >
operators do). If you define a class and want to be able to compare instances of that class, you should define appropriate methods to perform those comparisons.
The Java programming language uses methods for object comparison, and adopting the Java conventions is a common and useful thing to do in JavaScript. To enable instances of your class to be tested for equality, define an instance method named equals()
. It should take a single argument and return true
if that argument is equal to the object it is invoked on. Of course it is up to you to decide what “equal” means in the context of your own class. For simple classes you can often simply compare the constructor
properties to ensure that the two objects are of the same type and then compare the instance properties of the two objects to ensure that they have the same values. The Complex class in Example 9-3 has an equals()
method of this sort, and we can easily write a similar one for the Range class:
Defining an equals()
method for our Set class is somewhat trickier. We can’t just compare the values
property of two sets but must perform a deeper comparison:
It is sometimes useful to compare objects according to some ordering. That is, for some classes, it is possible to say that one instance is “less than” or “greater than” another instance. You might order Range object based on the value of their lower bound, for example. Enumerated types could be ordered alphabetically by name, or numerically by the associated value (assuming the associated value is a number). Set objects, on the other hand, do not really have a natural ordering.
If you try to use objects with JavaScript’s relation operators, such as <
and <=
, JavaScript first calls the valueOf()
method of the objects and, if this method returns a primitive value, compares those values. The enumerated types returned by the enumeration()
method of Example 9-7 have a valueOf()
method and can be meaningfully compared using the relational operators. Most classes do not have a valueOf()
method, however. To compare objects of these types according to an explicitly defined ordering of your own choosing, you can (again, following Java convention) define a method named compareTo()
.
The compareTo()
method should accept a single argument and compare it to the object on which the method is invoked. If the this
object is less than the argument, compare
To()
should return a value less than zero. If the this
object is greater than the argument object, the method should return a value greater than zero. And if the two objects are equal, the method should return zero. These conventions about the return value are important, and they allow you to substitute the following expressions for relational and equality operators:
Replace this | With this |
---|---|
a < b | a.compareTo(b) < 0 |
a <= b | a.compareTo(b) <= 0 |
a > b | a.compareTo(b) > 0 |
a >= b | a.compareTo(b) >= 0 |
a == b | a.compareTo(b) == 0 |
a != b | a.compareTo(b) != 0 |
The Card class of Example 9-8 defines a compareTo()
method of this kind, and we can write a similar method for the Range class to order ranges by their lower bound:
Notice that the subtraction performed by this method correctly returns a value less than zero, equal to zero, or greater than zero, according to the relative order of the two Ranges. Because the Card.Rank
enumeration in Example 9-8 has a valueOf()
method, we could have used this same idiomatic trick in the compareTo()
method of the Card class.
The equals()
methods above perform type checking on their argument and return false
to indicate inequality if the argument is of the wrong type. The compareTo()
method does not have any return value that indicates “those two values are not comparable,” so a compareTo()
method that does type checking should typically throw an error when passed an argument of the wrong type.
Notice that the compareTo()
method we defined for the Range class above returns 0 when two ranges have the same lower bound. This means that as far as compareTo()
is concerned, any two ranges that start at the same spot are equal. This definition of equality is inconsistent with the definition used by the equals()
method, which requires both endpoints to match. Inconsistent notions of equality can be a pernicious source of bugs, and it is best to make your equals()
and compareTo()
methods consistent. Here is a revised compareTo()
method for the Range class. It is consistent with equals()
and also throws an error if called with an incomparable value:
One reason to define a compareTo()
method for a class is so that arrays of instances of that class can be sorted. The Array.sort()
method accepts as an optional argument a comparison function that uses the same return-value conventions as the compareTo()
method. Given the compareTo()
method shown above, it is easy to sort an array of Range objects with code like this:
Sorting is important enough that you should consider defining this kind of two-argument comparison function as a class method for any class for which you define a compareTo()
instance method. One can easily be defined in terms of the other. For example:
With a method like this defined, sorting becomes simpler:
Some classes can be ordered in more than one way. The Card class, for example, defines one class method that orders cards by suit and another that orders them by rank.
There is nothing special about methods in JavaScript: they are simply functions assigned to object properties and invoked “through” or “on” an object. A single function can be assigned to two properties, and it then serves as two methods. We did this for our Set class, for example, when we copied the toArray()
method and made it do dual-duty as a toJSON()
method as well.
A single function can even be used as a method of more than one class. Most of the built-in methods of the Array class, for example, are defined generically, and if you define a class whose instances are array-like objects, you can copy functions from Array.prototype
to the prototype object of your class. If you view JavaScript through the lens of classical object-oriented languages, the use of methods of one class as methods of another class can be thought of as a form of multiple inheritance. JavaScript is not a classical object-oriented language, however, and I prefer to describe this kind of method reuse using the informal term borrowing.
It is not only Array methods that can be borrowed: we can write our own generic methods. Example 9-9 defines generic toString()
and equals()
methods that are suitable for use by simple classes like our Range, Complex, and Card classes. If the Range class did not have an equals()
method, we could borrow the generic equals()
like this:
Note that the generic.equals()
method does only a shallow comparison, and it is not suitable for use with classes whose instance properties refer to objects with their own equals()
methods. Also notice that this method includes special case code to handle the property added to objects when they are inserted into a Set (Example 9-6).
Example 9-9. Generic methods for borrowing
In classical object-oriented programming, it is often a goal to encapsulate or hide the state of an object within the object, allowing access to that state only through the methods of the object, and now allowing the important state variables to be read or written directly. To achieve this goal, languages like Java allow the declaration of “private” instance fields of a class that are only accessible to the instance method of the class and cannot be seen outside of the class.
We can approximate private instance fields using variables (or arguments) captured in the closure of the constructor invocation that creates an instance. To do this, we define functions inside the constructor (so they have access to the constructor’s arguments and variables) and assign those functions to properties of the newly created object. Example 9-10 shows how we can do this to create an encapsulated version of our Range class. Instead of having from
and to
properties that give the endpoints of the range, instances of this new version of the class have from
and to
methods that return the endpoints of the range. These from()
and to()
methods are defined on the individual Range object and are not inherited from the prototype. The other Range methods are defined on the prototype as usual, but modified to call the from()
and to()
methods rather than read the endpoints directly from properties.
Example 9-10. A Range class with weakly encapsulated endpoints
This new Range class defines methods for querying the endpoints of a range, but no methods or properties for setting those endpoints. This gives instances of this class a kind of immutability: if used correctly, the endpoints of a Range object will not change after it has been created. Unless we use ECMAScript 5 features (see Encapsulating Object State), however, the from
and to
properties are still writable, and Range objects aren’t really immutable at all:
Keep in mind that there is an overhead to this encapsulation technique. A class that uses a closure to encapsulate its state will almost certainly be slower and larger than the equivalent class with unencapsulated state variables.
Sometimes we want to allow objects to be initialized in more than one way. We might want to create a Complex object initialized with a radius and an angle (polar coordinates) instead of real and imaginary components, for example, or we might want to create a Set whose members are the elements of an array rather than the arguments passed to the constructor.
One way to do this is to overload the constructor and have it perform different kinds of initialization depending on the arguments it is passed. Here is an overloaded version of the Set constructor, for example:
Defining the Set()
constructor this way allows us to explicitly list set members in the constructor call or to pass an array of members to the constructor. The constructor has an unfortunate ambiguity, however: we cannot use it to create a set that has an array as its sole member. (To do that, we’d have to create an empty set and then call the add()
method explicitly.)
In the case of complex numbers initialized to polar coordinates, constructor overloading really isn’t viable. Both representations of complex numbers involve two floating-point numbers and, unless we add a third argument to the constructor, there is no way for the constructor to examine its arguments and determine which representation is desired. Instead, we can write a factory method—a class method that returns an instance of the class. Here is a factory method for returning a Complex object initialized using polar coordinates:
And here is a factory method for initializing a Set from an array:
The appeal of factory methods here is that you can give them whatever name you want, and methods with different names can perform different kinds of initializations. Since constructors serve as the public identity of a class, however, there is usually only a single constructor per class. This is not a hard-and-fast rule, however. In JavaScript it is possible to define multiple constructor functions that share a single prototype object, and if you do this, objects created by any of the constructors will be of the same type. This technique is not recommended, but here is an auxiliary constructor of this type:
In ECMAScript 5, the bind()
method of functions has special behavior that allows it to create this kind of auxiliary constructor. See The bind() Method.
[15] This example is based on a Java example by Joshua Bloch, available at http://jcp.org/aboutJava/communityprocess/jsr/tiger/enum.html.
In object-oriented programming, a class B can extend or subclass another class A. We say that A is the superclass and B is the subclass. Instances of B inherit all the instance methods of A. The class B can define its own instance methods, some of which may override methods of the same name defined by class A. If a method of B overrides a method of A, the overriding method in B may sometimes want to invoke the overridden method in A: this is called method chaining. Similarly, the subclass constructor B()
may sometimes need to invoke the superclass constructor A()
. This is called constructor chaining. Subclasses can themselves have subclasses, and when working with hierarchies of classes, it can sometimes be useful to define abstract classes. An abstract class is one that defines one or more methods without an implementation. The implementation of these abstract methods is left to the concrete subclasses of the abstract class.
The key to creating subclasses in JavaScript is proper initialization of the prototype object. If class B extends A, then B.prototype
must be an heir of A.prototype
. Then instances of B will inherit from B.prototype
which in turn inherits from A.prototype
. This section demonstrates each of the subclass-related terms defined above, and also covers an alternative to subclassing known as composition.
Using the Set class of Example 9-6 as a starting point, this section will demonstrate how to define subclasses, how to chain to constructors and overridden methods, how to use composition instead of inheritance, and finally, how to separate interface from implementation with abstract classes. The section ends with an extended example that defines a hierarchy of Set classes. Note that the early examples in this section are intended to demonstrate basic subclassing techniques. Some of these examples have important flaws that will be addressed later in the section.
JavaScript objects inherit properties (usually methods) from the prototype object of their class. If an object O is an instance of a class B and B is a subclass of A, then O must also inherit properties from A. We arrange this by ensuring that the prototype object of B inherits from the prototype object of A. Using our inherit()
function (Example 6-1), we write:
These two lines of code are the key to creating subclasses in JavaScript. Without them, the prototype object will be an ordinary object—an object that inherits from Object
.
prototype
—and this means that your class will be a subclass of Object like all classes are. If we add these two lines to the defineClass()
function (from Java-Style Classes in JavaScript), we can transform it into the defineSubclass()
function and the Function.prototype.extend()
method shown in Example 9-11.
Example 9-11. Subclass definition utilities
Example 9-12 demonstrates how to write a subclass “manually” without using the defineSubclass()
function. It defines a SingletonSet subclass of Set. A SingletonSet is a specialized set that is read-only and has a single constant member.
Example 9-12. SingletonSet: a simple set subclass
Our SingletonSet class has a very simple implementation that consists of five simple method definitions. It implements these five core Set methods, but inherits methods such as toString()
, toArray()
and equals()
from its superclass. This inheritance of methods is the reason for defining subclasses. The equals()
method of the Set class (defined in Comparison Methods), for example, works to compare any Set instance that has working size()
and foreach()
methods with any Set that has working size()
and contains()
methods. Because SingletonSet is a subclass of Set, it inherits this equals()
implementation automatically and doesn’t have to write its own. Of course, given the radically simple nature of singleton sets, it might be more efficient for SingletonSet to define its own version of equals()
:
Note that SingletonSet does not statically borrow a list of methods from Set: it dynamically inherits the methods of the Set class. If we add a new method to Set.prototype
, it immediately becomes available to all instances of Set and of SingletonSet (assuming SingletonSet does not already define a method by the same name).
The SingletonSet class in the last section defined a completely new set implementation, and completely replaced the core methods it inherited from its superclass. Often, however, when we define a subclass, we only want to augment or modify the behavior of our superclass methods, not replace them completely. To do this, the constructor and methods of the subclass call or chain to the superclass constructor and the superclass methods.
Example 9-13 demonstrates this. It defines a subclass of Set named NonNullSet: a set that does not allow null
and undefined
as members. In order to restrict the membership in this way, NonNullSet needs to test for null and undefined values in its add()
method. But it doesn’t want to reimplement the add()
method completely, so it chains to the superclass version of the method. Notice also that the NonNullSet()
constructor doesn’t take any action of its own: it simply passes its arguments to the superclass constructor (invoking it as a function, not as a constructor) so that the superclass constructor can initialize the newly created object.
Example 9-13. Constructor and method chaining from subclass to superclass
Let’s generalize this notion of a non-null set to a “filtered set”: a set whose members must pass through a filter function before being added. We’ll define a class factory function (like the enumeration()
function from Example 9-7) that is passed a filter function and returns a new Set subclass. In fact, we can generalize even further and define our class factory to take two arguments: the class to subclass and the filter to apply to its add()
method. We’ll call this factory method filteredSetSubclass()
, and we might use it like this:
The code for this class factory function is in Example 9-14. Notice how this function performs the same method and constructor chaining as NonNullSet did.
Example 9-14. A class factory and method chaining
One interesting point to note about Example 9-14 is that by wrapping a function around our subclass creation code, we are able to use the superclass
argument in our constructor and method chaining code rather than hard-coding the name of the actual superclass. This means that if we wanted to change the superclass, we would only have to change it in one spot, rather than searching our code for every mention of it. This is arguably a technique that is worth using, even if we’re not defining a class factory. For example, we could rewrite our NonNullSet
using a wrapper function and the Function
.prototype.extend()
method (of Example 9-11) like this:
Finally, it is worth emphasizing that the ability to create class factories like this one arises from the dynamic nature of JavaScript. Class factories are a powerful and useful feature that has no analog in languages like Java and C++.
In the previous section, we wanted to define sets that restricted their members according to certain criteria, and we used subclassing to accomplish this, creating a custom subclass of a specified set implementation that used a specified filter function to restrict membership in the set. Each combination of superclass and filter function required the creation of a new class.
There is a better way to accomplish this, however. A well-known principle in object-oriented design is “favor composition over inheritance.”[16] In this case we can use composition by defining a new set implementation that “wraps” another set object and forwards requests to it, after filtering out prohibited members. Example 9-15 shows how it is done.
Example 9-15. Composing sets instead of subclassing them
One of the benefits of using composition in this case is that only a single FilteredSet subclass is required. Instances of this class can be created to restrict the membership of any other set instance. Instead of using the NonNullSet class defined earlier, for example, we can do this:
We can even filter a filtered set:
In the previous section you were urged to “favor composition over inheritance.” But to illustrate this principle, we created a subclass of Set. We did this so that the resulting class would be instanceof Set
, and so that it could inherit the useful auxiliary Set methods like toString()
and equals()
. These are valid pragmatic reasons, but it still would have been nice to be able to do set composition without subclassing a concrete implementation like the Set class. A similar point can be made about our SingletonSet class from Example 9-12—that class subclassed Set, so that it could inherit the auxiliary methods, but its implementation was completely different than its superclass. SingletonSet is not a specialized version of the Set class, but a completely different kind of Set. SingletonSet should be a sibling of Set in the class hierarchy, not a descendant of it.
The solution in classical OO languages and also in JavaScript is to separate interface from implementation. Suppose we define an AbstractSet class which implements the auxiliary methods like toString()
but does not implement the core methods like foreach()
. Then, our set implementations, Set, SingletonSet, and FilteredSet, can all be subclasses of AbstractSet. FilteredSet and SingletonSet no longer subclass an unrelated implementation.
Example 9-16 takes this approach further and defines a hierarchy of abstract set classes. AbstractSet defines only a single abstract method, contains()
. Any class that purports to be a set must define at least this one method. Next, we subclass AbstractSet to define AbstractEnumerableSet. That class adds abstract size()
and foreach()
methods, and defines useful concrete methods (toString()
, toArray()
, equals()
, and so on) on top of them. AbstractEnumerableSet does not define add()
or remove()
methods and represents read-only sets. SingletonSet can be implemented as a concrete subclass. Finally, we define AbstractWritableSet as a subclass of AbstractEnumerableSet. This final abstract set defines the abstract methods add()
and remove()
, and implements concrete methods like union()
and intersection()
that use them. AbstractWritableSet
is the appropriate superclass for our Set and FilteredSet classes. They are omitted from this example, however, and a new concrete implementation named ArraySet is included instead.
Example 9-16 is a long example, but worth reading through in its entirety. Note that it uses Function.prototype.extend()
as a shortcut for creating subclasses.
Example 9-16. A hierarchy of abstract and concrete Set classes
ECMAScript 5 adds methods for specifying property attributes (getters, setters, enumerability, writability, and configurability) and for restricting the extensibility of objects. These methods were described in Property Getters and Setters, Property Attributes, and The extensible Attribute, but turn out to be quite useful when defining classes. The subsections that follow demonstrate how to use these ECMAScript 5 capabilities to make your classes more robust.
The Set class of Example 9-6 used a trick to store objects as set members: it defined an “object id” property on any object added to the set. Later, if other code uses that object in a for/in
loop, this added property will be returned. ECMAScript 5 allows us to avoid this by making properties nonenumerable. Example 9-17 demonstrates how to do this with Object.defineProperty()
and also shows how to define a getter function and how to test whether an object is extensible.
Example 9-17. Defining nonenumerable properties
In addition to making properties nonenumerable, ECMAScript 5 allows us to make properties read-only, which is handy if we want to define classes whose instances are immutable. Example 9-18 is an immutable version of our Range class that does this using Object.defineProperties()
and with Object.create()
. It also uses Object
.
define
Properties()
to set up the prototype object for the class, making the instance methods nonenumerable, like the methods of built-in classes. In fact, it goes further than this and makes those instance methods read-only and nondeletable, which prevents any dynamic alterations (“monkey-patching”) to the class. Finally, as an interesting trick, Example 9-18 has a constructor function that works as a factory function when invoked without the new
keyword.
Example 9-18. An immutable class with read-only properties and methods
Example 9-18 uses Object.defineProperties()
and Object.create()
to define immutable and nonenumerable properties. These are powerful methods, but the property descriptor objects they require can make the code difficult to read. An alternative is to define utility functions for modifying the attributes of properties that have already been defined. Example 9-19 shows two such utility functions.
Example 9-19. Property descriptor utilities
Object.defineProperty()
and Object.defineProperties()
can be used to create new properties and also to modify the attributes of existing properties. When used to define new properties, any attributes you omit default to false
. When used to alter existing properties, however, the attributes you omit are left unchanged. In the hideProps()
function above, for example, we specify only the enumerable
attribute because that is the only one we want to modify.
With these utility functions defined, we can take advantage of ECMAScript 5 features to write an immutable class without dramatically altering the way we write classes. Example 9-20 shows an immutable Range class that uses our utility functions.
Example 9-20. A simpler immutable class
Private State and Example 9-10 showed how you can use variables or arguments of a constructor function as private state for the objects created by that constructor. The shortcoming of this technique is that in ECMAScript 3, the accessor methods that provide access to that state can be replaced. ECMAScript 5 allows us to encapsulate our state variables more robustly by defining property getter and setter methods that cannot be deleted. Example 9-21 demonstrates.
Example 9-21. A Range class with strongly encapsulated endpoints
It is usually considered a feature of JavaScript that classes can be dynamically extended by adding new methods to the prototype object. ECMAScript 5 allows you to prevent this, if you want to. Object.preventExtensions()
makes an object nonextensible (The extensible Attribute), which means that no new properties can be added to it. Object.seal()
takes this a step further: it prevents the addition of new properties and also makes all current properties nonconfigurable, so that they cannot be deleted. (A nonconfigurable property can still be writable, however, and can still be converted into a read-only property.) To prevent extensions to Object.prototype
, you can simply write:
Another dynamic feature of JavaScript is the ability to replace (or “monkey-patch”) methods of an object:
You can prevent this kind of alteration by making your instance methods read-only. The freezeProps()
utility function defined above is one way to accomplish this. Another way is with Object.freeze()
, which does everything that Object.seal()
does, but also makes all properties read-only and nonconfigurable.
There is a feature of read-only properties that is important to understand when working with classes. If an object o
inherits a read-only property p
, an attempt to assign to o.p
will fail and will not create a new property in o
. If you want to override an inherited read-only property, you have to use Object.defineProperty()
or Object.define
Properties()
or Object.create()
to create the new property. This means that if you make the instance methods of a class read-only, it becomes significantly more difficult for subclasses to override those methods.
It is not usually necessary to lock down prototype objects like this, but there are some circumstances where preventing extensions to an object can be useful. Think back to the enumeration()
class factory function of Example 9-7. That function stored the instances of each enumerated type in properties of the constructor object, and also in the values
array of the constructor. These properties and array serve as the official list of instances of the enumerated type, and it is worth freezing them, so that new instances cannot be added and existing instances cannot be deleted or altered. In the enumeration()
function we can simply add these lines of code:
Notice that by calling Object.freeze()
on the enumerated type, we prevent the future use of the objectId
property defined in Example 9-17. A solution to this problem is to read the objectId
property (calling the underlying accessor method and setting the internal property) of the enumerated type once before freezing it.
Example 9-22 demonstrates subclassing using ECMAScript 5 features. It defines a StringSet class as a subclass of the AbstractWritableSet class from Example 9-16. The main feature of this example is the use of Object
.
create()
to create a prototype object that inherits from the superclass prototype and also define the properties of the newly created object. The difficulty with this approach, as mentioned earlier, is that it requires the use of awkward property descriptors.
Another interesting point about this example is that it passes null
to Object
.
create()
to create an object that inherits nothing. This object is used to store the members of the set, and the fact that it has no prototype allows us to use the in
operator with it instead of the hasOwnProperty()
method.
Example 9-22. StringSet: a set subclass using ECMAScript 5
Property Attributes described the property descriptors of ECMAScript 5 but didn’t include many examples of their use. We conclude this section on ECMAScript 5 with an extended example that will demonstrate many operations on ECMAScript 5 properties. Example 9-23 will add a properties()
method (nonenumerable, of course) to Object
.
prototype
. The return value of this method is an object that represents a list of properties and defines useful methods for displaying the properties and attributes (useful for debugging), for obtaining property descriptors (useful when you want to copy properties along with their attributes), and for setting attributes on the properties (useful alternatives to the hideProps()
and freezeProps()
functions defined earlier). This one example demonstrates most of the property-related features of ECMAScript 5, and also uses a modular coding technique that will be discussed in the next section.
Example 9-23. ECMAScript 5 properties utilities
An important reason to organize code into classes is to make that code more modular and suitable for reuse in a variety of situations. Classes are not the only kind of modular code, however. Typically, a module is a single file of JavaScript code. A module file might contain a class definition, a set of related classes, a library of utility functions, or just a script of code to execute. Any chunk of JavaScript code can be a module, as long as it is written in a modular way. JavaScript does not define any language constructs for working with modules (it does reserve the keywords imports
and exports
, however, so future versions of the language might), which means that writing modular JavaScript is largely a matter of following certain coding conventions.
Many JavaScript libraries and client-side programming frameworks include some kind of module system. Both the Dojo toolkit and Google’s Closure library, for example, define provide()
and require()
functions for declaring and loading modules. And the CommonJS server-side JavaScript standardization effort (see http://commonjs.org) has created a modules specification that also uses a require()
function. Module systems like this often handle module loading and dependency management for you and are beyond the scope of this discussion. If you use one of these frameworks, then you should use and define modules following the conventions appropriate to that framework. In this section we’ll discuss very simple module conventions.
The goal of modules is to allow large programs to be assembled using code from disparate sources, and for all of that code to run correctly even in the presence of code that the module authors did not anticipate. In order for this to work, the various modules must avoid altering the global execution environment, so that subsequent modules are allowed to run in the pristine (or near pristine) environment that it expects. As a practical matter, this means that modules should minimize the number of global symbols they define—ideally, no module should define more than one. The subsections that follow describe simple ways to accomplish this. You’ll see that writing modular code in JavaScript is not at all tricky: we’ve seen examples of the techniques described here throughout this book.
One way for a module to avoid the creation of global variables is to use an object as its namespace. Instead of defining global functions and variables, it stores the functions and values as properties of an object (which may be referenced by a global variable). Consider the Set class of Example 9-6. It defines a single global constructor function Set
. It defines various instance methods for the class, but it stores them as properties of Set.prototype
so they are not globals. That example also defines a _v2s()
utility function, but instead of making it a global function, it stores it as a property of Set
.
Next, consider Example 9-16. That example defined a number of abstract and concrete set classes. Each class had only a single global symbol, but the whole module (the single file of code) defined quite a few globals. From the standpoint of a clean global namespace, it would be better if this module of set classes defined a single global:
This sets
object is the namespace for the module, and we define each of the set classes as a property of this object:
When we want to use a class defined like this, we simply include the namespace when we refer to the constructor:
The author of a module cannot know what other modules their module will be used with and must guard against name collisions by using namespaces like this. The programmer who uses the module, however, knows what modules are in use and what names are defined. This programmer doesn’t have to keep using the namespaces rigidly, and can import frequently used values into the global namespace. A programmer who was going to make frequent use of the Set class from the sets
namespace might import the class like this:
Sometimes module authors use more deeply nested namespaces. If the sets module was part of a larger group of collections modules, it might use collections.sets
as a namespace, and the module would begin with code like this:
Sometimes the top-level namespace is used to identify the person or organization that created the modules and prevent name collisions between namespace names. The Google Closure library, for example, defines its Set class in the namespace goog.structs. Individuals can reverse the components of an Internet domain name to create a globally unique namespace prefix that is unlikely to be in use by any other module authors. Since my website is at davidflanagan.com, I could publish my sets module in the namespace com.davidflanagan.collections.sets
.
With namespaces this long, importing values becomes important for any user of your module. Rather than importing individual classes, however, a programmer might import the entire module to the global namespace:
By convention, the filename of a module should match its namespace. The sets module should be stored in a file named sets.js. If that module uses the namespace collections.sets, then this file should be stored in a directory named collections/ (this directory might also include a file named maps.js). And a module that used the namespace com.davidflanagan.collections.sets would be in com/davidflanagan/collections/sets.js.
Modules have a public API that they export: these are the functions, classes, properties, and methods that are intended to be used by other programmers. Often, however, module implementations require additional functions or methods that are not intended for use outside of the module. The Set._v2s()
function of Example 9-6 is an example—we don’t want users of the Set class to ever call that function, so it would be better if it was inaccessible.
We can do that by defining our module (the Set class in this case) inside a function. As described in Functions As Namespaces, variables and functions defined within another function are local to that function and not visible outside of it. In effect, we can use the scope of a function (sometimes called a “module function”) as a private namespace for our module. Example 9-24 shows what this might look like for our Set class.
Example 9-24. A Set class in a module function
Note that this function definition followed by immediate invocation is idiomatic in JavaScript. Code that is to run in a private namespace is prefixed by “(function() {” and followed by “}());”. The open parenthesis at the start ensures that this is a function expression, not a function definition statement, so any function name that clarifies your code can be added to the prefix. In Example 9-24 we used the name “invocation” to emphasize that the function would be invoked immediately after being defined. The name “namespace” could also be used to emphasize that the function was serving as a namespace.
Once module code has been sealed up inside a function, it needs some way to export its public API so that it can be used from outside the module function. In Example 9-24, the module function returned the constructor, which we then assigned to a global variable. The fact that the value is returned makes it very clear that it is being exported outside of the function scope. Modules that have more than one item in their API can return a namespace object. For our sets module, we might write code that looks something like this:
A similar technique is to treat the module function as a constructor, invoke it with new
, and export values by assigning them to this
:
As an alternative, if a global namespace object has already been defined, the module function can simply set properties of that object directly, and not bother returning anything at all:
Frameworks that define module loading systems may have other methods of exporting a module’s API. There may be a provides()
function for modules to register their API, or an exports
object into which modules must store their API. Until JavaScript has module management features of its own, you should choose the module creation and exporting system that works best with whatever framework or toolkit you use.
A regular expression is an object that describes a pattern of characters. The JavaScript RegExp class represents regular expressions, and both String and RegExp define methods that use regular expressions to perform powerful pattern-matching and search-and-replace functions on text. JavaScript’s regular expression grammar is a fairly complete subset of the regular-expression syntax used by Perl 5, so if you are an experienced Perl programmer, you already know how to describe patterns in JavaScript.[17]
This chapter begins by defining the syntax that regular expressions use to describe textual patterns. It then moves on to describe the String and RegExp methods that use regular expressions.
In JavaScript, regular expressions are represented by RegExp objects. RegExp objects may be created with the RegExp()
constructor, of course, but they are more often created using a special literal syntax. Just as string literals are specified as characters within quotation marks, regular expression literals are specified as characters within a pair of slash (/
) characters. Thus, your JavaScript code may contain lines like this:
This line creates a new RegExp object and assigns it to the variable pattern
. This particular RegExp object matches any string that ends with the letter “s.” This regular expression could have equivalently been defined with the RegExp()
constructor like this:
Literals of primitive type, like strings and numbers, evaluate (obviously) to the same value each time they are encountered in a program. Object literals (or initializers) such as {}
and []
create a new object each time they are encountered. If you write var a = []
in the body of a loop, for example, each iteration of the loop will create a new empty array.
Regular expression literals are a special case. The ECMAScript 3 specification says that a RegExp literal is converted to a RegExp object when the code is parsed, and each evaluation of the code returns the same object. The ECMAScript 5 specification reverses this and requires that each evaluation of a RegExp return a new object. IE has always implemented the ECMAScript 5 behavior and most current browsers have now switched to it, even before they fully implement the standard.
Regular-expression pattern specifications consist of a series of characters. Most characters, including all alphanumeric characters, simply describe characters to be matched literally. Thus, the regular expression /java/
matches any string that contains the substring “java”. Other characters in regular expressions are not matched literally but have special significance. For example, the regular expression /s$/
contains two characters. The first, “s”, matches itself literally. The second, “$”, is a special metacharacter that matches the end of a string. Thus, this regular expression matches any string that contains the letter “s” as its last character.
The following sections describe the various characters and metacharacters used in JavaScript regular expressions.
As noted earlier, all alphabetic characters and digits match themselves literally in regular expressions. JavaScript regular-expression syntax also supports certain nonalphabetic characters through escape sequences that begin with a backslash (\
). For example, the sequence \n
matches a literal newline character in a string. Table 10-1 lists these characters.
Table 10-1. Regular-expression literal characters
Character | Matches |
---|---|
Alphanumeric character | Itself |
\0 | The NUL character (\u0000) |
\t | Tab (\u0009) |
\n | Newline (\u000A) |
\v | Vertical tab (\u000B) |
\f | Form feed (\u000C) |
\r | Carriage return (\u000D) |
\x nn | The Latin character specified by the hexadecimal number |
\u xxxx | The Unicode character specified by the hexadecimal number |
\c X | The control character |
A number of punctuation characters have special meanings in regular expressions. They are:
The meanings of these characters are discussed in the sections that follow. Some of these characters have special meaning only within certain contexts of a regular expression and are treated literally in other contexts. As a general rule, however, if you want to include any of these punctuation characters literally in a regular expression, you must precede them with a \
. Other punctuation characters, such as quotation marks and @
, do not have special meaning and simply match themselves literally in a regular expression.
If you can’t remember exactly which punctuation characters need to be escaped with a backslash, you may safely place a backslash before any punctuation character. On the other hand, note that many letters and numbers have special meaning when preceded by a backslash, so any letters or numbers that you want to match literally should not be escaped with a backslash. To include a backslash character literally in a regular expression, you must escape it with a backslash, of course. For example, the following regular expression matches any string that includes a backslash: /\\/
.
Individual literal characters can be combined into character classes by placing them within square brackets. A character class matches any one character that is contained within it. Thus, the regular expression /[abc]/
matches any one of the letters a, b, or c. Negated character classes can also be defined; these match any character except those contained within the brackets. A negated character class is specified by placing a caret (^
) as the first character inside the left bracket. The regexp /[^abc]/
matches any one character other than a, b, or c. Character classes can use a hyphen to indicate a range of characters. To match any one lowercase character from the Latin alphabet, use /[a-z]/
and to match any letter or digit from the Latin alphabet, use /[a-zA-Z0-9]/
.
Because certain character classes are commonly used, the JavaScript regular-expression syntax includes special characters and escape sequences to represent these common classes. For example, \s
matches the space character, the tab character, and any other Unicode whitespace character; \S
matches any character that is not Unicode whitespace. Table 10-2 lists these characters and summarizes character-class syntax. (Note that several of these character-class escape sequences match only ASCII characters and have not been extended to work with Unicode characters. You can, however, explicitly define your own Unicode character classes; for example, /[\u0400-\u04FF]/
matches any one Cyrillic character.)
Table 10-2. Regular expression character classes
Character | Matches |
---|---|
[...] | Any one character between the brackets. |
[^...] | Any one character not between the brackets. |
. | Any character except newline or another Unicode line terminator. |
\w | Any ASCII word character. Equivalent to |
\W | Any character that is not an ASCII word character. Equivalent to |
\s | Any Unicode whitespace character. |
\S | Any character that is not Unicode whitespace. Note that |
\d | Any ASCII digit. Equivalent to [0-9] . |
\D | Any character other than an ASCII digit. Equivalent to |
[\b] | A literal backspace (special case). |
Note that the special character-class escapes can be used within square brackets. \s
matches any whitespace character, and \d
matches any digit, so /[\s\d]/
matches any one whitespace character or digit. Note that there is one special case. As you’ll see later, the \b
escape has a special meaning. When used within a character class, however, it represents the backspace character. Thus, to represent a backspace character literally in a regular expression, use the character class with one element: /[\b]/
.
With the regular expression syntax you’ve learned so far, you can describe a two-digit number as /\d\d/
and a four-digit number as /\d\d\d\d/
. But you don’t have any way to describe, for example, a number that can have any number of digits or a string of three letters followed by an optional digit. These more complex patterns use regular-expression syntax that specifies how many times an element of a regular expression may be repeated.
The characters that specify repetition always follow the pattern to which they are being applied. Because certain types of repetition are quite commonly used, there are special characters to represent these cases. For example, +
matches one or more occurrences of the previous pattern. Table 10-3 summarizes the repetition syntax.
Table 10-3. Regular expression repetition characters
Character | Meaning |
---|---|
{ n , m } | Match the previous item at least |
{ n ,} | Match the previous item |
{ n } | Match exactly |
? | Match zero or one occurrences of the previous item. That is, the previous item is optional. Equivalent to |
+ | Match one or more occurrences of the previous item. Equivalent to |
* | Match zero or more occurrences of the previous item. Equivalent to |
The following lines show some examples:
Be careful when using the *
and ?
repetition characters. Since these characters may match zero instances of whatever precedes them, they are allowed to match nothing. For example, the regular expression /a*/
actually matches the string “bbbb” because the string contains zero occurrences of the letter a!
The repetition characters listed in Table 10-3 match as many times as possible while still allowing any following parts of the regular expression to match. We say that this repetition is “greedy.” It is also possible to specify that repetition should be done in a nongreedy way. Simply follow the repetition character or characters with a question mark: ??
, +?
, *?
, or even {1,5}?
. For example, the regular expression /a+/
matches one or more occurrences of the letter a. When applied to the string “aaa”, it matches all three letters. But /a+?/
matches one or more occurrences of the letter a, matching as few characters as necessary. When applied to the same string, this pattern matches only the first letter a.
Using nongreedy repetition may not always produce the results you expect. Consider the pattern /a+b/
, which matches one or more a’s, followed by the letter b. When applied to the string “aaab”, it matches the entire string. Now let’s use the nongreedy version: /a+?b/
. This should match the letter b preceded by the fewest number of a’s possible. When applied to the same string “aaab”, you might expect it to match only one a and the last letter b. In fact, however, this pattern matches the entire string, just like the greedy version of the pattern. This is because regular-expression pattern matching is done by finding the first position in the string at which a match is possible. Since a match is possible starting at the first character of the string, shorter matches starting at subsequent characters are never even considered.
The regular-expression grammar includes special characters for specifying alternatives, grouping subexpressions, and referring to previous subexpressions. The |
character separates alternatives. For example, /ab|cd|ef/
matches the string “ab” or the string “cd” or the string “ef”. And /\d{3}|[a-z]{4}/
matches either three digits or four lowercase letters.
Note that alternatives are considered left to right until a match is found. If the left alternative matches, the right alternative is ignored, even if it would have produced a “better” match. Thus, when the pattern /a|ab/
is applied to the string “ab”, it matches only the first letter.
Parentheses have several purposes in regular expressions. One purpose is to group separate items into a single subexpression so that the items can be treated as a single unit by |
, *
, +
, ?
, and so on. For example, /java(script)?/
matches “java” followed by the optional “script”. And /(ab|cd)+|ef/
matches either the string “ef” or one or more repetitions of either of the strings “ab” or “cd”.
Another purpose of parentheses in regular expressions is to define subpatterns within the complete pattern. When a regular expression is successfully matched against a target string, it is possible to extract the portions of the target string that matched any particular parenthesized subpattern. (You’ll see how these matching substrings are obtained later in the chapter.) For example, suppose you are looking for one or more lowercase letters followed by one or more digits. You might use the pattern /[a-z]+\d+/
. But suppose you only really care about the digits at the end of each match. If you put that part of the pattern in parentheses (/[a-z]+(\d+)/)
, you can extract the digits from any matches you find, as explained later.
A related use of parenthesized subexpressions is to allow you to refer back to a subexpression later in the same regular expression. This is done by following a \
character by a digit or digits. The digits refer to the position of the parenthesized subexpression within the regular expression. For example, \1
refers back to the first subexpression, and \3
refers to the third. Note that, because subexpressions can be nested within others, it is the position of the left parenthesis that is counted. In the following regular expression, for example, the nested subexpression ([Ss]cript)
is referred to as \2
:
A reference to a previous subexpression of a regular expression does not refer to the pattern for that subexpression but rather to the text that matched the pattern. Thus, references can be used to enforce a constraint that separate portions of a string contain exactly the same characters. For example, the following regular expression matches zero or more characters within single or double quotes. However, it does not require the opening and closing quotes to match (i.e., both single quotes or both double quotes):
To require the quotes to match, use a reference:
The \1
matches whatever the first parenthesized subexpression matched. In this example, it enforces the constraint that the closing quote match the opening quote. This regular expression does not allow single quotes within double-quoted strings or vice versa. It is not legal to use a reference within a character class, so you cannot write:
Later in this chapter, you’ll see that this kind of reference to a parenthesized subexpression is a powerful feature of regular-expression search-and-replace operations.
It is also possible to group items in a regular expression without creating a numbered reference to those items. Instead of simply grouping the items within (
and)
, begin the group with (?:
and end it with)
. Consider the following pattern, for example:
Here, the subexpression (?:[Ss]cript)
is used simply for grouping, so the ?
repetition character can be applied to the group. These modified parentheses do not produce a reference, so in this regular expression, \2
refers to the text matched by (fun\w*)
.
Table 10-4 summarizes the regular-expression alternation, grouping, and referencing operators.
Table 10-4. Regular expression alternation, grouping, and reference characters
Character | Meaning |
---|---|
| | Alternation. Match either the subexpression to the left or the subexpression to the right. |
(...) | Grouping. Group items into a single unit that can be used with |
(?:...) | Grouping only. Group items into a single unit, but do not remember the characters that match this group. |
\ n | Match the same characters that were matched when group number |
As described earlier, many elements of a regular expression match a single character in a string. For example, \s
matches a single character of whitespace. Other regular expression elements match the positions between characters, instead of actual characters. \b
, for example, matches a word boundary—the boundary between a \w
(ASCII word character) and a \W
(nonword character), or the boundary between an ASCII word character and the beginning or end of a string.[18] Elements such as \b
do not specify any characters to be used in a matched string; what they do specify, however, are legal positions at which a match can occur. Sometimes these elements are called regular-expression anchors because they anchor the pattern to a specific position in the search string. The most commonly used anchor elements are ^
, which ties the pattern to the beginning of the string, and $
, which anchors the pattern to the end of the string.
For example, to match the word “JavaScript” on a line by itself, you can use the regular expression /^JavaScript$/
. If you want to search for “Java” as a word by itself (not as a prefix, as it is in “JavaScript”), you can try the pattern /\sJava\s/
, which requires a space before and after the word. But there are two problems with this solution. First, it does not match “Java” at the beginning or the end of a string, but only if it appears with space on either side. Second, when this pattern does find a match, the matched string it returns has leading and trailing spaces, which is not quite what’s needed. So instead of matching actual space characters with \s
, match (or anchor to) word boundaries with \b
. The resulting expression is /\bJava\b/
. The element \B
anchors the match to a location that is not a word boundary. Thus, the pattern /\B[Ss]cript/
matches “JavaScript” and “postscript”, but not “script” or “Scripting”.
You can also use arbitrary regular expressions as anchor conditions. If you include an expression within (?=
and)
characters, it is a lookahead assertion, and it specifies that the enclosed characters must match, without actually matching them. For example, to match the name of a common programming language, but only if it is followed by a colon, you could use /[Jj]ava([Ss]cript)?(?=\:)/
. This pattern matches the word “JavaScript” in “JavaScript: The Definitive Guide”, but it does not match “Java” in “Java in a Nutshell”, because it is not followed by a colon.
If you instead introduce an assertion with (?!
, it is a negative lookahead assertion, which specifies that the following characters must not match. For example, /Java(?!Script)([A-Z]\w*)/
matches “Java” followed by a capital letter and any number of additional ASCII word characters, as long as “Java” is not followed by “Script”. It matches “JavaBeans” but not “Javanese”, and it matches “JavaScrip” but not “JavaScript” or “JavaScripter”.
Table 10-5 summarizes regular-expression anchors.
Table 10-5. Regular-expression anchor characters
Character | Meaning |
---|---|
^ | Match the beginning of the string and, in multiline searches, the beginning of a line. |
$ | Match the end of the string and, in multiline searches, the end of a line. |
\b | Match a word boundary. That is, match the position between a |
\B | Match a position that is not a word boundary. |
(?= p) | A positive lookahead assertion. Require that the following characters match the pattern |
(?! p) | A negative lookahead assertion. Require that the following characters do not match the pattern |
There is one final element of regular-expression grammar. Regular-expression flags specify high-level pattern-matching rules. Unlike the rest of regular-expression syntax, flags are specified outside the /
characters; instead of appearing within the slashes, they appear following the second slash. JavaScript supports three flags. The i
flag specifies that pattern matching should be case-insensitive. The g
flag specifies that pattern matching should be global—that is, all matches within the searched string should be found. The m
flag performs pattern matching in multiline mode. In this mode, if the string to be searched contains newlines, the ^
and $
anchors match the beginning and end of a line in addition to matching the beginning and end of a string. For example, the pattern /java$/im
matches “java” as well as “Java\nis fun”.
These flags may be specified in any combination. For example, to do a case-insensitive search for the first occurrence of the word “java” (or “Java”, “JAVA”, etc.), you can use the case-insensitive regular expression /\bjava\b/i
. And to find all occurrences of the word in a string, you can add the g
flag: /\bjava\b/gi
.
Table 10-6 summarizes these regular-expression flags. Note that you’ll see more about the g
flag later in this chapter, when the String and RegExp methods are used to actually perform matches.
Table 10-6. Regular-expression flags
Character | Meaning |
---|---|
i | Perform case-insensitive matching. |
g | Perform a global match—that is, find all matches rather than stopping after the first match. |
m | Multiline mode. |
[17] Perl regular expression features that are not supported by ECMAScript include the s
(single-line mode) and x
(extended syntax) flags; the \a
, \e
, \l
, \u
, \L
, \U
, \E
, \Q
, \A
, \Z
, \z
, and \G
escape sequences; the (?<=
positive look-behind anchor and the (?<!
negative look-behind anchor; and the (?#
comment and the other extended (?
syntaxes.
[18] Except within a character class (square brackets), where \b
matches the backspace character.
Until now, this chapter has discussed the grammar used to create regular expressions, but it hasn’t examined how those regular expressions can actually be used in JavaScript code. This section discusses methods of the String object that use regular expressions to perform pattern matching and search-and-replace operations. The sections that follow this one continue the discussion of pattern matching with JavaScript regular expressions by discussing the RegExp object and its methods and properties. Note that the discussion that follows is merely an overview of the various methods and properties related to regular expressions. As usual, complete details can be found in Part III.
Strings support four methods that use regular expressions. The simplest is search()
. This method takes a regular-expression argument and returns either the character position of the start of the first matching substring or −1 if there is no match. For example, the following call returns 4:
If the argument to search()
is not a regular expression, it is first converted to one by passing it to the RegExp
constructor. search()
does not support global searches; it ignores the g
flag of its regular expression argument.
The replace()
method performs a search-and-replace operation. It takes a regular expression as its first argument and a replacement string as its second argument. It searches the string on which it is called for matches with the specified pattern. If the regular expression has the g
flag set, the replace()
method replaces all matches in the string with the replacement string; otherwise, it replaces only the first match it finds. If the first argument to replace()
is a string rather than a regular expression, the method searches for that string literally rather than converting it to a regular expression with the RegExp()
constructor, as search()
does. As an example, you can use replace()
as follows to provide uniform capitalization of the word “JavaScript” throughout a string of text:
replace()
is more powerful than this, however. Recall that parenthesized subexpressions of a regular expression are numbered from left to right and that the regular expression remembers the text that each subexpression matches. If a $
followed by a digit appears in the replacement string, replace()
replaces those two characters with the text that matches the specified subexpression. This is a very useful feature. You can use it, for example, to replace straight quotes in a string with curly quotes, simulated with ASCII characters:
The replace()
method has other important features as well, which are described in the String.replace()
reference page in Part III. Most notably, the second argument to replace()
can be a function that dynamically computes the replacement string.
The match()
method is the most general of the String regular-expression methods. It takes a regular expression as its only argument (or converts its argument to a regular expression by passing it to the RegExp()
constructor) and returns an array that contains the results of the match. If the regular expression has the g
flag set, the method returns an array of all matches that appear in the string. For example:
If the regular expression does not have the g
flag set, match()
does not do a global search; it simply searches for the first match. However, match()
returns an array even when it does not perform a global search. In this case, the first element of the array is the matching string, and any remaining elements are the parenthesized subexpressions of the regular expression. Thus, if match()
returns an array a
, a[0]
contains the complete match, a[1]
contains the substring that matched the first parenthesized expression, and so on. To draw a parallel with the replace()
method, a[
n
]
holds the contents of $
n
.
For example, consider parsing a URL with the following code:
It is worth noting that passing a nonglobal regular expression to the match()
method of a string is actually the same as passing the string to the exec()
method of the regular expression: the returned array has index
and input
properties, as described for the exec()
method below.
The last of the regular-expression methods of the String object is split()
. This method breaks the string on which it is called into an array of substrings, using the argument as a separator. For example:
The split()
method can also take a regular expression as its argument. This ability makes the method more powerful. For example, you can now specify a separator character that allows an arbitrary amount of whitespace on either side:
The split()
method has other features as well. See the String.split()
entry in Part III for complete details.
As mentioned at the beginning of this chapter, regular expressions are represented as RegExp objects. In addition to the RegExp()
constructor, RegExp objects support three methods and a number of properties. RegExp pattern-matching methods and properties are described in the next two sections.
The RegExp()
constructor takes one or two string arguments and creates a new RegExp object. The first argument to this constructor is a string that contains the body of the regular expression—the text that would appear within slashes in a regular-expression literal. Note that both string literals and regular expressions use the \
character for escape sequences, so when you pass a regular expression to RegExp()
as a string literal, you must replace each \
character with \\
. The second argument to RegExp()
is optional. If supplied, it indicates the regular-expression flags. It should be g
, i
, m
, or a combination of those letters.
For example:
The RegExp()
constructor is useful when a regular expression is being dynamically created and thus cannot be represented with the regular-expression literal syntax. For example, to search for a string entered by the user, a regular expression must be created at runtime with RegExp()
.
Each RegExp object has five properties. The source
property is a read-only string that contains the text of the regular expression. The global
property is a read-only boolean value that specifies whether the regular expression has the g
flag. The ignoreCase
property is a read-only boolean value that specifies whether the regular expression has the i
flag. The multiline
property is a read-only boolean value that specifies whether the regular expression has the m
flag. The final property is lastIndex
, a read/write integer. For patterns with the g
flag, this property stores the position in the string at which the next search is to begin. It is used by the exec()
and test()
methods, described below.
RegExp objects define two methods that perform pattern-matching operations; they behave similarly to the String methods described earlier. The main RegExp pattern-matching method is exec()
. It is similar to the String match()
method described in String Methods for Pattern Matching, except that it is a RegExp method that takes a string, rather than a String method that takes a RegExp. The exec()
method executes a regular expression on the specified string. That is, it searches the string for a match. If it finds none, it returns null
. If it does find one, however, it returns an array just like the array returned by the match()
method for nonglobal searches. Element 0 of the array contains the string that matched the regular expression, and any subsequent array elements contain the substrings that matched any parenthesized subexpressions. Furthermore, the index
property contains the character position at which the match occurred, and the input
property refers to the string that was searched.
Unlike the match()
method, exec()
returns the same kind of array whether or not the regular expression has the global g
flag. Recall that match()
returns an array of matches when passed a global regular expression. exec()
, by contrast, always returns a single match and provides complete information about that match. When exec()
is called on a regular expression that has the g
flag, it sets the lastIndex
property of the regular-expression object to the character position immediately following the matched substring. When exec()
is invoked a second time for the same regular expression, it begins its search at the character position indicated by the lastIndex
property. If exec()
does not find a match, it resets lastIndex
to 0. (You can also set lastIndex
to 0 at any time, which you should do whenever you quit a search before you find the last match in one string and begin searching another string with the same RegExp object.) This special behavior allows you to call exec()
repeatedly in order to loop through all the regular expression matches in a string. For example:
The other RegExp method is test()
. test()
is a much simpler method than exec()
. It takes a string and returns true
if the string contains a match for the regular expression:
Calling test()
is equivalent to calling exec()
and returning true
if the return value of exec()
is not null
. Because of this equivalence, the test()
method behaves the same way as the exec()
method when invoked for a global regular expression: it begins searching the specified string at the position specified by lastIndex
, and if it finds a match, it sets lastIndex
to the position of the character immediately following the match. Thus, you can loop through a string using the test()
method just as you can with the exec()
method.
The String methods search()
, replace()
, and match()
do not use the lastIndex
property as exec()
and test()
do. In fact, the String methods simply reset lastIndex
to 0. If you use exec()
or test()
on a pattern that has the g
flag set, and you are searching multiple strings, you must either find all the matches in each string so that lastIndex
is automatically reset to zero (this happens when the last search fails), or you must explicitly set the lastIndex
property to 0 yourself. If you forget to do this, you may start searching a new string at some arbitrary position within the string rather than from the beginning. If your RegExp doesn’t have the g
flag set, then you don’t have to worry about any of this, of course. Keep in mind also that in ECMAScript 5 each evaluation of a regular expression literal creates a new RegExp object with its own lastIndex
property, and this reduces the risk of accidentally using a “leftover” lastIndex
value.
Until now, this book has described the complete and official JavaScript language, as standardized by ECMAScript 3 and ECMAScript 5. This chapter instead describes subsets and supersets of JavaScript. The subsets have been defined, for the most part, for security purposes: a script written using only a secure language subset can be executed safely even if it comes from an untrusted source such as an ad server. JavaScript Subsets describes a few of these subsets.
The ECMAScript 3 standard was published in 1999 and a decade elapsed before the standard was updated to ECMAScript 5 in 2009. Brendan Eich, the creator of JavaScript, continued to evolve the language during that decade (the ECMAScript specification explicitly allows language extensions) and, with the Mozilla project, released JavaScript versions 1.5, 1.6, 1.7, 1.8, and 1.8.1 in Firefox 1.0, 1.5, 2, 3, and 3.5. Some of the features of these extensions to JavaScript have been codified in ECMAScript 5, but many remain nonstandard. Future versions of ECMAScript are expected to standardize at least some of the remaining nonstandard features.
The Firefox browser supports these extensions, as does the Spidermonkey JavaScript interpreter that Firefox is based on. Mozilla’s Java-based JavaScript interpreter, Rhino, (see Scripting Java with Rhino) also supports most of the extensions. Because these language extensions are nonstandard, however, they will not be useful to web developers who require language compatibility across all browsers. They are documented in this chapter because:
After a preliminary section on language subsets, the rest of this chapter describes these language extensions. Because they are nonstandard, they are documented in tutorial style with less rigor than the language features described elsewhere in the book.
Most language subsets are defined to allow the secure execution of untrusted code. There is one interesting subset defined for different reasons. We’ll cover that one first, and then cover secure language subsets.
Douglas Crockford’s short book JavaScript: The Good Parts (O’Reilly) describes a JavaScript subset that consists of the parts of the language that he thinks are worth using. The goal of this subset is to simplify the language, hide quirks and imperfections, and ultimately, make programming easier and programs better. Crockford explains his motivation:
Most programming languages contain good parts and bad parts. I discovered that I could be a better programmer by using only the good parts and avoiding the bad parts.
Crockford’s subset does not include the with
and continue
statements or the eval()
function. It defines functions using function definition expressions only and does not include the function definition statement. The subset requires the bodies of loops and conditionals to be enclosed in curly braces: it does not allow the braces to be omitted if the body consists of a single statement. It requires any statement that does not end with a curly brace to be terminated with a semicolon.
The subset does not include the comma operator, the bitwise operators, or the ++
and --
operators. It also disallows ==
and !=
because of the type conversion they perform, requiring use of ===
and !==
instead.
Since JavaScript does not have block scope, Crockford’s subset restricts the var
statement to appear only at the top level of a function body and requires programmers to declare all of a function’s variables using a single var
as the first statement in a function body. The subset discourages the use of global variables, but this is a coding convention rather than an actual language restriction.
Crockford’s online code-quality checking tool at http://jslint.com includes an option to enforce conformance to The Good Parts. In addition to ensuring that your code uses only the allowed features, the JSLint tool also enforces coding style rules, such as proper indentation.
Crockford’s book was written before the strict mode of ECMAScript 5 was defined, but many of the “bad parts” of JavaScript he seeks to discourage in his book are prohibited by the use of strict mode. With the adoption of the ECMAScript 5 standard, the JSLint tool now requires programs to include a “use strict” directive when “The Good Parts” option is selected.
The Good Parts is a language subset designed for aesthetic reasons and with a desire to improve programmer productivity. There is a larger class of subsets that have been designed for the purpose of safely running untrusted JavaScript in a secure container or “sandbox.” Secure subsets work by disallowing all language features and APIs that can allow code to break out of its sandbox and affect the global execution environment. Each subset is coupled with a static verifier that parses code to ensure that it conforms to the subset. Since language subsets that can be statically verified tend to be quite restrictive, some sandboxing systems define a larger, less restrictive subset and add a code transformation step that verifies that code conforms to the larger subset, transforms it to use a smaller language subset, and adds runtime checks where static analysis of the code is not sufficient to ensure security.
In order to allow JavaScript to be statically verified to be safe, a number of features must be removed:
eval()
and the Function()
constructor are not allowed in any secure subset because they allow the execution of arbitrary strings of code, and these strings cannot be statically analyzed. this
keyword is forbidden or restricted because functions (in non-strict mode) can access the global object through this
. Preventing access to the global object is one of the key purposes of any sandboxing system. with
statement is often forbidden in secure subsets because it makes static code verification more difficult. window
object. Similarly, the client-side document
object defines methods that allow complete control over page content. This is too much power to give to untrusted code. Secure subsets can take two different approaches to global variables like document
. They can forbid them entirely, and instead define a custom API that sandboxed code can use to access the limited portion of the web page that has been alloted to it. Alternatively, the “container” in which the sandboxed code is run can define a facade or proxy document
object that implements only the safe parts of the standard DOM API. caller
and callee
properties of the arguments
object (though some subsets do not allow the arguments
object to be used at all), the call()
and apply()
methods of functions, and the constructor
and prototype
properties. Nonstandard properties such as __proto__
are also forbidden. Some subsets blacklist unsafe properties and globals. Others whitelist a specific set of properties know to be safe. .
operator. But property access with []
is more difficult because arbitrary string expressions within the square brackets cannot be statically analyzed. For this reason, secure subsets usually forbid the use of square brackets unless the argument is a numeric or string literal. Secure subsets replace the []
operators with global functions for querying and setting object properties—these functions perform runtime checks to ensure that they aren’t used to access forbidden properties. Some of these restrictions, such as forbidding the use of eval()
and the with
statement, are not much of a burden for programmers, since these features are not commonly used in JavaScript programming. Others, such as the restriction on the use of square brackets for property access are quite onerous, and this is where code translation comes in. A translator can automatically transform the use of square brackets, for example, into a function call that includes runtime checks. Similar transformations can allow the safe use of the this
keyword. There is a tradeoff, of course, between the safety of these runtime checks and execution speed of the sandboxed code.
A number of secure subsets have been implemented. Although a complete description of any subset is beyond the scope of this book, we’ll briefly describe some of the most important:
ADsafe (http://adsafe.org) was one of the first security subsets proposed. It was created by Douglas Crockford (who also defined The Good Parts subset). ADsafe relies on static verification only, and it uses JSLint (http://jslint.org) as its verifier. It forbids access to most global variables and defines anADSAFE
variable that provides access to a secure API, including special-purpose DOM methods. ADsafe is not in wide use, but it was an influential proof-of-concept that influenced other secure subsets.
The dojox.secure subset (http://www.sitepen.com/blog/2008/08/01/secure-mashups-with-dojoxsecure/) is an extension to the Dojo toolkit (http://dojotoolkit.org) that was inspired by ADsafe. Like ADsafe, it is based on static verification of a restrictive language subset. Unlike ADsafe, it allows use of the standard DOM API. Also, it includes a verifier written in JavaScript, so that untrusted code can be dynamically verified before being evaluated.
Caja (http://code.google.com/p/google-caja/) is Google’s open-source secure subset. Caja (Spanish for “box”) defines two language subsets. Cajita (“little box”) is a narrow subset like that used by ADsafe and dojox.secure. Valija (“suitcase” or “baggage”) is a much broader language that is close to regular ECMAScript 5 strict mode (with the removal ofeval()
). Caja itself is the name of the compiler that transforms (or “cajoles”) web content (HTML, CSS, and JavaScript code) into secure modules that can be safely hosted on a web page without being able to affect the page as a whole or other modules on the page.Caja is part of the OpenSocial API (http://code.google.com/apis/opensocial/) and has been adopted by Yahoo! for use on its websites. The content available at the portal http://my.yahoo.com, for example, is organized into Caja modules.
FBJS is the variant of JavaScript used by Facebook (http://facebook.com) to allow untrusted content on users’ profile pages. FBJS relies on code transformation to ensure security. The transformer inserts runtime checks to prevent access to the global object through thethis
keyword. And it renames all top-level identifiers by adding a module-specific prefix. Any attempt to set or query global variables or variables belonging to another module is prevented because of this renaming. Furthermore, any calls toeval()
are transformed by this identifier prefixing into calls to a nonexistent function. FBJS emulates a safe subset of the DOM API.
Microsoft’s Web Sandbox (http://websandbox.livelabs.com/) defines a broad subset of JavaScript (plus HTML and CSS) and makes it secure through radical code rewriting, effectively reimplementing a secure JavaScript virtual machine on top of nonsecure JavaScript.
We now leave language subsets behind and transition to language extensions. In JavaScript 1.5 and later, you can use the const
keyword to define constants. Constants are like variables except that assignments to them are ignored (attempting to alter a constant does not cause an error) and attempts to redeclare them cause errors:
The const
keyword behaves much like the var
keyword: there is no block scope, and constants are hoisted to the top of the enclosing function definition. (See Function Scope and Hoisting)
The lack of block scope for variables in JavaScript has long been considered a shortcoming of the language, and JavaScript 1.7 addresses it by adding the let
keyword to the language. The keyword const
has always been a reserved (but unused) word in JavaScript, so constants can be added without breaking any existing code. The let
keyword was not reserved, so it is not recognized unless you explicitly opt-in to version 1.7 or later.
In this chapter, when we refer to a specific JavaScript version number, we’re referring specifically to Mozilla’s version of the language, as implemented in the Spidermonkey and Rhino interpreters and the Firefox web browser.
Some of the language extensions here define new keywords (such as let
) and to avoid breaking existing code that uses that keyword, JavaScript requires you to explicitly request the new version of the language in order to use the extension. If you are using Spidermonkey or Rhino as a stand-alone interpreter, you can specify the desired language version with a command-line option or by calling the built-in version()
function. (It expects the version number times ten. Pass 170 to select JavaScript 1.7 and enable the let
keyword.) In Firefox, you can opt in to language extensions using a script tag like this:
The let
keyword can be used in four ways:
The simplest way to use let
is as a drop-in replacement for var
. Variables declared with var
are defined throughout the enclosing function. Variables declared with let
are defined only within the closest enclosing block (and any blocks nested within it, of course). If you declare a variable with let
inside the body of a loop, for example, it does not exist outside the loop:
Notice that this code also uses let
as a replacement for var
in the for
loop. This creates a variable whose scope is the body of the loop plus the condition and increment clauses of the loop. You can also use let
in this way in for/in
(and for each
; see The for/each Loop) loops:
There is an interesting difference between let
used as a declaration statement and let
used as a loop initializer. Used as a declaration, the variable initializer expressions are evaluated in the scope of the variable. But in a for
loop, the initializer expression is evaluated outside the scope of the new variable. This matters only when the new variable is shadowing a new variable by the same name:
Variables declared with var
exist throughout the function in which they are declared, but they are not initialized until the var
statement actually runs. That is, the variable exists (i.e., no ReferenceError
will be thrown) but is undefined
if you attempt to use it before the var
statement. Variables declared with let
are similar: if you attempt to use a variable before its let
statement (but within the same block as the let
statement), the variable will exist but its value will be undefined
.
Notice that this problem doesn’t exist when you use let
to declare a loop variable—the syntax simply doesn’t allow you to use the variable before it is initialized. There is another way to use let
that avoids this problem of using variables before they are initialized. A let
block statement (as opposed to the let
declaration statements shown above) combines a block of code with a set of variables for the block and the initialization expressions for those variables. In this form, the variables and their initializers are placed within parentheses and are followed by a block of statements within curly braces:
It is important to understand that the variable initializer expressions of a let
block are not part of the block and are interpreted in the outer scope. In the code above, we are creating a new variable x and assigning it a value one larger than the value of the existing variable x.
The final use of the let
keyword is a variant on the let
block, in which a parenthesized list of variables and initializers is followed by a single expression rather than a block of statements. This is called a let
expression, and the code above could be rewritten to use one like this:
Some form of const
and let
(not necessarily all four forms described here) are likely to be included in a future version of the ECMAScript standard.
Spidermonkey 1.7 implements a kind of compound assignment known as destructuring assignment. (You may have seen destructuring assignment before, in Python or Ruby, for example.) In a destructuring assignment, the value on the right-hand side of the equals sign is an array or object (a “structured” value) and the left-hand side specifies one or more variable names using a syntax that mimics array and object literal syntax. When a destructuring assignment occurs, one or more values are extracted (“destructured”) from the value on the right and stored into the variables named on the left. In addition to its use with the regular assignment operator, destructuring assignment can also be used when initializing newly declared variables with var
and let
.
Destructuring assignment is simple and powerful when working with arrays, and is particularly useful with functions that return arrays of values. It can become confusing and complex when used with objects and nested objects, however. Examples demonstrating both simple and complex uses follow.
Here are simple destructuring assignments using arrays of values:
Notice how destructuring assignment makes it easy to work with functions that return arrays of values:
The number of variables on the left of a destructuring assignment does not have to match the number of array elements on the right. Extra variables on the left are set to undefined
, and extra values on the right are ignored. The list of variables on the left can include extra commas to skip certain values on the right:
There is no syntax to assign all unused or remaining values (as an array) to a variable. In the second line of code above, for example, there is no way to assign [2,3]
to y
.
The value of a destructuring assignment is the complete data structure on the right-hand side, not the individual values that are extracted from it. Thus, it is possible to “chain” assignments like this:
Destructuring assignment can even be used with nested arrays. In this case, the left-hand side of the assignment should look like a nested array literal:
Destructuring assignment can also be performed when the right-hand side is an object value. In this case, the left-hand side of the assignment looks something like an object literal: a comma-separated and brace delimited list of property name and variable name pairs. The name to the left of each colon is a property name, and the name to the right of each colon is a variable name. Each named property is looked up in the object on the right-hand side of the assignment, and its value (or undefined
) is assigned to the corresponding variable. This type of destructuring assignment can get confusing, especially because it is often tempting to use the same identifier for both property and variable name. In the example below, be sure that you understand that r
, g
, and b
are property names and red
, green
, and blue
are variable names:
The next example copies global functions of the Math
object into variables, which might simplify code that does a lot of trigonometry:
Just as destructuring assignment can be used with nested arrays, it can be used with nested objects. In fact, the two syntaxes can be combined to describe arbitrary data structures. For example:
Note that nested destructuring assignments like this may make your code harder to read rather than simplifying it. There is an interesting regularity that can help you to make sense of the complex cases, however. Think first about a regular (single-value) assignment. After the assignment is done, you can take the variable name from the left-hand side of the assignment and use it as an expression in your code, where it will evaluate to whatever value you assigned it. In destructuring assignment, we’ve said that the left-hand side uses a syntax like array literal syntax or like object literal syntax. But notice that after the destructuring assignment is done, the code that looks like an array literal or object literal from the left-hand side will actually work as a valid array literal or object literal elsewhere in your code: all the necessary variables have been defined so that you can cut-and-paste the text on the left of the equals sign and use it as an array or object value in your code.
Mozilla’s JavaScript extensions introduce new iteration techniques, including the for each
loop and Python-style iterators and generators. They are detailed in the subsections below.
The for/each
loop is a new looping statement standardized by E4X. E4X (ECMAScript for XML) is a language extension that allows XML tags to appear literally in JavaScript programs and adds syntax and API for operating on XML data. E4X has not been widely implemented in web browsers, but it is supported by Mozilla’s JavaScript 1.6 (released in Firefox 1.5). In this section, we’ll cover only the for/each
loop and its use with non-XML objects. See E4X: ECMAScript for XML for details on the rest of E4X.
The for each
loop is much like the for/in
loop. Instead of iterating through the properties of an object, however, it iterates through the values of those properties:
When used with an array, the for/each
loop iterates through the elements (rather than the indexes) of the loop. It typically enumerates them in numerical order, but this is not actually standardized or required:
Note that the for/each
loop does not limit itself to the array elements of an array—it will enumerate the value of any enumerable property of the array including enumerable methods inherited by the array. For this reason, the for/each
loop is usually not recommended for use with arrays. This is particularly true for code that must interoperate with versions of JavaScript before ECMAScript 5 in which it is not possible to make user-defined properties and methods non-enumerable. (See Iterating Arrays for a similar discussion of the for/in
loop.)
JavaScript 1.7 enhances the for/in
loop with more general behavior. JavaScript 1.7’s for/in
loop is more like Python’s for/in
and allows it iterate over any iterable object. In order to understand this, some definitions are required.
An iterator is an object that allows iteration over some collection of values and maintains whatever state is necessary to keep track of the current “position” in the collection. An iterator must have a next()
method. Each call to next()
returns the next value from the collection. The counter()
function below, for example, returns an iterator that returns successively larger integers on each call to next()
. Note the use of the function scope as a closure that holds the current state of the counter:
Iterators that work on finite collections throw StopIteration
from their next()
method when there are no more values to iterate. StopIteration
is a property of the global object in JavaScript 1.7. Its value is an ordinary object (with no properties of its own) that is reserved for this special purpose of terminating iterations. Note, in particular, that StopIteration
is not a constructor function like TypeError()
or RangeError()
. Here, for example, is a rangeIter()
method that returns an iterator that iterates the integers in a given range:
Note how awkward it is to use an iterator object in a loop where the StopIteration
method must be handled explicitly. Because of this awkwardness, we don’t often use iterator objects directly. Instead we use iterable
objects. An iterable object represents a collection of values that can be iterated. An iterable object must define a method named __iterator__()
(with two underscores at the start and end of the name) which returns an iterator object for the collection.
The JavaScript 1.7 for/in
loop has been extended to work with iterable objects. If the value to the right of the in
keyword is iterable, then the for/in
loop will automatically invoke its __iterator__()
method to obtain an iterator object. It then calls the next()
method of the iterator, assigns the resulting value to the loop variable, and executes the loop body. The for/in
loop handles the StopIteration
exception itself, and it is never visible to your code. The code below defines a range()
function that returns an iterable object (not an iterator) that represents a range of integers. Notice how much easier it is to use a for/in
loop with an iterable range than it is to use a while
loop with a range iterator.
Note that that although you must write an __iterator__()
method and throw a Stop
Iteration
exception to create iterable objects and their iterators, you are not expected (in normal use) to call the __iterator__()
method nor to handle the Stop
Iteration
exception—the for/in
loop does this for you. If for some reason you want to explicitly obtain an iterator object from an iterable object, call the Iterator()
function. (Iterator()
is a global function that is new in JavaScript 1.7.) If the argument to this function is an iterable object, it simply returns the result of a call to the __iterator__()
method, keeping your code cleaner. (If you pass a second argument to Iterator()
, it will pass that argument on to the __iterator__()
method.)
There is another important purpose for the Iterator()
function, however. When you call it on an object (or array) that does not have an __iterator__()
method, it returns a custom iterable iterator for the object. Each call to this iterator’s next()
method returns an array of two values. The first array element is a property name, and the second is the value of the named property. Because this object is an iterable iterator, you can use it with a for/in
loop instead of calling its next()
method directly, and this means that you can use the Iterator()
function along with destructuring assignment to conveniently loop through the properties and values of an object or array:
There are two other important features of the iterator returned by the Iterator()
function. First, it ignores inherited properties and only iterates “own” properties, which is usually what you want. Second, if you pass true
as the second argument to Iterator()
, the returned iterator will iterate only property names, not property values. The following code demonstrates these two features:
Generators are a JavaScript 1.7 feature (borrowed from Python) that use a new yield
keyword, which means that code that uses them must explicitly opt in to version 1.7, as described in Constants and Scoped Variables. The yield
keyword is used in a function and functions something like return
to return a value from the function. The difference between yield
and return
, however, is that a function that yields a value to its caller retains its internal state so that it is resumable. This resumability makes yield
a perfect tool for writing iterators. Generators are a very powerful language feature, but they can be tricky to understand at first. We’ll begin with some definitions.
Any function that uses the yield
keyword (even if the yield
is unreachable) is a generator function. Generator functions return values with yield
. They may use the return
statement with no value to terminate before reaching the end of the function body, but they may not use return
with a value. Except for their use of yield
, and this restriction on the use of return
, generator functions are pretty much indistinguishable from regular functions: they are declared with the function
keyword, the typeof
operator returns “function”, and they inherit from Function.prototype
just as ordinary functions do. When invoked, however, a generator function behaves completely differently than a regular function: instead of executing the body of the generator function, the invocation instead returns a generator object.
A generator is an object that represents the current execution state of a generator function. It defines a next()
method that resumes execution of the generator function and allows it to continue running until its next yield
statement is encountered. When that happens, the value of the yield
statement in the generator function becomes the return value of the next()
method of the generator. If a generator function returns (by executing a return
statement or reaching the end of its body), the next()
method of the generator throws StopIteration
.
The fact that generators have a next()
method that can throw StopIteration
should make it clear that they are iterator objects.[19] In fact, they are iterable iterators, which means that they can be used with for/in
loops. The following code demonstrates just how easy it is to write generator functions and iterate over the values they yield:
Generator functions need never return. In fact, a canonical example is the use of a generator to yield the Fibonacci numbers:
Notice that the fibonacci()
generator function never returns. For this reason, the generator it returns will never throw StopIteration
. Rather than using it as an iterable object in a for/in
loop and looping forever, we use it as an iterator and explicitly call its next()
method ten times. After the code above runs, the generator f
still retains the execution state of the generator function. If we won’t be using it anymore, we can release that state by calling the close()
method of f
:
When you call the close
method of a generator, the associated generator function terminates as if there was a return
statement at the location where its execution was suspended. If this location is inside one or more try
blocks, any finally
clauses are run before close()
returns. close()
never has a return value, but if a finally
block raises an exception it will propagate from the call to close()
.
Generators are often useful for sequential processing of data—elements of a list, lines of text, tokens from a lexer, and so on. Generators can be chained in a way that is analogous to a Unix-style pipeline of shell commands. What is interesting about this approach is that it is lazy: values are “pulled” from a generator (or pipeline of generators) as needed, rather than being processed in multiple passes. Example 11-1 demonstrates.
Example 11-1. A pipeline of generators
Typically generators are initialized when they are created: the values passed to the generator function are the only input that the generator receives. It is possible, however, to provide additional input to a running generator. Every generator has a send()
method, which works to restart the generator like the next()
method does. The difference is that you can pass a value to send()
, and that value becomes the value of the yield
expression. (In most generator functions that do not accept additional input, the yield
keyword looks like a statement. In fact, however, yield
is an expression and has a value.) In addition to next()
and send()
, another way to restart a generator is with throw()
. If you call this method, the yield
expression raises the argument to throw()
as an exception. The following code demonstrates:
An array comprehension is another feature that JavaScript 1.7 borrowed from Python. It is a technique for initializing the elements of an array from or based on the elements of another array or iterable object. The syntax of array comprehensions is based on the mathematical notation for defining the elements of a set, which means that expressions and clauses are in different places than JavaScript programmers would expect them to be. Be assured, however, that it doesn’t take long to get used to the unusual syntax and appreciate the power of array comprehensions.
Here’s an array comprehension that uses the range()
function developed above to initialize an array to contain the even square numbers up to 100:
It is roughly equivalent to the following five lines:
In general, an array comprehension looks like this:
expression
for (variable
in object
) if (condition
)]Notice that there are three main parts within the square brackets:
for/in
or for/each
loop with no body. This piece of the comprehension includes a variable
(or, with destructuring assignment, multiple variables) that appears to the left of the in
keyword, and an object
(which may be a generator, an iterable object, or an array, for example) to the right of the in
. Although there is no loop body following the object, this piece of the array comprehension does perform an iteration and assign successive values to the specified variable. Note that neither the var
nor the let
keyword is allowed before the variable name—a let
is implicit and the variable used in the array comprehension is not visible outside of the square brackets and does not overwrite existing variables by the same name.if
keyword and a conditional
expression in parentheses may appear after the object being iterated. If present, this conditional is used to filter iterated values. The conditional is evaluated after each value is produced by the for
loop. If it is false
, that value is skipped and nothing is added to the array for that value. The if
clause is optional; if omitted, the array comprehension behaves as if if (true)
were present.expression
that appears before the for
keyword. This expression can be thought of as the body of the loop. After a value is returned by the iterator and assigned to the variable, and if that value passes the conditional
test, this expression is evaluated and the resulting value is inserted into the array that is being created.Here are some more concrete examples to clarify the syntax:
In JavaScript 1.8,[20] you can replace the square brackets around an array comprehension with parentheses to produce a generator expression. A generator expression is like an array comprehension (the syntax within the parentheses is exactly the same as the syntax within the square brackets), but its value is a generator object rather than an array. The benefits of using a generator expression instead of an array comprehension are that you get lazy evaluation—computations are performed as needed rather than all at once—and that you can work with potentially infinite sequences. The disadvantage of using a generator instead of an array is that generators allow only sequential access to their values rather than random access. Generators, that is, are not indexable the way arrays are: to obtain the nth value, you must iterate through all n-1 values that come before it.
Earlier in this chapter we wrote a map()
function like this:
Generator expressions make it unnecessary to write or use such a map()
function. To obtain a new generator h
that yields f(x) for each x yielded by a generator g
, just write this:
In fact, given the eachline()
generator from Example 11-1, we can trim whitespace and filter out comments and blank lines like this:
[19] Generators are sometimes called “generator iterators” to clearly distinguish them from the generator functions by which they are created. In this chapter, we’ll use the term “generator” to mean “generator iterator.” In other sources, you may find the word “generator” used to refer to both generator functions and generator iterators.
[20] Generator expressions are not supported in Rhino at the time of this writing.
JavaScript 1.8 [21] introduces a shorthand (called “expression closures”) for writing simple functions. If a function evaluates a single expression and returns its value, you can omit the return
keyword and also the curly braces around the function body, and simply place the expression to be evaluated immediately after the argument list. Here are some examples:
This is simply a convenience: functions defined in this way behave exactly like functions defined with curly braces and the return
keyword. This shorthand syntax is particularly convenient when passing functions to other functions, however. For example:
In JavaScript 1.5, the try/catch
statement has been extended to allow multiple catch clauses. To use this feature, follow the name of the catch clause parameter with the if
keyword and a conditional expression:
When an exception occurs, each catch clause is tried in turn. The exception is assigned to the named catch clause parameter, and the conditional is evaluated. If true, the body of that catch clause is evaluated, and all other catch clauses are skipped. If a catch clause has no conditional, it behaves as if it has the conditional if true
, and it is always triggered if no clause before it was triggered. If all catch clauses have a conditional, and none of those conditionals are true, the exception propagates uncaught. Notice that since the conditionals already appear within the parentheses of the catch clause, they are not required to be directly enclosed in parentheses as they would be in a regular if
statement.
ECMAScript for XML, better known as E4X, is a standard extension[22] to JavaScript that defines a number of powerful features for processing XML documents. E4X is supported by Spidermonkey 1.5 and Rhino 1.6. Because it is not widely supported by browser vendors, E4X may perhaps be best considered a server-side technology for script engines based on Spidermonkey or Rhino.
E4X represents an XML document (or an element or attribute of an XML document) as an XML object and represents XML fragments (more than one XML element not included in a common parent) with the closely related XMLList object. We’ll see a number of ways to create and work with XML objects throughout this section. XML objects are a fundamentally new kind of object, with (as we’ll see) much special-purpose E4X syntax supporting them. As you know, the typeof
operator returns “object” for all standard JavaScript objects other than functions. XML objects are as different from ordinary JavaScript objects as functions are, and the typeof
operator returns “xml”. It is important to understand that XML objects are unrelated to the DOM (Document Object Model) objects used in client-side JavaScript (see Chapter 15). The E4X standard defines optional features for converting between the E4X and DOM representations of XML documents and elements, but Firefox does not implement these. This is another reason that E4X may be best considered a server-side technology.
This section presents a quick tutorial on E4X but does not attempt to document it comprehensively. In particular, the XML and XMLList objects have a number of methods that are not mentioned here. Neither are they covered in the reference section. Readers who want to use E4X will need to refer to the specification for definitive documentation.
E4X defines quite a bit of new language syntax. The most striking bit of new syntax is that XML markup becomes part of the JavaScript language, and you can include XML literals like these directly in your JavaScript code:
The XML literal syntax of E4X uses curly braces as escape characters that allow you to place JavaScript expressions within XML. This, for example, is another way to create the XML element just shown:
In addition to this literal syntax, you can also work with XML parsed from strings. The following code adds another element to your periodic table:
When working with XML fragments, use XMLList()
instead of XML()
:
Once you have an XML document defined, E4X defines an intuitive syntax for accessing its content:
E4X also adds new syntax for working with XML objects. The ..
operator is the descendant operator; you can use it in place of the normal .
member-access operator:
E4X even has a wildcard operator:
Attribute names are distinguished from tag names in E4X using the @
character (a syntax borrowed from XPath). For example, you can query the value of an attribute like this:
The wildcard operator for attribute names is @*
:
E4X even includes a powerful and remarkably concise syntax for filtering a list using an arbitrary predicate expression:
The for/each
loop we saw earlier in this chapter (see The for/each Loop) is generally useful, but it was defined by the E4X standard for iterating through lists of XML tags and attributes. Recall that for/each
is like the for/in
loop, except that instead of iterating through the properties of an object, it iterates through the values of the properties of an object:
E4X expressions can appear on the left side of an assignment. This allows existing tags and attributes to be changed and new tags and attributes to be added:
Removing attributes and tags is also easy with the standard delete
operator:
E4X is designed so that you can perform most common XML manipulations using language syntax. E4X also defines methods you can invoke on XML objects. Here, for example, is the insertChildBefore()
method:
E4X is fully namespace-aware and includes language syntax and APIs for working with XML namespaces:
[22] E4X is defined by the ECMA-357 standard. You can find the official specification at http://www.ecma-international.org/publications/standards/Ecma-357.htm.
The previous chapters have covered the core JavaScript language in detail, and we’re about to start Part II of the book, which explains how JavaScript is embedded in web browsers and covers the sprawling client-side JavaScript API. JavaScript is the programming language of the Web, and most JavaScript code is written for web browsers. But JavaScript is a fast and capable general-purpose language, and there is no reason that JavaScript cannot be used for other programming tasks. So before we transition to client-side JavaScript, we’ll take a quick look at two other JavaScript embeddings. Rhino is a Java-based JavaScript interpreter that gives JavaScript programs access to the entire Java API. Rhino is covered in Scripting Java with Rhino. Node is a version of Google’s V8 JavaScript interpreter with low-level bindings for the POSIX (Unix) API—files, processes, streams, sockets, and so on—and a particular emphasis on asynchronous I/O, networking, and HTTP. Node is covered in Asynchronous I/O with Node.
The title of this chapter says that it is about “server-side” JavaScript, and Node and Rhino are both commonly used to create or to script servers. But the phrase “server-side” can also be taken to mean “anything outside of the web browser.” Rhino programs can create graphical UIs with Java’s Swing framework. And Node can run JavaScript programs that manipulate files the way shell scripts do.
This is a short chapter, intended only to highlight some of the ways that JavaScript can be used outside of web browsers. It does not attempt to cover Rhino or Node comprehensively, and the APIs discussed here are not covered in the reference section. Obviously, this chapter cannot document the Java platform or the POSIX API, so the section on Rhino assumes some familiarity with Java and the section on Node assumes some familiarity with low-level Unix APIs.
Rhino is a JavaScript interpreter written in Java and designed to make it easy to write JavaScript programs that leverage the power of the Java platform APIs. Rhino automatically handles the conversion of JavaScript primitives to Java primitives, and vice versa, so JavaScript scripts can set and query Java properties and invoke Java methods.
Rhino is free software from Mozilla. You can download a copy from http://www.mozilla.org/rhino/. Rhino version 1.7r2 implements ECMAScript 3 plus a number of the language extensions described in Chapter 11. Rhino is mature software and new versions are not released often. At the time of this writing, a prerelease version of 1.7r3 is available from the source repository and includes a partial implementation of ECMAScript 5.
Rhino is distributed as a JAR archive. Start it with a command line like this:
program.js
If you omit program.js
, Rhino starts an interactive shell, which is useful for trying out simple programs and one-liners.
Rhino defines a handful of important global functions that are not part of core JavaScript:
Notice the print()
function: we’ll use it in this section instead of console.log()
. Rhino represents Java packages and classes as JavaScript objects:
Because packages and classes are represented as JavaScript objects, you can assign them to variables to give them shorter names. But you can also more formally import them, if you want to:
Java classes can be instantiated using new
, just like JavaScript classes can:
Rhino allows the JavaScript instanceof
operator to work with Java objects and classes:
As you can see, in the object instantiation examples above, Rhino allows values to be passed to Java constructors and the return value of those constructors to be assigned to JavaScript variables. (Note the implicit type conversion that Rhino performs in this example: the JavaScript string “/type/test” is automatically converted into a Java java.lang.String value.) Java methods are much like Java constructors, and Rhino allows JavaScript programs to invoke Java methods:
Rhino also allows JavaScript code to query and set the static fields of Java classes and the instance fields of Java objects. Java classes often avoid defining public fields in favor of getter and setter methods. When getter and setter methods exist, Rhino exposes them as JavaScript properties:
Java allows overloaded methods that have the same name but different signatures. Rhino can usually figure out which version of a method you mean to invoke based on the type of the arguments you pass. Occasionally, you need to specifically identify a method by name and signature:
You can use a for/in
loop to iterate through the methods, fields, and properties of Java classes and objects:
Rhino allows JavaScript programs to get and set the elements of Java arrays as if they were JavaScript arrays. Java arrays are not the same as JavaScript arrays, of course: they are fixed length, their elements are typed, and they don’t have JavaScript methods like slice()
. There is no natural JavaScript syntax that Rhino can extend to allow JavaScript programs to create new Java arrays, so you have to do that using the java.lang.reflect.Array class:
Java programming often involves implementing interfaces. This is particularly common in GUI programing, where each event handler must implement an event listener interface, and the following examples demonstrate how to implement Java event listeners:
When a Java method throws an exception, Rhino propagates it as a JavaScript exception. You can obtain the original Java java.lang.Exception object through the java
Exception
property of the JavaScript Error object:
One final note about Rhino type conversion is necessary here. Rhino automatically converts primitive numbers and booleans and the null
value as needed. Java’s char
type is treated as a JavaScript number, since JavaScript doesn’t have a character type. JavaScript strings are automatically converted to Java strings but (and this can be a stumbling block) Java strings left as java.lang.String objects are not converted back to JavaScript strings. Consider this line of code from earlier:
After calling this code, the variable version
holds a java.lang.String object. This usually behaves like a JavaScript string, but there are important differences. First, a Java string has a length()
method rather than a length
property. Second, the typeof
operator returns “object” for a Java string. You can’t convert a Java string to a JavaScript string by calling its toString()
method, because all Java objects have their own Java toString()
method that returns a java.lang.String. To convert a Java value to a string, pass it to the JavaScript String()
function:
Example 12-1 is a simple Rhino application that demonstrates many of the features and techniques described above. The example uses the javax.swing GUI package, the java.net networking package, the java.io streaming I/O package, and Java’s multithreading capabilities to implement a simple download manager application that downloads URLs to local files and displays download progress while it does so. Figure 12-1 shows what the application looks like when two downloads are pending.
Example 12-1. A download manager application with Rhino
Node is a fast C++-based JavaScript interpreter with bindings to the low-level Unix APIs for working with processes, files, network sockets, etc., and also to HTTP client and server APIs. Except for some specially named synchronous methods, Node’s bindings are all asynchronous, and by default Node programs never block, which means that they typically scale well and handle high loads effectively. Because the APIs are asynchronous, Node relies on event handlers, which are often implemented using nested functions and closures.[23]
This section highlights some of Node’s most important APIs and events, but the documentation is by no means complete. See Node’s online documentation at http://nodejs.org/api/.
Node is free software that you can download from http://nodejs.org. At the time of this writing, Node is still under active development, and binary distributions are not available—you have to build your own copy from source. The examples in this section were written and tested using Node version 0.4. The API is not yet frozen, but the fundamentals illustrated here are unlikely to change very much in the future.
Node is built on top of Google’s V8 JavaScript engine. Node 0.4 uses V8 version 3.1, which implements all of ECMAScript 5 except for strict mode.
Once you have downloaded, compiled, and installed Node, you can run node programs with commands like this:
program.js
We began the explanation of Rhino with its print()
and load()
functions. Node has similar features under different names:
Node implements all of the standard ECMAScript 5 constructors, properties, and functions in its global object. In addition, however, it also supports the client-side timer functions set setTimeout()
, setInterval()
, clearTimeout()
, and clearInterval()
:
These client-side globals are covered in Timers. Node’s implementation is compatible with web browser implementations.
Node defines other important globals under the process
namespace. These are some of the properties of that object:
Because Node’s functions and methods are asynchronous, they do not block while waiting for operations to complete. The return value of a nonblocking method cannot return the result of an asynchronous operation to you. If you need to obtain results, or just need to know when an operation is complete, you have to provide a function that Node can invoke when the results are ready or when the operation is complete (or when an error occurs). In some cases (as in the call to setTimeout()
above), you simply pass the function as an argument and Node will call it at the appropriate time. In other cases, you can rely on Node’s event infrastructure. Node objects that generate events (known as event emitters) define an on()
method for registering handlers. Pass the event type (a string) as the first argument, and pass the handler function as the second argument. Different types of events pass different arguments to the handler function, and you may need to refer to the API documentation to know exactly how to write your handlers:
The process
object shown above is an event emitter. Here are example handlers for some of its events:
Since Node is designed for high-performance I/O, its stream API is a commonly used one. Readable streams trigger events when data is ready. In the code below, assume s
is a readable stream, obtained elsewhere. We’ll see how to get stream objects for files and network sockets below:
Writable streams are less event-centric than readable streams. Use the write()
method to send data and use the end()
method to close the stream when all the data has been written. The write()
method never blocks. If Node cannot write the data immediately and has to buffer it internally, the write()
method returns false
. Register a handler for “drain” events if you need to know when Node’s buffer has been flushed and the data has actually been written:
As you can see in the code above, Node’s streams can work with binary data or textual data. Text is transferred using regular JavaScript strings. Bytes are manipulated using a Node-specific type known as a Buffer. Node’s buffers are fixed-length array-like objects whose elements must be numbers between 0 and 255. Node programs can often treat buffers as opaque chunks of data, reading them from one stream and writing them to another. But the bytes in a buffer can be accessed as array elements, and there are methods for copying bytes from one buffer to another, for obtaining slices of an underlying buffer, for writing strings into a buffer using a specified encoding, and for decoding a buffer or a portion of a buffer back to a string:
Node’s file and filesystem API is in the “fs” module:
This module provides synchronous versions of most of its methods. Any method whose name ends with “Sync” is a blocking method that returns a value or throws an exception. Filesystem methods that do not end with “Sync” are nonblocking methods that pass their result or error to the callback function you specify. The following code shows how to read a text file using a blocking method and how to read a binary file using the nonblocking method:
Similar writeFile()
and writeFileSync()
functions exist for writing files:
The functions shown above treat the contents of the file as a single string or Buffer. Node also defines a streaming API for reading and writing files. The function below copies one file to another:
The “fs” module also includes a number of methods for listing directories, querying file attributes, and so on. The Node program below uses synchronous methods to list the contents of a directory, along with file size and modification date:
Note the #!
comment on the first line above. This is a Unix “shebang” comment used to make a script file like this self-executable by specifying what language interpreter to run it with. Node ignores lines like this when they appear as the first line of the file.
The “net” module is an API for TCP-based networking. (See the “dgram” module for datagram-based networking.) Here’s a very simple TCP server in Node:
In addition to the basic “net” module, Node has built-in support for the HTTP protocol using the “http” module. The examples that follow demonstrate it in more detail.
Example 12-2 is a simple HTTP server in Node. It serves files from the current directory and also implements two special-purpose URLs that it handles specially. It uses Node’s “http” module and also uses the file and stream APIs demonstrated earlier. Example 18-17 in Chapter 18 is a similar specialized HTTP server example.
Example 12-2. An HTTP server in Node
Example 12-3 uses the “http” module to define utility functions for issuing HTTP GET and POST requests. The example is structured as an “httputils” module, which you might use in your own code like this:
The require()
function does not execute module code with an ordinary eval()
. Modules are evaluated in a special environment so that they cannot define any global variables or otherwise alter the global namespace. This special module evaluation environment always includes a global object named exports
. Modules export their API by defining properties in this object.[24]
Example 12-3. Node “httputils” module
[23] Client-side JavaScript is also highly asynchronous and event-based, and the examples in this section may be easier to understand once you have read Part II and have been exposed to client-side JavaScript programs.
[24] Node implements the CommonJS module contract, which you can read about at http://www.commonjs.org/specs/modules/1.0/.
This part of the book, Chapters 13 through 22, documents JavaScript as it is implemented in web browsers. These chapters introduce a variety of scriptable objects that represent web browser windows, documents and document content. They also explain important web application APIs for networking, storing and retrieving data, and drawing graphics:
The first part of this book described the core JavaScript language. We now move on to JavaScript as used within web browsers, commonly called client-side JavaScript. Most of the examples we’ve seen so far, while legal JavaScript code, have no particular context; they are JavaScript fragments that run in no specified environment. This chapter provides that context.
Before we begin talking about JavaScript, it is worth thinking about the web pages we display in web browsers. Some pages present static information and can be called documents. (The presentation of that static information may be fairly dynamic—because of JavaScript—but the information itself is static.) Other web pages feel more like applications than documents. These pages might dynamically load new information as needed, they might be graphical rather than textual, and they might operate offline and save data locally so they can restore your state when you visit them again. Still other web pages sit somewhere in the middle of the spectrum and combine features of both documents and applications.
This chapter begins with an overview of client-side JavaScript. It includes a simple example and a discussion of the role of JavaScript in both web documents and web applications. That first introductory section also explains what is coming in the Part II chapters that follow. The sections that follow explain some important details about how JavaScript code is embedded and executed within HTML documents, and then they introduce the topics of compatibility, accessibility, and security.
The Window object is the main entry point to all client-side JavaScript features and APIs. It represents a web browser window or frame, and you can refer to it with the identifier window
. The Window object defines properties like location
, which refers to a Location object that specifies the URL currently displayed in the window and allows a script to load a new URL into the window:
The Window object also defines methods like alert()
, which displays a message in a dialog box, and setTimeout()
, which registers a function to be invoked after a specified amount of time:
Notice that the code above does not explicitly use the window
property. In client-side JavaScript, the Window object is also the global object. This means that the Window object is at the top of the scope chain and that its properties and methods are effectively global variables and global functions. The Window object has a property named window
that always refers to itself. You can use this property if you need to refer to the window object itself, but it is not usually necessary to use window
if you just want to refer to access properties of the global window object.
There are a number of other important properties, methods, and constructors defined by the Window object. See Chapter 14 for complete details.
One of the most important properties of the Window object is document
: it refers to a Document object that represents the content displayed in the window. The Document object has important methods such as getElementById()
, which returns a single document element (representing an open/close pair of HTML tags and all of the content between them) based on the value of its id
attribute:
The Element object returned by getElementById()
has other important properties and methods that allow scripts to get its content, set the value of its attributes, and so on:
Techniques for querying, traversing, and modifying document content are covered in Chapter 15.
Each Element object has style
and className
properties that allow scripts to specify CSS styles for a document element or to alter the CSS class names that apply to the element. Setting these CSS-related properties alters the presentation of the document element:
The style
and className
properties, as well as other techniques for scripting CSS, are covered in Chapter 16.
Another set of important properties on Window, Document, and Element objects are the event handler properties. These allow scripts to specify functions that should be invoked asynchronously when certain events occur. Event handlers allow JavaScript code to alter the behavior of windows, of documents, and of the elements that make up those documents. Event handler properties have names that begin with the word “on”, and you might use them like this:
One of the most important event handlers is the onload
handler of the Window object. It is triggered when the content of the document displayed in the window is stable and ready to be manipulated. JavaScript code is commonly wrapped within an onload
event handler. Events are the subject of Chapter 17. Example 13-1 demonstrates the onload
handler and shows more client-side JavaScript code that queries document elements, alters CSS classes, and defines event handlers. The HTML <script>
element holds the JavaScript code of this example and is explained in Embedding JavaScript in HTML. Note that the code includes a function defined within another function. Nested functions are common in client-side JavaScript, because of its extensive use of event handlers.
Example 13-1. Simple client-side JavaScript for revealing content
We noted in the introduction to this chapter that some web pages feel like documents and some feel like applications. The two subsections that follow explore the use of JavaScript in each kind of web page.
A JavaScript program can traverse and manipulate document content through the Document object and the Element objects it contains. It can alter the presentation of that content by scripting CSS styles and classes. And it can define the behavior of document elements by registering appropriate event handlers. The combination of scriptable content, presentation, and behavior is called Dynamic HTML or DHTML, and techniques for creating DHTML documents are explained in Chapters 15, 16, and 17.
The use of JavaScript in web documents should usually be restrained and understated. The proper role of JavaScript is to enhance a user’s browsing experience, making it easier to obtain or transmit information. The user’s experience should not be dependent on JavaScript, but JavaScript can help to facilitate that experience, for example by:
Web applications use all of the JavaScript DHTML features that web documents do, but they also go beyond these content, presentation, and behavior manipulation APIs to take advantage of other fundamental services provided by the web browser environment.
To really understand web applications, it is important to realize that web browsers have grown well beyond their original role as tools for displaying documents and have transformed themselves into simple operating systems. Consider: a traditional operating system allows you to organize icons (which represent files and applications) on the desktop and in folders. A web browser allows you to organize bookmarks (which represent documents and web applications) in a toolbar and in folders. An OS runs multiple applications in separate windows; a web browser displays multiple documents (or applications) in separate tabs. An OS defines low-level APIs for networking, drawing graphics, and saving files. Web browsers define low-level APIs for networking (Chapter 18), saving data (Chapter 20), and drawing graphics (Chapter 21).
With this notion of web browser as simplified OS in mind, we can define web applications as web pages that use JavaScript to access the more advanced services (such as networking, graphics, and data storage) offered by browsers. The best known of these advanced services is the XMLHttpRequest object, which enables networking through scripted HTTP requests. Web apps use this service to obtain new information from the server without a page reload. Web applications that do this are commonly called Ajax applications and they form the backbone of what is known as “Web 2.0.” XMLHttpRequest is covered in detail in Chapter 18.
The HTML5 specification (which, at the time of this writing, is still in draft form) and related specifications are defining a number of other important APIs for web apps. These include the data storage and graphics APIs of Chapters 21 and 20 as well as APIs for a number of other features, such as geolocation, history management, and background threads. When implemented, these APIs will enable a further evolution of web application capabilities. They are covered in Chapter 22.
JavaScript is more central to web applications than it is to web documents, of course. JavaScript enhances web documents, but a well-designed document will continue to work with JavaScript disabled. Web applications are, by definition, JavaScript programs that use the OS-type services provided by the web browser, and they would not be expected to work with JavaScript disabled.[25]
[25] Interactive web pages that communicate with server-side CGI scripts through HTML form submissions were the original “web application” and can be written without the use of JavaScript. This is not the kind of web application that we’ll be discussing in this book, however.
Client-side JavaScript code is embedded within HTML documents in four ways:
<script>
and </script>
tags src
attribute of a <script>
tag onclick
or onmouseover
javascript:
protocol. The subsections that follow explain each of these four JavaScript embedding techniques. It is worth noting, however, that HTML event handler attributes and javascript:
URLs are rarely used in modern JavaScript code (they were somewhat common in the early days of the Web). Inline scripts (those without a src
attribute) are also less common than they once were. A programming philosophy known as unobtrusive JavaScript argues that content (HTML) and behavior (JavaScript code) should as much as possible be kept separate. According to this programming philosophy, JavaScript is best embedded in HTML documents using <script>
elements with src
attributes.
JavaScript code can appear inline within an HTML file between <script>
and </script>
tags:
In XHTML, the content of a <script>
element is treated like any other content. If your JavaScript code contains the <
or &
characters, these characters are interpreted as XML markup. For this reason, it is best to put all JavaScript code within a CDATA section if you are using XHTML:
Example 13-2 is an HTML file that includes a simple JavaScript program. The comments explain what the program does, but the main point of this example is to demonstrate how JavaScript code is embedded within an HTML file along with, in this case, a CSS stylesheet. Notice that this example has a structure similar to Example 13-1 and uses the onload
event handler in much the same way as that example did.
Example 13-2. A simple JavaScript digital clock
The <script>
tag supports a src
attribute that specifies the URL of a file containing JavaScript code. It is used like this:
A JavaScript file contains pure JavaScript, without <script>
tags or any other HTML. By convention, files of JavaScript code have names that end with .js.
A <script>
tag with the src
attribute specified behaves exactly as if the contents of the specified JavaScript file appeared directly between the <script>
and </script>
tags. Note that the closing </script>
tag is required in HTML documents even when the src
attribute is specified, and there is no content between the <script>
and </script>
tags. In XHTML, you can use the shortcut <script/>
tag in this case.
When you use the src
attribute, any content between the opening and closing <script>
tags is ignored. If desired, you can use the content of the <script>
tag to include documentation or copyright information for the included code. Note, however, that HTML5 validators will complain if any text that is not whitespace or a JavaScript comment appears between <script src="">
and </script>
.
There are a number of advantages to using the src
attribute:
src
attribute allows you to maintain only a single copy of that code, rather than having to edit each HTML file when the code changes. src
attribute takes an arbitrary URL as its value, a JavaScript program or web page from one web server can employ code exported by other web servers. Much Internet advertising relies on this fact. Loading scripts from servers other than the one that served the document that uses the script has important security implications. The same-origin security policy described in The Same-Origin Policy prevents JavaScript in a document from one domain from interacting with content from another domain. However, notice that the origin of the script itself does not matter: only the origin of the document in which the script is embedded. Therefore, the same-origin policy does not apply in this case: JavaScript code can interact with the document in which it is embedded, even when the code has a different origin than the document. When you use the src
attribute to include a script in your page, you are giving the author of that script (and the webmaster of the domain from which the script is loaded) complete control over your web page.
JavaScript was the original scripting language for the Web and <script>
elements are, by default, assumed to contain or to reference JavaScript code. If you want to use a nonstandard scripting language, such as Microsoft’s VBScript (which is supported by IE only), you must use the type
attribute to specify the script MIME type:
The default value of the type
attribute is “text/javascript”. You can specify this type explicitly if you want, but it is never necessary.
Older browsers used a language
attribute on the <script>
tag instead of the type
attribute, and you may still sometimes see web pages that include tags like this:
The language
attribute is deprecated and should no longer be used.
When a web browser encounters a <script>
element with a type
attribute whose value it does not recognize, it parses the element but does not attempt to display or execute that content. This means that you can use the <script>
element to embed arbitrary textual data into your document: just use the type
attribute to specify a non-executable type for your data. To retrieve the data, you can use the text
property of the HTML
Element
object that represents the script element (Chapter 15 explains how to obtain these elements). Note, however, that this data embedding technique only works for inline scripts. If you specify a src
attribute and an unknown type
, the script will be ignored and nothing will be downloaded from the URL you specified.
JavaScript code in a script is executed once: when the HTML file that contains it is loaded into the web browser. In order to be interactive, a JavaScript program must define event handlers—JavaScript functions that are registered with the web browser and then invoked by the web browser in response to events (such as user input). As shown at the start of this chapter, JavaScript code can register an event handler by assigning a function to a property (such as onclick
or onmouseover
) of an Element object that represents an HTML element in the document. (There are also other ways to register event handlers—see Chapter 17.)
Event handler properties like onclick
mirror HTML attributes with the same names, and it is also possible to define event handlers by placing JavaScript code in HTML attributes. For example, to define an event handler that is invoked when the user toggles a checkbox in a form, you can specify the handler code as an attribute of the HTML element that defines the checkbox:
What’s of interest here is the onchange
attribute. The JavaScript code that is the value of this attribute will be executed whenever the user checks or unchecks the checkbox.
Event handler attributes defined in HTML may include any number of JavaScript statements, separated from each other by semicolons. These statements become the body of a function, and that function becomes the value of the corresponding event handler property. (The details of the conversion of HTML attribute text to a JavaScript function are covered in Setting Event Handler Attributes.) Typically, however, an HTML event handler attribute consists of a simple assignment as above or a simple invocation of a function defined elsewhere. This keeps most of your actual JavaScript code within scripts and reduces the need to mingle JavaScript and HTML. In fact, the use of HTML event handler attributes is considered poor style by many web developers who prefer to keep content and behavior separate.
Another way that JavaScript code can be included on the client side is in a URL following the javascript:
protocol specifier. This special protocol type specifies that the body of the URL is an arbitrary string of JavaScript code to be run by the JavaScript interpreter. It is treated as a single line of code, which means that statements must be separated by semicolons and that /* */
comments must be used in place of //
comments. The “resource” identified by a javascript:
URL is the return value of the executed code, converted to a string. If the code has an undefined
return value, the resource has no content.
You can use a javascript:
URL anywhere you’d use a regular URL: the href
attribute of an <a>
tag, the action
attribute of a <form>
, for example, or even as an argument to a method like window.open()
. A JavaScript URL in a hyperlink might look like this:
Some browsers (such as Firefox) execute the code in the URL and use the returned string as the content of a new document to display. Just as when following a link to an http:
URL, the browser erases the current document and displays the new one. The value returned by the code above does not contain any HTML tags, but if it did, the browser would have rendered them as it would have rendered the equivalent conventionally loaded HTML document. Other browsers (such as Chrome and Safari) do not allow URLs like the one above to overwrite the containing document—they just ignore the return value of the code. They do, however, still support URLs like this one:
When this sort of URL is loaded, the browser executes the JavaScript code, but because there is no returned value (the alert()
method returns undefined
), browsers like Firefox do not replace the currently displayed document. (In this case, the javascript:
URL serves the same purpose as an onclick
event handler. The link above would be better expressed as an onclick
handler on a <button>
element—the <a>
element should generally be reserved for hyperlinks that load new documents.) If you want to ensure that a javascript:
URL does not overwrite the document, you can use the void
operator to force an invocation or assignment expression to be undefined
:
Without the void
operator in this URL, the return value of the Window.open()
method call would (in some browsers) be converted to a string and displayed, and the current document would be overwritten by a document that contains this text:
Like HTML event handler attributes, JavaScript URLs are a holdover from the early days of the Web and are generally avoided in modern HTML. javascript:
URLs do have a useful role to play outside of HTML documents. If you need to test a small snippet of JavaScript code, you can type a javascript:
URL directly into the location bar of your browser. Another legitimate (and powerful) use of javascript:
URLs is in browser bookmarks, as described below.
In a web browser, a “bookmark” is a saved URL. If you bookmark a javascript:
URL, you are saving a small script, known as a bookmarklet. A bookmarklet is a mini-program that can be easily launched from the browser’s menus or toolbar. The code in a bookmarklet runs as if it were a script on the page and can query and set document content, presentation, and behavior. As long as a bookmarklet does not return a value, it can operate on whatever document is currently displayed without replacing that document with new content.
Consider the following javascript:
URL in an <a>
tag. Clicking the link opens a simple JavaScript expression evaluator that allows you to evaluate expressions and execute statements in the context of the page:
Note that even though this JavaScript URL is written across multiple lines, the HTML parser treats it as a single line, and single-line //
comments will not work in it. Also, remember that the code is all part of a single-quoted HTML attribute, so the code may not contain any single quotes.
A link like this is useful when hardcoded into a page that you are developing but becomes much more useful when stored as a bookmark that you can run on any page. Browsers typically allow you to bookmark the destination of a hyperlink by right-clicking on the link and selecting something like Bookmark Link or by dragging the link to your bookmarks toolbar.
There is no formal definition of a program in client-side JavaScript. We can say that a JavaScript program consists of all the JavaScript code in a web page (inline scripts, HTML event handlers, and javascript:
URLs) along with external JavaScript code referenced with the src
attribute of a <script>
tag. All of these separate bits of code share a single global Window object. That means that they all see the same Document object, and they share the same set of global functions and variables: if a script defines a new global variable or function, that variable or function will be visible to any JavaScript code that runs after the script does.
If a web page includes an embedded frame (using the <iframe>
element), the JavaScript code in the embedded document has a different global object than the code in the embedding document, and it can be considered a separate JavaScript program. Remember, though, that there is no formal definition of what the boundaries of a JavaScript program are. If the container document and the contained document are from the same server, the code in one document can interact with the code in the other, and you can treat them as two interacting parts of a single program, if you wish. JavaScript in Interacting Windows explains more about the global Window object and the interactions between programs in separate windows and frames.
javascript:
URLs in bookmarklets exist outside of any document and can be thought of as a kind of user extension or modification to other programs. When the user runs a bookmarklet, the bookmarked JavaScript code is given access to the global object and content of the current document and can manipulate it as desired.
JavaScript program execution occurs in two phases. In the first phase, the document content is loaded and the code from <script>
elements (both inline scripts and external scripts) is run. Scripts generally (but not always; see Synchronous, Asynchronous, and Deferred Scripts) run in the order in which they appear in the document. The JavaScript code within any single script is run from top to bottom, in the order that it appears, subject, of course, to JavaScript’s conditionals, loops, and other control statements.
Once the document is loaded and all scripts have run, JavaScript execution enters its second phase. This phase is asynchronous and event-driven. During this event-driven phase, the web browser invokes event handler functions (defined by HTML event handler attributes, by scripts executed in the first phase, or by previously invoked event handlers) in response to events that occur asynchronously. Event handlers are most commonly invoked in response to user input (mouse clicks, keystrokes, etc.) but may also be triggered by network activity, elapsed time, or errors in JavaScript code. Events and event handlers are described in detail in Chapter 17. We’ll also have more to say about them in Event-Driven JavaScript. Note that javascript:
URLs embedded in a web page can be thought of as a type of event handler, since they have no effect until activated by a user input event such as clicking on a link or submitting a form.
One of the first events that occurs during the event-driven phase is the load event, which indicates that the document is fully loaded and ready to be manipulated. JavaScript programs often use this event as a trigger or starting signal. It is common to see programs whose scripts define functions but take no action other than defining an onload
event handler function to be triggered by the load event at the beginning of the event-driven phase of execution. It is this onload handler that then manipulates the document and does whatever it is that the program is supposed to do. The loading phase of a JavaScript program is relatively short, typically lasting only a second or two. Once the document is loaded, the event-driven phase lasts for as long as the document is displayed by the web browser. Because this phase is asynchronous and event-driven, there may be long periods of inactivity, where no JavaScript is executed, punctuated by bursts of activity triggered by user or network events. Client-Side JavaScript Timeline covers the two phases of JavaScript execution in more detail.
Both core JavaScript and client-side JavaScript have a single-threaded execution model. Scripts and event handlers are (or must appear to be) executed one at a time without concurrency. This keeps JavaScript programming simple and is discussed in Client-Side JavaScript Threading Model.
When JavaScript was first added to web browsers, there was no API for traversing and manipulating the structure and content of a document. The only way that JavaScript code could affect the content of a document was to generate that content on the fly while the document was loading. It did this using the document.write()
method. Example 13-3 shows what state-of-the-art JavaScript code looked like in 1996.
Example 13-3. Generating document content at load time
When a script passes text to document.write()
, that text is added to the document input stream, and the HTML parser behaves as if the script element had been replaced by that text. The use of document.write()
is no longer considered good style, but it is still possible (see The document.write() Method) and this fact has an important implication. When the HTML parser encounters a <script>
element, it must, by default, run the script before it can resume parsing and rendering the document. This is not much of a problem for inline scripts, but if the script source code is in an external file specified with a src
attribute, this means that the portions of the document that follow the script will not appear in the browser until the script has been downloaded and executed.
This synchronous or blocking script execution is the default only. The <script>
tag can have defer
and async
attributes, which (in browsers that support them) cause scripts to be executed differently. These are boolean attributes—they don’t have a value; they just need to be present on the <script>
tag. HTML5 says that these attributes are only meaningful when used in conjunction with the src
attribute, but some browsers may support deferred inline scripts as well:
Both the defer
and async
attributes are ways of telling the browser that the linked script does not use document.write()
and won’t be generating document content, and that therefore the browser can continue to parse and render the document while downloading the script. The defer
attribute causes the browser to defer execution of the script until after the document has been loaded and parsed and is ready to be manipulated. The async
attribute causes the browser to run the script as soon as possible but not to block document parsing while the script is being downloaded. If a <script>
tag has both attributes, a browser that supports both will honor the async
attribute and ignore the defer
attribute.
Note that deferred scripts run in the order in which they appear in the document. Async scripts run as they load, which means that they may execute out of order.
At the time of this writing, the async
and defer
attributes are not yet widely implemented, and they should be considered optimization hints only: your web pages should be designed to work correctly even if deferred and asynchronous scripts are executed synchronously.
You can load and execute scripts asynchronously, even in browsers that do not support the async
attribute, by dynamically creating a <script>
element and inserting it into the document. The loadasync()
function shown in Example 13-4 does this. The techniques it uses are explained in Chapter 15.
Example 13-4. Asynchronously loading and executing a script
Notice that this loadasync()
function loads scripts dynamically—scripts that are neither included inline within the web page nor referenced statically from the web page are loaded into the document and become part of the running JavaScript program.
The ancient JavaScript program shown in Example 13-3 is a synchronous one: it starts running when the page loads, produces some output, and then terminates. This kind of program is very uncommon today. Instead, we write programs that register event handler functions. These functions are then invoked asynchronously when the events for which they were registered occur. A web application that wants to enable keyboard shortcuts for common actions would register an event handler for key events, for example. Even noninteractive programs use events. Suppose you wanted to write a program that would analyze the structure of its document and automatically generate a table of contents for the document. No event handlers for user input events are necessary, but the program would still register an onload
event handler so that it would know when the document had finished loading and was ready to have a table of contents generated.
Events and event handling are the subject of Chapter 17, but this section will provide a quick overview. Events have a name, such as “click”, “change”, “load”, “mouseover”, “keypress”, or “readystatechange”, that indicates the general type of event that has occurred. Events also have a target, which is the object on which they occurred. When we speak of an event, we must specify both the event type (the name) and the target: a click event on an HTMLButtonElement object, for example, or a readystatechange event on an XMLHttpRequest object.
If we want our program to respond to an event, we write a function known as an “event handler,” “event listener,” or sometimes just a “callback.” We then register this function so that it is invoked when the event occurs. As noted earlier, this can be done using HTML attributes, but this kind of mixing of JavaScript code with HTML content is discouraged. Instead, the simplest way to register an event handler is usually to assign a JavaScript function to a property of the target object, with code like this:
Notice that event handler properties have names that, by convention, begin with “on” and are followed by the name of the event. Also notice that there are no function invocations in any of the code above: we’re assigning functions themselves to these properties. The browser will perform the invocation when the events occur. Asynchronous programming with events often involves nested functions and it is not uncommon to end up writing code that defines functions within functions within functions.
In most browsers, for most kinds of events, event handlers are passed an object as an argument, and the properties of this object provide details about the event. The object passed to a click event, for example, would have a property that specified which mouse button was clicked. (In IE, these event details are stored in the global event
object instead of being passed to the handler function.) The return value of an event handler is sometimes used to indicate whether the function has sufficiently handled the event and to prevent the browser from performing whatever default action it would otherwise take.
Events whose targets are elements in a document often propagate up the document tree in a process known as “bubbling.” If the user clicks the mouse on a <button>
element, for example, a click event is fired on the button. If that event is not handled (and its propagation stopped) by a function registered on the button, the event bubbles up to whatever element the button is nested within, and any click event handler registered on that container element will be invoked.
If you need to register more than one event handler function for a single event, or if you want to write a module of code that can safely register event handlers even if another module has already registered a handler for the same event on the same target, you have to use another event handler registration technique. Most objects that can be event targets have a method named addEventListener()
, which allows the registration of multiple listeners:
Note that the first argument to this function is the name of the event. Although add
Event
Listener()
has been standardized for over a decade, Microsoft is only now implementing it for IE9. In IE8 and earlier, you must use a similar method, named attachEvent()
:
See Chapter 17 for more on addEventListener()
and attachEvent()
.
Client-side JavaScript programs also use other kinds of asynchronous notification that are not, technically speaking, events. If you set the onerror
property of the Window object to a function, that function will be invoked when a JavaScript error (or any uncaught exception) occurs (see Error Handling). Also, the setTimeout()
and setInterval()
functions (these are methods of the Window object and therefore global functions of client-side JavaScript) trigger the invocation of a specified function after a specified amount of time. The functions passed to setTimeout()
are registered differently than true event handlers, and they are usually called “callbacks” instead of “handlers,” but they are asynchronous just as event handlers are. See Timers for more on setTimeout()
and setInterval()
.
Example 13-5 demonstrates setTimeout()
, addEventListener()
, and attachEvent()
to define an onLoad()
function that registers a function to be run when the document finishes loading. onLoad()
is a very useful function, and we’ll use it in examples throughout the rest of this book.
Example 13-5. onLoad(): invoke a function when the document loads
The core JavaScript language does not contain any threading mechanism, and client-side JavaScript has traditionally not defined any either. HTML5 defines “WebWorkers” which serve as a kind of a background thread (more on web workers follows), but client-side JavaScript still behaves as if it is strictly single-threaded. Even when concurrent execution is possible, client-side JavaScript cannot ever detect the fact that it is occurring.
Single-threaded execution makes for much simpler scripting: you can write code with the assurance that two event handlers will never run at the same time. You can manipulate document content knowing that no other thread is attempting to modify it at the same time, and you never need to worry about locks, deadlock, or race conditions when writing JavaScript code.
Single-threaded execution means that web browsers must stop responding to user input while scripts and event handlers are executing. This places a burden on JavaScript programmers: it means that JavaScript scripts and event handlers must not run for too long. If a script performs a computationally intensive task, it will introduce a delay into document loading, and the user will not see the document content until the script completes. If an event handler performs a computationally intensive task, the browser may become nonresponsive, possibly causing the user to think that it has crashed.[26]
If your application must perform enough computation to cause a noticeable delay, you should allow the document to load fully before performing that computation, and you should be sure to notify the user that computation is underway and that the browser is not hung. If it is possible to break your computation down into discrete subtasks, you can use methods such as setTimeout()
and setInterval()
to run the subtasks in the background while updating a progress indicator that displays feedback to the user.
HTML5 defines a controlled form of concurrency called a “web worker.” A web worker is a background thread for performing computationally intensive tasks without freezing the user interface. The code that runs in a web worker thread does not have access to document content, does not share any state with the main thread or with other workers, and can only communicate with the main thread and other workers through asynchronous events, so the concurrency is not detectable to the main thread, and web workers do not alter the basic single-threaded execution model of JavaScript programs. See Web Workers for full details on web workers.
We’ve already seen that JavaScript programs begin in a script execution phase and then transition to an event-handling phase. This section explains the timeline of JavaScript program execution in more detail.
document.readyState
property has the value “loading” at this stage.<script>
elements that have neither the async
nor defer
attributes, it adds those elements to the document and then executes the inline or external script. These scripts are executed synchronously, and the parser pauses while the script downloads (if necessary) and runs. Scripts like these can use document.write()
to insert text into the input stream. That text will become part of the document when the parser resumes. Synchronous scripts often simply define functions and register event handlers for later use, but they can traverse and manipulate the document tree as it exists when they run. That is, synchronous scripts can see their own <script>
element and document content that comes before it. <script>
element that has the async
attribute set, it begins downloading the script text and continues parsing the document. The script will be executed as soon as possible after it has downloaded, but the parser does not stop and wait for it to download. Asynchronous scripts must not use the document.write()
method. They can see their own <script>
element and all document elements that come before it, and may or may not have access to additional document content.document.readyState
property changes to “interactive”. defer
attribute set are executed, in the order in which they appeared in the document. Async scripts may also be executed at this time. Deferred scripts have access to the complete document tree and must not use the document.write()
method.async
scripts that have not yet executed at this point. async
scripts have loaded and executed, the document.
readyState
property changes to “complete” and the web browser fires a load event on the Window object. This is an idealized timeline and all browsers do not support all of its details. The load event is universally supported: all browsers fire it, and it is the most common technique for determining that the document is completely loaded and ready to manipulate. The DOMContentLoaded event fires before the load event and is supported by all current browsers except IE. The document.readyState
property is implemented by most browsers at the time of this writing, but the values of this property differ slightly from browser to browser. The defer
attribute is supported by all current versions of IE, but it is only now being implemented by other browsers. Support for the async
attribute is not yet common at the time of this writing, but asynchronous script execution via the technique shown in Example 13-4 is supported by all current browsers. (Notice, though, that the ability to dynamically load scripts with functions like loadasync()
blurs the boundary between the script loading and event-driven phases of program execution.)
This timeline does not specify when the document becomes visible to the user or when the web browser must start responding to user input events. Those are implementation details. For very long documents or very slow network connections, it is theoretically possible that a web browser will render part of a document and allow the user to start interacting with it before all the scripts have executed. In that case, user input events might be fired before the event-driven phase of program execution has formally started.
[26] Some browsers guard against denial-of-service attacks and accidental infinite loops by prompting the user if a script or event handler takes too long to run. This gives the user the chance to abort a runaway script.
The web browser is the operating system for web apps, but the web is a heterogeneous environment and your web documents and applications will be viewed and run in browsers of different ages (from cutting-edge beta releases to decade-old browsers like IE6) from different vendors (Microsoft, Mozilla, Apple, Google, Opera) running on different operating systems (Windows, Mac OS, Linux, iPhone OS, Android). It is challenging to write nontrivial client-side JavaScript programs that run correctly on such a wide variety of platforms.
Client-side JavaScript compatibility and interoperability issues fall into three general categories:
The web platform is always evolving and expanding. A standards body proposes a new feature or API. If the feature seems useful, browser vendors implement it. If enough vendors implement it interoperably, developers begin to use and depend on the feature, and it secures a permanent place in the web platform. Sometimes browser vendors and web developers take the lead and standards bodies write the official version well after the feature is already a de facto standard. In either case, a new feature has been added to the Web. New browsers support it and old browsers do not. Web developers are pulled between wanting to use powerful new features and wanting their web pages to be usable by the largest number of visitors—even those who are not using the latest browsers.
Sometimes browser vendors differ in their opinions of whether a particular feature is useful enough to implement. Some vendors implement it and others do not. This is not a matter of current browsers with the feature versus older browsers without it, but a matter of browser implementors who prioritized the feature versus those who did not. IE8, for example, does not support the<canvas>
element, though all other browsers have embraced it. A more egregious example is Microsoft’s decision not to implement the DOM Level 2 Events specification (which definesaddEvent
Listener()
and related methods). This specification was standardized almost a decade ago, and other browser vendors have long since supported it.[27]
Fortunately, the JavaScript language itself is interoperably implemented by all browser vendors and is not a source of compatibility problems. All browsers have interoperable implementations of ES3, and, at the time of this writing, all vendors are working on implementing ES5. The transition between ES3 and ES5 may be the source of compatibility problems, because some browsers will support strict mode while others do not, but the expectation is that browser vendors will implement ES5 interoperably.
The first step in addressing compatibility issues in client-side JavaScript is to be aware of what those issues are. The web browser release cycle is about three times as rapid as the release cycle for this book, which means that this book cannot reliably tell you which versions of which browser implement which features, much less describe the bugs in or the quality of implementation of the features in various browsers. Details like this are best left to the Web. The HTML5 standardization effort aims to eventually produce a test suite. At the time of this writing, no such tests exist, but once they do, they ought to provide a wealth of browser compatibility information. In the meantime, here are some websites you might find useful:
The Mozilla Developer Center
The Microsoft Developer Network
The Safari Dev Center at the Apple Developer Connection
Google describes its Doctype project as “an encyclopedia of the open web.” This user-editable site includes extensive compatibility tables for client-side JavaScript. At the time of this writing, these tables report only on the existence of various properties and methods in each browser: they do not actually say whether those features work correctly.
A Wikipedia article tracking the implementation status of HTML5 features and APIs in various browsers.
A similar article that tracks the implementation status of DOM features.
The “When can I use...” website tracks the implementation status of important web features, allows them to be filtered according to various criteria, and recommends their use once there are few remaining deployed browsers that do not support the feature.
Tables that list the compatibility of various browsers with the W3C DOM.
Another site that attempts to track the implementation of web standards by browser vendors.
Note that the last three sites listed are maintained by individuals. Despite the dedication of these client-side JavaScript heroes, these sites may not always be up to date.
Awareness of the incompatibilities between browsers is only the first step, of course. Next, you must decide how to address the incompatibilities. One strategy is to restrict yourself to using only those features that are universally supported (or easily emulated) by all of the browsers that you choose to support. The “When can I use...” website mentioned previously (http://a.deveria.com/caniuse) is based around this strategy: it lists a number of features that will become usable as soon as IE6 has been phased out and no longer has a significant market share. The subsections that follow explain a few less passive strategies you can use to work around client-side incompatibilities.
Client-side JavaScript is a moving target, especially with the advent of ES5 and HTML5. Because the platform is evolving rapidly, I shy away from making narrow statements about particular versions of particular browsers: any such claims are likely to be outdated well before a new edition of this book appears. You’ll find, therefore, that I often hedge my statements with purposely vague language like “all current browsers” (or sometimes “all current browsers except IE”). To put this in context, while I was writing this chapter, the current (non-beta) browsers were:
When this book reaches bookstores, the current browsers will likely be Internet Explorer 9, Firefox 4, Safari 5, Chrome 11, and Opera 11.
This is not a guarantee that every statement in this book about “current browsers” is true for each of these specific browsers. However, it allows you to know what browsers were current technology when this book was written.
The fifth edition of this book used the phrase “modern browsers” instead of “current browsers.” That edition was published in 2006, when the current browsers were Firefox 1.5, IE6, Safari 2, and Opera 8.5 (the Chrome browser from Google did not exist yet). Any references to “modern browsers” remaining in this book can now be taken to mean “all browsers,” since browsers older than those are now quite rare.
Many of the newest client-side features described in this book (in Chapter 22 particularly) are not yet implemented by all browsers. The features that I’ve chosen to document in this edition are being developed under an open standards process, have been implemented in at least one released browser, are under development in at least one more, and seem likely to be adopted by all browser vendors (with the possible exception of Microsoft).
One of the easiest ways to deal with incompatibilities is to use libraries of code that work around them for you. Consider the <canvas>
element for client-side graphics (the topic of Chapter 21), for example. IE is the only current browser that does not support this feature. It does support an obscure proprietary client-side graphics language called VML, however, and the canvas element can be emulated on top of that. The open source “explorercanvas” project at http://code.google.com/p/explorercanvas has released a library that does just that: you include a single file of JavaScript code named excanvas.js and IE will behave as if it supports the <canvas>
element.
excanvas.js is a particularly pure example of a compatibility library. It is possible to write similar libraries for certain features. The ES5 Array methods (ECMAScript 5 Array Methods), such as forEach()
, map()
, and reduce()
, can be almost perfectly emulated in ES3, and by adding the appropriate library to your pages, you can treat these powerfully useful methods as part of the baseline platform of all browsers.
Sometimes, however, it is not possible to completely (or efficiently) implement a feature on browsers that do not support it. As already mentioned, IE is the only browser that does not implement the standard event-handling API, including the addEvent
Listener()
method for registering event handlers. IE supports a similar method called attachEvent()
. attachEvent()
is not as powerful as addEventListener()
and it is not really feasible to transparently implement the entire standard on top of what IE offers. Instead, developers sometimes define a compromise event handling method—often called addEvent()
—that can be portably implemented using either addEvent
Listener()
or attachEvent()
. Then, they write all their code to use add
Event()
instead of either addEventListener()
or attachEvent()
.
In practice, many web developers today use client-side JavaScript frameworks such as jQuery (see Chapter 19) on all their web pages. One of the functions that makes these frameworks so indispensable is that they define a new client-side API and implement it compatibly for you across all browsers. In jQuery, for example, event handler registration is done with a method named bind()
. If you adopt jQuery for all your web development, you’ll never need to think about the incompatibilities between add
Event
Listener()
and attachEvent()
. See Client-Side Frameworks for more on client-side frameworks.
Graded browser support is a testing and QA technique pioneered and championed by Yahoo! that brings some sanity to the otherwise unmanageable proliferation of vendor/version/OS browser variants. Briefly, graded browser support involves choosing “A-grade” browsers that receive full support and testing and identifying “C-grade” browsers that are not powerful enough. A-grade browsers get full-featured web pages, and C-grade browsers are served minimal HTML-only versions of the pages that require no JavaScript or CSS. Browsers that are not A-grade or C-grade are called X-grade: these are usually brand-new or particularly rare browsers. They are assumed to be capable and are served the full-featured web pages, but they are not officially supported or tested.
You can read more about Yahoo!’s system of graded browser support at http://developer.yahoo.com/yui/articles/gbs. That web page also includes Yahoo!’s current list of A-grade and C-grade browsers (the list is updated quarterly). Even if you don’t adopt graded browser support techniques yourself, Yahoo!’s list of A-grade browsers is a useful way to determine which browsers are current and have significant market share.
Feature testing (sometimes called capability testing) is a powerful technique for coping with incompatibilities. If you want to use a feature or capability that may not be supported by all browsers, include code in your script that tests to see whether that feature is supported. If the desired feature is not supported on the current platform, either do not use it on that platform or provide alternative code that works on all platforms.
You’ll see feature testing again and again in the chapters that follow. In Chapter 17, for example, we use code that looks like this:
The important thing about the feature-testing technique is that it results in code that is not tied to a specific list of browser vendors or browser version numbers. It works with the set of browsers that exists today and should continue to work with future browsers, whatever feature sets they implement. Note, however, that it requires browser vendors not to define a property or method unless that property or method is fully functional. If Microsoft were to define an addEventListener()
method that only partially implemented the W3C specification, it would break a lot of code that uses feature testing before calling addEventListener()
.
When Microsoft released IE6, it added support for a number of standard CSS features that were not supported in IE5. In order to ensure backward compatibility with existing web content, however, it had to define two distinct rendering modes. In “standards mode” or “CSS compatibility mode,” the browser would follow CSS standards. In “quirks mode,” the browser would behave in the quirky nonstandard manner that IE4 and IE5 had. The choice of rendering modes depended on the DOCTYPE
declaration at the top of the HTML file. Pages with no DOCTYPE at all and pages that declared certain permissive doctypes that were in common use during the IE5 era were rendered in quirks mode. Pages with strict doctypes (or, for forward compatibility, pages with unrecognized doctypes) were rendered in standards mode. Pages with an HTML5 doctype (<!DOCTYPE html>
) are rendered in standards mode in all modern browsers.
This distinction between quirks mode and standards mode has stood the test of time. New versions of IE still implement it, other modern browsers do too, and the existence of these two modes is recognized by the HTML5 specification. The differences between quirks mode and standards mode usually matter most to people writing HTML and CSS. But client-side JavaScript code sometimes needs to know which mode a document is rendered in. To perform this kind of rendering mode feature testing, check the document.
compatMode
property. If it has the value “CSS1Compat,” the browser is using standards mode. If the value is “BackCompat” (or undefined
if the property doesn’t exist at all), the browser is using quirks mode. All modern browsers implement the compatMode
property, and the HTML5 specification standardizes it.
It is not often necessary to test compatMode
. Example 15-8 illustrates one case where this test is necessary, however.
Feature testing is well suited to checking for support of large functional areas. You can use it to determine whether a browser supports the W3C event-handling model or the IE event-handling model, for example. On the other hand, sometimes you may need to work around individual bugs or quirks in a particular browser, and there may be no easy way to test for the existence of the bug. In this case, you need to create a platform-specific workaround that is tied to a particular browser vendor, version, or operating system (or some combination of the three).
The way to do this in client-side JavaScript is with the Navigator object, which you’ll learn about in Chapter 14. Code that determines the vendor and version of the current browser is often called a browser sniffer or a client sniffer. A simple example is shown in Example 14-3. Client sniffing was a common programming technique in the early days of the Web, when the Netscape and IE platforms were incompatible and diverging. Client sniffing has now fallen out of favor and should be used only when absolutely necessary.
Note that client sniffing can be done on the server side as well, with the web server choosing what JavaScript code to send based on how the browser identifies itself in its User-Agent
header.
In practice, you’ll find that many of the incompatibilities in client-side JavaScript programming turn out to be IE-specific. That is, you must write code in one way for IE and in another way for all other browsers. IE supports conditional comments (introduced in IE5) that are completely nonstandard but can be quite useful for working around incompatibilities.
Here is what IE’s conditional comments look like in HTML. Notice the tricks played with the closing delimiter of HTML comments:
As a concrete example, consider the excanvas.js library described above to implement the <canvas>
element in Internet Explorer. Since this library is required only in IE (and works only in IE), it is reasonable to include it on your pages within a conditional comment so that other browsers never load it:
Conditional comments are also supported by IE’s JavaScript interpreter, and C and C++ programmers may find them similar to the #ifdef/#endif
functionality of the C preprocessor. A JavaScript conditional comment in IE begins with the text /*@cc_on
and ends with the text @*/
. (The cc
in cc_on stands
for conditional compilation.) The following conditional comment includes code that is executed only in IE:
Inside a conditional comment, the keywords @if
, @else
, and @end
delimit the code that is to be conditionally executed by IE’s JavaScript interpreter. Most of the time, you need only the simple conditional shown above: @if (@_jscript)
. JScript is Microsoft’s name for its JavaScript interpreter, and the @_jscript
variable is always true
in IE.
With clever interleaving of conditional comments and regular JavaScript comments, you can set up one block of code to run in IE and a different block to run in all other browsers:
[27] To Microsoft’s credit, IE9 now supports both the <canvas>
element and the addEventListener()
method.
The Web is a wonderful tool for disseminating information, and JavaScript programs can enhance access to that information. JavaScript programmers must be careful, however: it is easy to write JavaScript code that inadvertently denies information to visitors with visual or physical handicaps.
Blind users may use a form of “assistive technology” known as a screen reader to convert written words to spoken words. Some screen readers are JavaScript-aware, and others work best when JavaScript is turned off. If you design a website that requires JavaScript to display its information, you exclude the users of these screen readers. (And you have also excluded anyone who intentionally disables JavaScript in her browser.) The proper role of JavaScript is to enhance the presentation of information, not to take over the presentation of that information. A cardinal rule of JavaScript accessibility is to design your code so that the web page on which it is used will still function (at least in some form) with the JavaScript interpreter turned off.
Another important accessibility concern is for users who can use the keyboard but cannot use (or choose not to use) a pointing device such as a mouse. If you write JavaScript code that relies on mouse-specific events, you exclude users who do not use the mouse. Web browsers allow keyboard traversal and activation of UI elements within a web page, and your JavaScript code should as well. As shown in Chapter 17, JavaScript supports device-independent events, such as onfocus
and onchange
, as well as device-dependent events, such as onmouseover
and onmousedown
. For accessibility, you should favor the device-independent events whenever possible.
Creating accessible web pages is a nontrivial problem and a full discussion of accessibility is beyond the scope of this book. Web application developers who are concerned about accessibility should familiarize themselves with the WAI-ARIA (Web Accessibility Initiative–Accessible Rich Internet Applications) standards at http://www.w3.org/WAI/intro/aria.
The introduction of JavaScript interpreters into web browsers means that loading a web page can cause arbitrary JavaScript code to be executed on your computer. This has clear security implications, and browser vendors have worked hard to balance two competing goals:
As in many fields, JavaScript security has evolved through an interactive and ongoing process of exploits and patches. In the early days of the Web, browsers added features like the ability to open, move, and resize windows and to script the browser’s status line. When unethical advertisers and scammers started abusing these features, browser makers had to restrict or disable those APIs. Today, in the process of standardizing HTML5, browser vendors are carefully (and openly and collaboratively) lifting certain long-standing security restrictions and adding quite a bit of power to client-side JavaScript while (hopefully) not introducing any new security holes.
The subsections below introduce the JavaScript security restrictions and security issues that you, as a web developer, need to be aware of.
Web browsers’ first line of defense against malicious code is that they simply do not support certain capabilities. For example, client-side JavaScript does not provide any way to write or delete arbitrary files or list arbitrary directories on the client computer. This means a JavaScript program cannot delete data or plant viruses. (But see Reading Blobs to learn how JavaScript can read user-selected files and see The Filesystem API to learn how JavaScript can obtain a secure private filesystem within which it can read and write files.)
Similarly, client-side JavaScript does not have any general-purpose networking capabilities. A client-side JavaScript program can script the HTTP protocol (see Chapter 18). And another HTML5-affiliated standard, known as WebSockets, defines a socket-like API for communicating with specialized servers. But neither of these APIs allows unmediated access to the wider network. General-purpose Internet clients and servers cannot be written in client-side JavaScript.
Browsers’ second line of defense against malicious code is that they impose restrictions on the use of certain features that they do support. The following are some restricted features:
value
property of HTML FileUpload elements cannot be set. If this property could be set, a script could set it to any desired filename and cause the form to upload the contents of any specified file (such as a password file) to the server.Note that this is not a definitive list of client-side JavaScript restrictions. Different browsers have different security policies and may implement different API restrictions. Some browsers may also allow restrictions to be strengthened or weakened through user preferences.
The same-origin policy is a sweeping security restriction on what web content JavaScript code can interact with. It typically comes into play when a web page includes <iframe>
elements or opens other browser windows. In this case, the same-origin policy governs the interactions of JavaScript code in one window or frame with the content of other windows and frames. Specifically, a script can read only the properties of windows and documents that have the same origin as the document that contains the script (see Multiple Windows and Frames to learn how to use JavaScript with multiple windows and frames).
The origin of a document is defined as the protocol, host, and port of the URL from which the document was loaded. Documents loaded from different web servers have different origins. Documents loaded through different ports of the same host have different origins. And a document loaded with the http:
protocol has a different origin than one loaded with the https:
protocol, even if they come from the same web server.
It is important to understand that the origin of the script itself is not relevant to the same-origin policy: what matters is the origin of the document in which the script is embedded. Suppose, for example, that a script hosted by host A is included (using the src
property of a <script>
element) in a web page served by host B. The origin of that script is host B and the script has full access to the content of the document that contains it. If the script opens a new window and loads a second document from host B, the script also has full access to the content of that second document. But if the script opens a third window and loads a document from host C (or even one from host A) into it, the same-origin policy comes into effect and prevents the script from accessing this document.
The same-origin policy does not actually apply to all properties of all objects in a window from a different origin. But it does apply to many of them, and, in particular, it applies to practically all the properties of the Document object. You should consider any window or frame that contains a document from another server to be off-limits to your scripts. If your script opened the window, your script can close it, but it cannot “look inside” the window in any way. The same-origin policy also applies to scripted HTTP requests made with the XMLHttpRequest object (see Chapter 18). This object allows client-side JavaScript code to make arbitrary HTTP requests to the web server from which the containing document was loaded, but it does not allow scripts to communicate with other web servers.
The same-origin policy is necessary to prevent scripts from stealing proprietary information. Without this restriction, a malicious script (loaded through a firewall into a browser on a secure corporate intranet) might open an empty window, hoping to trick the user into using that window to browse files on the intranet. The malicious script would then read the content of that window and send it back to its own server. The same-origin policy prevents this kind of behavior.
In some circumstances, the same-origin policy is too restrictive. This section describes three techniques for relaxing it.
The same-origin policy poses problems for large websites that use multiple subdomains. For example, a script in a document from home.example.com might legitimately want to read properties of a document loaded from developer.example.com, or scripts from orders.example.com might need to read properties from documents on catalog.example.com. To support multidomain websites of this sort, you can use the domain
property of the Document object. By default, the domain
property contains the hostname of the server from which the document was loaded. You can set this property, but only to a string that is a valid domain suffix of itself. Thus, if domain
is originally the string “home.example.com”, you can set it to the string “example.com”, but not to “home.example” or “ample.com”. Furthermore, the domain
value must have at least one dot in it; you cannot set it to “com” or any other top-level domain.
If two windows (or frames) contain scripts that set domain
to the same value, the same-origin policy is relaxed for these two windows, and each window can interact with the other. For example, cooperating scripts in documents loaded from orders. example.com and catalog.example.com might set their document.domain
properties to “example.com”, thereby making the documents appear to have the same origin and enabling each document to read properties of the other.
The second technique for relaxing the same-origin policy is being standardized under the name Cross-Origin Resource Sharing (see http://www.w3.org/TR/cors/). This draft standard extends HTTP with a new Origin:
request header and a new Access-Control-Allow-Origin
response header. It allows servers to use a header to explicitly list origins that may request a file or to use a wildcard and allow a file to be requested by any site. Browsers such as Firefox 3.5 and Safari 4 use this new header to allow the cross-origin HTTP requests with XMLHttpRequest that would otherwise have been forbidden by the same-origin policy.
Another new technique, known as cross-document messaging, allows a script from one document to pass textual messages to a script in another document, regardless of the script origins. Calling the postMessage()
method on a Window object results in the asynchronous delivery of a message event (you can handle it with an onmessage
event handler function) to the document in that window. A script in one document still cannot invoke methods or read properties of the other document, but they can communicate safely through this message-passing technique. See Cross-Origin Messaging for more on the cross-document messaging API.
Although the core JavaScript language and the basic client-side object model lack the filesystem and networking features that the worst malicious code requires, the situation is not quite as simple as it appears. In many web browsers, JavaScript is used as a “script engine” for ActiveX controls (in IE) or plug-ins (other browsers). The Flash and Java plug-ins are commonly installed examples, and they expose important and powerful features to client-side scripts.
There are security implications to being able to script ActiveX controls and plug-ins. Java applets, for example, have access to low-level networking capabilities. The Java security “sandbox” prevents applets from communicating with any server other than the one from which they were loaded, so this does not open a security hole. But it exposes the basic problem: if plug-ins are scriptable, you must trust not just the web browser’s security architecture, but also the plug-in’s security architecture. In practice, the Java and Flash plug-ins seem to have robust security and they are actively maintained and updated when security holes are discovered. ActiveX scripting has had a more checkered past, however. The IE browser has access to a variety of scriptable ActiveX controls that are part of the Windows operating system, and in the past some of these scriptable controls have included exploitable security holes.
Cross-site scripting, or XSS, is a term for a category of security issues in which an attacker injects HTML tags or scripts into a target website. Defending against XSS attacks is typically the job of server-side web developers. However, client-side JavaScript programmers must also be aware of, and defend against, cross-site scripting.
A web page is vulnerable to cross-site scripting if it dynamically generates document content and bases that content on user-submitted data without first “sanitizing” that data by removing any embedded HTML tags from it. As a trivial example, consider the following web page that uses JavaScript to greet the user by name:
This two-line script uses window.location.search
to obtain the portion of its own URL that begins with ?. It uses document.write()
to add dynamically generated content to the document. This page is intended to be invoked with a URL like this:
When used like this, it displays the text “Hello David”. But consider what happens when it is invoked with this URL:
With this URL, the script dynamically generates another script (%3C
and %3E
are codes for angle brackets)! In this case, the injected script simply displays a dialog box, which is relatively benign. But consider this case:
Cross-site scripting attacks are so called because more than one site is involved. Site B (or some other site C) includes a specially crafted link (like the one above) to site A that injects a script from site B. The script evil.js is hosted by the evil site B, but it is now embedded in site A, and it can do absolutely anything it wants with site A’s content. It might deface the page or cause it to malfunction (such as by initiating one of the denial-of-service attacks described in the next section). This would be bad for site A’s customer relations. More dangerously, the malicious script can read cookies stored by site A (perhaps account numbers or other personally identifying information) and send that data back to site B. The injected script can even track the user’s keystrokes and send that data back to site B.
In general, the way to prevent XSS attacks is to remove HTML tags from any untrusted data before using it to create dynamic document content. You can fix the greet.html file shown earlier by adding this line of code to remove the angle brackets around <script>
tags:
The simple code above replaces all angle brackets in the string with their corresponding HTML entities, thereby escaping and deactivating any HTML tags in the string. IE8 defines a more nuanced toStatic
HTML()
method that removes <script>
tags (and any other potentially executable content) without altering nonexecutable HTML. toStaticHTML()
is not standardized, but it is straightforward to write your own HTML sanitizer function like this in core JavaScript.
HTML5 goes beyond content sanitation strategies and is defining a sandbox
attribute for the <iframe>
element. When implemented, this should allow the safe display of untrusted content, with scripts automatically disabled.
Cross-site scripting is a pernicious vulnerability whose roots go deep into the architecture of the Web. It is worth understanding this vulnerability in depth, but further discussion is beyond the scope of this book. There are many online resources to help you defend against cross-site scripting. One important primary source is the original CERT Advisory about this problem: http://www.cert.org/advisories/CA-2000-02.html.
The same-origin policy and other security restrictions described here do a good job of preventing malicious code from damaging your data or compromising your privacy. They do not protect against brute-force denial-of-service attacks, however. If you visit a malicious website with JavaScript enabled, that site can tie up your browser with an infinite loop of alert()
dialog boxes or can slow down your CPU with an infinite loop or a meaningless computation.
Some browsers detect repeated dialog boxes and long-running scripts and give the user the option to stop them. But malicious code can use methods such as setInterval()
to load the CPU and can also attack your system by allocating lots of memory. There is no general way that web browsers can prevent this kind of ham-handed attack. In practice, this is not a common problem on the Web since no one returns to a site that engages in this kind of scripting abuse!
Many web developers find it useful to build their web applications on top of a client-side framework library. These libraries are “frameworks” in the sense that they build a new higher-level API for client-side programming on top of the standard and proprietary APIs offered by web browsers: once you adopt a framework, your code needs to be written to use the APIs defined by that framework. The obvious benefit of using a framework is that it is a higher-level API that allows you to do more with less code. A well-written framework will also address many of the compatibility, security, and accessibility issues described above.
This book documents jQuery, one of the most popular frameworks, in Chapter 19. If you decide to adopt jQuery for your projects, you should still read the chapters leading up to Chapter 19; understanding the low-level APIs will make you a better web developer, even if you rarely need to use those APIs directly.
There are many JavaScript frameworks other than jQuery—many more than I can list here. Some of the best known and most widely used open source frameworks include:
The Prototype library (http://prototypejs.org) focuses on DOM and Ajax utilities, like jQuery does, and adds quite a few core-language utilities as well. The Scriptaculous library (http://script.aculo.us/) can be added on for animations and visual effects.
Dojo (http://dojotoolkit.org) is a large framework that advertises its “incredible depth.” It includes an extensive set of UI widgets, a package system, a data abstraction layer, and more.
YUI (http://developer.yahoo.com/yui/) is the in-house library of Yahoo!, and it is used on their home page. Like Dojo, it is a large, all-encompassing library with language utilities, DOM utilities, UI widgets, and so on. There are actually two incompatible versions of YUI, known as YUI 2 and YUI 3.
The Closure library (http://code.google.com/closure/library/) is the client-side library that Google uses for Gmail, Google Docs, and other web applications. This library is intended to be used with the Closure compiler (http://code.google.com/closure/compiler/), which strips out unused library functions. Because unused code is stripped out before deployment, the designers of the Closure library did not need to keep the feature set compact, so Closure has a sprawling set of utilities.
GWT, the Google Web Toolkit (http://code.google.com/webtoolkit/), is a completely different kind of client-side framework. It defines a web application API in Java and provides a compiler to translate your Java programs into compatible client-side JavaScript. GWT is used in some of Google’s products, but it is not as widely used as their Closure library.
Chapter 13 introduced the Window object and the central role it plays in client-side JavaScript: it is the global object for client-side JavaScript programs. This chapter covers the properties and methods of the Window object. These properties define a number of different APIs, only some of which are actually related to the browser windows for which the Window object was named. This chapter covers the following:
setTimeout()
and setInterval()
to register a function to be invoked at specified times in the future. location
property to obtain the URL of the currently displayed document and to load new documents. history
property, and shows how to move the browser backward and forward through its history. navigator
property to obtain browser vendor and version information and how to use the screen
property to query the size of the desktop. alert()
, confirm()
, and prompt()
methods and how to display HTML dialog boxes with showModalDialog()
. onerror
handler method to be invoked when uncaught JavaScript exceptions occur. setTimeout()
and setInterval()
allow you to register a function to be invoked once or repeatedly after a specified amount of time has elapsed. These are important global functions of client-side JavaScript, and are therefore defined as methods of Window, but they are general-purpose functions and don’t really have anything to do with the window.
The setTimeout()
method of the Window object schedules a function to run after a specified number of milliseconds elapses. setTimeout()
returns a value that can be passed to clearTimeout()
to cancel the execution of the scheduled function.
setInterval()
is like setTimeout()
except that the specified function is invoked repeatedly at intervals of the specified number of milliseconds:
Like setTimeout()
, setInterval()
returns a value that can be passed to clear
Interval()
to cancel any future invocations of the scheduled function.
Example 14-1 defines a utility function that waits a specified amount of time, invokes a function repeatedly, and then cancels the invocations after another specified amount of time. It demonstrates setTimeout()
, setInterval()
, and clearInterval()
.
Example 14-1. A timer utility function
For historical reasons, you can pass a string as the first argument to setTimeout()
and setInterval()
. If you do this, the string will be evaluated (as with eval()
) after the specified timeout or interval. The HTML5 specification (and all browsers except IE) allow additional arguments to setTimeout()
and setInterval()
after the first two. Any such arguments are passed to the function that is invoked. If portability with IE is required, however, you shouldn’t use this feature.
If you call setTimeout()
with a time of 0 ms, the function you specify is not invoked right away. Instead, it is placed on a queue to be invoked “as soon as possible” after any currently pending event handlers finish running.
The location
property of the Window object refers to a Location object, which represents the current URL of the document displayed in the window, and which also defines methods for making the window load a new document.
The location
property of the Document object also refers to the Location object:
The Document object also has a URL
property, which is a static string that holds the URL of the document when it was first loaded. If you navigate to fragment identifiers (like “#table-of-contents”) within the document, the Location object is updated to reflect this, but the document.URL
property remains unchanged.
The location
property of a window is a reference to a Location object; it represents the current URL of the document being displayed in that window. The href
property of the Location object is a string that contains the complete text of the URL. The toString()
method of the Location object returns the value of the href
property, so in contexts that will implicitly invoke toString()
, you can just write location
rather than location.href
.
Other properties of this object—protocol
, host
, hostname
, port
, pathname
, search
, and hash
—specify the various individual parts of the URL. They are known as “URL decomposition” properties, and they are also supported by Link objects (created by <a>
and <area>
elements in HTML documents). See the Location and Link entries in Part IV for further details.
The hash
and search
properties of the Location object are interesting ones. The hash
property returns the “fragment identifier” portion of the URL, if there is one: a hash mark (#) followed by an element ID. The search
property is similar. It returns the portion of the URL that starts with a question mark: often some sort of query string. In general, this portion of a URL is used to parameterize the URL and provides a way to embed arguments in it. While these arguments are usually intended for scripts run on a server, there is no reason why they cannot also be used in JavaScript-enabled pages. Example 14-2 shows the definition of a general-purpose urlArgs()
function you can use to extract arguments from the search
property of a URL. The example uses decode
URI
Component()
, which is a global function defined by client-side JavaScript. (See Global in Part III for details.)
Example 14-2. Extracting arguments from the search string of a URL
The assign()
method of the Location object makes the window load and display the document at the URL you specify. The replace()
method is similar, but it removes the current document from the browsing history before loading the new document. When a script unconditionally loads a new document, the replace()
method is often a better choice than assign()
. Otherwise, the Back button would take the browser back to the original document, and the same script would again load the new document. You might use location.replace()
to load a static HTML version of your web page if you detected that the user’s browser did not have the features required to display the full-featured version:
Notice that the URL passed to replace()
is a relative one. Relative URLs are interpreted relative to the page in which they appear, just as they would be if they were used in a hyperlink.
In addition to the assign()
and replace()
methods, the Location object also defines reload()
, which makes the browser reload the document.
A more traditional way to make the browser navigate to a new page is to simply assign the new URL directly to the location property:
You can also assign relative URLs to location
. They are resolved against the current URL:
A bare fragment identifier is a special kind of relative URL that does not cause the browser to load a new document but simply scroll to display a new section of the document. The identifier #top
is a special case: if no document element has the ID “top”, it makes the browser jump to the start of the document:
The URL decomposition properties of the Location object are writable, and setting them changes the location URL and also causes the browser to load a new document (or, in the case of the hash
property, to navigate within the current document):
The history
property of the Window object refers to the History object for the window. The History object models the browsing history of a window as a list of documents and document states. The length
property of the History object specifies the number of elements in the browsing history list, but for security reasons scripts are not allowed to access the stored URLs. (If they could, any scripts could snoop through your browsing history.)
The History object has back()
and forward()
methods that behave like the browser’s Back and Forward buttons do: they make the browser go backward or forward one step in its browsing history. A third method, go()
, takes an integer argument and can skip any number of pages forward (for positive arguments) or backward (for negative arguments) in the history list:
If a window contains child windows (such as <iframe>
elements—see Relationships Between Frames), the browsing histories of the child windows are chronologically interleaved with the history of the main window. This means that calling history.back()
(for example) on the main window may cause one of the child windows to navigate back to a previously displayed document but leave the main window in its current state.
Modern web applications can dynamically alter their own content without loading a new document (see Chapters 15 and 18, for example). Applications that do this may want to allow the user to use the Back and Forward buttons to navigate between these dynamically created application states. HTML5 standardizes two techniques for doing this, and they are described in History Management.
History management before HTML5 is a more complex problem. An application that manages its own history must be able to create a new entry in the window browsing history, associate its state information with that history entry, determine when the user has used the Back button to move to a different history entry, get the state information associated with that entry, and re-create the previous state of the application. One approach uses a hidden <iframe>
to save state information and create entries in the browser’s history. In order to create a new history entry, you dynamically write a new document into this hidden frame using the open()
and write()
methods of the Document object (see The document.write() Method). The document content should include whatever state information is required to re-create the application state. When the user clicks the Back button, the content of the hidden frame will change. Before HTML5, no events are generated to notify you of this change, however, so in order to detect that the user has clicked Back you might use setInterval()
(Timers) to check the hidden frame two or three times a second to see if it has changed.
In practice, developers who need this kind of pre-HTML5 history management usually rely on a prebuilt solution. Many JavaScript frameworks include one. There is a history plug-in for jQuery, for example, and standalone history management libraries are also available. RSH (Really Simple History) is one popular example. You can find it at http://code.google.com/p/reallysimplehistory/. History Management explains how to do history management with HTML5.
Scripts sometimes need to obtain information about the web browser in which they are running or the desktop on which the browser appears. This section describes the navigator
and screen
properties of the Window object. Those properties refer to Navigator and Screen objects, respectively, and these objects provide information that allows a script to customize its behavior based on its environment.
The navigator
property of a Window object refers to a Navigator object that contains browser vendor and version number information. The Navigator object is named after the early Navigator browser from Netscape, but it is also supported by all other browsers. (IE also supports clientInformation
as a vendor-neutral synonym for navigator
. Unfortunately, other browsers have not adopted this more sensibly named property.)
In the past, the Navigator object was commonly used by scripts to determine if they were running in Internet Explorer or Netscape. This “browser-sniffing” approach is problematic because it requires constant tweaking as new browsers and new versions of existing browsers are introduced. Today, feature testing (see Feature Testing) is preferred: rather than making assumptions about particular browser versions and their features, you simply test for the feature (i.e., the method or property) you need.
Browser sniffing is sometimes still valuable, however, such as when you need to work around a specific bug that exists in a specific version of a specific browser. The Navigator object has four properties that provide information about the browser that is running, and you can use these properties for browser sniffing:
appName
appVersion
This property typically begins with a number and follows that with a detailed string that contains browser vendor and version information. The number at the start of this string is often 4.0 or 5.0 to indicate generic compatibility with fourth- and fifth-generation browsers. There is no standard format for theappVersion
string, so parsing it in a browser-independent way isn’t possible.
userAgent
The string that the browser sends in itsUSER-AGENT
HTTP header. This property typically contains all the information inappVersion
and may contain additional details as well. LikeappVersion
, there is no standard format. Since this property contains the most information, browser-sniffing code typically uses it.
platform
The complexity of the Navigator properties demonstrates the futility of the browser-sniffing approach to client-side compatibility. In the early days of the Web, lots of browser-specific code was written that tested properties like navigator.appName
. As new browsers were written, vendors discovered that in order to correctly display existing websites, they had to set the appName
property to “Netscape”. A similar process caused the number at the start of the appVersion
to lose meaning, and today browser-sniffing code must rely on the navigator.userAgent
string and is more complicated than it once was. Example 14-3 shows how to use regular expressions (from jQuery) to extract the browser name and version number from navigator.userAgent
.
Example 14-3. Browser sniffing using navigator.userAgent
In addition to its browser vendor and version information properties, the Navigator object has some miscellaneous properties and methods. The standardized and widely implemented nonstandard properties include:
onLine
Thenavigator.onLine
property (if it exists) specifies whether the browser is currently connected to the network. Applications may want to save state locally (using techniques from Chapter 20) while they are offline.
geolocation
A Geolocation object that defines an API for determining the user’s geographical location. See Geolocation for details.
javaEnabled()
cookiesEnabled()
The screen
property of a Window object refers to a Screen object that provides information about the size of the user’s display and the number of colors available on it. The width
and height
properties specify the size of the display in pixels. The availWidth
and availHeight
properties specify the display size that is actually available; they exclude the space required by features such as a desktop taskbar. The colorDepth
property specifies the bits-per-pixel value of the screen. Typical values are 16, 24, and 32.
The window.screen
property and the Screen object to which it refers are both nonstandard but widely implemented. You might use the Screen object to determine whether your web app is running in a small form factor device such as a netbook computer. If screen space is limited, you might choose to use smaller fonts and images, for example.
The Window object provides three methods for displaying simple dialog boxes to the user. alert()
displays a message to the user and waits for the user to dismiss the dialog. confirm()
displays a message, waits for the user to click an OK or Cancel button and returns a boolean value. And prompt()
displays a message, waits for the user to enter a string, and returns that string. The following code uses all three methods:
Although the alert()
, confirm()
, and prompt()
methods are very easy to use, good design dictates that you use them sparingly, if at all. Dialog boxes like these are not a common feature on the Web, and most users will find the dialog boxes produced by these methods disruptive to their browsing experience. The only common use for these methods today is debugging: JavaScript programmers sometimes insert alert()
methods in code that is not working in an attempt to diagnose the problem.
Note that the messages displayed by alert()
, confirm()
, and prompt()
are plain text, not HTML-formatted text. You can format these dialog boxes only with spaces, newlines, and punctuation characters.
The confirm()
and prompt()
methods block—that is, these methods do not return until the user dismisses the dialog boxes they display. This means that when you pop up one of these boxes, your code stops running, and the currently loading document, if any, stops loading until the user responds with the requested input. In most browsers, the alert()
method also blocks and waits for the user to dismiss the dialog box, but this is not required. For complete details on these methods, see Window.alert
, Window.confirm
, and Window.prompt
in Part IV.
In addition to the Window methods alert()
, confirm()
, and prompt()
, a more complicated method, showModalDialog()
, displays a modal dialog box containing HTML-formatted content and allows arguments to be passed to, and a value returned from, the dialog. showModalDialog()
displays a modal dialog in a browser window of its own. The first argument is the URL that specifies the HTML content of the dialog box. The second argument is an arbitrary value (arrays and objects are allowed) that will be made available to scripts in the dialog as the value of the window.dialogArguments
property. The third argument is a nonstandard list of semicolon-separated name=value pairs that, if supported, may configure the size or other attributes of the dialog. Use “dialogwidth” and “dialogheight” to set the size of the dialog window, and use “resizable=yes” to allow the user to resize the window.
The window displayed by this method is modal, and the call to showModalDialog()
does not return until the window is closed. When the window closes, the value of the window.
returnValue
property becomes the return value of the method call. The HTML content of the dialog must typically include an OK button that sets returnValue
, if desired, and calls window.close()
(see Closing windows).
Example 14-4 is an HTML file suitable for use with showModalDialog()
. The comment at the top of the code includes a sample invocation of showModalDialog()
, and Figure 14-1 shows the dialog created by the sample call. Note that most of the text that appears in the dialog comes from the second argument to showModalDialog()
, rather than being hard-coded in the HTML.
Example 14-4. An HTML file for use with showModalDialog()
The onerror
property of a Window object is an event handler that is invoked when an uncaught exception propagates all the way up the call stack and an error message is about to be displayed in the browser’s JavaScript console. If you assign a function to this property, the function is invoked whenever a JavaScript error occurs in that window: the function you assign becomes an error handler for the window.
For historical reasons, the onerror
event handler of the Window object is invoked with three string arguments rather than with the one event object that is normally passed. (Other client-side objects have onerror
handlers to handle different error conditions, but these are all regular event handlers that are passed a single event object.) The first argument to window.onerror
is a message describing the error. The second argument is a string that contains the URL of the JavaScript code that caused the error. The third argument is the line number within the document where the error occurred.
In addition to those three arguments, the return value of the onerror
handler is significant. If the onerror
handler returns false
, it tells the browser that the handler has handled the error and that no further action is necessary—in other words, the browser should not display its own error message. Unfortunately, for historical reasons, an error handler in Firefox must return true
to indicate that it has handled the error.
The onerror
handler is a holdover from the early days of JavaScript, when the core language did not include the try/catch
exception handling statement. It is rarely used in modern code. During development, however, you might define an error handler like this to explicitly notify you when an error occurs:
If you name an element in your HTML document using the id
attribute, and if the Window object does not already have a property by that name, the Window object is given a nonenumerable property whose name is the value of the id
attribute and whose value is the HTMLElement object that represents that document element.
As we’ve already noted, the Window object serves as the global object at the top of the scope chain in client-side JavaScript, so this means that the id
attributes you use in your HTML documents become global variables accessible to your scripts. If your document includes the element <button id="okay"/>
, you can refer to that element using the global variable okay
.
There is an important caveat, however: this doesn’t happen if the Window object already has a property by that name. Elements with the ids “history”, “location,” or “navigator”, for example, won’t appear as global variables, because those IDs are already in use. Similarly, if your HTML document includes an element whose id
is “x” and you also declare and assign a value to the global variable x
in your code, the explicitly declared variable will hide the implicit element variable. If the variable is declared in a script that appears before the named element, its existence will prevent the element from getting a window property of its own. And if the variable is declared in a script that appears after the named element, your explicit assignment to the variable overwrites the implicit value of the property.
In Selecting Document Elements, you’ll learn that you can look up document elements by the value of their HTML id
attribute using the document.getElementById()
method. Consider this example:
After running this code, ui.input
, ui.prompt
, and ui.heading
refer to document elements. A script could use the global variables input
and heading
instead of ui.input
and ui.heading
. But recall from Dialog Boxes that the Window object has a method named prompt()
, so a script cannot use the global variable prompt
instead of ui.prompt
.
The implicit use of element IDs as global variables is a historical quirk of web browser evolution. It is required for backward compatibility with existing web pages, but its use is not recommended—any time a browser vendor defines a new property of the Window object it breaks any code that uses an implicit definition of that property name. Instead, use document.getElementById()
to look up elements explicitly. The use of this method seems less onerous if we give it a simpler name:
Many client-side libraries define a $
function that looks up elements by ID like this. (We’ll see in Chapter 19 that jQuery’s $
function is a general-purpose element selection method that returns one or more elements based on their ID, tag name, class
attribute, or other criteria.)
Any HTML element with an id
attribute will become the value of a global variable, assuming the ID is not already used by the Window object. The following HTML elements also behave this way when given a name
attribute:
The id
element is required to be unique within a document: two elements cannot have the same id
. This is not true for the name
attribute, however. If more than one of the elements above has the same name
attribute (or if one element has a name
attribute, and another element has an id
with the same value), the implicit global variable with that name will refer to an array-like object that holds each of the named elements.
There is a special case for <iframe>
elements with a name
or id
attribute. The implicitly created variable for these elements refers not to the Element object that represents the element itself, but to the Window object that represents the nested browser frame created by the <iframe>
element. We’ll talk about this again in Relationships Between Frames.
A single web browser window on your desktop may contain several tabs. Each tab is an independent browsing context. Each has its own Window object, and each is isolated from all the others. The scripts running in one tab usually have no way of even knowing that the other tabs exist, much less of interacting with their Window objects or manipulating their document content. If you use a web browser that does not support tabs, or if you have tabs turned off, you may have many web browser windows open on your desktop at one time. As with tabs, each desktop window has its own Window object, and each is usually independent of and isolated from all of the others.
But windows are not always isolated from one another. A script in one window or tab can open new windows or tabs, and when a script does this, the windows can interact with one another and with one another’s documents (subject to the constraints of the same-origin policy of The Same-Origin Policy). Opening and Closing Windows has more about opening and closing windows.
HTML documents may contain nested documents using an <iframe>
element. An <iframe>
creates a nested browsing context represented by a Window object of its own. The deprecated <frameset>
and <frame>
elements also create nested browsing contexts, and each <frame>
is represented by a Window. Client-side JavaScript makes very little distinction between windows, tabs, iframes, and frames: they are all browsing contexts, and to JavaScript, they are all Window objects. Nested browsing contexts are not isolated from one another the way independent tabs usually are. A script running in one frame can always see its ancestor and descendant frames, though the same-origin policy may prevent the script from inspecting the documents in those frames. Nested frames are the topic of Relationships Between Frames.
Since the Window is the global object of client-side JavaScript, each window or frame has a separate JavaScript execution context. Nevertheless, JavaScript code in one window can, subject to same-origin constraints, use the objects, properties, and methods defined in other windows. This is discussed in more detail in JavaScript in Interacting Windows. When the same-origin policy prevents the scripts in two distinct windows from interacting directly, HTML5 provides an event-based message passing API for indirect communication. You can read about it in Cross-Origin Messaging.
You can open a new web browser window (or tab; this is usually a browser configuration option) with the open()
method of the Window object. Window.open()
loads a specified URL into a new or existing window and returns the Window object that represents that window. It takes four optional arguments:
The first argument to open()
is the URL of the document to display in the new window. If this argument is omitted (or is the empty string), the special blank-page URL about:blank
is used.
The second argument to open()
is a string that specifies a window name. If a window by that name already exists (and if the script is allowed to navigate that window), that existing window is used. Otherwise a new window is created and is assigned the specified name. If this argument is omitted, the special name “_blank” is used: it opens a new, unnamed window.
Note that scripts cannot simply guess window names and take over the windows in use by other web applications: they can only name existing windows that they are “allowed to navigate” (the term is from the HTML5 specification). Loosely, a script can specify an existing window by name only if that window contains a document from the same origin or if the script opened that window (or recursively opened a window that opened that window). Also, if one window is a frame nested within the other, a script in either one can navigate the other. In this case, the reserved names “_top” (the top-level ancestor window) and “_parent” (the immediate parent window) can be useful.
The name of a window is important because it allows the open()
method to refer to existing windows, and also because it can be used as the value of the HTML target
attribute on <a>
and <form>
elements to indicate that the linked document (or the result of submitting the form) should be displayed in the named window. The target
attribute on these elements can also be set to “_blank”, “_parent”, or “_top” to direct the linked document into a new blank window, the parent window or frame, or the top-level window.
The name
property of a Window object holds its name, if it has one. This property is writable, and scripts can set it as desired. If a name (other than “_blank”) is passed to Window.open()
, the window created by that call will have the specified name as the initial value of its name
property. If an <iframe>
element has a name
attribute, the Window object that represents that frame will use that name
attribute as the initial value of the name
property.
The third optional argument to open()
is a comma-separated list of size and features attributes for the new window to be opened. If you omit this argument, the new window is given a default size and has a full set of UI components: a menu bar, status line, toolbar, and so on. In tabbed browsers, this usually results in the creation of a new tab. On the other hand, if you specify this argument, you can explicitly specify the size of the window and the set of features it includes. (Explicitly specifying a size is likely to result in the creation of a new window rather than a tab.) For example, to open a small but resizable browser window with a status bar but no menu bar, toolbar, or location bar, you might write:
This third argument is nonstandard and the HTML5 specification insists that browsers be able to ignore it. See Window.open()
in the reference section for more details on what you can specify in this argument. Note that when you specify this third argument, any features you do not explicitly specify are omitted. For various security reasons, browsers include restrictions on the features you can specify. You are typically not allowed to specify a window that is too small or is positioned offscreen, for example, and some browsers will not allow you to create a window without a status line.
The fourth argument to open()
is useful only when the second argument names an existing window. This fourth argument is a boolean value that indicates whether the URL specified as the first argument should replace the current entry in the window’s browsing history (true
) or create a new entry in the window’s browsing history (false
). Omitting this argument is the same as passing false
.
The return value of the open()
method is the Window object that represents the named or newly created window. You can use this Window object in your JavaScript code to refer to the new window, just as you use the implicit Window object window
to refer to the window within which your code is running:
In windows created with the window.open()
method, the opener
property refers back to the Window object of the script that opened it. In other windows, opener
is null
:
Window.open()
is the method by which advertisements are made to “pop up” or “pop under” while you browse the Web. Because of this flood of annoying pop ups, most web browsers have now instituted some kind of pop up–blocking system. Typically, calls to the open()
method are successful only if they occur in response to a user action such as clicking on a button or a link. JavaScript code that tries to open a pop-up window when the browser first loads (or unloads) a page will usually fail. Testing the lines of code shown above by pasting them into the JavaScript console of your browser may also fail for the same reason.
Just as the open()
method opens a new window, the close()
method closes one. If you create a Window object w
, you can close it with:
JavaScript code running within that window itself can close it with:
Note the explicit use of the window
identifier to distinguish the close()
method of the Window object from the close()
method of the Document object—this is important if you’re calling close()
from an event handler.
Most browsers allow you to automatically close only those windows that your own JavaScript code has created. If you attempt to close any other window, the request either fails or the user is presented with a dialog box that asks him to allow (or cancel) that request to close the window. The close()
method of a Window object that represents a frame rather than a top-level window or tab does nothing: it is not possible to close a frame (instead you’d delete the <iframe>
from its containing document).
A Window object continues to exist after the window it represents has been closed. A window that has been closed will have a closed
property of true
, its document
will be null, and its methods will typically no longer work.
As we saw above, the open()
method of a Window object returns a new Window object that has an opener
property that refers back to the original window. In this way, the two windows can refer to each other, and each can read properties and invoke methods of the other. A similar thing is possible with frames. Code running in a window or frame can refer to the containing window or frame and to nested child frames using the properties described below.
You already know that the JavaScript code in any window or frame can refer to its own Window object as window
or as self
. A frame can refer to the Window object of the window or frame that contains it using the parent
property:
A Window object that represents a top-level window or tab has no container, and its parent
property simply refers to the window itself:
If a frame is contained within another frame that is contained within a top-level window, that frame can refer to the top-level window as parent.parent
. The top
property is a general-case shortcut, however: no matter how deeply a frame is nested, its top
property refers to the top-level containing window. If a Window object represents a top-level window, top
simply refers to that window itself. For frames that are direct children of a top-level window, the top
property is the same as the parent
property.
The parent
and top
properties allow a script to refer to its frame’s ancestors. There is more than one way to refer to the descendant frames of a window or frame. Frames are created with <iframe>
elements. You can obtain an Element object that represents an <iframe>
just as you would do for any other element. Suppose your document contains <iframe id="f1">
. Then, the Element object that represents this iframe is:
<iframe>
elements have a contentWindow
property that refers to the Window object of the frame, so the Window object for this frame is:
You can go in the reverse direction—from the Window that represents a frame to the <iframe>
Element that contains the frame—with the frameElement
property of the Window. Window objects that represent top-level windows rather than frames have a null
frameElement
property:
It is not usually necessary to use the getElementById()
method and the contentWindow
property to obtain references to the child frames of a window, however. Every Window object has a frames
property that refers to the child frames contained within the window or frame. The frames
property refers to an array-like object that can be indexed numerically or by frame name. To refer to the first child frame of a window, you can use frames[0]
. To refer to the third child frame of the second child, you can use frames[1].frames[2]
. Code running in a frame might refer to a sibling frame as parent.frames[1]
. Note that the elements of the frames[]
array are Window objects, not <iframe>
elements.
If you specify the name
or id
attribute of an <iframe>
element, that frame can be indexed by name as well as by number. A frame named “f1” would be frames["f1"]
or frames.f1
, for example.
Recall from Document Elements As Window Properties that the names or IDs of <iframe>
and other elements are automatically used as properties of the Window object, and that <iframe>
elements are treated differently than other elements: for frames, the value of these automatically created properties refer to a Window object rather than an Element object. What this means is that we can refer to a frame named “f1” as f1
instead of as frames.f1
. In fact, HTML5 specifies that the frames
property is a self-referential property, just like window
and self
, and that it is the Window object itself that acts like an array of frames. This means that we can refer to the first child frame as window[0]
, and we can query the number of frames with window.length
or just length
. It is usually clearer, and still traditional, to use frames
instead of window
here, however. Note that current browsers do not all make frame==window
, but those that do not make them equal do allow child frames to be indexed by number or by name through either object.
You can use the name
or id
attribute of an <iframe>
element to give the frame a name that can be used in JavaScript code. If you use the name
attribute, however, the name you specify also becomes the value of the name
property of the Window that represents the frame. A name specified in this way can be used as the target
attribute of a link, and it can be used as the second argument to window.open()
.
Each window or frame is its own JavaScript execution context with a Window as its global object. But if code in one window or frame can refer to another window or frame (and if the same-origin policy does not prevent it), the scripts in one window or frame can interact with the scripts in the other.
Imagine a web page with two <iframe>
elements named “A” and “B”, and suppose that those frames contain documents from the same server and that those documents contain interacting scripts. The script in frame A might define a variable i
:
That variable is nothing more than a property of the global object—a property of the Window object. Code in frame A can refer to the variable with the identifier i
, or it can explicitly reference it through the window object:
Since the script in frame B can refer to the Window object for frame A, it can also refer to the properties of that window object:
Recall that the function
keyword that defines functions creates a variable just like the var
keyword does. If a script in frame B declares a (non-nested) function f
, that function is a global variable in frame B, and code in frame B can invoke f
as f()
. Code in frame A, however, must refer to f
as a property of the Window object of frame B:
If the code in frame A needs to use this function frequently, it might assign the function to a variable of frame A so that it can more conveniently refer to the function:
Now code in frame A can invoke the function as f()
, just as code in frame B does.
When you share functions between frames or windows like this, it is important to keep the rules of lexical scoping in mind. A function is executed in the scope in which it was defined, not in the scope from which it is invoked. Thus, if the function f
above refers to global variables, these variables are looked up as properties of frame B, even when the function is invoked from frame A.
Remember that constructors are also functions, so when you define a class (see Chapter 9) with a constructor function and an associated prototype object, that class is defined only within a single window. Suppose that the window that contains frames A and B includes the Set class from Example 9-6.
Scripts within that top-level window can create new Set objects like this:
But scripts in either of the frames must explicitly refer to the Set()
constructor as a property of the parent window:
Alternatively, code in either frame can define its own variable to refer more conveniently to the constructor function:
Unlike user-defined classes, the built-in classes like String, Date, and RegExp are automatically predefined in all windows. This means, however, that each window has an independent copy of the constructor and an independent copy of the prototype object. For example, each window has its own copy of the String()
constructor and the String.prototype
object. So if you write a new method for manipulating JavaScript strings and then make it a method of the String class by assigning it to the String.
prototype
object in the current window, all strings created by code in that window can use the new method. However, the new method is not accessible to strings created in other windows.
The fact that each Window has its own prototype objects means that the instanceof
operator does not work across windows. instanceof
will evaluate to false
, for example, when used to compare a string from frame B to the String()
constructor from frame A. Array Type describes the related difficulty of determining the type of arrays across windows.
We’ve noted repeatedly that the Window object is the global object of client-side JavaScript. Technically, however, this is not true. Each time a web browser loads new content into a window or a frame, it must start with a fresh JavaScript execution context, including a newly created global object. But when multiple windows or frames are in use, it is critical that the Window object that refers to a frame or window continue to be a valid reference even if that frame or window loads a new document.
So client-side JavaScript has two important objects. The client-side global object is the top of the scope chain and is where global variables and functions are defined. This global object is, in fact, replaced whenever the window or frame loads new content. The object we have been calling the Window object is not actually the global object, but a proxy for it. Whenever you query or set a property of the Window object, that object queries or sets the same property on the current global object of the window or frame. The HTML5 specification calls this proxy object WindowProxy, but we will continue to use the term Window object in this book.
Because of its proxying behavior, the proxy object behaves just like the true global object, except that it has a longer lifetime. If you could compare the two objects, it would be difficult to distinguish them. In fact, however, there is no way to refer to the true client-side global object. The global object is at the top of the scope chain, but the window
, self
, top
, parent
, and frames
properties all return proxy objects. The window.
open()
method returns a proxy object. Even the value of the this
keyword within a top-level function is a proxy object rather than the true global object.[28]
[28] This last point is a minor violation of the ES3 and ES5 specifications, but it is necessary to support the multiple execution contexts of client-side JavaScript.
Client-side JavaScript exists to turn static HTML documents into interactive web applications. Scripting the content of web pages is the central purpose of JavaScript. This chapter—one of the most important in the book—explains how to do this.
Chapters 13 and 14 explained that every web browser window, tab, and frame is represented by a Window object. Every Window object has a document
property that refers to a Document object. The Document object represents the content of the window, and it is the subject of this chapter. The Document object does not stand alone, however. It is the central object in a larger API, known as the Document Object Model , or DOM, for representing and manipulating document content.
This chapter begins by explaining the basic architecture of the DOM. It then moves on to explain:
The final section of the chapter covers miscellaneous document features, including the referrer
property, the write()
method, and techniques for querying the currently selected document text.
The Document Object Model, or DOM, is the fundamental API for representing and manipulating the content of HTML and XML documents. The API is not particularly complicated, but there are a number of architectural details you need to understand. First, you should understand that the nested elements of an HTML or XML document are represented in the DOM as a tree of objects. The tree representation of an HTML document contains nodes representing HTML tags or elements, such as <body>
and <p>
, and nodes representing strings of text. An HTML document may also contain nodes representing HTML comments. Consider the following simple HTML document:
The DOM representation of this document is the tree pictured in Figure 15-1.
If you are not already familiar with tree structures in computer programming, it is helpful to know that they borrow terminology from family trees. The node directly above a node is the parent of that node. The nodes one level directly below another node are the children of that node. Nodes at the same level, and with the same parent, are siblings. The set of nodes any number of levels below another node are the descendants of that node. And the parent, grandparent, and all other nodes above a node are the ancestors of that node.
Each box in Figure 15-1 is a node of the document and is represented by a Node object. We’ll talk about the properties and methods of Node in some of the sections that follow, and you can look up those properties and methods under Node in Part IV. Note that the figure contains three different types of nodes. At the root of the tree is the Document node that represents the entire document. The nodes that represent HTML elements are Element nodes, and the nodes that represent text are Text nodes. Document, Element, and Text are subclasses of Node and have their own entries in the reference section. Document and Element are the two most important DOM classes, and much of this chapter is devoted to their properties and methods.
Node and its subtypes form the type hierarchy illustrated in Figure 15-2. Notice that there is a formal distinction between the generic Document and Element types, and the HTMLDocument and HTMLElement types. The Document type represents either an HTML or an XML document, and the Element class represents an element of such a document. The HTMLDocument and HTMLElement subclasses are specific to HTML documents and elements. In this book, we often use the generic class names Document and Element, even when referring to HTML documents. This is true in the reference section as well: the properties and methods of the HTMLDocument and the HTMLElement types are documented in the Document and Element reference pages.
It is also worth noting in Figure 15-2 that there are many subtypes of HTMLElement that represent specific types of HTML elements. Each defines JavaScript properties to mirror the HTML attributes of a specific element or group of elements (see HTML Attributes As Element Properties). Some of these element-specific classes define additional properties or methods that go beyond simple mirroring of HTML syntax. These classes and their additional features are covered in the reference section.
Finally, note that Figure 15-2 shows some node types that haven’t been mentioned so far. Comment nodes represent HTML or XML comments. Because comments are basically strings of text, these nodes are much like the Text nodes that represent the displayed text of a document. CharacterData, the common ancestor of both Text and Comment, defines methods shared by both nodes. The Attr node type represents an XML or HTML attribute, but it is almost never used because the Element class defines methods for treating attributes as name/value pairs rather than document nodes. The DocumentFragment class (not pictured) is a kind of Node that never exists in an actual document: it represents a sequence of Nodes that do not have a common parent. DocumentFragments are useful for some document manipulations and are covered in Using DocumentFragments. The DOM also defines infrequently used types to represent things like doctype declarations and XML processing instructions.
Most client-side JavaScript programs work by somehow manipulating one or more document elements. When these programs start, they can use the global variable document
to refer to the Document object. In order to manipulate elements of the document, however, they must somehow obtain or select the Element objects that refer to those document elements. The DOM defines a number of ways to select elements; you can query a document for an element or elements:
id
attribute; name
attribute; The subsections that follow explain each of these element selection techniques.
Any HTML element can have an id
attribute. The value of this attribute must be unique within the document—no two elements in the same document can have the same ID. You can select an element based on this unique ID with the getElementById()
method of the Document object. We’ve already used this method in both Chapter 13 and Chapter 14:
This is the simplest and most commonly used way to select elements. If your script is going to manipulate a certain specific set of document elements, give those elements id
attributes, and look up the Element objects using that ID. If you need to look up more than one element by ID, you might find the getElements()
function of Example 15-1 useful.
Example 15-1. Looking up multiple elements by ID
In versions of Internet Explorer prior to IE8, getElementById()
does a case-insensitive match on element IDs and also returns elements that have a matching name
attribute.
The HTML name
attribute was originally intended to assign names to form elements, and the value of this attribute is used when form data is submitted to a server. Like the id
attribute, name
assigns a name to an element. Unlike id
, however, the value of a name
attribute does not have to be unique: multiple elements may have the same name, and this is common in the case of radio buttons and checkboxes in forms. Also, unlike id
, the name
attribute is only valid on a handful of HTML elements, including forms, form elements, <iframe>
, and
elements.
To select HTML elements based on the value of their name
attributes, you can use the getElementsByName()
method of the Document object:
getElementsByName()
is defined by the HTMLDocument class, not the Document class, and so it is only available for HTML documents, not XML documents. It returns a NodeList object that behaves like a read-only array of Element objects. In IE, get
Elements
ByName()
will also return elements that have an id
attribute with the specified value. For compatibility, you should be careful not to use the same string as both a name and an ID.
We saw in Document Elements As Window Properties that setting the name
attribute of certain HTML elements automatically created properties with those names on the Window object. A similar thing is true for the Document object. Setting the name
attribute of a <form>
,
, <iframe>
, <applet>
, <embed>
, or <object>
element (but only <object>
elements that do not have fallback objects within them) creates a property of the Document object whose name is the value of the attribute (assuming, of course, that the document does not already have a property with that name).
If there is only a single element with a given name, the value of the automatically created document property is the element itself. If there is more than one element, then the value of the property is a NodeList object that acts as an array of elements. As we saw in Document Elements As Window Properties, the document properties created for named <iframe>
elements are special: instead of referring to the Element object, they refer to the frame’s Window object.
What this means is that some elements can be selected by name simply by using the name as a Document property:
The reasons given in Document Elements As Window Properties for not using the automatically created window properties apply equally to these automatically created document properties. If you need to look up named elements, it is better to look them up explicitly with a call to getElementsByName()
.
You can select all HTML or XML elements of a specified type (or tag name) using the getElementsByTagName()
method of the Document object. To obtain a read-only array-like object containing the Element objects for all
elements in a document, for example, you might write:
Like getElementsByName()
, getElementsByTagName()
returns a NodeList object. (See the sidebar in this section for more on the NodeList class.) The elements of the returned NodeList are in document order, so you can select the first <p>
element of a document like this:
HTML tags are case-insensitive, and when getElementsByTagName()
is used on an HTML document, it performs a case-insensitive tag name comparison. The spans
variable above, for example, will include any
elements that were written as
.
You can obtain a NodeList that represents all elements in a document by passing the wildcard argument “*” to getElementsByTagName()
.
The Element class also defines a getElementsByTagName()
method. It works in the same way as the Document version, but it only selects elements that are descendants of the element on which it is invoked. So to find all
elements inside the first <p>
element of a document, you could write:
For historical reasons, the HTMLDocument class defines shortcut properties to access certain kinds of nodes. The images
, forms
, and links
properties, for example, refer to objects that behave like read-only arrays of
, <form>
, and <a>
elements (but only <a>
tags that have an href
attribute). These properties refer to HTMLCollection objects, which are much like NodeList objects, but they can additionally be indexed by element ID or name. Earlier, we saw how you could refer to a named <form>
element with an expression like this:
With the document.forms
property, you can also refer more specifically to the named (or ID’ed) form like this:
The HTMLDocument object also defines synonymous embeds
and plugins
properties that are HTMLCollections of <embed>
elements. The anchors
property is nonstandard but refers to <a>
elements that have a name
attribute rather than an href
attribute. The <scripts>
property is standardized by HTML5 to be an HTMLCollection of <script>
elements, but it is not, at the time of this writing, universally implemented.
HTMLDocument also defines two properties that refer to special single elements rather than element collections. document.body
is the <body>
element of an HTML document, and document.head
is the <head>
element. These properties are always defined: if the document source does not explicitly include <head>
and <body>
elements, the browser creates them implicitly. The documentElement
property of the Document class refers to the root element of the document. In HTML documents, this is always an <html>
element.
getElementsByName()
and getElementsByTagName()
return NodeList objects, and properties like document.images
and document.forms
are HTMLCollection objects.
These objects are read-only array-like objects (see Array-Like Objects). They have length
properties and can be indexed (for reading but not writing) like true arrays. You can iterate the contents of a NodeList or HTMLCollection with a standard loop like this:
You cannot invoke Array methods on NodeLists and HTMLCollections directly, but you can do so indirectly:
HTMLCollection objects may have additional named properties and can be indexed with strings as well as numbers.
For historical reasons, both NodeList and HTMLCollection objects can also be treated as functions: invoking them with a number or string argument is the same as indexing them with a number or string. Use of this quirk is discouraged.
Both the NodeList and HTMLCollection interfaces were designed with languages less dynamic than JavaScript in mind. Both define an item()
method. It expects an integer and returns the element at that index. There is never any need to call this method in JavaScript because you can simply use array indexing instead. Similarly, HTMLCollection defines a namedItem()
method that returns the value of a named property, but JavaScript programs can use array indexing or regular property access instead.
One of the most important and surprising features of NodeList and HTMLCollection is that they are not static snapshots of a historical document state but are generally live and the list of elements they contain can vary as the document changes. Suppose you call getElementsByTagName('div')
on a document with no <div>
elements. The return value is a NodeList with a length
of 0. If you then insert a new <div>
element into the document, that element automatically becomes a member of the NodeList, and the length
property changes to 1.
Usually, the liveness of NodeLists and HTMLCollections is quite helpful. If you will be adding or removing elements from the document while iterating through a NodeList, however, you may want to make a static copy of the NodeList first:
The class
attribute of an HTML is a space-separated list of zero or more identifiers. It describes a way to define sets of related document elements: any elements that have the same identifier in their class
attribute are part of the same set. class
is a reserved word in JavaScript, so client-side JavaScript uses the className
property to hold the value of the HTML class
attribute. The class
attribute is usually used in conjunction with a CSS stylesheet to apply the same presentation styles to all members of a set, and we’ll see it again in Chapter 16. In addition, however, HTML5 defines a method, getElements
ByClassName()
, that allows us to select sets of document elements based on the identifiers in their class
attribute.
Like getElementsByTagName()
, getElementsByClassName()
can be invoked on both HTML documents and HTML elements, and it returns a live NodeList containing all matching descendants of the document or element. getElementsByClassName()
takes a single string argument, but the string may specify multiple space-separated identifiers. Only elements that include all of the specified identifiers in their class
attribute are matched. The order of the identifiers does not matter. Note that both the class
attribute and the getElementsByClassName()
methods separate class identifiers with spaces, not with commas. Here are some examples of getElementsByClassName()
:
Today’s web browsers display HTML documents in “quirks mode” or “standards mode” depending on how strict the <!DOCTYPE>
declaration at the start of the document is. Quirks mode exists for backward compatibility, and one of its quirks is that class identifiers in the class
attribute and in CSS stylesheets are case-insensitive. getElements
ByClassName()
follows the matching algorithm used by stylesheets. If the document is rendered in quirks mode, the method performs a case-insensitive string comparison. Otherwise, the comparison is case sensitive.
At the time of this writing, getElementsByClassName()
is implemented by all current browsers except IE8 and earlier. IE8 does support querySelectorAll()
, described in the next section, and getElementsByClassName()
can be implemented on top of that method.
CSS stylesheets have a very powerful syntax, known as selectors, for describing elements or sets of elements within a document. Full details of CSS selector syntax are beyond the scope of this book,[29] but some examples will demonstrate the basics. Elements can be described by ID, tag name, or class:
More generally, elements can be selected based on attribute values:
These basic selectors can be combined:
Selectors can also specify document structure:
Selectors can be combined to select multiple elements or multiple sets of elements:
As you can see, CSS selectors allow elements to be selected in all of the ways described above: by ID, by name, by tag name, and by class name. Along with the standardization of CSS3 selectors, another W3C standard, known as “Selectors API” defines JavaScript methods for obtaining the elements that match a given selector.[30] The key to this API is the Document method querySelectorAll()
. It takes a single string argument containing a CSS selector and returns a NodeList that represents all elements in the document that match the selector. Unlike previously described element selection methods, the NodeList returned by querySelectorAll()
is not live: it holds the elements that match the selector at the time the method was invoked, but it does not update as the document changes. If no elements match, querySelectorAll()
returns an empty NodeList. If the selector string is invalid, querySelectorAll()
throws an exception.
In addition to querySelectorAll()
, the document object also defines querySelector()
, which is like querySelectorAll()
, but returns only the first (in document order) matching element or null
if there is no matching element.
These two methods are also defined on Elements (and also on DocumentFragment nodes; see Using DocumentFragments). When invoked on an element, the specified selector is matched against the entire document, and then the result set is filtered so that it only includes descendants of the specified element. This may seem counterintuitive, as it means that the selector string can include ancestors of the element against which it is matched.
Note that CSS defines :first-line
and :first-letter
pseudoelements. In CSS, these match portions of text nodes rather than actual elements. They will not match if used with querySelectorAll()
or querySelector()
. Also, many browsers will refuse to return matches for the :link
and :visited
pseudoclasses, as this could expose information about the user’s browsing history.
All current browsers support querySelector()
and querySelectorAll()
. Note, however, that the specification of these methods does not require support for CSS3 selectors: browsers are encouraged to support the same set of selectors that they support in stylesheets. Current browsers other than IE support CSS3 selectors. IE7 and 8 support CSS2 selectors. (IE9 is expected to have CSS3 support.)
querySelectorAll()
is the ultimate element selection method: it is a very powerful technique by which client-side JavaScript programs can select the document elements that they are going to manipulate. Fortunately, this use of CSS selectors is available even in browsers without native support for querySelectorAll()
. The jQuery library (see Chapter 19) uses this kind of CSS selector-based query as its central programming paradigm. Web applications based on jQuery use a portable, cross-browser equivalent to querySelectorAll()
named $()
.
jQuery’s CSS selector matching code has been factored out and released as a stand-alone library named Sizzle, which has been adopted by Dojo and other client-side libraries.[31] The advantage to using a library like Sizzle (or a library that uses Sizzle) is that selections work even on older browsers, and there is a baseline set of selectors that are guaranteed to work on all browsers.
Before the DOM was standardized, IE4 introduced the document.all[]
collection that represented all elements (but not Text nodes) in the document. document.all[]
has been replaced by standard methods like getElementById()
and getElementsByTagName()
and is now obsolete and should not be used. When introduced, however, it was revolutionary, and you may still see existing code that uses it in any of these ways:
[29] CSS3 selectors are specified by http://www.w3.org/TR/css3-selectors/.
[30] The Selectors API standard is not part of HTML5 but is closely affiliated with it. See http://www.w3.org/TR/selectors-api/.
[31] A stand-alone version of Sizzle is available at http://sizzlejs.com.
Once you have selected an Element from a Document, you sometimes need to find structurally related portions (parent, siblings, children) of the document. A Document can be conceptualized as a tree of Node objects, as illustrated in Figure 15-1. The Node type defines properties for traversing such a tree, which we’ll cover in Documents As Trees of Nodes. Another API allows documents to be traversed as trees of Element objects. Documents As Trees of Elements covers this newer (and often easier-to-use) API.
The Document object, its Element objects, and the Text objects that represent runs of text in the document are all Node objects. Node defines the following important properties:
parentNode
childNodes
firstChild
, lastChild
nextSibling
, previousSibling
nodeType
The kind of node this is. Document nodes have the value 9. Element nodes have the value 1. Text nodes have the value 3. Comments nodes are 8 and DocumentFragment nodes are 11.
nodeValue
nodeName
Using these Node properties, the second child node of the first child of the Document can be referred to with expressions like these:
Suppose the document in question is the following:
Then the second child of the first child is the <body>
element. It has a nodeType
of 1 and a nodeName
of “BODY”.
Note, however, that this API is extremely sensitive to variations in the document text. If the document is modified by inserting a single newline between the <html>
and the <head>
tag, for example, the Text node that represents that newline becomes the first child of the first child, and the second child is the <head>
element instead of the <body>
body.
When we are primarily interested in the Elements of a document instead of the text within them (and the whitespace between them), it is helpful to use an API that allows us to treat a document as a tree of Element objects, ignoring Text and Comment nodes that are also part of the document.
The first part of this API is the children
property of Element objects. Like childNodes
, this is a NodeList. Unlike childNodes
, however, the children
list contains only Element objects. The children
property is nonstandard, but it works in all current browsers. IE has implemented it for a long time, and most other browsers have followed suit. The last major browser to adopt it was Firefox 3.5.
Note that Text and Comment nodes cannot have children, which means that the Node.parentNode
property described above never returns a Text or Comment node. The parentNode
of any Element will always be another Element, or, at the root of the tree, a Document or DocumentFragment.
The second part of an element-based document traversal API is Element properties that are analogs to the child and sibling properties of the Node object:
firstElementChild
, lastElementChild
nextElementSibling
, previousElementSibling
childElementCount
These child and sibling properties are standardized and are implemented in all current browsers except IE.[32]
Because the API for element-by-element document traversal is not yet completely universal, you might want to define portable traversal functions like those in Example 15-2.
Example 15-2. Portable document traversal functions
All current browsers (including IE8, but not IE7 and before) implement the DOM so that types like Element and HTMLDocument[33] are classes like String and Array. They are not constructors (we’ll see how to create new Element objects later in the chapter), but they have prototype objects and you can extend them with custom methods:
The functions of Example 15-2 are not defined as Element methods because this technique is not supported by IE7.
This ability to extend DOM types is still useful, however, if you want to implement IE-specific features in browsers other than IE. As noted above, the nonstandard Element property children
was introduced by IE and has been adopted by other browsers. You can use code like this to simulate it in browsers like Firefox 3.0 that do not support it:
The __defineGetter__
method (covered in Legacy API for Getters and Setters) is completely nonstandard, but it is perfect for portability code like this.
[33] IE8 supports extendable prototypes for Element, HTMLDocument, and Text, but not for Node, Document, HTMLElement, or any of the more specific HTMLElement subtypes.
HTML elements consist of a tag name and a set of name/value pairs known as attributes. The <a>
element that defines a hyperlink, for example, uses the value of its href
attribute as the destination of the link. The attribute values of HTML elements are available as properties of the HTMLElement objects that represent those elements. The DOM also defines other APIs for getting and setting the values of XML attributes and nonstandard HTML attributes. The subsections that follow have details.
The HTMLElement objects that represent the elements of an HTML document define read/write properties that mirror the HTML attributes of the elements. HTMLElement defines properties for the universal HTTP attributes such as id
, title
lang
, and dir
, and event handler properties like onclick
. Element-specific subtypes define attributes specific to those elements. To query the URL of an image, for example, you can use the src
property of the HTMLElement that represents the
element:
Similarly, you might set the form-submission attributes of a <form>
element with code like this:
HTML attributes are not case sensitive, but JavaScript property names are. To convert an attribute name to the JavaScript property, write it in lowercase. If the attribute is more than one word long, however, put the first letter of each word after the first in uppercase: defaultChecked
and tabIndex
, for example.
Some HTML attribute names are reserved words in JavaScript. For these, the general rule is to prefix the property name with “html”. The HTML for
attribute (of the <label>
element), for example, becomes the JavaScript htmlFor
property. “class” is a reserved (but unused) word in JavaScript, and the very important HTML class
attribute is an exception to the rule above: it becomes className
in JavaScript code. We’ll see the className
property again in Chapter 16.
The properties that represent HTML attributes usually have string value. When the attribute is a boolean or numeric value (the defaultChecked
and maxLength
attributes of an <input>
element, for example), the properties values are booleans or numbers instead of strings. Event handler attributes always have Function objects (or null
) as their values. The HTML5 specification defines a few attributes (such as the form
attribute of <input>
and related elements) that convert element IDs to actual Element objects. Finally, the value of the style
property of any HTML element is a CSSStyleDeclaration object rather than a string. We’ll see much more about this important property in Chapter 16.
Note that this property-based API for getting and setting attribute values does not define any way to remove an attribute from an element. In particular, the delete
operator cannot be used for this purpose. The section that follows describes a method that you can use to accomplish this.
As described above, HTMLElement and its subtypes define properties that correspond to the standard attributes of HTML elements. The Element type also defines get
Attribute()
and setAttribute()
methods that you can use to query and set nonstandard HTML attributes and to query and set attributes on the elements of an XML document:
The code above highlights two important differences between these methods and the property-based API described above. First, attribute values are all treated as strings. getAttribute()
never returns a number, boolean, or object. Second, these methods use standard attribute names, even when those names are reserved words in JavaScript. For HTML elements, the attribute names are case insensitive.
Element also defines two related methods, hasAttribute()
and removeAttribute()
, which check for the presence of a named attribute and remove an attribute entirely. These methods are particularly useful with boolean attributes: these are attributes (such as the disabled
attribute of HTML form elements) whose presence or absence from an element matters but whose value is not relevant.
If you are working with XML documents that include attributes from other namespaces, you can use the namespaced variants of these four methods: getAttributeNS()
, setAttributeNS()
, hasAttributeNS()
, and removeAttributeNS()
. Instead of taking a single attribute name string, these methods take two. The first is the URI that identifies the namespace. The second is usually the unqualified local name of the attribute within the namespace. For setAttributeNS()
only, however, the second argument is the qualified name of the attribute and includes the namespace prefix. You can read more about these namespace-aware attribute methods in Part IV.
It is sometimes useful to attach additional information to HTML elements, typically when JavaScript code will be selecting those elements and manipulating them in some way. Sometimes this can be done by adding special identifiers to the class
attribute. Other times, for more complex data, client-side programmers resort to the use of nonstandard attributes. As noted above, you can use the getAttribute()
and set
Attribute()
methods to read and write the values of nonstandard attributes. The price you pay, however, is that your document will not be valid HTML.
HTML5 provides a solution. In an HTML5 document, any attribute whose name is lowercase and begins with the prefix “data-” is considered valid. These “dataset attributes” will not affect the presentation of the elements on which they appear and they define a standard way to attach additional data without compromising document validity.
HTML5 also defines a dataset
property on Element objects. This property refers to an object, which has properties that correspond to the data-
attributes with their prefix removed. Thus dataset.x
would hold the value of the data-x
attribute. Hyphenated attributes map to camel-case property names: the attribute data-jquery-test
becomes the property dataset.jqueryTest
.
As a more concrete example, suppose that a document contains the following markup:
A sparkline is a small graphic—often a line plot—designed to be displayed within the flow of text. In order to generate a sparkline, you might extract the value of the dataset attributes above with code like this:
At the time of this writing, the dataset
property is not implemented in current browsers, and the code above would have to be written like this:
Note that the dataset
property is (or will be, when implemented) a live, two-way interface to the data-
attributes of an element. Setting or deleting a property of dataset
sets or removes the corresponding data-
attribute of the element.
The drawSparkline()
function in the above examples is fictitious, but Example 21-13 draws sparklines marked up like this using the <canvas>
element.
There is one more way to work with the attributes of an Element. The Node type defines an attributes
property. This property is null
for any nodes that are not Element objects. For Element objects, attributes
is a read-only array-like object that represents all the attributes of the element. The attributes object is live in the way that NodeLists are. It can be indexed numerically, which means that you can enumerate all the attributes of an element. And it can also be indexed by attribute name:
The values obtained when you index the attributes
object are Attr objects. Attr objects are a specialized kind of Node but are never really used like one. The name
and value
properties of an Attr return the name and value of the attribute.
Take a look again at Figure 15-1, and ask yourself what the “content” of the <p>
element is. There are three ways we might answer this question:
Each of these are valid answers, and each answer is useful in its own way. The sections that follow explain how to work with the HTML representation, the plain-text representation, and the tree representation of element content.
Reading the innerHTML
property of an Element returns the content of that element as a string of markup. Setting this property on an element invokes the web browser’s parser and replaces the element’s current content with a parsed representation of the new string. (Despite its name, innerHTML
can be used with XML elements as well as HTML elements.)
Web browsers are very good at parsing HTML and setting innerHTML
is usually fairly efficient, even though the value you specify must be parsed. Note, however, that repeatedly appending bits of text to the innerHTML
property with the +=
operator is usually not efficient because it requires both a serialization step and a parsing step.
innerHTML
was introduced in IE4. Although it has long been supported by all browsers, it has only become standardized with the advent of HTML5. HTML5 says that innerHTML
should work on Document nodes as well as Element nodes, but this is not universally supported yet.
HTML5 also standardizes a property named outerHTML
. When you query outerHTML
, the string of HTML or XML markup that is returned includes the opening and closing tags of the element on which you queried it. When you set outerHTML
on an element, the new content replaces the element itself. outerHTML
is defined only for Element nodes, not Documents. At the time of this writing, outerHTML
is supported by all current browsers except Firefox. (See Example 15-5, later in this chapter, for an outerHTML
implementation based on innerHTML
.)
Another feature introduced by IE and standardized by HTML5 is the insert
Adjacent
HTML()
method, which allows you to insert a string of arbitrary HTML markup “adjacent” to the specified element. The markup is passed as the second argument to this method, and the precise meaning of “adjacent” depends on the value of the first argument. This first argument should be a string with one of the values “beforebegin”, “afterbegin”, “beforeend” or “afterend”. These values correspond to insertion points that are illustrated in Figure 15-3.
insertAdjacentHTML()
is not supported by current versions of Firefox. Later in this chapter, Example 15-6 shows how to implement insertAdjacentHTML()
using the innerHTML
property and also demonstrates how to write HTML insertion methods that do not require the insertion position to be specified with a string argument.
Sometimes you want to query the content of an element as plain text, or to insert plain-text into a document (without having to escape the angle brackets and ampersands used in HTML markup). The standard way to do this is with the textContent
property of Node:
The textContent
property is supported by all current browsers except IE. In IE, you can use the Element property innerText
instead. Microsoft introduced innerText
in IE4, and it is supported by all current browsers except Firefox.
The textContent
and innerText
properties are similar enough that you can usually use them interchangeably. Be careful though to distinguish empty elements (the string “” is falsy in JavaScript) from undefined properties:
The textContent
property is a straightforward concatenation of all Text node descendants of the specified element. innerText
does not have a clearly specified behavior, but differs from textContent
in a few ways. innerText
does not return the content of <script>
elements. It omits extraneous whitespace and attempts to preserve table formatting. Also, innerText
is treated as a read-only property for certain table elements such as <table>
, <tbody>
, and <tr>
.
Inline <script>
elements (i.e., those that do not have a src
attribute) have a text
property that you can use to retrieve their text. The content of a <script>
element is never displayed by the browser, and the HTML parser ignores angle brackets and ampersands within a script. This makes a <script>
element an ideal place to embed arbitrary textual data for use by your application. Simply set the type
attribute of the element to some value (such as “text/x-custom-data”) that makes it clear that the script is not executable JavaScript code. If you do this, the JavaScript interpreter will ignore the script, but the element will exist in the document tree and its text
property will return the data to you.
Another way to work with the content of an element is as a list of child nodes, each of which may have its own set of children. When thinking about element content, it is usually the Text nodes that are of interest. In XML documents, you must also be prepared to handle CDATASection nodes—they are a subtype of Text and represent the content of CDATA sections.
Example 15-3 shows a textContent()
function that recursively traverses the children of an element and concatenates the text of all the Text node descendants. In order to understand the code, recall that the nodeValue
property (defined by the Node type) holds the content of a Text node.
Example 15-3. Finding all Text node descendants of an element
The nodeValue
property is read/write and you can set it to change the content displayed by a Text or CDATASection node. Both Text and CDATASection are subtypes of CharacterData, which you can look up in Part IV. CharacterData defines a data
property, which is the same text as nodeValue
. The following function converts the content of Text nodes to uppercase by setting the data
property:
CharacterData also defines infrequently used methods for appending, deleting, inserting, and replacing text within a Text or CDATASection node. Instead of altering the content of existing Text nodes, it is also possible to insert brand-new Text nodes into an Element or to replace existing nodes with new Text nodes. Creating, inserting, and deleting nodes is the topic of the next section.
We’ve seen how to query and alter document content using strings of HTML and of plain text. And we’ve also seen that we can traverse a Document to examine the individual Element and Text nodes that it is made of. It is also possible to alter a document at the level of individual nodes. The Document type defines methods for creating Element and Text objects, and the Node type defines methods for inserting, deleting, and replacing nodes in the tree. Example 13-4 demonstrated both node creation and node insertion, and that short example is duplicated here:
The subsections that follow include more details and examples of node creation, of the insertion and deletion of nodes, and also of the use of DocumentFragment as a shortcut when working with multiple nodes.
As shown in the code above, you can create new Element nodes with the create
Element()
method of the Document object. Pass the tag name of the element as the method argument: this name is case-insensitive for HTML documents and case-sensitive for XML documents.
Text nodes are created with a similar method:
Document defines other factory methods, such as the infrequently used create
Comment()
, as well. We’ll use the createDocumentFragment()
method in Using DocumentFragments. When working with documents that use XML namespaces, you can use create
Element
NS()
to specify both the namespace URI and the tag name of the Element to be created.
Another way to create new document nodes is to make copies of existing ones. Every node has a cloneNode()
method that returns a new copy of the node. Pass true
to recursively copy all descendants as well, or false
to only make a shallow copy. In browsers other than IE, the Document object also defines a similar method named importNode()
. If you pass it a node from another document, it returns a copy suitable for insertion into this document. Pass true
as the second argument to recursively import all descendants.
Once you have a new node, you can insert it into the document with the Node methods appendChild()
or insertBefore()
. appendChild()
is invoked on the Element node that you want to insert into, and it inserts the specified node so that it becomes the lastChild
of that node.
insertBefore()
is like appendChild()
, but it takes two arguments. The first argument is the node to be inserted. The second argument is the node before which that node is to be inserted. This method is invoked on the node that will be the parent of the new node, and the second argument must be a child of that parent node. If you pass null
as that second argument, the insertBefore()
behaves like appendChild()
and inserts at the end.
Here is a simple function for inserting a node at a numerical index. It demonstrates both appendChild()
and insertBefore()
:
If you call appendChild()
or insertBefore()
to insert a node that is already in the document, that node will automatically be removed from its current position and reinserted at its new position: there is no need to explicitly remove the node. Example 15-4 shows a function for sorting the rows of a table based on the values of cells in a specified column. It doesn’t create any new nodes but uses appendChild()
to change the order of existing nodes.
Example 15-4. Sorting the rows of a table
The removeChild()
method removes a node from the document tree. Be careful, however: this method isn’t invoked on the node to be removed but (as the “child” part of its name implies) on the parent of that node. Invoke the method on the parent node and pass the child node that is to be removed as the method argument. To remove the node n
from the document, you’d write:
replaceChild()
removes one child node and replaces it with a new one. Invoke this method on the parent node, passing the new node as the first argument and the node to be replaced as the second argument. To replace the node n
with a string of text, for example, you could write:
The following function demonstrates another use of replaceChild()
:
Element Content As HTML introduced the outerHTML
property of an element and explained that it was not implemented in current versions of Firefox. Example 15-5 shows how to implement this property in Firefox (and any other browser that supports innerHTML
, has an extensible Element.prototype
object, and has methods for defining property getters and setters). The code also demonstrates a practical use for the removeChild()
and cloneNode()
methods.
Example 15-5. Implementing the outerHTML property using innerHTML
A DocumentFragment is a special kind of Node that serves as a temporary container for other nodes. Create a DocumentFragment like this:
Like a Document node, a DocumentFragment stands alone and is not part of any other document. Its parentNode
is always null
. Like an Element, however, a DocumentFragment can have any number of children, which you can manipulate with appendChild()
, insertBefore()
, and so on.
The special thing about DocumentFragment is that it allows a set of nodes to be treated as a single node: if you pass a DocumentFragment to appendChild()
, insertBefore()
, or replaceChild()
, it is the children of the fragment that are inserted into the document, not the fragment itself. (The children are moved from the fragment into the document, and the fragment becomes empty and ready for reuse.) The following function uses a DocumentFragment to reverse the order of the children of a node:
Example 15-6 implements the insertAdjacentHTML()
method (see Element Content As HTML) using the innerHTML
property and a DocumentFragment. It also defines logically named HTML insertion functions as an alternative to the confusing insertAdjacentHTML()
API. The internal utility function fragment()
is possibly the most useful part of this code: it returns a DocumentFragment that contains the parsed representation of a specified string of HTML text.
Example 15-6. Implementing insertAdjacentHTML() using innerHTML
Example 15-7 shows how to dynamically create a table of contents for a document. It demonstrates many of the document scripting concepts described in the sections above: element selection, document traversal, setting element attributes, setting the innerHTML
property, and creating new nodes and inserting them into the document. The example is well-commented and you should have no trouble following the code.
Example 15-7. An automatically generated table of contents
In this chapter so far we have thought about documents as abstract trees of elements and text nodes. But when a browser renders a document within a window, it creates a visual representation of the document in which each element has a position and a size. Often, web applications can treat documents as trees of elements and never have to think about how those elements are rendered onscreen. Sometimes, however, it is necessary to determine the precise geometry of an element. We’ll see in Chapter 16, for example, that the CSS can be used to specify the position of an element. If you want to use CSS to dynamically position an element (such as a tooltip or callout) next to some ordinary browser-positioned element, you need to be able to determine the location of that element.
This section explains how you can go back and forth between the abstract, tree-based model of a document and the geometrical, coordinate-based view of the document as it is laid out in a browser window. The properties and methods described in this section have been implemented in browsers for a long time (though some were, until recently, IE-specific and some were not implemented by IE until IE9). At the time of this writing, they are going through the W3C standardization process as the CSSOM-View Module (see http://www.w3.org/TR/cssom-view/).
The position of an element is measured in pixels, with the X coordinate increasing to the right and the Y coordinate increasing as we go down. There are two different points we can use as the coordinate system origin, however: the X and Y coordinates of an element can be relative to the top-left corner of the document or relative to the top-left corner of the viewport in which the document is displayed. In top-level windows and tabs, the “viewport” is the portion of the browser that actually displays document content: it excludes browser “chrome” such as menus, toolbars, and tabs. For documents displayed in frames, the viewport is the <iframe>
element that defines the frame. In either case, when we talk about the position of an element, we must be clear whether we are using document coordinates or viewport coordinates. (Note that viewport coordinates are sometimes called window coordinates.)
If the document is smaller than the viewport, or if it has not been scrolled, the upper-left corner of the document is in the upper-left corner of the viewport and the document and viewport coordinate systems are the same. In general, however, to convert between the two coordinate systems, we must add or subtract the scroll offsets. If an element has a Y coordinate of 200 pixels in document coordinates, for example, and if the user has scrolled the browser down by 75 pixels, then that element has a Y coordinate of 125 pixels in viewport coordinates. Similarly, if an element has an X coordinate of 400 in viewport coordinates and the user has scrolled the viewport 200 pixels horizontally, the element’s X coordinate in document coordinates is 600.
Document coordinates are more fundamental than viewport coordinates, and they do not change when the user scrolls. Nevertheless, it is quite common to use viewport coordinates in client-side programming. We use document coordinates when we specify an element position using CSS (see Chapter 16). But the simplest way of querying the position of an element (see Querying the Geometry of an Element) returns the position in viewport coordinates. Similarly, when we register handler functions for mouse events, the coordinates of the mouse pointer are reported in viewport coordinates.
In order to convert between coordinate systems, we need to be able to determine the scrollbar positions for the browser window. The pageXOffset
and pageYOffset
properties of the Window object provide these values in all browsers except IE versions 8 and before. IE (and all modern browsers) also make the scrollbar positions available through scrollLeft
and scrollTop
properties. The confusing thing is that you normally query these properties on the root element of the document (document.documentElement
), but in quirks mode (see Quirks Mode and Standards Mode) you must query them on the <body>
element (document.
body
) of the document instead. Example 15-8 shows how to portably query the scrollbar positions.
Example 15-8. Querying the scrollbar positions of a window
It is sometimes useful to be able to determine the viewport size—to find what portions of the document are currently visible, for example. As with the scroll offsets, the easy way to query viewport size does not work in IE8 and before and the technique that works in IE depends on whether the browser is in quirks mode or standards mode. Example 15-9 shows how to portably query the viewport size. Note how similar the code is to Example 15-8.
Example 15-9. Querying the viewport size of a window
The two examples above have used the scrollLeft
, scrollTop
, clientWidth
, and client
Height
properties. We’ll encounter these properties again in More on Element Size, Position and Overflow.
The easiest way to determine the size and position of an element is to call its get
Bounding
ClientRect()
method. This method was introduced in IE5 and is now implemented by all current browsers. It expects no arguments and returns an object with properties left
, right
, top
, and bottom
. The left
and top
properties give the X and Y coordinates of the upper-left corner of the element and the right
and bottom
properties give the coordinates of the lower-right corner.
This method returns element positions in viewport coordinates. (The word “client” in the method name getBoundingClientRect()
is an oblique reference to the web browser client—specifically to the window and the viewport it defines.) To convert to document coordinates that remain valid even if the user scrolls the browser window, add the scroll offsets:
In many browsers (and in the W3C standard), the object returned by getBoundingClientRect()
also has width
and height
properties, but the original IE implementation does not do this. For portability, you can compute the element width and height like this:
You’ll learn in Chapter 16 that the content of an element is surrounded by an optional blank area known as padding. The padding is surrounded by an optional border, and the border is surrounded by optional margins. The coordinates returned by get
Bounding
ClientRect()
include the border and the padding of the element but do not include the element margins.
If the word “Client” in the method getBoundingClientRect()
specifies the coordinate system of the returned rectangle, what explains the word “Bounding” in the method name? Block elements, such as images, paragraphs, and <div>
elements are always rectangular when laid out by the browser. Inline elements, such as
, <code>
, and
elements, however, may span multiple lines and may therefore consist of multiple rectangles. Imagine, for example, some italicized text (marked up with <i>
and </i>
tags) that is broken across two lines. Its rectangles consist of the right-hand portion of the first line and the left-hand portion of the second line (assuming left-to-right text). If you call getBoundingClientRect()
on an inline element, it returns the “bounding rectangle” of the individual rectangles. For the <i>
element described above, the bounding rectangle would include the entire width of both lines.
If you want to query the individual rectangles of inline elements, call the get
Client
Rects()
method to obtain a read-only array-like object whose elements are rectangle objects like those returned by getBoundingClientRect()
.
We’ve seen that DOM methods like getElementsByTagName()
return “live” results that are updated as the document changes. The rectangle objects (and rectangle object lists) returned by getBoundingClientRect()
and getClientRects()
are not live. They are static snapshots of the visual state of document when the methods are called. They are not updated when the user scrolls or resizes the browser window.
The getBoundingClientRect()
method allows us to determine the current position of an element in a viewport. Sometimes we want to go in the other direction and determine which element is at a given location in the viewport. You can determine this with the elementFromPoint()
method of the Document object. Pass X and Y coordinates (using viewport coordinates, not document coordinates) and this method returns an Element object that is at the specified position. At the time of this writing, the algorithm for selecting the element is not specified, but the intent of this method is that it returns the innermost and uppermost (see the CSS z-index
attribute in The third dimension: z-index) element at that point. If you specify a point that is outside of the viewport, elementFromPoint()
will return null
even if that point would be perfectly valid when converted to document coordinates.
elementFromPoint()
seems like a very useful method, and the obvious use case is passing the coordinates of the mouse pointer to determine which element the mouse is over. As we’ll learn in Chapter 17, however, mouse event objects already include this information in their target
property. In practice, therefore, elementFromPoint()
is not commonly used.
Example 15-8 showed how to query the scrollbar positions for a browser window. The scrollLeft
and scrollTop
properties used in that example can be set to make the browser scroll, but there is an easier way that has been supported since the earliest days of JavaScript. The scrollTo()
method of the Window object (and its synonym scroll()
) takes the X and Y coordinates of a point (in document coordinates) and sets these as the scrollbar offsets. That is, it scrolls the window so that the specified point is in the upper left corner of the viewport. If you specify a point that is too close to the bottom or too close to the right edge of the document, the browser will move it as close as possible to the upper left corner but won’t be able to get it all the way there. The following code scrolls the browser so that the bottom-most page of the document is visible:
The scrollBy()
method of the Window is similar to scroll()
and scrollTo()
, but its arguments are relative and are added to the current scrollbar offsets. Speed readers might like a bookmarklet (Bookmarklets) like this one, for example:
Often, instead of scrolling to a numeric location in document, we just want to scroll so that a certain element in the document is visible. You could compute the position of the element with getBoundingClientRect()
, convert that position to document coordinates, and then use the scrollTo()
method, but it is easier to just call the scrollIntoView()
method on the desired HTML element. This method ensures that the element on which it is invoked is visible in the viewport. By default, it tries to put the top edge of the element at or near the top of the viewport. If you pass false
as the only argument, it will try to put the bottom edge of the element at the bottom of the viewport. The browser will also scroll the viewport horizontally as needed to make the element visible.
The behavior of scrollIntoView()
is similar to what the browser does when you set window.location.hash
to the name of a named anchor (an
element).
The getBoundingClientRect()
method is defined in all current browsers, but if you need to support an older generation of browsers, you can’t rely on this method and must use older techniques for determining element size and position. Element size is easy: the readonly offsetWidth
and offsetHeight
properties of any HTML element return its on screen size, in CSS pixels. The returned sizes include the element border and padding but not margins.
All HTML elements have offsetLeft
and offsetTop
properties that return the X and Y coordinates of the element. For many elements, these values are document coordinates and directly specify the position of the element. But for descendants of positioned elements and for some other elements, such as table cells, these properties return coordinates that are relative to an ancestor element rather than the document. The offsetParent
property specifies which element the properties are relative to. If offsetParent
is null, the properties are document coordinates. In general, therefore, computing the position of an element e
using offsetLeft
and offsetTop
requires a loop:
By looping through the offsetParent
chain and accumulating offsets, this function computes the document coordinates of the specified element. (Recall that getBoundingClientRect()
returns viewport coordinates instead.) This is not the final word on element positioning, however—this getElementPosition()
function does not always compute the correct values, and we’ll see how to fix it below.
In addition to the set of offset
properties, all document elements define two other sets of properties, one whose names begin with client
and one whose names begin with scroll
. That is, every HTML element has all of the following properties:
In order to understand these client
and scroll
properties, you need to know that the content of an HTML element may be larger than the content box allocated to hold that content, and that therefore individual elements may have scrollbars (see the CSS overflow
attribute in Partial Visibility: overflow and clip). The content area is a viewport, like the browser window is, and when the content is larger than the viewport, we need to take an element’s scrollbar position into account.
clientWidth
and clientHeight
are like offsetWidth
and offsetHeight
except that they do not include the border size, only the content area and its padding. Also, if the browser has added scrollbars between the padding and the border, clientWidth
and client
Height
do not include the scrollbar in their returned value. Note that clientWidth
and clientHeight
always return 0 for inline elements like <i>
, <code>
, and
.
clientWidth
and clientHeight
were used in the getViewportSize()
method of Example 15-9. As a special case, when these properties are queried on the root element of a document (or the body element in quirks mode), they return the same values as the innerWidth
and innerHeight
properties of the window.
The clientLeft
and clientTop
properties are not very useful: they return the horizontal and vertical distance between the outside of an element’s padding and the outside of its border. Usually these values are just the width of the left and top borders. If an element has scrollbars, however, and if the browser places those scrollbars on the left or top (which would be unusual), clientLeft
and clientTop
also include the scrollbar width. For inline elements, clientLeft
and clientTop
are always 0.
scrollWidth
and scrollHeight
are the size of an element’s content area plus its padding plus any overflowing content. When the content fits within the content area without overflow, these properties are the same as clientWidth
and clientHeight
. But when there is overflow, they include the overflowing content and return values larger than clientWidth
and clientHeight
.
Finally, scrollLeft
and scrollTop
give the scrollbar positions of an element. We queried them on the root element of the document in the getScrollOffsets()
method (Example 15-8), but they are also defined on any element. Note that scrollLeft
and scrollTop
are writable properties and you can set them to scroll the content within an element. (HTML elements do not have a scrollTo()
method like the Window object does.)
When a document contains scrollable elements with overflowing content, the getElementPosition()
method defined above does not work correctly because it does not take scrollbar position into account. Here is a modified version that subtracts scrollbar positions from the accumulated offsets and, in so doing, converts the returned position from document coordinates to viewport coordinates:
In modern browsers, this getElementPos()
method returns the same position values as getBoundingClientRect()
does (but is much less efficient). Theoretically, a function such as getElementPos()
could be used in browsers that do not support getBounding
Client
Rect()
. In practice, however, browsers that do not support getBounding
Client
Rect()
have a lot of element positioning incompatibilities and a function as simple as this one will not work reliably. Practical client-side libraries like jQuery include functions for computing element position that augment this basic position computation algorithm with a number of browser-specific bug fixes. If you need to compute element position and need your code to work in browsers that do not support getBoundingClientRect()
, you should probably use a library like jQuery.
The HTML <form>
element, and the various form input elements, such as <input>
, <select>
, and <button>
, have an important place in client-side programming. These HTML elements date from the very beginning of the Web and predate JavaScript itself. HTML forms are the mechanism behind the first generation of web applications, which required no JavaScript at all. User input is gathered in form elements; form submission sends that input to the server; the server processes the input and generates a new HTML page (usually with new form elements) for display by the client.
HTML form elements are still a great way to gather input from the user, even when form data is processed entirely by client-side JavaScript and never submitted to the server. With server-side programs, a form isn’t useful unless it has a Submit button. In client-side programming, on the other hand, a Submit button is never necessary (though it may still be useful). Server-side programs are based on form submissions—they process data in form-sized chunks—and this limits their interactivity. Client-side programs are event based—they can respond to events on individual form elements—and this allows them to be much more responsive. A client-side program might validate the user’s input as she types it, for example. Or it might respond to a click on a checkbox by enabling a set of options that are only meaningful when that box is checked.
The subsections that follow explain how to do these kinds of things with HTML forms. Forms are composed of HTML elements, just like any other part of an HTML document, and you can manipulate them with the DOM techniques already explained in this chapter. But form elements were the first ones to be made scriptable, in the earliest days of client-side programming, and they also support some APIs that predate the DOM.
Note that this section is about scripting HTML forms, not about the HTML itself. It assumes that you are already somewhat familiar with the HTML elements (<input>
, <textarea>
, <select>
, and so on) used to define those forms. Nevertheless, Table 15-1 is a quick reference to the most commonly used form elements. You can read more about the form and form element APIs in Part IV, under the entries Form, Input, Option, Select, and TextArea.
Table 15-1. HTML form elements
HTML element | Type property | Event handler | Description and events |
---|---|---|---|
<input type="button"> or <button type="button"> | “button” | onclick | A push button |
<input type="checkbox"> | “checkbox” | onchange | A toggle button without radio button behavior |
<input type="file"> | “file” | onchange | An input field for entering the name of a file to upload to the web server; |
<input type="hidden"> | “hidden” | none | Data submitted with the form but not visible to the user |
<option> | none | none | A single item within a Select object; event handlers are on the Select object, not on individual Option objects |
<input type="password"> | “password” | onchange | An input field for password entry—typed characters are not visible |
<input type="radio"> | “radio” | onchange | A toggle button with radio button behavior—only one selected at a time |
<input type="reset"> or <button type="reset"> | “reset” | onclick | A push button that resets a form |
<select> | “select-one” | onchange | A list or drop-down menu from which one item may be selected (also see <option>) |
<select multiple> | “select-multiple” | onchange | A list from which multiple items may be selected (also see <option>) |
<input type="submit"> or <button type="submit"> | “submit” | onclick | A push button that submits a form |
<input type="text"> | “text” | onchange | A single-line text entry field; the default <input> element it |
<textarea> | “textarea” | onchange | A multiline text entry field |
Forms and the elements they contain can be selected from a document using standard methods like getElementById()
and getElementsByTagName()
:
In browsers that support querySelectorAll()
, you might select all radio buttons, or all elements with the same name, from a form with code like this:
As described in Document Elements As Window Properties, Selecting Elements by Name, and Selecting Elements by Type, however, a <form>
element with a name
or id
attribute can be selected in a number of other ways. A <form>
with a name="address"
attribute can be selected in any of these ways:
Selecting Elements by Type explained that document.forms
is an HTMLCollection object that allows form elements to be selected by numerical order, by id
, or by name
. Form objects themselves act like HTMLCollections of form elements and can be indexed by name or number. If a form with name “address” has a first element with name “street”, you can refer to that form element with any of these expressions:
If you want to be explicit about selecting a form element, you can index the elements
property of the form object instead:
The id
attribute is the generally preferred way to name specific document elements. The name
attribute, however, has a special purpose for HTML form submission, and is much more commonly used with forms than with other elements. It is typical for groups of related checkboxes and mandatory for mutually exclusive groups of radioboxes to share a value of the name
attribute. Remember that when you index an HTMLCollection with a name and more than one element shares that name, the returned value is an array-like object that contains all matching elements. Consider this form that contains radio buttons for selecting a shipping method:
With this form, you might refer to the array of radio button elements like this:
Note that <form>
elements have an HTML attribute and corresponding JavaScript property named “method”, so in this case, we must use the elements
property of the form instead of directly accessing the method
property. In order to determine which shipping method the user has selected, we’d loop through the form elements in the array and check the checked
property of each:
We’ll see more about the properties, such as checked
and value
, of form elements in the next section.
The elements[]
array described above is the most interesting property of a Form object. The remaining properties of the Form object are of less importance. The action
, encoding
, method
, and target
properties correspond directly to the action
, encoding
, method
, and target
attributes of the <form>
element. These properties and attributes are all used to control how form data is submitted to the web server and where the results are displayed. Client-side JavaScript can set the value of these properties, but they are only useful when the form is actually submitted to a server-side program.
In the days before JavaScript, a form was submitted with a special-purpose Submit button, and form elements had their values reset with a special-purpose Reset button. The JavaScript Form object supports two methods, submit()
and reset()
, that serve the same purpose. Invoking the submit()
method of a Form submits the form, and invoking reset()
resets the form elements.
All (or most) form elements have the following properties in common. Some elements have other special-purpose properties that are described later when various types of form elements are considered individually:
type
A read-only string that identifies the type of the form element. For form elements that are defined by an<input>
tag, this is simply the value of thetype
attribute. Other form elements (such as<textarea>
and<select>
) define atype
property so that they can easily be identified by the same test that distinguishes between<input>
elements. The second column of Table 15-1 lists the value of this property for each form element.
form
name
value
A read/write string that specifies the “value” contained or represented by the form element. This is the string that is sent to the web server when the form is submitted, and it is only sometimes of interest to JavaScript programs. For Text and Textarea elements, this property contains the text that the user entered. For button elements created with an<input>
tag (but not those created with a<button>
tag) this property specifies the text displayed within the button. For radio and checkbox elements, however, thevalue
property is not edited or displayed to the user in any way. It is simply a string set by the HTMLvalue
attribute. It is intended for use in form submission, but it can also be a useful way to associate extra data with a form element. Thevalue
property is discussed further in the sections on the different categories of form elements, later in this chapter.
Each Form element has an onsubmit
event handler to detect form submission and an onreset
event handler to detect form resets. The onsubmit
handler is invoked just before the form is submitted; it can cancel the submission by returning false
. This provides an opportunity for a JavaScript program to check the user’s input for errors in order to avoid submitting incomplete or invalid data over the network to a server-side program. Note that the onsubmit
handler is triggered only by a genuine click on a Submit button. Calling the submit()
method of a form does not trigger the onsubmit
handler.
The onreset
event handler is similar to the onsubmit
handler. It is invoked just before the form is reset, and it can prevent the form elements from being reset by returning false
. Reset buttons are rarely necessary in forms, but if you have one, you might want to make the user confirm the reset:
Like the onsubmit
handler, onreset
is triggered only by a genuine Reset button. Calling the reset()
method of a form does not trigger onreset
.
Form elements typically fire a click or change event when the user interacts with them, and you can handle these events by defining an onclick
or onchange
event handler. The third column of Table 15-1 specifies the primary event handler for each form element. In general, form elements that are buttons fire a click event when activated (even when this activation happens through the keyboard rather than via an actual mouse click). Other form elements fire a change event when the user changes the value represented by the element. This happens when the user enters text in a text field or selects an option from a drop-down list. Note that this event is not fired every time the user types a key in a text field. It is fired only when the user changes the value of an element and then moves the input focus to some other form element. That is, the invocation of this event handler indicates a completed change. Radio buttons and checkboxes are buttons that have a state, and they fire both click and change events; the change
event is the more useful of the two.
Form elements also fire a focus
event when they receive keyboard focus and a blur
event when they lose it.
An important thing to know about event handlers is that within the code of an event handler, the this
keyword refers to the document element that triggered the event (we’ll talk about this again in Chapter 17). Since elements within a <form>
element have a form
property that refers to the containing form, the event handlers of these elements can always refer to the Form object as this.form
. Going a step further, this means that an event handler for one form element can refer to a sibling form element named x
as this.form.x
.
Buttons are one the most commonly used form elements because they provide a clear visual way to allow the user to trigger some scripted action. A button element has no default behavior of its own, and it is never useful unless it has an onclick
event handler. Buttons defined as <input>
elements display the plain text of the value
attribute. Buttons defined as <button>
elements display whatever the element content.
Note that hyperlinks provide the same onclick
event handler that buttons do. Use a link when the action to be triggered by the onclick
handler can be conceptualized as “following a link”; otherwise, use a button.
Submit and reset elements are just like button elements, but they have default actions (submitting and resetting a form) associated with them. If the onclick
event handler returns false
, the default action of these buttons is not performed. You can use the onclick
handler of a submit element to perform form validation, but it is more common to do this with the onsubmit
handler of the Form object itself.
Part IV does not include a Button entry. See Input for details on all form element push buttons, including those created with the <button>
element.
The checkbox and radio elements are toggle buttons, or buttons that have two visually distinct states: they can be checked or unchecked. The user can change the state of a toggle button by clicking on it. Radio elements are designed to be used in groups of related elements, all of which have the same value for the HTML name
attribute. Radio elements created in this way are mutually exclusive: when you check one, the one that was previously checked becomes unchecked. Checkboxes are also often used in groups that share a name
attribute, and when you select these elements using the name as a form property you must remember that you get an array-like object rather than a single element.
Radio and checkbox elements both define a checked
property. This read/write boolean value specifies whether the element is currently checked. The defaultChecked
property is a boolean that has the value of the HTML checked
attribute; it specifies whether the element is checked when the page is first loaded.
Radio and checkbox elements do not display any text themselves and are typically displayed with adjacent HTML text (or with an associated <label>
element.) This means that setting the value
property of a checkbox or radio element does not alter the visual appearance of the element. You can set value
, but this changes only the string that is sent to the web server when the form is submitted.
When the user clicks on a toggle button, the radio or checkbox element triggers its onclick
handlers. If the toggle button changes state as the result of the click, it also triggers the onchange
event handlers. (Note, however, that radio buttons that change state when the user clicks on a different radio button do not fire an onchange
handler.)
Text input fields are probably the most commonly used element in HTML forms and JavaScript programs. They allow the user to enter a short, single-line string of text. The value
property represents the text the user has entered. You can set this property to specify explicitly the text that should be displayed in the field.
In HTML5, the placeholder
attribute specifies a prompt to be displayed within the field before the user enters anything:
A text field’s onchange
event handler is triggered when the user enters new text or edits existing text and then indicates that he is finished editing by moving input focus out of the text field.
The Textarea element is like a text input field element, except that it allows the user to input (and your JavaScript programs to display) multiline text. Textarea elements are created with a <textarea>
tag using a syntax significantly different from the <input>
tag that creates a text field. (See TextArea in Part IV.) Nevertheless, the two types of elements behave quite similarly. You can use the value
property and onchange
event handler of a Textarea element just as you can for a Text element.
An <input type="password">
element is a modified input field that displays asterisks as the user types into it. As the name indicates, this is useful to allow a user to enter passwords without worrying about others reading over his shoulder. Note that the Password element protects the user’s input from prying eyes, but when the form is submitted, that input is not encrypted in any way (unless it is submitted over a secure HTTPS connection), and it may be visible as it is transmitted over the network.
Finally, an <input type="file">
element allows the user to enter the name of a file to be uploaded to the web server. It is a text field combined with a button that opens a file-chooser dialog box. This file selection element has an onchange
event handler, like a regular input field. Unlike an input field, however, the value
property of a file selection element is read-only. This prevents malicious JavaScript programs from tricking the user into uploading a file that should not be shared.
The various text input elements define onkeypress
, onkeydown
, and onkeyup
event handlers. You can return false
from the onkeypress
or onkeydown
event handlers to prevent the user’s keystroke from being recorded. This can be useful, for example, if you want to force the user to enter only digits into a particular text input field. See Example 17-6 for a demonstration of this technique.
The Select element represents a set of options (represented by Option elements) from which the user can select. Browsers typically render Select elements in drop-down menus, but if you specify a size
attribute with a value greater than 1, they will display the options in a (possibly scrollable) list instead. The Select element can operate in two very distinct ways, and the value of the type
property depends on how it is configured. If the <select>
element has the multiple
attribute, the user is allowed to select multiple options, and the type
property of the Select object is “select-multiple”. Otherwise, if the multiple
attribute is not present, only a single item can be selected, and the type
property is “select-one”.
In some ways, a select-multiple element is like a set of checkbox elements, and a select-one element is like a set of radio elements. The options displayed by a Select element are not toggle buttons, however: they are defined by <option>
elements instead. A Select element defines an options
property which is an array-like object that contains Option elements.
When the user selects or deselects an option, the Select element triggers its onchange
event handler. For select-one Select elements, the read/write selectedIndex
property specifies which one of the options is currently selected. For select-multiple elements, the single selectedIndex
property is not sufficient to represent the complete set of selected options. In this case, to determine which options are selected, you must loop through the elements of the options[]
array and check the value of the selected
property for each Option object.
In addition to its selected
property, each Option object has a text
property that specifies the string of plain text that appears in the Select element for that option. You can set this property to change the text that is displayed to the user. The value
property is also a read/write string that specifies the text to be sent to the web server when the form is submitted. Even if you are writing a pure client-side program and your form never gets submitted, the value
property (or its corresponding HTML value
attribute) can be a useful place to store any data that you’ll need if the user selects a particular option. Note that Option elements do not have form-related event handlers: use the onchange
handler of the containing Select element instead.
In addition to setting the text
property of Option objects, you can dynamically change the options displayed in a Select element using special features of the options
property that date to the early days of client-side scripting. You can truncate the array of Option elements by setting options.length
to the desired number of options, and you can remove all Option objects by setting options.length
to 0. You can remove an individual Option object from the Select element by setting its spot in the options[]
array to null
. This deletes the Option object, and any higher elements in the options[]
array automatically get moved down to fill the empty spot.
To add new options to a Select element, create an Option object with the Option()
constructor and append it to the options[]
property with code like this:
Keep in mind that these special-purpose Select element APIs are very old. You can more clearly insert and remove option elements with standard calls to Document.create
Element()
, Node.insertBefore()
, Node.removeChild()
, and so on.
This chapter began with the assertion that it is one of the most important in the book. It is also, by necessity, one of the longest. This final section rounds out the chapter by covering a number of miscellaneous features of the Document object.
This chapter has already introduced Document properties such as body
, document
Element
, and forms
that refer to special elements of the document. Documents also define a few other properties of interest:
cookie
A special property that allows JavaScript programs to read and write HTTP cookies. This property is covered in Chapter 20.
domain
A property that allows mutually trusted web servers within the same Internet domain to collaboratively relax same-origin policy security restrictions on interactions between their web pages (see Relaxing the same-origin policy).
lastModified
location
referrer
title
URL
The URL of the document as a read-only String rather than as a Location object. The value of this property is the same as the initial value oflocation.href
, but it is not dynamic like the Location object is. If the user navigates to a new fragment identifier within the document, for example,location.href
will change, butdocument.URL
will not.
referrer
is one of the most interesting of these properties: it contains the URL of the document from which the user linked to the current document. You might use this property with code like this:
The document.write()
method used in the code above is the subject of the next section.
The document.write()
method was one of the very first scriptable APIs implemented by the Netscape 2 web browser. It was introduced well before the DOM and was the only way to display computed text in a document. It is no longer needed in new code, but you are likely to see it in existing code.
document.write()
concatenates its string arguments and inserts the resulting string into the document at the location of the script element that invoked it. When the script finishes running, the browser parses the generated output and displays it. The following code, for example, uses write()
to dynamically output information into an otherwise static HTML document:
It is important to understand that you can use the write()
method to output HTML to the current document only while that document is being parsed. That is, you can call document.write()
from within top-level code in <script>
elements only because these scripts are executed as part of the document parsing process. If you place a document.
write()
call within a function definition and then call that function from an event handler, it will not work as you expect—in fact, it will erase the current document and the scripts it contains! (You’ll see why shortly.) For similar reasons, you should not use document.write()
in scripts that have the defer
or async
attributes set.
Example 13-3 in Chapter 13 used document.write()
in this way to generate more complicated output.
You can also use the write()
method to create entirely new documents in other windows or frames. (When working with multiple windows or frames, however, you must be careful not to violate the same-origin policy.) Your first call to the write()
method of another document will erase all content in that document. You can call write()
more than once to build up the new content of the document. The content you pass to write()
may be buffered (and not displayed) until you terminate the sequence of writes by calling the close()
method of the document object. This, in essence, tells the HTML parser that it has reached the end-of-file for the document and that it should finish parsing and display the new document.
It is worth noting that the Document object also supports a writeln()
method, which is identical to the write()
method in every way except that it appends a newline after outputting its arguments. This can be useful if you are outputting preformatted text within a <pre>
element, for example.
The document.write()
method is not commonly used in modern code: the innerHTML
property and other DOM techniques provide a better way of adding content to a document. On the other hand, some algorithms do lend themselves nicely to a stream-style I/O API like that provided by the write()
method. If you are writing code that computes and outputs text while it runs, you might be interested in Example 15-10, which wraps simple write()
and close()
methods around the innerHTML
property of a specified element.
Example 15-10. A streaming API for the innerHTML property
It is sometimes useful to be able to determine what text the user has selected within a document. You can do that with a function like this:
The standard window.getSelection()
method returns a Selection object that describes the current selection as a sequence of one or more Range objects. Selection and Range define a fairly complex API that is not commonly used and is not documented in this book. The most important and widely implemented (except in IE) feature of the Selection object is that it has a toString()
method that returns the plain text content of the selection.
IE defines a different API that is also left undocumented in this book. document.
selection
returns an object that represents the selection. The create
Range()
method of that object returns an IE-specific TextRange object, and the text
property of that object contains the selected text.
Code like the above can be particularly useful in bookmarklets (Bookmarklets) that operate on the selected text by looking up a word with a search engine or reference site. The following HTML link, for example, looks up the currently selected text in Wikipedia. When bookmarked, this link and the JavaScript URL it contains become a bookmarklet:
There is an incompatibility in the selection querying code shown above: the get
Selection()
method of the Window object does not return selected text if it is within an <input>
or <textarea>
form element: it only returns text selected from the body of the document itself. The IE document.selection
property, on the other hand, returns selected text from anywhere in the document.
To obtain the selected text from a text input field or <textarea>
element, use this code:
The selectionStart
and selectionEnd
properties are not supported in IE8 or earlier.
We’ve seen that HTML form elements include text fields and textarea elements that allow the user to enter and edit plain text. Following the lead of IE, all current web browsers also support simple HTML editing functionality: you may have seen this in use on pages (such as blog comment pages) that embed a rich-text editor that includes a toolbar of buttons for setting typographic styles (bold, italic), setting justification, and inserting images and links.
There are two ways to enable this editing functionality. Set the contenteditable
HTML attribute of any tag or set the contenteditable
JavaScript property on the corresponding Element to make the content of that element editable. When the user clicks on the content inside that element, an insertion cursor will appear and the user’s keystrokes will be inserted. Here is an HTML element that creates an editable region:
Browsers may support automatic spell-checking for form fields and contenteditable
elements. In browsers that support this, checking may be on by default or off by default. Add the spellcheck
attribute to explicitly turn checking on in browsers that support it. And use spellcheck=false
to explicitly disable checking (when, for example, a <text
area>
will display source code or other content with identifiers that do not appear in dictionaries).
You can also make an entire document editable by setting the designMode
property of the Document object to the string “on”. (Set it to “off” to revert to a read-only document.) The designMode
property does not have a corresponding HTML attribute. You might make the document within an <iframe>
editable like this (note the use of the onLoad()
function from Example 13-5):
All current browsers support contenteditable
and designMode
. They are less compatible, however, when it comes to their actual editing behavior. All browsers allow you to insert and delete text and move the cursor using the mouse and keyboard. In all browsers, the Enter key begins a new line, but different browsers produce different markup. Some begin a new paragraph and others simply insert a

element.
Some browsers allow keyboard shortcuts such as Ctrl-B to convert the currently selected text to bold. In other browsers (such as Firefox), standard word processor shortcuts such as Ctrl-B and Ctrl-I are bound to other, browser-related functions and are not available to the text editor.
Browsers define a number of text-editing commands, most of which do not have keyboard shortcuts. To execute these commands, you instead use the execCommand()
method of the Document object. (Note that this is a method of the Document, not of the element on which the contenteditable
attribute is set. If a document contains more than one editable element, the command applies to whichever one holds the selection or the insertion cursor.) Commands executed by execCommand()
are named by strings such as “bold”, “subscript”, “justifycenter,” or “insertimage”. The command name is the first argument to execCommand()
. Some commands require a value argument—“createlink”, for example, requires the hyperlink URL. In theory, if the second argument to execCommand()
is true
, the browser will automatically prompt the user for whatever value is required. For portability, however, you should prompt the user yourself, pass false
as the second argument, and pass the value as the third argument. Here are two example functions that perform edits using execCommand():
The commands supported by execCommand()
are typically triggered by buttons in a toolbar. A good UI will disable buttons when the command they trigger is not available. Pass a command name to document.queryCommandSupported()
to find out if it is supported by the browser. Call document.queryCommandEnabled()
to find out if the command can currently be used. (A command that expects a selected range of text, for example, might be disabled when there is no selection.) Some commands, such as the “bold” and “italic” commands, have a boolean state and can be on or off depending on the current selection or cursor location. These commands are typically represented with a toggle button in a toolbar. Use document.queryCommandState()
to determine the current state of such a command. Finally, some commands, such as “fontname,” have an associated value (a font family name). Query this value with document.queryCommandValue()
. If the current selection includes text using two different font families, the value of “fontname” will be indeterminate. Use document.queryCommandIndeterm()
to check for this case.
Different browsers implement different sets of editing commands. A few, such as “bold”, “italic”, “createlink”, “undo,” and “redo”, are well supported.[34] The HTML5 draft current at the time of this writing defines the following commands. Because they are not universally supported, however, they are not documented here in any detail:
If you need rich-text editing functionality for your web application, you will probably want to adopt a prebuilt solution that addresses the various differences between browsers. A number of such editor components can be found online.[35] It is worth noting that the editing functionality built into browsers is powerful enough to allow a user to enter small amounts of rich text, but it is too simple for any kind of serious document editing. In particular, note that the HTML markup generated by these editors is likely to be quite messy.
Once the user has edited the content of an element that has the contenteditable
attribute set, you can use the innerHTML
property to obtain the HTML markup of the edited content. What you do with that rich text is up to you. You might store it in a hidden form field and send it to a server by submitting the form. You might use the techniques described in Chapter 18 to send the edited text directly to a server. Or you might use the techniques shown in Chapter 20 to save the user’s edits locally.
[34] See http://www.quirksmode.org/dom/execCommand.html for a list of interoperable commands.
[35] The YUI and Dojo frameworks include editor components. A list of other choices can be found at http://en.wikipedia.org/wiki/Online_rich-text_editor.
Cascading Style Sheets (CSS) is a standard for specifying the visual presentation of HTML documents. CSS is intended for use by graphic designers: it allows a designer to precisely specify fonts, colors, margins, indentation, borders, and even the position of document elements. But CSS is also of interest to client-side JavaScript programmers because CSS styles can be scripted. Scripted CSS enables a variety of interesting visual effects: you can create animated transitions where document content “slides in” from the right, for example, or create an expanding and collapsing outline list in which the user can control the amount of information that is displayed. When first introduced, scripted visual effects like these were revolutionary. The JavaScript and CSS techniques that produced them were loosely referred to as Dynamic HTML or DHTML, a term that has since fallen out of favor.
CSS is a complex standard that, at the time of this writing, is undergoing active development. CSS is a book-length topic of its own and complete coverage is well beyond the scope of this book.[36] In order to understand CSS scripting, however, it is necessary to be familiar with CSS basics and with the most commonly scripted styles, so this chapter begins with a concise overview of CSS, followed by an explanation of key styles that are most amenable to scripting. After these two introductory sections, the chapter moves on to explain how to script CSS. Scripting Inline Styles explains the most common and important technique: altering the styles that apply to individual document elements using the HTML style
attribute. Although an element’s style
attribute can be used to set styles, it is not useful for querying an element’s style. Querying Computed Styles explains how to query the computed style of any element. Scripting CSS Classes explains how to alter many styles at once by altering the style
attribute of an element. It is also possible, though less common, to script stylesheets directly, and Scripting Stylesheets shows how to enable and disable stylesheets, alter the rules of existing stylesheets, and add new stylesheets.
There are many variables in the visual display of an HTML document: fonts, colors, spacing, and so on. The CSS standard enumerates these variables and calls them style properties. CSS defines properties that specify fonts, colors, margins, borders, background images, text alignment, element size, and element position. To define the visual appearance of HTML elements, we specify the value of CSS properties. To do this, follow the name of a property with a colon and a value:
In order to fully describe the visual presentation of an element, we usually need to specify the value of more than one property. When multiple name:value pairs are required, they are separated from one another by semicolons:
As you can see, CSS ignores comments between /*
and */
. It does not support comments that begin with //
, however.
There are two ways to associate a set of CSS property values with the HTML elements whose presentation they define. The first is by setting the style
attribute of an individual HTML element. This is called the inline style:
It is usually much more useful, however, to separate CSS styles from individual HTML elements and define them in a stylesheet. A stylesheet associates sets of style properties with sets of HTML elements that are described using selectors. A selector specifies or “selects” one or more elements of a document, based on element ID, class, or tag name, or on more specialized criteria. Selectors were introduced in Selecting Elements with CSS Selectors, which also showed how to use querySelectorAll()
to obtain the set of elements that match the selector.
The basic element of a CSS stylesheet is a style rule, which consists of a selector followed by a set of CSS properties and their values, enclosed in curly braces. A stylesheet can contain any number of style rules:
A CSS stylesheet can be associated with an HTML document by enclosing it within <style>
and </style>
tags within the <head>
of a document. Like the <script>
element, the <style>
element parses its content specially and does not treat it as HTML:
When a stylesheet is to be used by more than one page on a website, it is usually better to store it in its own file, without any enclosing HTML tags. This CSS file can then be included in the HTML page. Unlike the <script>
element, however, the <style>
element does not have a src
attribute. To include a stylesheet in an HTML page, use a <link>
in the <head>
of a document:
That, in a nutshell, is how CSS works. There are a few other points about CSS that are worth understanding, however, and the subsections that follow explain them.
Recall that the C in CSS stands for “cascading.” This term indicates that the style rules that apply to any given element in a document can come from a “cascade” of different sources:
style
attribute of individual HTML elements Styles from the style
attribute override styles from stylesheets. And styles from a document’s stylesheets override the browser’s default styles, of course. The visual presentation of any given element may be a combination of style properties from all three sources. An element may even match more than one selector within a stylesheet, in which case the style properties associated with all of those selectors are applied to the element. (If different selectors define different values for the same style property, the value associated with the most specific selector overrides the value associated with less specific selectors, but the details are beyond the scope of this book.)
To display any document element, the web browser must combine the style
attribute of that element with styles from all the matched selectors in the document stylesheets. The result of this computation is the actual set of style properties and values that are used to display the element. This set of values is known as the computed style of the element.
CSS is a relatively old standard. CSS1 was adopted in December 1996 and defines properties for specifying colors, fonts, margins, borders, and other basic styles. Browsers as old as Netscape 4 and Internet Explorer 4 include substantial support for CSS1. The second edition of the standard, CSS2, was adopted in May 1998; it defines a number of more advanced features, most notably support for absolute positioning of elements. CSS2.1 clarifies and corrects CSS2, and it removes features that browser vendors never actually implemented. Current browsers have essentially complete support for CSS2.1, although versions of IE prior to IE8 have notable omissions.
Work continues on CSS. For version 3, the CSS specification has been broken into various specialized modules that are going through the standardization process separately. You can find the CSS specifications and working drafts at http://www.w3.org/Style/CSS/current-work.
Certain style properties that are commonly used together can be combined using special shortcut properties. For example, the font-family
, font-size
, font-style
, and font-weight
properties can all be set at once using a single font
property with a compound value:
Similarly, the border
, margin
, and padding
properties are shortcuts for properties that specify borders, margins, and padding (space between the border and element content) for each of the individual sides of an element. For example, instead of using the border
property, you can use border-left
, border-right
, border-top
, and border-bottom
properties to specify the border of each side separately. In fact, each of these properties is itself a shortcut. Instead of specifying border-top
, you can specify border-top-color
, border-top-style
, and border-top-width
.
When browser vendors implement nonstandard CSS properties, they prefix the property names with a vendor-specific string. Firefox uses moz-
, Chrome uses -webkit-
, and IE uses -ms-
. Browser vendors do this even when implementing properties that are intended for future standardization. One example is the border-radius
property, which specifies rounded corners for elements. This was implemented experimentally in Firefox 3 and Safari 4 using prefixes. Once the standard had matured sufficiently, Firefox 4 and Safari 5 removed the prefix and supported border-radius
directly. (Chrome and Opera have supported it for a long time with no prefix. IE9 also supports it without a prefix, but IE8 did not support it, even with a prefix.)
When working with CSS properties that have different names in different browsers, you may find it helpful to define a class for that property:
With a class like this defined, you can add “radius10” to the class
attribute of any element to give it a border radius of 10 pixels.
Example 16-1 is an HTML file that defines and uses a stylesheet. It demonstrates tag name, class, and ID-based selectors, and also has an example of an inline style defined with the style
attribute. Figure 16-1 shows how this example is rendered in a browser.
Example 16-1. Defining and using Cascading Style Sheets
As I write this chapter, CSS is in the midst of a revolution, with browser vendors implementing powerful new styles such as border-radius
, text-shadow
, box-shadow
, and column-count
. Another revolutionary new feature of CSS is web fonts: the ability to download and use custom fonts with a CSS @font-face
rule. (See http://code.google.com/webfonts for a selection of fonts free for use on the Web and an easy mechanism for downloading them from Google’s servers.)
Another revolutionary development in CSS is CSS Transitions. This is a draft specification that can automatically turn any scripted change to a CSS style into a smoothly animated transition. (When widely implemented, it will largely obviate the need for CSS animation code like that shown in CSS Animations.) CSS Transitions is implemented in current browsers other than IE, but its style properties are still prefixed with vendor-specific strings. CSS Animations is a related proposal that uses CSS Transitions as a starting point for defining more complex animation sequences. CSS Animations are currently only implemented by Webkit browsers. Neither transitions nor animations are covered in this chapter, but they are technologies that you, as a web developer, should be aware of.
Another CSS draft that web developers should be aware of is CSS Transforms, which allows arbitrary 2D affine transforms (rotation, scaling, translation, or any combination expressed as a matrix) to be applied to any element. All current browsers (including IE9 and later) support the draft, with vendor prefixes. Safari even supports an extension that allows 3D transformations, but it is unclear whether other browsers will follow their lead.
For client-side JavaScript programmers, the most important features of CSS are the properties that specify the visibility, size, and precise position of individual elements of a document. Other CSS properties allow you to specify stacking order, transparency, clipping region, margins, padding, borders, and colors. In order to script CSS, it is important to understand how these style properties work. They are summarized in Table 16-1 and documented in more detail in the sections that follow.
Table 16-1. Important CSS style properties
Property | Description |
---|---|
position | Specifies the type of positioning applied to an element |
top , left | Specify the position of the top and left edges of an element |
bottom , right | Specify the position of the bottom and right edges of an element |
width , height | Specify the size of an element |
z-index | Specifies the “stacking order” of an element relative to any overlapping elements; defines a third dimension of element positioning |
display | Specifies how and whether an element is displayed |
visibility | Specifies whether an element is visible |
clip | Defines a “clipping region” for an element; only portions of the element within this region are displayed |
overflow | Specifies what to do if an element is bigger than the space allotted for it |
margin , border , padding | Specify spacing and borders for an element. |
background | Specifies the background color or image of an element. |
opacity | Specifies how opaque (or translucent) an element is. This is a CSS3 property, supported by some browsers. A working alternative exists for IE. |
The CSS position
property specifies the type of positioning applied to an element. Here are the four possible values for this property:
static
This is the default value and specifies that the element is positioned according to the normal flow of document content (for most Western languages, this is left to right and top to bottom). Statically positioned elements cannot be positioned withtop
,left
, and other properties. To use CSS positioning techniques with a document element, you must first set itsposition
property to one of the other three values.
absolute
This value allows you to specify the position of an element relative to its containing element. Absolutely positioned elements are positioned independently of all other elements and are not part of the flow of statically positioned elements. An absolutely positioned element is positioned either relative to its nearest positioned ancestor or relative to the document itself.
fixed
This value allows you to specify an element’s position with respect to the browser window. Elements withfixed
positioning are always visible and do not scroll with the rest of the document. Like absolutely positioned elements, fixed-position elements are independent of all others and are not part of the document flow. Fixed positioning is supported in most modern browsers but is not available in IE6.
relative
When theposition
property is set torelative
, an element is laid out according to the normal flow, and its position is then adjusted relative to its position in the normal flow. The space allocated for the element in the normal document flow remains allocated for it, and the elements on either side of it do not close up to fill in that space, nor are they “pushed away” from the new position of the element.
Once you have set the position
property of an element to something other than static
, you can specify the position of that element with some combination of the left
, top
, right
, and bottom
properties. The most common positioning technique uses the left
and top
properties to specify the distance from the left edge of the containing element (usually the document itself) to the left edge of the element and the distance from the top edge of the container to the top edge of the element. For example, to place an element 100 pixels from the left and 100 pixels from the top of the document, you can specify CSS styles in a style
attribute as follows:
If an element uses absolute positioning, its top
and left
properties are interpreted relative to the closest ancestor element that has its position
property set to something other than static
. If an absolutely positioned element has no positioned ancestor, the top
and left
properties are measured in document coordinates—they are offsets from the top-left corner of the document. If you wish to absolutely position an element relative to a container that is part of the normal document flow, use position:relative
for the container and specify a top
and left
position of 0px
. This makes the container dynamically positioned but leaves it at its normal place in the document flow. Any absolutely positioned children are then positioned relative to the container position.
Although it is most common to specify the position of the upper-left corner of an element with left
and top
, you can also use right
and bottom
to specify the position of the bottom and right edges of an element relative to the bottom and right edges of the containing element. For example, to position an element so that its bottom-right corner is at the bottom-right of the document (assuming it is not nested within another dynamic element), use the following styles:
To position an element so that its top edge is 10 pixels from the top of the window and its right edge is 10 pixels from the right of the window, and so that it does not scroll with the document, you might use these styles:
In addition to the position of elements, CSS allows you to specify their size. This is most commonly done by providing values for the width
and height
style properties. For example, the following HTML creates an absolutely positioned element with no content. Its width
, height
, and background-color
properties make it appear as a small blue square:
Another way to specify the width of an element is to specify a value for both the left
and right
properties. Similarly, you can specify the height of an element by specifying both top
and bottom
. If you specify a value for left
, right
, and width
, however, the width
property overrides the right
property; if the height of an element is overconstrained, height
takes priority over bottom
.
Bear in mind that it is not necessary to specify the size of every dynamic element. Some elements, such as images, have an intrinsic size. Furthermore, for dynamic elements that contain text or other flowed content, it is often sufficient to specify the desired width of the element and allow the height to be determined automatically by the layout of the element’s content.
CSS requires position and dimension properties to be specified with a unit. In the examples above, the position and size properties were specified with the suffix “px,” which stands for pixels. You can also use inches (“in”), centimeters (“cm”), points (“pt”), and ems (“em”; a measure of the line height for the current font).
Instead of specifying absolute positions and sizes using the units shown above, CSS also allows you to specify the position and size of an element as a percentage of the size of the containing element. For example, the following HTML creates an empty element with a black border that is half as wide and half as high as the containing element (or the browser window) and centered within that element:
You’ve seen that the left
, top
, right
, and bottom
properties can specify the X and Y coordinates of an element within the two-dimensional plane of the containing element. The z-index
property defines a kind of third dimension: it allows you to specify the stacking order of elements and indicate which of two or more overlapping elements is drawn on top of the others. The z-index
property is an integer. The default value is zero, but you may specify positive or negative values. When two or more elements overlap, they are drawn in order from lowest to highest z-index
; the element with the highest z-index
appears on top of all the others. If overlapping elements have the same z-index
, they are drawn in the order in which they appear in the document so that the last overlapping element appears on top.
Note that z-index
stacking applies only to sibling elements (i.e., elements that are children of the same container). If two elements that are not siblings overlap, setting their individual z-index
properties does not allow you to specify which one is on top. Instead, you must specify the z-index
property for the two sibling containers of the two overlapping elements.
Nonpositioned elements (i.e., elements with default position:static
positioning) are always laid out in a way that prevents overlaps, so the z-index
property does not apply to them. Nevertheless, they have a default z-index
of zero, which means that positioned elements with a positive z-index
appear on top of the normal document flow and positioned elements with a negative z-index
appear beneath the normal document flow.
The CSS3 specification includes a text-shadow
property to produce drop-shadow effects under text. It is supported by a number of current browsers, but you can use CSS positioning properties to achieve a similar effect, as long as you are willing to repeat and restyle the text to produce a shadow:
The text to be shadowed is enclosed in a relatively positioned
element. There are no position properties set, so the text appears at its normal position in the flow. The shadow is in an absolutely positioned
inside (and therefore positioned relatively to) the relatively positioned
. The z-index
property ensures that the shadow appears underneath the text that produces it.
CSS allows you to specify borders, margins, and padding around any element. The border of an element is a rectangle (or rounded rectangle in CSS3) drawn around (or partially around) it. CSS properties allow you to specify the style, color, and thickness of the border:
It is possible to specify the border width, style, and color using individual CSS properties, and it is also possible to specify the border for individual sides of an element. To draw a line beneath an element, for example, simply specify its border-bottom
property. It is even possible to specify the width, style, or color of a single side of an element with properties such as border-top-width
and border-left-color
.
In CSS3, you can round all corners of a border with the border-radius
property, and you can round individual corners with more explicit property names. For example:
The margin
and padding
properties both specify blank space around an element. The important difference is that margin
specifies space outside the border, between the border and adjacent elements, and padding
specifies space inside the border, between the border and the element content. A margin provides visual space between a (possibly bordered) element and its neighbors in the normal document flow. Padding keeps element content visually separated from its border. If an element has no border, padding is typically not necessary. If an element is dynamically positioned, it is not part of the normal document flow, and its margins are irrelevant.
You can specify the margin and padding of an element with the margin
and padding
properties:
You can also specify margins and paddings for individual sides of an element:
Or you can specify margin and padding values for all four edges of an element with the margin
and padding
properties. You specify the top values first and then proceed clockwise: top, right, bottom, and left. For example, the following code shows two equivalent ways to set different padding values for each of the four sides of an element:
The margin
property works in the same way.
The margin
, border
, and padding
style properties described above are not properties that you are likely to script very frequently. The reason that they are mentioned here is that margins, borders, and padding are part of the CSS box model, and you have to understand the box model in order to truly understand the CSS positioning properties.
Figure 16-2 illustrates the CSS box model and visually explains the meaning of the top
, left
, width
, and height
for elements that have borders and padding.
Figure 16-2 shows an absolutely positioned element nested inside a positioned container element. Both the container and the contained elements have borders and padding, and the figure illustrates the CSS properties that specify padding and border width for each side of the container element. Notice that no margin properties are shown: margins aren’t relevant to absolutely positioned elements.
Figure 16-2 contains other, more important information as well. First, width
and height
specify the size of an element’s content area only; they do not include any additional space required for the element’s padding or border (or margins). To determine the full on-screen size of an element with a border, you must add the left and right padding and left and right border widths to the element width, and you must add the top and bottom padding and top and bottom border widths to the element’s height.
Second, the left
and top
properties specify the distance from the inside of the container’s border to the outside of the positioned element’s border. These properties do not measure from the upper-left corner of the content area of the container, but from the upper-left corner of the container’s padding. Similarly, the right
and bottom
properties measure from the lower-right corner of the padding.
Here’s an example that might make this clearer. Suppose you’ve created a dynamically positioned container element that has 10 pixels of padding all the way around its content area and a 5-pixel border all the way around the padding. Now suppose you dynamically position a child element inside this container. If you set the left
property of the child to “0 px”, you’ll discover that the child is positioned with its left edge right up against the inner edge of the container’s border. With this setting, the child overlaps the container’s padding, which presumably was supposed to remain empty (since that is the purpose of padding). If you want to position the child element in the upper left corner of the container’s content area, you should set both the left
and top
properties to “10px”.
The standard CSS box model specifies that the width
and height
style properties give the size of the content area and do not include padding and borders. We might call this box model the “content-box model.” There are exceptions to the content-box model in old versions of IE and also in new versions of CSS. Before IE6, and when IE6, 7, or 8 displays a page in “quirks mode” (when the page has no <!DOCTYPE>
or has an insufficiently strict doctype), the width
and height
properties do include the padding and border widths.
IE’s behavior is a bug, but IE’s nonstandard box model is often quite useful. Recognizing this, CSS3 introduces a box-sizing
property. The default value is content-box
, which specifies the standard box model described above. If you instead specify box-sizing:border-box
, the browser will use the IE box model for that element, and the width
and height
properties will include border and padding. The border-box
model is particularly useful when you want to specify the overall size of an element as a percentage but also want to specify the border and padding size in pixels:
The box-sizing
property is supported by all current browsers but is not yet universally implemented without a prefix. In Chrome and Safari, use -webkit-box-sizing
. In Firefox, use -moz-box-sizing
. In Opera and IE8 and later, you can use box-sizing
without any prefix.
A future CSS3 alternative to the border-box model is the use of calculated values for box dimensions:
Calculated CSS values with calc()
are supported in IE9 and in Firefox 4 (as -moz-calc()
).
Two CSS properties affect the visibility of a document element: visibility
and display
. The visibility
property is simple: when the property is set to the value hidden
, the element is not shown; when it is set to the value visible
, the element is shown. The display
property is more general and is used to specify the type of display an item receives. It specifies whether an element is a block element, an inline element, a list item, or so on. When display
is set to none
, however, the affected element is not displayed, or even laid out, at all.
The difference between the visibility
and display
style properties has to do with their effect on elements that use static or relative positioning. For an element that appears in the normal layout flow, setting visibility
to hidden
makes the element invisible but reserves space for it in the document layout. Such an element can be repeatedly hidden and shown without changing the document layout. If an element’s display
property is set to none
, however, no space is allocated for it in the document layout; elements on either side of it close up as if it were not there. The display
property is useful, for example, when creating expanding and collapsing outlines.
visibility
and display
have equivalent effects when used with absolute- or fixed-position elements because these elements are not part of the document layout. The visibility
property is generally preferred for hiding and showing positioned elements, however.
Note that it doesn’t make much sense to use visibility
or display
to make an element invisible unless you are going to use JavaScript to dynamically set these properties and make the element visible at some point! We’ll see how to do this later in the chapter.
You can specify the color of text contained in a document element with the CSS color
property. And you can specify the background color of any element with the background-color
property. Earlier, we saw that you can specify the color of an element’s border with border-
or with the shortcut property color
border
.
The discussion of borders included examples that specified border colors using the English names of common colors such as “red” and “black”. CSS supports a number of these English color names, but the more general syntax for specifying colors in CSS is to use hexadecimal digits to specify the red, green, and blue components of a color. You can use either one or two digits per component. For example:
CSS3 also defines syntaxes for specifying colors in the RGBA color space (red, green, and blue values plus an alpha value that specifies the transparency of the color). RGBA is supported by all modern browsers except IE, and support is expected in IE9. CSS3 also defines support for HSL (hue-saturation-value) and HSLA color specifications. Again, these are supported by Firefox, Safari, and Chrome, but not IE.
CSS allows you to specify the exact position, size, background color, and border color of elements; this gives you a rudimentary graphics capability for drawing rectangles and (when the height and width are reduced) horizontal and vertical lines. The last edition of this book included a bar chart example using CSS graphics, but it has been replaced in this book by extended coverage of the <canvas>
element. (See Chapter 21 for more on scripted client-side graphics.)
In addition to the background-color
property, you can also specify images to be used as the background of an element. The background-image
property specifies the image to use, and the background-attachment
, background-position
, and background-repeat
properties specify further details about how this image is drawn. The shortcut property background
allows you to specify these properties together. You can use these background image properties to create interesting visual effects, but those are beyond the scope of this book.
It is important to understand that if you do not specify a background color or image for an element, that element’s background is usually transparent. For example, if you absolutely position a <div>
over some existing text in the normal document flow, that text will, by default, show through the <div>
element. If the <div>
contains its own text, the letters may overlap and become an illegible jumble. Not all elements are transparent by default, however. Form elements don’t look right with a transparent background, for example, and elements such as <button>
have a default background color. You can override this default with the background-color
property, and you can even explicitly set it to “transparent” if you desire.
The transparency we’ve been discussing so far is all-or-none: an element either has a transparent background or an opaque background. It is also possible to specify that an element (both its background and its foreground content) is translucent. (See Figure 16-3 for an example.) You do this with the CSS3 opacity
property. The value of this property is a number between 0 and 1, where 1 means 100 percent opaque (the default) and 0 means 0% opaque (or 100% transparent). The opacity
property is supported by all current browsers except IE. IE provides a work-alike alternative through its IE-specific filter
property. To make an element 75 percent opaque, you can use the following CSS styles:
The visibility
property allows you to completely hide a document element. The overflow
and clip
properties allow you to display only part of an element. The overflow
property specifies what happens when the content of an element exceeds the size specified (with the width
and height
style properties, for example) for the element. The allowed values and their meanings for this property are as follows:
visible
Content may overflow and be drawn outside of the element’s box if necessary. This is the default.
hidden
Content that overflows is clipped and hidden so that no content is ever drawn outside the region defined by the size and positioning properties.
scroll
The element’s box has permanent horizontal and vertical scrollbars. If the content exceeds the size of the box, the scrollbars allow the user to scroll to view the extra content. This value is honored only when the document is displayed on a computer screen; when the document is printed on paper, for example, scrollbars obviously do not make sense.
auto
Scrollbars are displayed only when content exceeds the element’s size rather than being permanently displayed.
While the overflow
property allows you to specify what happens when an element’s content is bigger than the element’s box, the clip
property allows you to specify exactly which portion of an element should be displayed, whether or not the element overflows. This property is especially useful for scripted effects in which an element is progressively displayed or uncovered.
The value of the clip
property specifies the clipping region for the element. In CSS2, clipping regions are rectangular, but the syntax of the clip
property leaves open the possibility that future versions of the standard will support clipping shapes other than rectangles. The syntax of the clip
property is:
top right bottom left
)The top
, right
, bottom
, and left
values specify the boundaries of the clipping rectangle relative to the upper-left corner of the element’s box. For example, to display only a 100 × 100-pixel portion of an element, you can give that element this style
attribute:
Note that the four values within the parentheses are length values and must include a unit specification, such as px
for pixels. Percentages are not allowed. Values can be negative to specify that the clipping region extends beyond the box specified for the element. You can also use the auto
keyword for any of the four values to specify that the edge of the clipping region is the same as the corresponding edge of the element’s box. For example, you can display just the leftmost 100 pixels of an element with this style
attribute:
Note that there are no commas between the values, and the edges of the clipping region are specified in clockwise order from the top edge. To turn clipping off, set the clip
property to auto
.
This section concludes with an example that demonstrates many of the CSS properties discussed here. Example 16-2 uses CSS to create the visual effect of scrolling, overlapping, translucent windows within the browser window. Figure 16-3 shows how it looks.
The example contains no JavaScript code and no event handlers, so there is no way to interact with the windows (other than to scroll them), but it is a useful demonstration of the powerful effects that can be achieved with CSS.
Example 16-2. Displaying windows with CSS
The major shortcoming of this example is that the stylesheet specifies a fixed size for all windows. Because the titlebar and content portions of the window must be precisely positioned within the overall window, changing the size of a window requires changing the value of various positioning properties in all three rules defined by the stylesheet. This is difficult to do in a static HTML document, but it would not be so difficult if you could use a script to set all the necessary properties. This topic is explored in the next section.
The most straightforward way to script CSS is to alter the style
attribute of individual document elements. Like most HTML attributes, style
is also a property of the Element object, and you can manipulate it in JavaScript. The style
property is unusual, however: its value is not a string, but a CSSStyleDeclaration object. The JavaScript properties of this style object represent the CSS properties specified by the HTML style
attribute. To make the text of an element e
big, bold, and blue, for example, you can use the following code to set the JavaScript properties that correspond to the font-size
font-weight
and color
style properties:
Many CSS style properties, such as font-size
, contain hyphens in their names. In JavaScript, a hyphen is interpreted as a minus sign, so it is not possible to write an expression like:
Therefore, the names of the properties of the CSSStyleDeclaration object are slightly different from the names of actual CSS properties. If a CSS property name contains one or more hyphens, the CSSStyleDeclaration property name is formed by removing the hyphens and capitalizing the letter immediately following each hyphen. Thus, the CSS property border-left-width
is accessed through the JavaScript borderLeftWidth
property, and you can access the CSS font-family
property with code like this:
Also, when a CSS property, such as the float
property, has a name that is a reserved word in JavaScript, that name is prefixed with “css” to create a legal CSSStyleDeclaration name. Thus, to set or query the value of the CSS float
property of an element, use the cssFloat
property of the CSSStyleDeclaration object.
When working with the style properties of the CSSStyleDeclaration object, remember that all values must be specified as strings. In a stylesheet or style
attribute, you can write:
To accomplish the same thing for an element e
with JavaScript, you have to quote all of the values:
Note that the semicolons go outside the strings. These are just normal JavaScript semicolons; the semicolons you use in CSS stylesheets are not required as part of the string values you set with JavaScript.
Furthermore, remember that all the positioning properties require units. Thus, it is not correct to set the left
property like this:
Units are required when setting style properties in JavaScript, just as they are when setting style properties in stylesheets. The correct way to set the value of the left
property of an element e
to 300 pixels is:
If you want to set the left
property to a computed value, be sure to append the units at the end of the computation:
Notice that the numeric result of the computation will be converted to a string as a side effect of appending the units string.
Recall that some CSS properties, such as margin
, are shortcuts for other properties, such as margin-top
, margin-right
, margin-bottom
, and margin-left
. The CSSStyleDeclaration object has properties that correspond to these shortcut properties. For example, you might set the margin
property like this:
Arguably, it is easier to set the four margin properties individually:
The style
attribute of an HTML element is its inline style, and it overrides any style specifications in a stylesheet. Inline styles are generally useful for setting style values, and that is what the examples above have all done. You can read the properties of a CSSStyleDeclaration object that represents inline styles, but they return meaningful values only if they’ve previously been set by your JavaScript code or if the HTML element with which you are working has an inline style
attribute that sets the desired properties. For example, your document may include a stylesheet that sets the left margin for all paragraphs to 30 pixels, but if you read the marginLeft
property of one of your paragraph elements, you’ll get the empty string unless that paragraph has a style
attribute that overrides the stylesheet setting.
Reading the inline style of an element is particularly difficult for style properties that require units and for shortcut properties: your code has to include nontrivial CSS parsing capabilities to really make use of those values. In general, the inline style of an element is only useful for setting styles. If you need to query the style of an element, use the computed style, which is discussed in Querying Computed Styles.
Sometimes, you may find it easier to set or query the inline style of an element as a single string value rather than as a CSSStyleDeclaration object. To do that, you can use the Element getAttribute()
and setAttribute()
methods, or you can use the cssText
property of the CSSStyleDeclaration object:
One of the most common uses of scripted CSS is to produce animated visual effects. This can be achieved by using setTimeout()
or setInterval()
(see Timers) to repeatedly invoke a function that alters the inline style of an element. Example 16-3 demonstrates with two functions shake()
and fadeOut()
. shake()
quickly moves or “shakes” an element side to side. It might be used to grab the user’s attention if he enters invalid data, for example. fadeOut()
decreases the opacity of an element over a specified amount of time (500 milliseconds, by default), causing it to fade out and vanish.
Example 16-3. CSS animations
Both shake()
and fadeOut()
accept an optional callback function as their second argument. If specified, this function will be invoked when the animation is complete. The element that was animated is passed as an argument to the callback. The following HTML creates a button that, when clicked, shakes from side to side and then fades away:
Note that the shake()
and fadeOut()
example functions are quite similar to each other, and both can serve as templates for similar animations of other CSS properties. Client-side libraries, such as jQuery usually support pre-defined visual effects, however, so you may never actually need to write an animation function like shake()
, unless you want to create a particularly complex visual effect. One early and noteworthy effects library is Scriptaculous, which is designed for use with the Prototype framework. Visit http://script.aculo.us/ and http://scripty2.com/ to learn more.
The CSS3 Transitions module defines a way to specify animated effects in stylesheets, obviating the need for any scripting. Instead of defining a function like fadeOut()
, for example, you might use CSS like this:
This specifies that any time the opacity of a “fadeable” element changed, that change will be animated (from the current value to the new value) over a period of half a second, using a nonlinear easing function. CSS Transitions is not yet standard but has been implemented for some time in Safari and Chrome using the -webkit-transition
property. At the time of this writing, Firefox 4 has added support using -moz-transition
.
The style
property of an element is that element’s inline style. It overrides all stylesheets, and it is the perfect place to set CSS properties to change the visual appearance of an element. It is not, however, generally useful for querying the styles that actually apply to an element. For that, you want the computed style. The computed style for an element is the set of property values that the browser derives (or computes) from the inline style plus all applicable style rules in all linked stylesheets: it is the set of properties actually used to display the element. Like inline styles, computed styles are represented with a CSSStyleDeclaration object. Unlike inline styles, however, computed styles are read-only. You can’t set these styles, but the computed CSSStyleDeclaration object for an element lets you determine exactly what style property values the browser used when rendering that element.
Obtain the computed style for an element with the getComputedStyle()
method of the Window object. The first argument to this method is the element whose computed style is desired. The second argument is required and is usually null
or the empty string, but it can also be a string that names a CSS pseudoelement, such as “:before”, “:after”, “:first-line”, or “:first-letter”:
The return value of getComputedStyle()
is a CSSStyleDeclaration object that represents all the styles that apply to the specified element (or pseudoelement). There are a number of important differences between a CSSStyleDeclaration object that represents inline styles and one that represents computed styles:
margin
property, for example, but use marginLeft
, marginTop
, and so on. cssText
property of the computed style is undefined. Computed styles and inline styles can be used together. Example 16-4 defines functions scale()
and scaleColor()
. One queries and parses the computed text size of a specified element; the other queries and parses the computed background color of an element. Both functions then scale the resulting value and set the scaled value as an inline style of the element. (These functions do not work in IE8 and earlier: as we’ll discuss below, those versions of IE do not support getComputedStyle()
.)
Example 16-4. Querying computed styles and setting inline styles
Computed styles can be tricky, and querying them does not always provide the information you might expect. Consider the font-family
property: it accepts a comma-separated list of desired font families for cross-platform portability. When you query the fontFamily
property of a computed style, you’re simply getting the value of the most specific font-family
style that applies to the element. This may return a value such as “arial,helvetica,sans-serif”, which does not tell you which typeface is actually in use. Similarly, if an element is not absolutely positioned, attempting to query its position and size through the top
and left
properties of its computed style often returns the value “auto”. This is a perfectly legal CSS value, but it is probably not what you were looking for.
getComputedStyle()
is not implemented by IE8 and earlier, but it is expected in IE9. In IE, every HTML element has a currentStyle
property whose value is a CSSStyleDeclaration. IE’s currentStyle
combines inline styles with stylesheets, but it is not a true computed style because relative values are not converted to absolute values. Querying the properties of IE’s current style can return sizes with relative units like “%” or “em” or colors with imprecise names like “red”.
Although CSS can be used to precisely specify the position and size of document elements, querying the computed style of an element is not the preferred way to determine the element’s size and position. See Querying the Geometry of an Element for a simpler, portable alternative.
An alternative to scripting individual CSS styles through the inline style
property is to script the value of the HTML class
attribute. Changing an element’s class
changes the set of stylesheet selectors that apply to the element and can cause multiple CSS properties to change at the same time. Suppose, for example, that you want a way to draw the user’s attention to individual paragraphs (or other elements) of a document. You might start by defining attention-grabbing styles for any elements that have a class name of “attention”:
The identifier class
is a reserved word in JavaScript, so the HTML class
attribute is available to JavaScript code using the name className
. Here is code that sets and clears the className
property of an element to add and remove the “attention” class for that element:
HTML elements can be members of more than one CSS class and the class
attribute holds a space-separated list of class names. The className
property has a misleading name: classNames
would have been a much better choice. The functions above assume that the className
property will specify zero or one class name and do not work when more than one class is in use. If an element already has a class assigned, calling the grabAttention()
function for that element will overwrite the existing class.
HTML5 addresses this issue by defining a classList
property for every element. The value of this property is known as a DOMTokenList: a read-only array-like object (Array-Like Objects) whose elements contain the individual classnames for the element. More important than its array elements, however, are the methods defined by DOMTokenList. add()
and remove()
add and remove individual class names from the element’s class
attribute. toggle()
adds a classname if it is not already present and removes it otherwise. Finally, the contains()
method tests whether the class
attribute contains a specified classname.
Like other DOM collection types, a DOMTokenList is a “live” representation of the element’s set of classes, not a static snapshot of the classes at the time the classList
property is queried. If you obtain a DOMTokenList from the classList
property of an element and then change the className
property of that element, those changes are immediately visible through the token list. Similarly, any changes you make through the token list are immediately visible through the className
property.
At the time of this writing, the classList
property is not supported by all current browsers. This important functionality is easy to approximate, however, with code like that of Example 16-5. Using code like this that allows an element’s class
attribute to be treated as a set of classnames makes many CSS scripting tasks much easier.
Example 16-5. classList(): treat className as a set of CSS classes
So far, we’ve seen how to set and query the CSS styles and classes of individual elements. It is also possible to script CSS stylesheets themselves. This is not commonly done, but it can occasionally be useful and this section sketches out the technique.
When scripting stylesheets, there are two kinds of objects you may need to work with. The first kind are the Element objects that represent <style>
and <link>
elements that contain or reference your stylesheets. These are regular document elements and if you give them id
attributes, you can select them with document.getElementById()
. The second kind of object is a CSSStyleSheet object that represents the stylesheet itself. The document.styleSheets
property is a read-only array-like object containing CSSStyleSheet objects that represent the stylesheets associated with the document. If you set the title
attribute of the <style>
or <link>
element that defines or references the stylesheet, that title will be available as the title
property of the corresponding CSSStyleSheet object.
The subsections that follow explain what you can do with these style and link elements and stylesheet objects.
The simplest stylesheet scripting technique is also the most portable and robust. <style>
elements, <link>
elements, and CSSStyleSheet objects all define a disabled
property that you can query and set in JavaScript. As its name implies, if the disabled
property is true
, then the stylesheet is disabled and is ignored by the browser.
The disableStylesheet()
function below demonstrates this. If passed a number, it treats it as an index into the document.styleSheets
array. If passed a string, it treats it as a CSS selector and passes it to document.querySelectorAll()
(see Selecting Elements with CSS Selectors), then sets the disabled
property of all returned elements:
In addition to disabling and enabling stylesheets, the CSSStyleSheet object also defines an API for querying, inserting, and deleting the style rules of a stylesheet. IE8 and before implement a slightly different API than the standard API implemented by other browsers.
Manipulating stylesheets directly is not normally a useful thing to do. Instead of editing or adding new rules to a stylesheet, it is typically better to leave your stylesheets static and script the className
property of your elements. On the other hand, if you want to allow the user complete control over the styles used on your pages, you might need to dynamically manipulate a stylesheet.
The elements of the document.styleSheets[]
array are CSSStyleSheet objects. A CSSStyleSheet object has a cssRules[]
array that contains the rules of the stylesheet:
IE uses the property name rules
instead of cssRules
.
The elements of the cssRules[]
or rules[]
arrays are CSSRule objects. In the standard API, a CSSRule object may represent any kind of CSS rule, including at-rules such as @import
and @page
directives. In IE, however, the rules[]
array contains only the actual style rules of the stylesheet.
CSSRule objects have two properties that can be used portably. (In the standard API, a rule that is not a style rule will not have these properties defined, and you probably want to skip over it when traversing the stylesheet.) selectorText
is the CSS selector for the rule, and style
refers to a writable CSSStyleDeclaration object that describes the styles associated with that selector. Recall that CSSStyleDeclaration is the same type used to represent inline and computed styles. You can use this CSSStyleDeclaration
object to query the style values or to set new styles for the rule. Often, when traversing a stylesheet, you are interested in the text of the rule rather than a parsed representation of the rule. In this case, use the cssText
property of the CSSStyleDeclaration object to obtain the text representation of the rules.
In addition to querying and altering the existing rules of a stylesheet, you can also add rules to and remove rules from a stylesheet. The standard API interface defines insert
Rule()
and deleteRule()
methods for adding and removing rules:
IE does not support insertRule()
and deleteRule()
but defines largely equivalent addRule()
and removeRule()
functions. The only real difference (aside from the different names) is that addRule()
expects the selector text and styles text as two separate arguments.
The following code loops through the rules of a stylesheet, demonstrating the API by making some dubious changes to the stylesheet:
Finally, it is possible to create entirely new stylesheets and add them to your document. In most browsers, this is done with standard DOM techniques: just create a new <style>
element and insert it into the document head, then use its innerHTML
property to set stylesheet content. In IE8 and before, however, a new CSSStyleSheet object is created with the nonstandard method document.createStyleSheet()
, and stylesheet text is specified using the cssText
property. Example 16-6 demonstrates.
Example 16-6. Creating a new stylesheet
Client-side JavaScript programs use an asynchronous event-driven programming model (introduced in Event-Driven JavaScript). In this style of programming, the web browser generates an event whenever something interesting happens to the document or browser or to some element or object associated with it. For example, the web browser generates an event when it finishes loading a document, when the user moves the mouse over a hyperlink, or when the user strikes a key on the keyboard. If a JavaScript application cares about a particular type of event, it can register one or more functions to be invoked when events of that type occur. Note that this is not unique to web programming: all applications with graphical user interfaces are designed this way—they sit around waiting for something to happen (i.e., they wait for events to occur), and then they respond.
Note that the word event is not itself a technical word that requires definition. Events are simply occurrences that a web browser will notify your program about. Events are not JavaScript objects and have no manifestation in the source code of your program. There are, of course, a number of event-related objects that do appear in your source code, and these do require technical explanation. We’ll begin this chapter, therefore, with some important definitions.
The event type is a string that specifies what kind of event occurred. The type “mousemove”, for example, means that the user moved the mouse. The type “keydown” means that a key on the keyboard was pushed down. And the type “load” means that a document (or some other resource) has finished loading from the network. Because the type of an event is just a string, it is sometimes called an event name, and indeed, we use this name to identify the specific kind of event we’re talking about. Modern web browsers support many event types. Types of Events has an overview.
The event target is the object on which the event occurred or with which the event is associated. When we speak of an event, we must specify both the type and the target. A load event on a Window, for example, or a click event on a <button>
Element. Window, Document, and Element objects are the most common event targets in client-side JavaScript applications, but some events are triggered on other kinds of objects. In Chapter 18 we’ll see a readystatechange event that is triggered on an XMLHttpRequest object, for example.
An event handler or event listener is a function that handles or responds to an event.[37] Applications register their event handler functions with the web browser, specifying an event type and an event target. When an event of the specified type occurs on the specified target, the browser invokes the handler. When event handlers are invoked for an object, we sometimes say that the browser has “fired”, “triggered”, or “dispatched” the event. There are a number of ways to register event handlers, and the details of handler registration and invocation are explained in Registering Event Handlers and Event Handler Invocation.
An event object is an object that is associated with a particular event and contains details about that event. Event objects are passed as an argument to the event handler function (except in IE8 and before where they are sometimes only available through the global variable event
). All event objects have a type
property that specifies the event type and a target
property that specifies the event target. (In IE8 and before, use srcElement
instead of target
.) Each event type defines a set of properties for its associated event object. The object associated with a mouse event includes the coordinates of the mouse pointer, for example, and the object associated with a keyboard event contains details about the key that was pressed and the modifier keys that were held down. Many event types define only a few standard properties—such as type
and target
—and do not carry much other useful information. For those events it is the simple occurrence of the event, not the event details, that matter. This chapter does not have a specific section covering the Event object. Instead, it explains event object properties when describing specific event types. You can read more about the event object under the name Event in the reference section.[38]
Event propagation is the process by which the browser decides which objects to trigger event handlers on. For events that are specific to a single object (such as the load event on the Window object), no propagation is required. When certain kinds of events occur on document elements, however, they propagate or “bubble” up the document tree. If the user moves the mouse over a hyperlink, the mousemove event is first fired on the <a>
element that defines that link. Then it is fired on the containing elements: perhaps a <p>
element, a <div>
element, and the Document object itself. It is sometimes more convenient to register a single event handler on a Document or other container element than to register handlers on each individual element you’re interested in. An event handler can stop the propagation of an event, so that it will not continue to bubble and will not trigger handlers on containing elements. Handlers do this by invoking a method or setting a property of the event object. Event propagation is covered in detail in Event Propagation.
In another form of event propagation, known as event capturing, handlers specially registered on container elements have the opportunity to intercept (or “capture”) events before they are delivered to their actual target. Event capturing is not supported by IE8 and earlier, and is not, therefore, commonly used. The ability to capture or “grab” mouse events is required when processing mouse drag events, however, and we’ll see how to do this in Example 17-2.
Some events have default actions associated with them. When a click event occurs on a hyperlink, for example, the default action is for the browser to follow the link and load a new page. Event handlers can prevent this default action by returning an appropriate value, invoking a method of the event object, or by setting a property of the event object. This is sometimes called “canceling” the event and is covered in Event Cancellation.
With those terms defined, we can now move on to study events and event handling in detail. The first section that follows is an overview of the many event types supported by web browsers. It doesn’t cover any single kind of event in detail, but it lets you know what kinds of events are available for use in your web applications. This section includes cross-references to other parts of this book that demonstrate some of the events in action.
After the introductory section on event types, the next two sections explain how to register event handlers and how the browser invokes those event handlers. Because of the historical evolution of the JavaScript event model and because of IE’s lack of standards support prior to IE9, both of these topics are more complicated than you might expect.
The chapter ends with a series of examples that demonstrate how to work with a specific types of events. These event-type-specific sections cover:
In the early days of the Web, client-side programmers made do with only a small set of events: “load”, “click”, “mouseover”, and the like. These legacy event types are well supported by all browsers and are the subject of Legacy Event Types. As the web platform has grown to include more powerful APIs, the set of events has grown large. No single standard defines a complete set of events, and at the time of this writing, the number of events supported by browsers is growing rapidly. These new events come from three sources:
Note that many of these new event types are not yet widely implemented and are defined by standards that are still in draft stage. The subsections that follow provide an overview of the events, but do not document each one in detail. The rest of this chapter covers the event handling model comprehensively and includes lots of examples of working with events that are well supported. If you understand how to work with events generally, you will be able to easily handle new event types as new web APIs are defined and implemented.
Events can be grouped into some general categories, and knowing what these categories are will help you to understand and organize the long list of events that follows:
These are input events that are not directly tied to a specific input device. The click event, for example, indicates that a link or button (or other document element) has been activated. This is often done via a mouse click, but it could also be done by keyboard or (on touch-sensitive devices) by gesture. The textinput event (which is not yet widely implemented) is a device-independent alternative to the keypress event and supports keyboard input as well as alternatives such as cut-and-paste and handwriting recognition.
UI events are higher-level events, often on HTML form elements that define a user interface for a web application. They include the focus event (when a text input field gains keyboard focus), the change event when the user changes the value displayed by a form element, and the submit event when the user clicks a Submit button in a form.
Some events are not triggered directly by user activity, but by network or browser activity, and indicate some kind of lifecycle or state-related change. The load event, fired on the Window object when the document is fully loaded, is probably the most commonly used of these events. The DOMContentLoaded event (discussed in Client-Side JavaScript Timeline) is another such event. The HTML5 history management mechanism (History Management) fires the popstate event in response to the browser’s Back button. The HTML5 offline web application API (Application Storage and Offline Webapps) includes online and offline events. Chapter 18 shows how to use a readystatechange event to be notified when data requested from a server is ready. Similarly, the new API for reading user-selected local files (Reading Blobs) uses events like “loadstart”, “progress”, and “loadend” for asynchronous notification of I/O progress.
A number of web APIs defined by HTML5 and related specifications include their own event types. The drag-and-drop API (Drag and Drop Events) defines events such as “dragstart”, “dragenter”, “dragover”, and “drop”. Applications that want to define custom drag sources or drop targets must handle some of these events. The HTML5<video>
and<audio>
elements (Scripting Audio and Video) define a long list of associated event types such as “waiting”, “playing”, “seeking”, “volumechange”, and so on. These events are usually only of interest to web apps that want to define custom controls for video or audio playback.
Timers and error handlers (both of which are described in Chapter 14) are part of client-side JavaScript’s asynchronous programming model and are similar to events. Although timers and error handlers are not discussed in this chapter, it is useful to think of them as related to event handling, and you may find it interesting to reread Timers and Error Handling in the context of this chapter.
The events you’ll use most often in your web apps are generally the ones that have been around the longest and are universally supported: events for dealing with the mouse, the keyboard, HTML forms, and the Window object. The sections below explain many important details about these kinds of events.
Forms and hyperlinks were the first scriptable elements in a web page, way back in the early days of the Web and of JavaScript. This means that form events are some of the most stable and well-supported of all event types. <form>
elements fire submit events when the form is submitted and reset events when the form is reset. Button-like form elements (including radio buttons and checkboxes) fire click events when the user interacts with them. Form elements that maintain some kind of state generally fire change events when the user changes their state by entering text, selecting an item, or checking a box. For text input fields, a change event is not fired until the user has finished interacting with a form element and has tabbed or clicked to move focus to another element. Form elements respond to keyboard focus changes by firing focus and blur events when they gain and lose the focus.
These form-related events are all covered in more detail in Form and Element Event Handlers. A few more notes are in order here, however.
The submit and reset events have default actions that can be canceled by event handlers, and some click events do, too. The focus and blur events do not bubble, but all the other form events do. IE defines focusin and focusout events that do bubble as a useful alternative to focus and blur. The jQuery library (see Chapter 19) emulates focusin and focusout events for browsers that do not support them, and the DOM Level 3 Events specification is standardizing them as well.
Finally, note that browsers other than IE trigger an input event on <textarea>
and other text-input form elements whenever the user enters text (via the keyboard or cut-and-paste) into the element. Unlike the change event, these input events are triggered for each insertion. Unfortunately, the event object of an input event does not specify what text has been input. (The new textinput event described later will be a useful alternative to this event.)
Window events represent occurrences related to the browser window itself, rather than any specific document content displayed inside the window. (For some of these events, however, an event with the same name can be fired on document elements.)
The load event is the most important of these events: it is fired when a document and all of its external resources (such as images) are fully loaded and displayed to the user. The load event was discussed throughout Chapter 13. DOMContentLoaded and readystatechange are alternatives to the load event: they are triggered sooner, when the document and its elements are ready to manipulate, but before external resources are fully loaded. Document Load Events has examples of these document load-related events.
The unload event is the opposite of load: it is triggered when the user is navigating away from a document. An unload event handler might be used to save the user’s state, but it cannot be used to cancel navigation. The beforeunload event is similar to unload but gives you the opportunity to ask the user to confirm that they really want to navigate away from your web page. If a handler for beforeunload returns a string, that string will be displayed to the user in a confirmation dialog before the new page is loaded, and the user will have the opportunity to cancel her navigation and remain at your page.
The onerror
property of the Window object is something like an event handler, and it is triggered in response to JavaScript errors. It isn’t a true event handler, however, because it is invoked with different arguments. See Error Handling for details.
Individual document elements, such as
elements, can also register handlers for load and error events. These are triggered when an external resource (the image, for example) is fully loaded, or when an error occurs that prevents it from loading. Some browsers also support (and HTML5 standardizes) an abort event, which is triggered when an image (or other network resource) fails to load because the user stopped the loading process.
The focus and blur events described above for form elements are also used as Window events: they are triggered on a window when that browser window receives or loses keyboard focus from the operating system.
Finally, the resize and scroll events are fired on a Window when the user resizes or scrolls the browser window. Scroll events can also be fired on any scrollable document element, such as those with the CSS overflow
property (Partial Visibility: overflow and clip) set. The event object passed to resize and scroll event handlers is just an ordinary Event object and does not have properties that specify how much resizing or scrolling occurred—you can determine the new window size and scrollbar position using the techniques shown in Document and Element Geometry and Scrolling.
Mouse events are generated when the user moves or clicks the mouse over a document. These events are triggered on the most deeply nested element that the mouse pointer is over, but they bubble up through the document. The event object passed to mouse event handlers has properties set that describe the position and button state of the mouse and also specify whether any modifier keys were held down when the event occurred. The clientX
and clientY
properties specify the position of the mouse in window coordinates. The button
and which
properties specify which mouse button (if any) was pressed. (See the Event reference page, however, because these properties are difficult to use portably.) The altKey
, ctrlKey
, metaKey
, and shiftKey
properties are set to true
when the corresponding keyboard modifier keys are held down. And for click events, the detail
property specifies whether this was a single, double, or triple click.
The mousemove event is triggered any time the user moves or drags the mouse. These events occur frequently, so mousemove handlers must not trigger computationally intensive tasks. The mousedown and mouseup events are triggered when the user presses and releases a mouse button. By registering a mousedown handler that registers a mousemove handler, you can detect and respond to mouse drags. Doing this properly involves being able to capture mouse events so that you continue to receive mousemove events even when the mouse has moved out of the element it started in. Mouse Events includes an example of handling drags.
After a mousedown and mouseup event sequence, the browser also triggers a click event. The click event was described above as a device-independent form event, but it is actually triggered on any document element, not just form elements, and it is passed an event object with all of the extra mouse-related fields described above. If the user clicks a mouse button twice in a row (within a sufficiently short amount of time), the second click event will be followed by a dblclick event. Browsers often display a context menu when the right mouse button is clicked. They generally fire a contextmenu event before displaying the menu, and if you cancel the event, you can prevent the display of the menu. This is also an easy way to be notified of right mouse button clicks.
When the user moves the mouse so that it goes over a new element, the browser fires a mouseover event on that element. When the mouse moves so that it is no longer over an element, the browser fires a mouseout event on that element. For these events, the event object will have a relatedTarget
property that specifies the other element involved in the transition. (See the Event reference page for the IE equivalent of the related
Target
property.) mouseover and mouseout events bubble like all of the mouse events described here. This is often inconvenient, because when a mouseout handler is triggered, you have to check whether the mouse actually left the element you are interested in or if it merely transitioned from one child of the element to another. Because of this, IE supports nonbubbling versions of these events known as mouseenter and mouseleave. jQuery emulates support for these events in browsers other than IE (see Chapter 19), and the DOM Level 3 Events specification standardizes them.
When the user rotates the mouse wheel, browsers trigger a mousewheel event (or, in Firefox, a DOMMouseScroll event). The event object passed with these events includes properties that specify how much, and in which direction, the wheel was rotated. The DOM Level 3 Events specification is standardizing a more general multidimensional wheel event that, if implemented, will supersede both mousewheel and DOMMouseScroll. Mousewheel Events includes a mousewheel event example.
When the web browser has keyboard focus, it generates events each time the user presses or releases a key on the keyboard. Keyboard shortcuts that have meaning to the operating system or to the browser itself are often “eaten” by the OS or browser and may not be visible to JavaScript event handlers, however. Keyboard events are triggered on whatever document element has keyboard focus, and they bubble up to the document and window. If no element has the focus, the events are triggered directly on the document. Keyboard event handlers are passed an event object with a keyCode
field that specifies what key was pressed or released. In addition to keyCode
, the event object for key events also has altKey
, ctrlKey
, metaKey
, and shiftKey
that describe the state of the keyboard modifier keys.
The keydown and keyup events are low-level keyboard events: they are triggered whenever a key (even a modifier key) is pressed or released. When a keydown event generates a printable character, an additional keypress event is triggered after the keydown but before the keyup. (In the case of a key that is held down until it repeats, there may be many keypress events before the keyup event.) The keypress event is a higher-level text event, and its event object specifies the character that was generated, not the key that was pressed.
The keydown, keyup, and keypress events are supported by all browsers, but there are some interoperability problems because the values of the keyCode
property of the event object have never been standardized. The DOM Level 3 Events specification, described below, attempts to addresses these interoperability problems, but has not yet been implemented. Keyboard Events includes an example of handling keydown events and Text Events includes an example of processing keypress events.
The DOM Level 3 Events specification has been under development by the W3C for about a decade. At the time of this writing, it has undergone substantial revision to bring it in line with current browser reality and it is finally in the “last call working draft” stage of standardization. It standardizes many of the legacy events described above and adds some new ones described here. These new event types are not yet widely supported, but browser vendors are expected to implement them once the standard is final.
As noted above, the DOM Level 3 Events specification standardizes the focusin and focusout events as bubbling alternatives to the focus and blur events and standardizes the mouseenter and mouseleave events as nonbubbling alternatives to mouseover and mouseout. This version of the standard also deprecates a number of event types that were defined by Level 2 but never widely implemented. Browsers are still allowed to generate events like DOMActivate, DOMFocusIn, and DOMNodeInserted, but these are no longer required, and they are not documented in this book.[39]
What is new in the DOM Level 3 Events specification is standardized support for two-dimensional mouse wheels via the wheel event and better support for text input events with a textinput event and with a new KeyboardEvent object that is passed as the argument to handlers for keydown, keyup, and keypress events.
A handler for a wheel event receives an event object with all the usual mouse event properties, and also deltaX
, deltaY
, and deltaZ
properties that report rotation around three different mouse wheel axes. (Most mouse wheels are one or two dimensional and do not use deltaZ
.) See Mousewheel Events for more on mousewheel events.
DOM Level 3 Events defines the keypress event described above, but deprecates it in favor of a new event named textinput. Rather than a hard-to-use numeric keyCode
value, the event object passed to a textinput event handler has a data
property that specifies the string of text that was entered. The textinput event is not a keyboard-specific event: it is triggered whenever text input occurs, whether via the keyboard, cut-and-paste, drag-and-drop, and so on. The specification defines an inputMethod
property on the event object and a set of constants representing different kinds of text input (keyboard, paste or drop, handwriting or voice recognition, and so on). At the time of this writing, Safari and Chrome support a version of this event using the mixed-case name text
Input
. Its event object includes the data
property but not the inputMethod
property. Text Events includes an example that makes use of this textInput event.
This new DOM standard also simplifies keydown, keyup, and keypress events by adding new key
and char
properties to the event object. Both of these properties are strings. For key events that generate printable characters, key
and char
will be equal to the generated text. For control keys, the key
property will be a string like “Enter”, “Delete”, or “Left” that identifies the key. The char
property will either be null
, or, for control keys like Tab that have a character code, it will be the string generated by the key. At the time of this writing, no browsers support these key
and char
properties, but Example 17-8 will use the key
property if and when it is implemented.
HTML5 and related standards define a host of new APIs for web applications (see Chapter 22). Many of these APIs define events. This section lists and briefly describes these HTML5 and web application events. Some of these events are ready to be used now and are explained in more detail elsewhere in the book. Others are not yet widely implemented and are not documented in any detail.
One of the widely advertised features of HTML is inclusion of <audio>
and <video>
elements for playing sound and video. These elements have a long list of events that they trigger to send notifications about network events, data buffering status, and playback state:
These media events are passed an ordinary event object with no special properties. The target
property identifies the <audio>
or <video>
element, however, and that element has many relevant properties and methods. See Scripting Audio and Video for more details on these elements, their properties, and their events.
The HTML5 drag-and-drop API allows JavaScript applications to participate in OS-based drag-and-drop operations, transferring data between web applications and native applications. The API defines the following seven event types:
These drag-and-drop events are triggered with an event object like those sent with mouse events. One additional property, dataTransfer
, holds a DataTransfer object that contains information about the data being transferred and the formats in which it is available. The HTML5 drag-and-drop API is explained and demonstrated in Drag and Drop Events.
HTML5 defines a history management mechanism (History Management) that allows web applications to interact with the browser’s Back and Forward buttons. This mechanism involves events named hashchange and popstate. These events are lifecycle notification events like load and unload and are fired at the Window object rather than any individual document element.
HTML5 defines a lot of new features for HTML forms. In addition to standardizing the form input event described earlier, HTML5 also defines a form validation mechanism, which includes an invalid event fired on form elements that have failed validation. Browser vendors other than Opera have been slow to implement HTML5’s new form features and events, however, and this book does not cover them.
HTML5 includes support for offline web applications (see Application Storage and Offline Webapps) that can be installed locally in an application cache so that they can run even when the browser is offline (as when a mobile device is out of network range). The two most important events associated with this are the offline and online events: they are triggered on the Window object whenever the browser loses or gains a network connection. A number of additional events are defined to provide notification of application download progress and application cache updates:
A number of new web application APIs use a message event for asynchronous communication. The Cross-Document Messaging API (Cross-Origin Messaging) allows scripts in a document from one server to exchange messages with scripts in a document from another server. This works around the limitations of the same-origin policy (The Same-Origin Policy) in a secure way. Each message that is sent triggers a message event on the Window of the receiving document. The event object passed to the handler includes a data
property that holds the content of the message as well as source
and origin
policies that identify the sender of the message. The message event is used in similar ways for communication with Web Workers (Web Workers) and for network communication via Server-Sent Events (Comet with Server-Sent Events) and WebSockets (Web Sockets).
HTML5 and related standards define some events that are triggered on objects other than windows, documents, and document elements. Version 2 of the XMLHttpRequest specification, as well as the File API specification, define a series of events that track the progress of asynchronous I/O. They trigger events on an XMLHttpRequest or FileReader object. Each read operation begins with a loadstart event, followed by progress events and a loadend event. Additionally, each operation ends with a load, error, or abort event just before the final loadend event. See HTTP Progress Events and Reading Blobs for details.
Finally, HTML5 and related standards define a few miscellaneous event types. The Web Storage (localStorage and sessionStorage) API defines a storage event (on the Window object) that provides notification of changes to stored data. HTML5 also standardizes the beforeprint and afterprint events that were originally introduced by Microsoft in IE. As their names imply, these events are triggered on a Window immediately before and immediately after its document is printed and provide an opportunity to add or remove content such as the date and time that the document was printed. (These events should not be used to change the presentation of a document for printing because CSS media types already exist for that purpose.)
The widespread adoption of powerful mobile devices, particularly those with touchscreens, has required the creation of new categories of events. In many cases, touchscreen events are mapped to traditional event types such as click and scroll. But not every interaction with a touchscreen UI emulates a mouse, and not all touches can be treated as mouse events. This section briefly explains the gesture and touch events generated by Safari when running on Apple’s iPhone and iPad devices and also covers the orientationchange event generated when the user rotates the device. At the time of this writing, there are no standards for these events, but the W3C has begun work on a “Touch Events Specification” that uses Apple’s touch event as a starting point. These events are not documented in the reference section of this book, but you can find more information at the Apple Developer Center.
Safari generates gesture events for two-finger scaling and rotation gestures. The gesturestart event is fired when the gesture begins and gestureend is fired when it ends. Between these two events are a sequence of gesturechange events that track the progress of the gesture. The event object sent with these events has numeric scale
and rotation
properties. The scale
property is the ratio of the current distance between the two fingers to the initial distance between the fingers. A “pinch close” gesture has a scale
less than 1.0, and a “pinch open” gesture has a scale
greater than 1.0. The rotation
property is the angle of finger rotation since the start of the event. It is reported in degrees, with positive values indicating clockwise rotation.
Gesture events are high-level events that notify you of a gesture that has already been interpreted. If you want to implement your own custom gestures, you can listen for low-level touch events. When a finger touches the screen a touchstart event is triggered. When the finger moves, a touchmove event is triggered. And when the finger is lifted from the screen, a touchend event is triggered. Unlike mouse events, touch events do not directly report the coordinates of the touch. Instead, the object sent with a touch event has a changedTouches
property. This property is an array-like object whose elements each describe the position of a touch.
The orientationchanged event is triggered on the Window object by devices that allow the user to rotate the screen from portrait to landscape mode. The object passed with an orientationchanged event is not useful itself. In mobile Safari, however, the orientation
property of the Window object gives the current orientation as one of the numbers 0, 90, 180, or -90.
[37] Some sources, including the HTML5 specification, make a technical distinction between handlers and listeners, based on the way in which they are registered. In this book we treat the two terms as synonyms.
[38] Standards define a hierarchy of event object interfaces for different types of events. The Event interface describes “plain” events with no extra details. The MouseEvent subinterface describes the additional fields available in the event objects passed with mouse events, and the KeyEvent subinterface describes the fields you can use with keyboard events, for example. In this book, the reference section collapses all those common event interfaces into a single Event reference page.
[39] The only event in common use with “DOM” in its name is DOMContentLoaded. This event was introduced by Mozilla and was never part of the DOM Events standard.
There are two basic ways to register event handlers. The first, from the early days of the Web, is to set a property on the object or document element that is the event target. The second, newer and more general, technique is to pass the handler to a method of the object or element. To complicate matters, there are two versions of each technique. You can set an event handler property in JavaScript code, or for document elements, you can set the corresponding attribute directly in HTML. For handler registration by method invocation, there is a standard method, named addEventListener()
, that is supported by all browsers except IE8 and before, and a different method, named attach
Event()
, for all versions of IE before IE9.
The simplest way to register an event handler is by setting a property of the event target to the desired event handler function. By convention, event handler properties have names that consist of the word “on” followed by the event name: onclick
, onchange
, onload
, onmouseover
, and so on. Note that these property names are case sensitive and are written in all lowercase, even when the event type (such as “readystatechange” consists of multiple words. Here are two example event handler registrations:
This event handler registration technique works in all browsers for all commonly used event types. In general, all widely implemented web APIs that define events allow handlers to be registered by setting event handler properties.
The shortcoming of event handler properties is that they are designed around the assumption that event targets will have at most one handler for each type of event. If you are writing library code for use in arbitrary documents, it is better to register event handlers using a technique (such as addEventListener()
) that will not modify or overwrite any previously registered handlers.
The event handler properties of a document element can also be set as attributes on the corresponding HTML tag. If you do this, the attribute value should be a string of JavaScript code. That code should be the body of the event handler function, not a complete function declaration. That is, your HTML event handler code should not be surrounded by curly braces and prefixed with the function
keyword. For example:
If an HTML event handler attribute contains multiple JavaScript statements, you must remember to separate those statements with semicolons or to break the attribute value across multiple lines.
Some event types are directed at the browser as a whole, rather than at any particular document element. In JavaScript, handlers for these events are registered on the Window object. In HTML, we place them on the <body>
tag, but the browser registers them on the Window. The following is the complete list of such event handlers as defined by the draft HTML5 specification:
When you specify a string of JavaScript code as the value of an HTML event handler attribute, the browser converts your string into a function that looks something like this:
If the browser supports ES5, the function is defined in non-strict mode (see “use strict”). We’ll see more about the event
argument and the with
statements when we consider event handler invocation in Event Handler Invocation.
A common style in client-side programming involves keeping HTML content separate from JavaScript behavior. Programmers who follow this discipline shun (or at least avoid) HTML event handler attributes, since they directly mix JavaScript and HTML.
In the standard event model supported by all browsers other than IE8 and earlier, any object that can be an event target—this includes the Window and Document objects and all document Elements—defines a method named addEventListener()
that you can use to register an event handler for that target. addEventListener()
takes three arguments. The first is the event type for which the handler is being registered. The event type (or name) is a string and it should not include the “on” prefix that is used when setting event handler properties. The second argument to addEventListener()
is the function that should be invoked when the specified type of event occurs. The final argument to addEventListener()
is a boolean value. Normally, you’ll pass false
for this argument. If you pass true
instead, your function is registered as a capturing event handler and is invoked at a different phase of event dispatch. We’ll cover event capturing in Event Propagation. You ought to be able to omit the third argument instead of passing false
, and the specification may eventually change to allow this, but at the time of this writing, omitting that argument is an error in some current browsers.
The code below registers two handlers for the click event on a <button>
element. Note the differences between the two techniques used:
Calling addEventListener()
with “click” as its first argument does not affect the value of the onclick
property. In the code above, a button click will generate two alert()
dialog boxes. More importantly, you can call addEventListener()
multiple times to register more than one handler function for the same event type on the same object. When an event occurs on an object, all of the handlers registered for that type of event are invoked, in the order in which they were registered. Invoking addEventListener()
more than once on the same object with the same arguments has no effect—the handler function remains registered only once, and the repeated invocation does not alter the order in which handlers are invoked.
addEventListener()
is paired with a removeEventListener()
method that expects the same three arguments but removes an event handler function from an object rather than adding it. It is often useful to temporarily register an event handler and then remove it soon afterward. For example, when you get a mousedown event, you might register temporary capturing event handlers for mousemove and mouseup events so that you can see if the user drags the mouse. You’d then deregister these handlers when the mouseup event arrives. In such a situation, your event handler removal code might look like this:
Internet Explorer, prior to IE9, does not support addEventListener()
and remove
Event
Listener()
. In IE5 and later, it defines similar methods attachEvent()
and detachEvent()
.
The attachEvent()
and detachEvent()
methods work like addEventListener()
and removeEventListener()
, with the following exceptions:
attachEvent()
and detachEvent()
expect only two arguments: the event type and the handler function. attachEvent()
where you would pass “click” to addEventListener()
.attachEvent()
allows the same event handler function to be registered more than once. When an event of the specified type occurs, the registered function will be invoked as many times as it was registered. It is common to see event handler registration code that uses addEventListener()
in browsers that support it and otherwise uses attachEvent()
:
Once you’ve registered an event handler, the web browser will invoke it automatically when an event of the specified type occurs on the specified object. This section describes event handler invocation in detail, explaining event handler arguments, the invocation context (the this
value), the invocation scope, and the meaning of the return value of an event handler. Unfortunately, some of these details are different for IE8 and before than for other browsers.
In addition to describing how individual handlers are invoked, this section also explains how events propagate: how a single event can trigger the invocation of multiple handlers on the original event target and also on containing elements of the document.
Event handlers are normally (there is one exception, described below) invoked with an event object as their single argument. The properties of the event object provide details about the event. The type
property, for example, specifies the type of the event that occurred. Types of Events mentioned a number of other event object properties for various event types.
In IE8 and before, event handlers registered by setting a property are not passed an event object when they are invoked. Instead, the event object is available through the global variable window.event
. For portability, you can write event handlers like this, so that they use the window.event
if no argument is supplied:
Event handlers registered with attachEvent()
are passed an event object, but they can also use window.event
.
Recall from Setting Event Handler Attributes that when you register an event handler by setting an HTML attribute, the browser converts your string of JavaScript code into a function. Browsers other than IE construct a function with a single argument named event
. IE constructs a function that expects no argument. If you use the identifier event
in such a function, you are referring to window.event
. In either case, HTML event handlers can refer to the event object as event
.
When you register an event handler by setting a property, it looks as if you are defining a new method on the document element:
It isn’t surprising, therefore, that event handlers are invoked (with one IE-related exception, described below) as methods of the object on which they are defined. That is, within the body of an event handler, the this
keyword refers to the event target.
Handlers are invoked with the target as their this
value even when registered using addEventListener()
. Unfortunately, however, this is not true for attachEvent()
: handlers registered with attachEvent()
are invoked as functions, and their this
value is the global (Window) object. You can work around this with code like this:
Note that event handlers registered using this method cannot be removed, since the wrapper function passed to attachEvent()
is not retained anywhere to be passed to detachEvent()
.
Like all JavaScript functions, event handlers are lexically scoped. They are executed in the scope in which they are defined, not the scope from which they are invoked, and they can access any local variables from that scope. (This is demonstrated in the add
Event()
function above, for example.)
Event handlers registered as HTML attributes are a special case, however. They are converted into top-level functions that have access to global variables but not to any local variables. But, for historical reasons, they run with a modified scope chain. Event handlers defined by HTML attributes can use the properties of the target object, the containing <form>
object (if there is one), and the Document object as if they are local variables. Setting Event Handler Attributes shows how an event handler function is created from an HTML event handler attribute, and the code there approximates this modified scope chain using with
statements.
HTML attributes are not natural places to include long strings of code, and this modified scope chain allows helpful shortcuts. You can use tagName
instead of this.tagName
. You can use getElementById
instead of document.getElementById
. And, for document elements that are inside a <form>
, you can refer to any other form element by ID, using zipcode
, for example, instead of this.form.zipcode
.
On the other hand, the modified scope chain of HTML event handlers is a source of pitfalls, since the properties of each of the objects in the chain shadow any properties of the same name in the global object. The Document object defines a (rarely used) open()
method, for example, so an HTML event handler that wants to invoke the open()
method of the Window object must explicitly write window.open
instead of open
. There is a similar (but more pernicious) problem with forms, because the names and IDs of form elements define properties on the containing form element (see Selecting Forms and Form Elements). So if a form contains an element with the ID “location”, for example, all HTML event handlers within that form must use window.location
instead of location
if they want to refer to the window’s Location object.
The return value of an event handler registered by setting an object property or an HTML attribute is sometimes significant. In general, a return value of false
tells the browser that it should not perform the default action associated with the event. The onclick
handler of a Submit button in a form, for example, can return false
to prevent the browser from submitting the form. (This is useful if the user’s input fails client-side validation.) Similarly, an onkeypress
handler on an input field can filter keyboard input by returning false
if the user types an inappropriate character. (Example 17-6 filters keyboard input in this way.)
The return value of the onbeforeunload
handler of the Window object is also significant. This event is triggered when the browser is about to navigate to a new page. If this event handler returns a string, it will be displayed in a modal dialog box that asks the user to confirm that she wants to leave the page.
It is important to understand that event handler return values are significant only for handlers registered as properties. We’ll see below that event handlers registered with addEventListener()
or attachEvent()
must instead call the preventDefault()
method or set the returnValue
property of the event object.
A document element or other object may have more than one event handler registered for a particular type of event. When an appropriate event occurs, the browser must invoke all of the handlers, following these rules of invocation order:
addEventListener()
are invoked in the order in which they were registered.[40]attachEvent()
may be invoked in any order and your code should not depend on sequential invocation. When the target of an event is the Window object, or some other standalone object (such as an XMLHttpRequest), the browser responds to an event simply by invoking the appropriate handlers on that one object. When the event target is a Document or document Element, however, the situation is more complicated.
After the event handlers registered on the target element are invoked, most events “bubble” up the DOM tree. The event handlers of the target’s parent are invoked. Then the handlers registered on the target’s grandparent are invoked. This continues up to the Document object, and then beyond to the Window object. Event bubbling provides an alternative to registering handlers on lots of individual document elements: instead you can register a single handler on a common ancestor element and handle events there. You might register an “change” handler on a <form>
element, for example, instead of registering a “change” handler for every element in the form.
Most events that occur on document elements bubble. Notable exceptions are the focus, blur, and scroll events. The load event on document elements bubbles, but it stops bubbling at the Document object and does not propagate on to the Window object. The load event of the Window object is triggered only when the entire document has loaded.
Event bubbling is the third “phase” of event propagation. The invocation of the event handlers of the target object itself is the second phase. The first phase, which occurs even before the target handlers are invoked, is called the “capturing” phase. Recall that addEventListener()
takes a boolean value as its third argument. If that argument is true
, the event handler is registered as a capturing event handler for invocation during this first phase of event propagation. Event bubbling is universally supported: it works in all browsers including IE, and it works for all handlers, regardless of how they are registered (unless they are registered as capturing event handlers). Event capturing, by contrast, only works with event handlers registered with add
Event
Listener()
when the third argument is true
. This means that event capturing is not available in IE prior to IE9, and is not, at the time of this writing, a commonly used technique.
The capturing phase of event propagation is like the bubbling phase in reverse. The capturing handlers of the Window object are invoked first, then the capturing handlers of the Document object, then of the body object, and so on down the DOM tree until the capturing event handlers of the parent of the event target are invoked. Capturing event handlers registered on the event target itself are not invoked.
Event capturing provides an opportunity to peek at events before they are delivered to their target. A capturing event handler can be used for debugging, or it can be used along with the event cancellation technique described below to filter events so that the target event handlers are never actually invoked. One common use for event capturing is handling mouse drags, where mouse motion events need to be handled by the object being dragged, not the document elements over which it is dragged. See Example 17-2 for an example.
Handler Return Value explained that the return value of event handlers registered as properties can be used to cancel the browser’s default action for the event. In browsers that support addEventListener()
, you can also cancel the default action for an event by invoking the preventDefault()
method of the event object. In IE prior to IE9, however, you do the same by setting the returnValue
property of the event object to false
. The following code shows a dummy event handler that uses all three cancellation techniques:
The current DOM Events module draft defines a property of the Event object named defaultPrevented
. It is not yet widely supported, but the intent is that this property will normally be false
but will become true
if preventDefault()
is called.[41]
Canceling the default action associated with an event is only one kind of event cancellation. We can also cancel the propagation of events. In browsers that support add
Event
Listener()
, the event object has a stopPropagation()
method that you can invoke to prevent the continued propagation of the event. If there are other handlers defined on the same object, the rest of those handlers will still be invoked, but no event handlers on any other object will be invoked after stopPropagation()
is called. The stop
Propagation()
method can be called at any time during event propagation. It works during the capturing phase, at the event target itself, and during the bubbling phase.
Prior to IE9, IE does not support the stopPropagation()
method. Instead, the IE event object has a property named cancelBubble
. Set this property to true
to prevent any further propagation. (IE8 and before do not support the capturing phase of event propagation, so bubbling is the only kind of propagation to be canceled.)
The current draft DOM Events specification defines another method on the Event object, named stopImmediatePropagation()
. Like stopPropagation()
, this method prevents the propagation of the event to any other objects. But it also prevents the invocation of any other event handlers registered on the same object. At the time of this writing, some browsers support stopImmediatePropagation()
and some do not. Some utility libraries, like jQuery and YUI, define stopImmediatePropagation()
in a cross-platform way.
[40] The DOM Level 2 standard leaves the invocation order undefined, but current browsers all invoke the handlers in registration order and the current DOM Level 3 draft standardizes this behavior.
[41] The jQuery (see Chapter 19) event object has a defaultPrevented()
method instead of a property.
Now that we’ve covered the fundamentals of JavaScript event handling, we’ll start looking in more detail at specific categories of events. We begin, in this section, with document load events.
Most web applications need notification from the web browser to tell them when the document has been loaded and is ready to be manipulated. The load event on the Window object serves this purpose and was discussed in detail in Chapter 13, which included an onLoad()
utility function in Example 13-5. The load event does not fire until a document and all of its images are fully loaded. It is usually safe, however, to start running your scripts after the document is fully parsed but before images are downloaded. You can improve the startup time of your web applications if you trigger your scripts on events other than “load”.
The DOMContentLoaded event is fired when the document has been loaded and parsed and any deferred scripts have been executed. Images and async
scripts may still be loading, but the document is ready to be manipulated. (Deferred and async scripts are explained in Synchronous, Asynchronous, and Deferred Scripts.) This event was introduced by Firefox, and it has been adopted by all other browser vendors, including Microsoft in IE9. Despite the “DOM” in its name, it is not part of the DOM Level 3 event standard, but it is standardized by HTML5.
As described in Client-Side JavaScript Timeline, the document.readyState
property changes as the document loads. In IE, each change in state is accompanied by a readystatechange event on the Document object, and it is possible to use this event to determine when IE reaches the “complete” state. HTML5 standardizes the readystatechange event, but fires it immediately before the load event, so it is not clear that much advantage is gained by listening for “readystatechange” instead of “load”.
Example 17-1 defines a whenReady()
function that is much like the onLoad()
function of Example 13-5. Functions passed to whenReady()
will be invoked (as methods of the Document object) when the document is ready to be manipulated. Unlike the earlier onLoad()
function, whenReady()
listens for DOMContentLoaded and readystatechange events, and uses load events only as backup for older browsers that do not support the earlier events. Some of the examples that follow (in this and subsequent chapters) use this whenReady()
function.
Example 17-1. Invoking functions when the document is ready
There are quite a few mouse-related events. Table 17-1 lists them all. All mouse events except “mouseenter” and “mouseleave” bubble. Click events on links and Submit buttons have default actions that can be prevented. You may be able to cancel a context menu event to prevent the display of a context menu, but some browsers have configuration options that make context menus noncancelable.
Table 17-1. Mouse events
Type | Description |
---|---|
click | A higher-level event fired when the user presses and releases a mouse button or otherwise “activates” an element. |
contextmenu | A cancelable event fired when a contextmenu is about to be popped up. Current browsers display context menus on right mouse clicks, so this event can also be used like the click event. |
dblclick | Fired when the user double-clicks the mouse |
mousedown | Fired when the user presses a mouse button |
mouseup | Fired when the user releases a mouse button |
mousemove | Fired when the user moves the mouse. |
mouseover | Fired when the mouse enters an element. |
mouseout | Fired when the mouse leaves an element. |
mouseenter | Like “mouseover”, but does not bubble. Introduced by IE and standardized in HTML5 but not yet widely implemented. |
mouseleave | Like “mouseout”, but does not bubble. Introduced by IE and standardized in HTML5 but not yet widely implemented. |
The object passed to mouse event handlers has clientX
and clientY
properties that specify the coordinates of the mouse pointer relative to the containing window. Add the window’s scroll offsets (see Example 15-8) to convert this position to document coordinates.
The altKey
, ctrlKey
, metaKey
, and shiftKey
properties specify whether various keyboard modifier keys were held down when the event occurred: this allows you to distinguish an ordinary click from a Shift-click, for example.
The button
property specifies which mouse button, if any, was held down when the event occurred. Different browsers assign different values to this property, however, so it is difficult to use portably. See the Event reference page for details. Some browsers only fire click events for left button clicks. You should use mousedown and mouseup if you need to detect clicks of other buttons. The contextmenu event usually signals a right-button click, but as noted above, it may be impossible to prevent the appearance of a context menu when this event occurs.
The event object for mouse events has a few other mouse-specific properties, but they are not as commonly used as these. See the Event reference page for a list.
Example 17-2 shows a JavaScript function, drag()
, that, when invoked from a mousedown
event handler, allows an absolutely positioned document element to be dragged by the user. drag()
works with both the DOM and IE event models.
drag()
takes two arguments. The first is the element that is to be dragged. This may be the element on which the mousedown event occurred or a containing element (e.g., you might allow the user to drag on an element that looks like a titlebar to move the containing element that looks like a window). In either case, however, it must be a document element that is absolutely positioned using the CSS position
attribute. The second argument is the event object from the triggering mousedown event. Here’s a simple example that uses drag()
. It defines an
that the user can drag if the Shift key is held down:
The drag()
function converts the position of the mousedown event to document coordinates in order to compute the distance between the mouse pointer and the upper-left corner of the element being moved. It uses getScrollOffsets()
from Example 15-8 to help with the coordinate conversion. Next, drag()
registers event handlers for the mousemove and mouseup events that follow the mousedown event. The mousemove handler is responsible for moving the document element, and the mouseup handler is responsible for deregistering itself and the mousemove handler.
It is important to note that the mousemove and mouseup handlers are registered as capturing event handlers. This is because the user may move the mouse faster than the document element can follow it, and if that happens, some of the mousemove events occur outside the original target element. Without capturing, those events will not be dispatched to the correct handlers. The IE event model does not support event capturing the way the standard event model does, but it does have a special-purpose setCapture()
method for capturing mouse events in cases just like this. The example code shows how it works.
Finally, note that the moveHandler()
and upHandler()
functions are defined within drag()
. Because they are defined in this nested scope, they can use the arguments and local variables of drag()
, which considerably simplifies their implementation.
Example 17-2. Dragging document elements
The following code shows how you can use drag()
in an HTML file (it’s a simplified version of Example 16-2, with the addition of dragging):
The key here is the onmousedown
attribute of the inner <div>
element. Note that it uses this.parentNode
to specify that the entire container element is to be dragged.
All modern browsers support mouse wheels and fire events when the user rotates the mousewheel. Browsers often use the mousewheel to scroll the document or to zoom in or out, but you can cancel the mousewheel event to prevent those default actions.
There are a number of interoperability issues that affect mousewheel events, but it is possible to write code that works on all platforms. At the time of this writing, all browsers but Firefox support an event named “mousewheel”. Firefox uses “DOMMouseScroll” instead. And the DOM Level 3 Events draft proposes an event named “wheel” instead of “mousewheel”. In addition to the differences in event names, the objects passed to these various events use different property names to specify the amount of wheel rotation that occurred. Finally, note that there are fundamental hardware distinctions between mouse wheels as well. Some allow 1-dimensional rotation forward and back and some (particularly on Macs) also allow rotation left and right (on these mice the “wheel” is really a trackball). The DOM Level 3 standard even includes support for 3-dimensional mouse “wheels” that can report clockwise or counter-clockwise rotation in addition to forward/back and left/right.
The event object passed to a “mousewheel” handler has a wheelDelta
property that specifies how far the user turned the wheel. One mousewheel “click” away from the user is generally a delta of 120 and one click toward the user is -120. In Safari and Chrome, to support Apple’s mice that include a two-dimensional trackball instead of a one-dimensional mousewheel, the event object has wheelDeltaX
and wheelDeltaY
properties in addition to wheelDelta
, and wheelDelta
and wheelDeltaY
are always the same value.
In Firefox you can the nonstandard DOMMouseScroll event instead of mousewheel and use the detail
property of the event object instead of wheelDelta
. The scaling and sign of this detail
property is different than wheelDelta
, however: multiply detail
by -40 to compute the equivalent wheelDelta
value.
At the time of this writing, the DOM Level 3 Events draft standard defines a wheel event as the standardized version of mousewheel and DOMMouseScroll. The object passed to a wheel event handler will have deltaX
, deltaY
, and deltaZ
properties to specify rotation in three dimensions. You must multiply these values by -120 to match the value and sign of a mousewheel event.
For all of these event types, the event object is like a mouse event object: it includes mouse pointer coordinates and the state of the keyboard modifier keys.
Example 17-3 demonstrates how to work with mouse wheel events and how to do so interoperably across platforms. It defines a function named enclose()
that wraps a “frame” or “viewport” of the specified size around a larger content element (such as an image) and defines a mouse wheel event handler that allows the user to pan the content element within the viewport and also to resize the viewport. You might use this enclose()
function with code like this:
In order to work correctly in all common browsers, Example 17-3 must perform some browser testing (Browser Testing). The example anticipates the DOM Level 3 Events specification and includes code to use the wheel event when browsers implement it.[42] It also includes some future-proofing to stop using the DOMMouseScroll event when Firefox starts firing wheel or mousewheel. Note that Example 17-3 is also a practical example of the element geometry and CSS positioning techniques explained in Document and Element Geometry and Scrolling and Positioning Elements with CSS.
Example 17-3. Handling mousewheel events
[42] This is risky: if future implementations do not match the draft specification current as I write this, this will backfire and the example will break.
Example 17-2 showed how to respond to mouse drags within an application. It is possible to use techniques like that to allow elements to be dragged and “dropped” within a web page, but true “drag-and-drop” is something else. Drag-and-drop (or DnD) is a user interface for transferring data between a “drag source” and “drop target” that may be in the same application or in different applications. DnD is a complex human/computer interaction, and APIs for implementing DnD are always complicated:
Microsoft introduced a DnD API into early versions of IE. It was not a well-designed or well-documented API, but other browsers have attempted to replicate it, and HTML5 standardizes something like the IE API and then adds new features that make the API much easier to use. This new easy-to-use DnD API is not implemented at the time of this writing, so this section covers the IE API, as blessed by the HTML5 standard.
The IE DnD API is tricky to use and implementation differences in current browsers make it impossible to use some of the more sophisticated parts of the API interoperably, but it does allow web applications to participate in interapplication DnD like regular desktop applications can. Browsers have always been able to perform simple DnD. If you select text in a web browser, it is easy to drag that text into a word processor. And if you select a URL in a word processor, you can drag it to the browser to make the browser visit the URL. What this section demonstrates is how to create custom drag sources that transfer data other than their textual content and custom drop targets that respond to dropped data in some way other than simply displaying it.
DnD is always event-based and the JavaScript API involves two sets of events: one set that is fired on the drag source and another set that is fired on the drop target. All DnD event handlers are passed an event object that is like a mouse event object, with the addition of a dataTransfer
property. This property refers to a DataTransfer object that defines the methods and properties of the DnD API.
Drag source events are relatively simple and we’ll begin with them. Any document element that has the HTML draggable
attribute is a drag source. When the user begins a mouse drag over a drag source, the browser does not select the element content: instead, it fires a dragstart
event on the element. Your handler for that event should call dataTransfer.setData()
to specify the data (and the type of that data) that the drag source is making available. (When the new HTML5 API is implemented, you might call dataTransfer.items.add()
instead.) Your handler may also want to set data
Transfer.
effectAllowed
to specify which of the “move”, “copy”, and “link” transfer operations are supported and it might want to call dataTransfer.setDragImage()
or dataTransfer.addElement()
(in browsers that support those methods) to specify an image or document element to be used as the visual representation of the drag.
While the drag progresses, the browser fires drag events on the drag source. You can listen for these events if you want to update the drag image or alter the data being offered, but it is not generally necessary to register “drag” handlers.
When a drop occurs, the dragend event is fired. If your drag source supports a “move” operation, it should check dataTransfer.dropEffect
to see if a move operation was actually performed. If so, the data has been transferred elsewhere, and you should delete it from the drag source.
The dragstart event is the only one you need to implement simple custom drag sources. Example 17-4 is an example. It displays the current time in “hh:mm” format in a
element and updates the time once a minute. If this was all the example did, the user could select the text displayed in the clock and then drag the time. But the JavaScript code in this example makes the clock into a custom drag source by setting the draggable
property of this clock element to true
and defining an ondragstart
event handler function. The event handler uses dataTransfer.setData()
to specify a complete timestamp string (including the date, seconds, and timezone information) as the data to be dragged. It also calls dataTransfer.setDragIcon()
to specify an image (a clock icon) to be dragged.
Example 17-4. A custom drag source
Drop targets are trickier than drag sources. Any document element can be a drop target: there is no need to set an HTML attribute as there is for drag sources; you simply need to define appropriate event listeners. (With the new HTML5 DnD API, however, you will be able to define a dropzone
attribute on the drop target instead of defining some of the event handlers described below.) There are four events that are fired at drop targets. When a dragged object enters a document element, the browser fires a dragenter event on that element. Your drop target should use the dataTransfer.types
property to determine whether the dragged object has data available in a format that it can understand. (You might also want to check dataTransfer.effectAllowed
to ensure that the drag source and your drop target can agree on one of the move, copy, and link operations.) If these checks succeed, your drop target must let both the user and the browser know that it is interested in a drop. You can give this feedback to the user by changing its border or background color. Surprisingly, a drop target tells the browser that it is interested in a drop by canceling the event.
If an element does not cancel the dragenter event the browser sends it, the browser will not treat it as a drop target for this drag and will not send it any more events. But if a drop target does cancel the dragenter event, the browser will send dragover events as the user continues to drag the object over that target. Surprisingly (again) a drop target must listen for and cancel all of these events to indicate its continued interest in the drop. If the drop target wants to specify that it only allows move, copy, or link operations, it should use this dragover event handler to set dataTransfer.dropEffect
.
If the user moves the dragged object off of a drop target that has indicated interest by canceling events, then the dragleave event will be fired on the drop target. The handler for this event should restore the element’s border or background color or undo any other visual feedback performed in response to the dragenter event. Unfortunately, both the dragenter and dragleave events bubble and if a drop target has elements nested within it, it is difficult to know whether a dragleave event means that the drag has left the drop target for an event outside of the target or for an event inside the target.
Finally, if the user drops an object on a drop target, the drop event is fired on the drop target. The handler for this event should use the dataTransfer.getData()
to obtain the data that was transferred and do something appropriate with it. Alternatively, if the user dropped one or more files on the drop target, the dataTransfer.files
property will be an array-like object of File objects. (See Example 18-11 for a demonstration.) With the new HTML5 API, drop event handlers will be able to loop through the elements of dataTransfer.items[]
to examine both files and nonfile data.
Example 17-5 demonstrates how to make
elements into drop targets and how to make the
elements within them into drag sources. The example is a piece of unobtrusive JavaScript that looks for
elements with a class
attribute that includes “dnd” and registers DnD event handlers on any such lists it finds. The event handlers make the list itself into a drop target: any text you drop onto the list is turned into a new list item and is inserted at the end of the list. The event handlers also listen for drags on the items within the list and make the text of each list item available for transfer. The drag source handlers allow “copy” and “move” operations and delete list items that are dropped in move operations. (Note, however, that not all browsers support move operations interoperably.)
Example 17-5. A list as drop target and drag source
Browsers have three legacy events for keyboard input. The keydown and keyup events are low-level events that are covered in the next section. The keypress event, however, is a higher-level event that signals that a printable character has been generated. The DOM Level 3 Events draft specification defines a more general textinput event triggered whenever the user inputs text regardless of the source (a keyboard, data transfer in the form of a paste or a drop, an Asian-language input method, or a voice or handwriting recognition system, for example). The textinput event is not supported at the time of this writing, but Webkit browsers support a very similar “textInput” (with a capital letter I) event.
The proposed textinput event and the currently implemented textInput event are passed a simple event object with a data
property that holds the input text. (Another property, inputMethod
, is proposed to specify the source of the input, but it has not yet been implemented.) For keyboard input, the data
property will usually hold only a single character, but input from other sources may often include multiple characters.
The event object passed with keypress events is more confusing. A keypress event represents a single character of input. The event object specifies that character as a numeric Unicode codepoint, and you must use String.fromCharCode()
to convert it to a string. In most browsers, the keyCode
property of the event object specifies the codepoint of the input character. For historical reasons, however, Firefox uses the charCode
property instead. Most browser only fire keypress events when a printable character is generated. Firefox, however, also fires “keypress” for nonprinting characters. To detect this case (so you can ignore the nonprinting characters), you can look for an event object with a charCode
property that is defined but set to 0.
The textinput, textInput, and keypress events can be canceled to prevent the character from being input. This means you can use these events to filter input. You might want to prevent a user from entering letters into a field intended for numeric data, for example. Example 17-6 is an unobtrusive module of JavaScript code that allows exactly this sort of filtering. It looks for <input type=text>
elements that have an additional (nonstandard) attribute named data-allowed-chars
. The module registers handlers for textinput, textInput, and keypress events on any such text field to restrict input to characters that appear in the value of the allowed attribute. The initial comment at the top of Example 17-6 includes some sample HTML that uses the module.
Example 17-6. Filtering user input
The keypress and textinput events are triggered before the newly input text is actually inserted into the focused document element, which is why handlers for these events can cancel the event and prevent the insertion of the text. Browsers also implement an input event type that is fired after text is inserted into an element. These events cannot be canceled, and they do not specify what the new text was in their event object, but they do provide notification that the textual content of an element has changed in some way. If you wanted to ensure that any text entered into an input field was in uppercase, for example, you might use the input event like this:
HTML 5 standardizes the input event and it is supported by all modern browsers except IE. You can achieve a similar effect in IE by using the nonstandard propertychange event to detect changes to the value
property of a text input element. Example 17-7 shows how you might force all input to uppercase in a cross-platform way.
Example 17-7. Using the propertychange event to detect text input
The keydown and keyup events are fired when the user presses or releases a key on the keyboard. They are generated for modifier keys, function keys, and alphanumeric keys. If the user holds the key down long enough for it to begin repeating, there will be multiple keydown events before the keyup event arrives.
The event object associated with these events has a numeric keyCode
property that specifies which key was pressed. For keys that generate printable characters, the keyCode
is generally the Unicode encoding of the primary character that appears on the key. Letter keys always generate uppercase keyCode
values, regardless of the state of the Shift key since that is what appears on the physical key. Similarly, number keys always generate keyCode
values for the digit that appears on the key, even if you are holding down Shift in order to type a punctuation character. For nonprinting keys, the keyCode
property will be some other value. These keyCode
values have never been standardized, but reasonable cross-browser compatibility is possible, and Example 17-8 includes a mapping from keyCode
values to function key names.
Like mouse event objects, key event objects have altKey
, ctrlKey
, metaKey
, and shiftKey
properties, which are set to true
if the corresponding modifier key is held down when the event occurs.
The keydown and keyup events and the keyCode
property have been in use for more than a decade but have never been standardized. The DOM Level 3 Events draft standard does standardize the keydown and keyup event types, but it does not attempt to standardize keyCode
. Instead, it defines a new key
property that contains the key name as a string. If the key corresponds to a printable character, the key
property will just be that printable character. If the key is a function key, the key
property will be a value like “F2”, “Home”, or “Left”.
The DOM Level 3 key
property is not yet implemented in any browsers at the time of this writing. The Webkit-based browsers Safari and Chrome define a keyIdentifier
property in the event object for these events, however. Like key
, keyIdentifier
is a string rather than a number and it has useful values like “Shift” and “Enter” for function keys. For printing keys, this property holds a less useful string representation of the Unicode encoding of the character. It is “U+0041” for the A
key, for example.
Example 17-8 defines a Keymap class that maps keystroke identifiers such as “PageUp”, “Alt_Z”, and “ctrl+alt+shift+F5” to JavaScript functions that are invoked in response to those keystrokes. Pass key bindings to the Keymap()
constructor in the form of a JavaScript object in which property names are keystroke identifiers and property values are handler functions. Add and remove bindings with the bind()
and unbind()
methods. Install a Keymap on an HTML element (often the Document object) with the install()
method. Installing a keymap on an element registers a keydown
event handler on that element. Each time a key is pressed, the handler checks to see if there is a function associated with that keystroke. If there is, it invokes it. The keydown handler uses the DOM Level 3 key
property, if it is defined. If not, it looks for the Webkit keyIdentifier
property and uses that. Otherwise, it falls back on the nonstandard keyCode
property. Example 17-8 begins with a long comment that explains the module in more detail.
Example 17-8. A Keymap class for keyboard shortcuts
The Hypertext Transfer Protocol (HTTP) specifies how web browsers get documents from and post form contents to web servers, and how web servers respond to those requests and posts. Web browsers obviously handle a lot of HTTP. Usually HTTP is not under the control of scripts and instead occurs when the user clicks on a link, submits a form, or types a URL.
It is possible for JavaScript code to script HTTP, however. HTTP requests are initiated when a script sets the location
property of a window object or calls the submit()
method of a form object. In both cases, the browser loads a new page. This kind of trivial HTTP scripting can be useful in a multiframed web page but is not the topic we’ll cover here. Instead, this chapter explains how scripts can communicate with a web server without causing the web browser to reload the content of any window or frame.
The term Ajax describes an architecture for web applications that prominently features scripted HTTP.[43] The key feature of an Ajax application is that it uses scripted HTTP to initiate data exchange with a web server without causing pages to reload. The ability to avoid page reloads (which were the norm in the early days of the Web) results in responsive web applications that feel more like traditional desktop applications. A web application might use Ajax technologies to log user interaction data to the server or to improve its start-up time by displaying only a simple page at first and then downloading additional data and page components on an as-needed basis.
The term Comet refers to a related web application architecture that uses scripted HTTP.[44] In a sense, Comet is the reverse of Ajax: in Comet, it is the web server that initiates the communication, asynchronously sending messages to the client. If the web application needs to respond to these messages sent by the server, it can then use Ajax techniques to send or request data. In Ajax, the client “pulls” data from the server. With Comet, the server “pushes” data to the client. Other names for Comet include “Server Push,” “Ajax Push,” and “HTTP Streaming.”
There are a number of ways to implement Ajax and Comet, and these underlying implementations are sometimes known as transports. The
element, for example, has a src
property. When a script sets this property to a URL, an HTTP GET request is initiated to download an image from that URL. A script can therefore pass information to a web server by encoding that information into the query-string portion of the URL of an image and setting the src
property of an
element. The web server must actually return some image as the result of this request, but it can be invisible: a transparent 1-pixel-by-1-pixel image, for instance.[45]
An
element does not make a good Ajax transport, because the data exchange is one-way: the client can send data to the server, but the server’s response will always be an image that the client can’t easily extract information from. The <iframe>
element is more versatile, however. To use an <iframe>
as an Ajax transport, the script first encodes information for the web server into a URL and then sets the src
property of the <iframe>
to that URL. The server creates an HTML document containing its response and sends it back to the web browser, which displays it in the <iframe>
. The <iframe>
need not be visible to the user; it can be hidden with CSS, for example. A script can access the server’s response by traversing the document object of the <iframe>
. Note, though, that this traversal is subject to the constraints of the same-origin policy described in The Same-Origin Policy.
Even the <script>
element has a src
property that can be set to initiate an HTTP GET request. Doing HTTP scripting with <script>
elements is particularly attractive because they are not subject to the same-origin policy and can be used for cross-domain communication. Usually, with a <script>
-based Ajax transport, the server’s response takes the form of JSON-encoded (see Serializing Objects) data that is automatically “decoded” when the script is executed by the JavaScript interpreter. Because of its use of the JSON data format, this Ajax transport is known as “JSONP.”
Although Ajax techniques can be implemented on top of an <iframe>
or <script>
transport, there is usually an easier way to do it. For some time, all browsers have supported an XMLHttpRequest object that defines an API for scripted HTTP. The API includes the ability to make POST requests, in addition to regular GET requests, and can return the server’s response as text or as a Document object. Despite its name, the XMLHttpRequest API is not limited to use with XML documents: it can fetch any kind of text document. Using XMLHttpRequest covers the XMLHttpRequest API and takes up most of the chapter. Most of the Ajax examples in this chapter will use the XMLHttpRequest object as their transport, but we’ll also demonstrate how to use the <script>
-based transport in HTTP by <script>: JSONP because of the <script>
element’s ability to circumvent same-origin restrictions.
The X in “Ajax” stands for XML, the primary client-side API for HTTP (XMLHttpRequest) features XML in its name, and we’ll see later that one of the properties of the XMLHttpRequest object is named responseXML
. It would seem that XML is an important part of scripted HTTP. But it’s not: these names are the historical legacy of the days when XML was a powerful buzzword. Ajax techniques work with XML documents, of course, but the use of XML is purely optional and has actually become relatively rare. The XMLHttpRequest specification lays out the inadequacies of the name we’re stuck with:
The name of the object is XMLHttpRequest for compatibility with the Web, though each component of this name is potentially misleading. First, the object supports any text based format, including XML. Second, it can be used to make requests over both HTTP and HTTPS (some implementations support protocols in addition to HTTP and HTTPS, but that functionality is not covered by this specification). Finally, it supports “requests” in a broad sense of the term as it pertains to HTTP; namely all activity involved with HTTP requests or responses for the defined HTTP methods.
Transport mechanisms for Comet are trickier than Ajax, but all require the client to establish (and re-establish as necessary) a connection to the server, and require the server to keep that connection open so that it can send asynchronous messages over it. A hidden <iframe>
can serve as a Comet transport, for example, if the server sends each message in the form of a <script>
element to be executed in the <iframe>
. A more reliably cross-platform approach to implementing Comet is for the client to establish a connection to the server (using an Ajax transport) and for the server to keep this connection open until it needs to push a message. Each time the server sends a message, it closes the connection, which helps to ensure that the message is properly received by the client. After processing the message, the client then immediately establishes a new connection for future messages.
Implementing a reliable cross-platform Comet transport is hard to do, and most web app developers who use the Comet architecture rely on the transports in web framework libraries such as Dojo. At the time of this writing, browsers are beginning to implement an HTML5-related draft specification known as Server-Sent Events that defines a simple Comet API in the form of an EventSource object. Comet with Server-Sent Events covers the EventSource API and demonstrates a simple emulation of it using XMLHttpRequest.
It is possible to build higher-level communication protocols on top of Ajax and Comet. These client/server communication techniques can be used as the basis of an RPC (remote procedure call) mechanism or a publish/subscribe event system, for example. This chapter does not describe higher-level protocols like this, however, and instead focuses on the APIs that enable Ajax and Comet.
Browsers define their HTTP API on an XMLHttpRequest class. Each instance of this class represents a single request/response pair, and the properties and methods of the object allow you to specify request details and extract response data. XMLHttpRequest has been supported by web browsers for many years, and the API is in the final stages of standardization through the W3C. At the same time, the W3C is working on a draft “XMLHttpRequest Level 2” standard. This section covers the core XMLHttpRequest API and also those portions of the Level 2 draft (which I’ll call XHR2) that are currently implemented by at least two browsers.
The first thing you must do to use this HTTP API, of course, is to instantiate an XMLHttpRequest object:
You can also reuse an existing XMLHttpRequest object, but note that doing so will abort any request pending through that object.
Microsoft introduced the XMLHttpRequest object to the world in IE5, and in IE5 and IE6 it is available only as an ActiveX object. The now-standard XMLHttpRequest()
constructor is not supported before IE7, but it can be emulated like this:
An HTTP request consists of four parts:
The HTTP response sent by a server has three parts:
The first two subsections below demonstrate how to set each of the parts of an HTTP request and how to query each of the parts of an HTTP response. Those key sections are followed by coverage of more specialized topics.
The basic request/response architecture of HTTP is pretty simple and easy to work with. In practice, however, there are all sorts of complications: clients and server exchange cookies, servers redirect browsers to other servers, some resources are cached and others are not, some clients send all their requests through proxy servers, and so on. XMLHttpRequest is not a protocol-level HTTP API but instead a browser-level API. The browser takes care of cookies, redirects, caching, and proxies and your code need worry only about requests and responses.
The ability to use relative URLs in web pages usually means that we can develop and test our HTML using the local file system and then deploy it unchanged to a web server. This is generally not possible when doing Ajax programming with XMLHttpRequest, however. XMLHttpRequest is designed to work with the HTTP and HTTPS protocols. In theory, it could be made to work with other protocols, such as FTP, but parts of the API, such as the request method and the response status code, are HTTP-specific. If you load a web page from a local file, the scripts in that page will not be able to use XMLHttpRequest with relative URLs, since those URLs will be relative to a file://
URL rather than an http://
URL. And the same-origin policy will often prevent you from using absolute http://
URLs. (But see Cross-Origin HTTP Requests.) The upshot is that when working with XMLHttpRequest, you generally have to upload your files to a web server (or run a server locally) in order to test them.
After creating an XMLHttpRequest object, the next step in making an HTTP request is to call the open()
method of your XMLHttpRequest object to specify the two required parts of the request, the method and the URL:
The first argument to open()
specifies the HTTP method or verb. This is a case-insensitive string, but uppercase letters are typically used to match the HTTP protocol. The “GET” and “POST” methods are universally supported. “GET” is used for most “regular” requests, and it is appropriate when the URL completely specifies the requested resource, when the request has no side effects on the server, and when the server’s response is cacheable. The “POST” method is what is typically used by HTML forms. It includes additional data (the form data) in the request body and that data is often stored in a database on the server (a side effect). Repeated POSTs to the same URL may result in different responses from the server, and requests that use this method should not be cached.
In addition to “GET” and “POST”, the XMLHttpRequest specification also allows “DELETE”, “HEAD”, “OPTIONS”, and “PUT” as the first argument to open()
. (The “HTTP CONNECT”, “TRACE”, and “TRACK” methods are explicitly forbidden as security risks.) Older browsers may not support all of these methods, but “HEAD”, at least, is widely supported and Example 18-13 demonstrates its use.
The second argument to open()
is the URL that is the subject of the request. This is relative to the URL of the document that contains the script that is calling open()
. If you specify an absolute URL, the protocol, host, and port must generally match those of the containing document: cross-origin HTTP requests normally cause an error. (But the XMLHttpRequest Level 2 specification allows cross-origin requests when the server explicitly allows it; see Cross-Origin HTTP Requests.)
The next step in the request process is to set the request headers, if any. POST requests, for example, need a “Content-Type” header to specify the MIME type of the request body:
If you call setRequestHeader()
multiple times for the same header, the new value does not replace the previously specified value: instead, the HTTP request will include multiple copies of the header or the header will specify multiple values.
You cannot specify the “Content-Length”, “Date”, “Referer”, or “User-Agent” headers yourself: XMLHttpRequest will add those automatically for you and will not allow you to spoof them. Similarly, XMLHttpRequest object automatically handles cookies, and connection lifetime, charset, and encoding negotiations, so you’re not allowed to pass any of these headers to setRequestHeader()
:
You can specify an “Authorization” header with your request, but you do not normally need to do so. If you are requesting a password-protected URL, pass the username and password as the fourth and fifth arguments to open()
, and XMLHttpRequest will set appropriate headers for you. (We’ll learn about the optional third argument to open()
below. The optional username and password arguments are described in the reference section.)
The final step in making an HTTP request with XMLHttpRequest is to specify the optional request body and send it off to the server. Do this with the send()
method:
GET requests never have a body, so you should pass null
or omit the argument. POST requests do generally have a body, and it should match the “Content-Type” header you specified with setRequestHeader()
.
The parts of an HTTP request have a specific order: the request method and URL must come first, then the request headers, and finally the request body. XMLHttpRequest implementations generally do not initiate any networking until the send()
method is called. But the XMLHttpRequest API is designed as if each method was writing to a network stream. This means that the XMLHttpRequest method must be called in an order that matches the structure of an HTTP request. setRequestHeader()
, for example, must be called after you call open()
and before you call send()
or it will throw an exception.
Example 18-1 uses each of the XMLHttpRequest methods we’ve described so far. It POSTs a string of text to a server and ignores any response the server sends.
Example 18-1. POSTing plain text to a server
Note that the send()
method in Example 18-1 initiates the request and then returns: it does not block while waiting for the server’s response. HTTP responses are almost always handled asynchronously, as demonstrated in the following section.
A complete HTTP response consists of a status code, a set of response headers, and a response body. These are available through properties and methods of the XMLHttpRequest object:
status
and statusText
properties return the HTTP status in numeric and textual forms. These properties hold standard HTTP values like 200 and “OK” for successful requests and 404 and “Not Found” for URLs that don’t match any resource on the server. getResponseHeader()
and getAll
Response
Headers()
. XMLHttpRequest handles cookies automatically: it filters cookie headers out of the set returned by getAllResponseHeaders()
and returns null
if you pass “Set-Cookie” or “Set-Cookie2” to getResponseHeader()
. responseText
property or in Document form from the responseXML
property. (The name of that property is historical: it actually works for XHTML documents as well as XML documents, and XHR2 says that it should work for ordinary HTML documents as well.) See Decoding the response for more on responseXML
. The XMLHttpRequest object is usually (but see Synchronous responses) used asynchronously: the send()
method returns immediately after sending the request, and the response methods and properties listed above aren’t valid until the response is received. To be notified when the response is ready, you must listen for readystatechange events (or the new XHR2 progress events described in HTTP Progress Events) on the XMLHttpRequest object. But to understand this event type, you must first understand the readyState
property.
readyState
is an integer that specifies the status of an HTTP request, and its possible values are enumerated in Table 18-1. The symbols in the first column are constants defined on the XMLHttpRequest constructor. These constants are part of the XMLHttpRequest specification, but older browsers and IE8 do not define them, and you’ll often see code that hardcodes the value 4 instead of XMLHttpRequest.DONE
.
Table 18-1. XMLHttpRequest readyState values
Constant | Value | Meaning |
---|---|---|
UNSENT | 0 | open() has not been called yet |
OPENED | 1 | open() has been called |
HEADERS_RECEIVED | 2 | Headers have been received |
LOADING | 3 | The response body is being received |
DONE | 4 | The response is complete |
In theory, the readystatechange event is triggered every time the readyState
property changes. In practice, the event may not be fired when readyState
changes to 0 or 1. It is often fired when send()
is called, even though readyState
remains at OPENED
when that happens. Some browsers fire the event multiple times during the LOADING
state to give progress feedback. All browsers do fire the readystatechange event when readyState
has changed to the value 4 and the server’s response is complete. Because the event is also fired before the response is complete, however, event handlers should always test the readyState
value.
To listen for readystatechange events, set the onreadystatechange
property of the XMLHttpRequest object to your event handler function. You can also use addEvent
Listener()
(or attachEvent()
in IE8 and before), but you generally need only one handler per request and it is easier to simply set onreadystatechange
.
Example 18-2 defines a getText()
function that demonstrates how to listen for readystatechange events. The event handler first ensures that the request is complete. If so, it checks the response status code to ensure that the request was successful. Then it looks at the “Content-Type” header to verify that the response was of the expected type. If all three conditions are satisfied, it passes the response body (as text) to a specified callback function.
Example 18-2. Getting an HTTP response onreadystatechange
By their very nature, HTTP responses are best handled asynchronously. Nevertheless, XMLHttpRequest also supports synchronous responses. If you pass false
as the third argument to open()
, the send()
method will block until the request completes. In this case, there is no need to use an event handler: once send()
returns, you can just check the status
and responseText
properties of the XMLHttpRequest object. Compare this synchronous code to the getText()
function in Example 18-2:
Synchronous requests are tempting, but they should be avoided. Client-side JavaScript is single-threaded and when the send()
method blocks, it typically freezes the entire browser UI. If the server you are connecting to is responding slowly, your user’s browser will freeze up. See Web Workers for one context in which it is acceptable to make synchronous requests, however.
In the examples above, we assume that the server has sent a textual response, with a MIME type like “text/plain”, “text/html”, or “text/css”, and we retrieve it with the responseText
property of the XMLHttpRequest object.
There are other ways to handle the server’s response, however. If the server sends an XML or XHTML document as its response, you can retrieve a parsed representation of the XML document through the responseXML
property. The value of this property is a Document object, and you can search and traverse it using the techniques shown in Chapter 15. (The XHR2 draft specification says that browsers should also automatically parse responses of type “text/html” and make them available as Document objects through responseXML
as well, but browsers current at the time of this writing do not do that.)
If the server wants to send structured data, such as an object or array, as its response, it might transmit that data as a JSON-encoded (Serializing Objects) string. When you receive it, you would then pass the responseText
property to JSON.parse()
. Example 18-3 is a generalization of Example 18-2: it makes a GET request for the specified URL and passes the contents of that URL to the specified callback function when they are ready. But instead of always passing text, it passes a Document, or an object decoded with JSON.parse()
, or a string.
Example 18-3. Parsing the HTTP response
Example 18-3 checks the “Content-Type” header of the response and handles “application/json” responses specially. Another response type that you might want to “decode” specially is “application/javascript” or “text/javascript”. You can use an XMLHttpRequest to request a JavaScript script, and then use a global eval()
(Global eval()) to execute that script. Using an XMLHttpRequest object is unnecessary in this case, however, since the HTTP scripting capabilities of the <script>
element itself are sufficient to download and execute a script. See Example 13-4, and keep in mind that the <script>
element can make cross-origin HTTP requests that are prohibited to the XMLHttpRequest API.
Web servers often respond to HTTP requests with binary data (image files, for example). The responseText
property is for text only, and it cannot properly handle binary responses, even if you use the charCodeAt()
method of the resulting string. XHR2 defines a way to handle binary responses, but at the time of this writing, browser vendors have not implemented it. See Downloading Blobs for further details.
Proper decoding of a server’s response assumes that the server sends a “Content-Type” header with the correct MIME type for the response. If a server sends an XML document without setting the appropriate MIME type, for example, the XMLHttpRequest object will not parse it and set the responseXML property. Or if a server includes an incorrect “charset” parameter in the content-type header, the XMLHttpRequest will decode the response using the wrong encoding and the characters in responseText
may be wrong. XHR2 defines an overrideMimeType()
method to address this problem and a number of browsers have already implemented it. If you know the MIME type of a resource better than the server does, pass the type of overrideMimeType()
before you call send()
—this will make XMLHttpRequest ignore the content-type header and use the type you specify instead. Suppose you’re downloading an XML file that you’re planning to treat as plain text. You can use setOverrideMimeType()
to let the XMLHttpRequest know that it does not need to parse the file into an XML document:
HTTP POST requests include a request body that contains data the client is passing to the server. In Example 18-1, the request body was simply a string of text. Often, however, we want to send more complicated data along with an HTTP request. This section demonstrates a number of ways to do that.
Consider HTML forms. When the user submits a form, the data in the form (the names and values of each of the form elements) is encoded into a string and sent along with the request. By default, HTML forms are POSTed to the server, and the encoded form data is used as the body of the request. The encoding scheme used for form data is relatively simple: perform normal URI encoding (replacing special characters with hexadecimal escape codes) on the name and value of each form element, separate the encoded name and value with an equals sign, and separate these name/value pairs with ampersands. The encoding of a simple form might look like this:
This form data encoding format has a formal MIME type:
You must set the “Content-Type” request header to this value when POSTing form data of this sort.
Note that this kind of encoding does not require an HTML form, and we won’t actually work directly with forms in this chapter. In Ajax applications, you are likely to have a JavaScript object that you want to send to the server. (That object may be derived from the user input in an HTML form, but that does not matter here.) The data shown above might be the form-encoded representation of this JavaScript object:
Form encoding is so widely used on the Web, and so well supported in all server-side programming languages, that form-encoding your nonform data is often the easiest thing to do. Example 18-4 demonstrates how to form-encode the properties of an object.
Example 18-4. Encoding an object for an HTTP request
With this encodeFormData()
function defined, we can easily write utilities like the postData()
function of Example 18-5. Note that, for simplicity, this postData()
function (and similar functions in the examples that follow) does not process the server’s response. When the response is complete, it passes the entire XMLHttpRequest object to the specified callback function. That callback is responsible for checking the response status code and extracting the response text.
Example 18-5. Making an HTTP POST request with form-encoded data
Form data can also be submitted using a GET request, and when the purpose of a form submission is to make a read-only query, GET is more appropriate than POST. GET requests never have a body, so the “payload” of form-encoded data has to be sent to the server as the query portion of the URL (following a question mark). The encodeFormData()
utility can also be useful for this kind of GET request, and Example 18-6 demonstrates how to use it.
Example 18-6. Making a GET request with form-encoded data
HTML forms use form-encoded query sections to encode data into a URL, but using XMLHttpRequest gives us the freedom to encode our data however we want. With appropriate support on the server, our pizza query data might be encoded into a more legible URL like this one:
The use of form encoding in the body of POST requests is a common convention, but it is not a requirement of the HTTP protocol by any means. In recent years, the JSON format has gained popularity as a web interchange format. Example 18-7 shows how you might encode a request body using JSON.stringify()
(Serializing Objects). Note that this example differs from Example 18-5 only in the last two lines.
Example 18-7. Making an HTTP POST request with a JSON-encoded body
XML is sometimes also used as an encoding for data transfer. Instead of expressing our pizza query as a form-encoded or JSON-encoded version of a JavaScript object, we could represent it as an XML document. It might look like this, for example:
In all the examples we’ve shown so far, the argument to the XMLHttpRequest send()
method has been a string or null
. In fact, you can also pass an XML Document object here. Example 18-8 demonstrates how to create a simple XML Document object and use it as the body of an HTTP request.
Example 18-8. An HTTP POST request with an XML document as its body
Note that Example 18-8 does not ever set the “Content-Type” header for the request. When you pass an XML document to the send()
method, without previously specifying a Content-Type
header, the XMLHttpRequest object automatically sets an appropriate header for you. (Similarly, if you pass a string to send()
and have not specified a Content-Type, the XMLHttpRequest will add a “text/plain; charset=UTF-8” header for you. The code in Example 18-1 sets this header explicitly, but that is not actually required for plain-text request bodies.
One of the features of HTML forms is that when the user selects a file through an <input type="file">
element, the form will send the content of that file in the body of the POST request it generates. HTML forms have always been able to upload files, but until recently it was not possible to do the same thing with the XMLHttpRequest API. The XHR2 API, however, allows you to upload files by passing a File object to the send()
method.
There is no File()
object constructor: scripts can only obtain File objects that represent files the user has selected. In browsers that support File objects, every <input type="file">
element has a files
property that is an array-like object of File objects. The drag-and-drop API (Drag and Drop Events) also allows access to files that the user “drops” over an element, through the dataTransfer.files
property of the drop event. We’ll see more about the File object in Blobs and The Filesystem API. For now, we can treat it as a completely opaque representation of a user-selected file, suitable for upload through send()
. Example 18-9 is a an unobtrusive JavaScript function that adds an change event handler to certain file upload elements so that they automatically POST the contents of any selected file to a specified URL.
Example 18-9. File upload with an HTTP POST request
As we’ll see in Blobs, the File type is a subtype of the more general Blob type. XHR2 allows you to pass any Blob object to the send()
method. The type
property of the Blob will be used to set the Content-Type
header for the upload, if you do not set that header explicitly yourself. If you need to upload binary data that you have generated, you can use the techniques shown in Typed Arrays and ArrayBuffers and Building Blobs to convert the data to a Blob and use it as a request body.
When HTML forms include file upload elements and other elements as well, the browser cannot use ordinary form encoding and must POST the form using a special content-type known as “multipart/form-data”. This encoding involves the use of long “boundary” strings to separate the body of the request into multiple parts. For textual data, it is possible to create “multipart/form-data” request bodies by hand, but it is tricky.
XHR2 defines a new FormData API that makes multipart request bodies simple. First, create a FormData object with the FormData()
constructor and then call the append()
method of that object as many times as necessary to add the individual “parts” (these can be strings or File or Blob objects) to the request. Finally, pass the FormData object to the send()
method. The send()
method will define an appropriate boundary string and set the “Content-Type” header for the request. Example 18-10 demonstrates the use of FormData, and we’ll see it again in Example 18-11.
Example 18-10. POSTing multipart/form-data request body
In the examples above, we’ve used the readystatechange event to detect the completion of an HTTP request. The XHR2 draft specification defines a more useful set of events and these have already been implemented by Firefox, Chrome, and Safari. In this new event model, the XMLHttpRequest object triggers different types of events at different phases of the request so that it is no longer necessary to check the readyState
property.
In browsers that support them, these new events are triggered as follows. When the send()
method is called, a single loadstart event is fired. While the server’s response is being downloaded, the XMLHttpRequest object fires progress events, typically every 50 milliseconds or so, and you can use these events to give the user feedback about the progress of the request. If a request completes very quickly, it may never fire a progress event. When a request is complete, a load event is fired.
A complete request is not necessarily a successful request, and your handler for the load event should check the status
code of the XMLHttpRequest object to ensure that you received a HTTP “200 OK” response rather than a “404 Not Found” response, for example.
There are three ways that an HTTP request can fail to complete, and three corresponding events. If a request times out, the timeout event is triggered. If a request is aborted, the abort event is triggered. (Timeouts and the abort()
method will be covered in Aborting Requests and Timeouts.) Finally, other network errors, such as too many redirects, can prevent the completion of a request, and the error event is triggered when this happens.
A browser will fire only one of the load, abort, timeout, or error events for any given request. The XHR2 draft says that browsers should trigger a loadend event once one of these events has occurred. At the time of this writing, however, browsers do not implement loadend.
You can call the addEventListener()
method of the XMLHttpRequest object register handlers for each of these progress events. If you have only one handler for each kind of event, it is generally easier to just set the corresponding handler property, such as onprogress
and onload
. You can even use the existence of these event properties to test whether a browser supports progress events:
The event object associated with these progress events has three useful properties in addition to the normal Event object properties like type
and timestamp
. The loaded
property is the number of bytes that have been transferred so far. The total
property is the total length (in bytes) of the data to be transferred, from the “Content-Length” header, or 0 if the content length is not known. Finally, the lengthComputable
property is true
if the content length is known and is false
otherwise. Obviously, the total
and loaded
properties are particularly useful in progress event handlers:
In addition to defining these useful events for monitoring the download of an HTTP response, XHR2 also allows the events to be used to monitor the upload of an HTTP request. In browsers that have implemented this feature, the XMLHttpRequest object will have an upload
property. The value of the upload
property is an object that defines an addEventListener()
method and defines a full set of progress event properties, such as onprogress
and onload
. (The upload object does not define an onreadystatechange
property, however: uploads only trigger the new event types.)
You can use the upload event handlers just as you would use the regular progress event handlers. For an XMLHttpRequest object x
, set x.onprogress
to monitor the download progress of the response. And set x.upload.onprogress
to monitor the upload progress of the request.
Example 18-11 demonstrates how to use upload progress events to present upload progress feedback to the user. This example also demonstrates how to obtain File objects from the Drag-and-Drop API and how to upload multiple files in a single XMLHttpRequest request with the FormData API. These features are still in draft form at the time of this writing and the example does not work in all browsers.
Example 18-11. Monitoring HTTP upload progress
You can cancel an HTTP request in process by calling the abort()
method of the XMLHttpRequest object. The abort()
method is available in all versions of XMLHttpRequest, and in XHR2, calling abort()
triggers an abort event on the object. (Some browsers support abort events at the time of this writing. You can test for the presence of an “onabort” property on the XMLHttpRequest object.)
The primary reason to call abort()
is to cancel or time-out requests that have taken too long to complete or when the responses become irrelevant. Suppose you’re using XMLHttpRequest to request auto-complete suggestions for a text input field. If the user types a new character into the field before the server’s suggestions can arrive, then the pending request is no longer interesting and can be aborted.
XHR2 defines a timeout
property that specifies a time in milliseconds after which a request will automatically be aborted and also defines a timeout event that is supposed to be triggered (instead of the abort event) when such a timeout occurs. At the time of this writing, browsers do not implement these automatic timeouts (and their XMLHttpRequest objects do not have timeout
or ontimeout
properties). You can implement your own timeouts, however, with setTimeout()
(Timers) and the abort()
method. Example 18-12 demonstrates how to do this.
Example 18-12. Implementing timeouts
As part of the same-origin security policy (The Same-Origin Policy), the XMLHttpRequest object can normally issue HTTP requests only to the server from which the document that uses it was downloaded. This restriction closes security holes, but it is heavy-handed and also prevents a number of legitimate uses for cross-origin requests. You can use cross-origin URLs with <form>
and <iframe>
elements, and the browser will display the resulting cross-origin document. But because of the same-origin policy, the browser won’t allow the original script to inspect the contents of the cross-origin document. With XMLHttpRequest, document contents are always exposed through the responseText
property, so the same-origin policy cannot allow XMLHttpRequest to make cross-origin requests. (Note that the <script>
element has never really been subject to the same-origin policy: it will download and execute any script, regardless of origin. As we’ll see in HTTP by <script>: JSONP, this freedom to make cross-origin requests makes the <script>
element an attractive Ajax transport alternative to XMLHttpRequest.)
XHR2 allows cross-origin requests to websites that opt-in by sending appropriate CORS (Cross-Origin Resource Sharing) headers in their HTTP responses. At the time of this writing, current versions of Firefox, Safari, and Chrome support CORS and IE8 supports it through a proprietary XDomainRequest object that is not documented here. As a web programmer, there is nothing special you need to do to make this work: if the browser supports CORS for XMLHttpRequest and if the website you are trying to make a cross-origin request to has decided to allow cross-origin requests with CORS, the same-origin policy will be relaxed and your cross-origin requests will just work.
Although there is nothing you have to do to make CORS-enabled cross-origin requests work, there are a few security details worth understanding. First, if you pass a username and password to the XMLHttpRequest open()
method, they will never be sent with a cross-origin request (that would enable distributed password-cracking attempts). In addition, cross-origin requests do not normally include any other user credentials either: cookies and HTTP authentication tokens are not normally sent as part of the request and any cookies received as part of a cross-origin response are discarded. If your cross-origin request requires these kinds of credentials to succeed, you must set the withCredentials
property of the XMLHttpRequest to true
before you send()
the request. It is uncommon to have to do this, but testing for the presence of the with
Credentials
property is a way to test for CORS support in your browser.
Example 18-13 is unobtrusive JavaScript code that uses XMLHttpRequest to make HTTP HEAD requests to download type, size, and date information about the resources linked to by the <a>
elements in a document. The HEAD requests are made on demand, and the resulting link information is displayed in tooltips. The example assumes that information will not be available for cross-origin links, but on CORS-enabled browsers it attempts to download it anyway.
Example 18-13. Requesting link details with HEAD and CORS
[43] Ajax is an (uncapitalized) acronym for Asynchronous JavaScript and XML. The term was coined by Jesse James Garrett and first appeared in his February 2005 essay “Ajax: A New Approach to Web Applications”. “Ajax” was a popular buzzword for many years; now it is simply a useful term for an web application architecture based on scripted HTTP requests.
[44] The name Comet was coined by Alex Russell in “Comet: Low Latency Data for the Browser”. The name is likely a play on Ajax: both Comet and Ajax are US brands of scouring powder.
[45] Images of this sort are sometimes called web bugs. Privacy concerns arise when web bugs are used to communicate information to a server other than the one from which the web page was loaded. One common use of this kind of third-party web bug is for hit counting and website traffic analysis.
The introduction to this chapter mentioned that a <script>
element can be used as an Ajax transport mechanism: simply set the src
attribute of a <script>
(and insert it into the document if it isn’t already there) and the browser will generate an HTTP request to download the URL you specify. <script>
elements are useful Ajax transports for one primary reason: they are not subject to the same origin policy, so you can use them to request data from servers other than your own. A secondary reason to use <script>
elements is that they automatically decode (i.e., execute) response bodies that consist of JSON-encoded data.
In order to use a <script>
element as an Ajax transport, you have to allow your web page to run whatever JavaScript code the remote server chooses to send you. This means that you must not use the technique described here with untrusted servers. And when you do use it with trusted servers, keep in mind that if an attacker can hack into that server, then the hacker can take over your web page, run any code she wants and display any content she wants, and that content will appear to come from your site.
With that said, note that it has become commonplace for websites to use trusted third-party scripts, especially to embed advertising or “widgets” into a page. Using a <script>
as an Ajax transport to communicate with a trusted web service is no more dangerous than that.
The technique of using a <script>
element as an Ajax transport has come to be known as JSONP: it works when the response body of the HTTP request is JSON-encoded. The “P” stands for “padding” or “prefix”—this will be explained in a moment.[46]
Suppose you’ve written a service that handles GET requests and returns JSON-encoded data. Same-origin documents can use it with XMLHttpRequest and JSON.parse()
with code like that in Example 18-3. If you enable CORS on your server, cross-origin documents in new browsers can also use your service with XMLHttpRequest. Cross-origin documents in older browsers that do not support CORS can only access your service with a <script>
element, however. Your JSON response body is (by definition) valid JavaScript code, and the browser will execute it when it arrives. Executing JSON-encoded data decodes it, but the result is still just data, and it doesn’t do anything.
This is where the P part of JSONP comes in. When invoked through a <script>
element, your service must “pad” its response by surrounding it with parentheses and prefixing it with the name of a JavaScript function. Instead of just sending JSON data like this:
It sends a padded-JSON response like this:
As the body of a <script>
element, this padded response does something valuable: it evaluates the JSON-encoded data (which is nothing more than one big JavaScript expression, after all) and then passes it to the function handleResponse()
, which, we assume, the containing document has defined to do something useful with the data.
In order for this to work, we have to have some way to tell the service that it is being invoked from a <script>
element and must send a JSONP response instead of a plain JSON response. This can be done by adding a query parameter to the URL: appending ?json
(or &json
), for example.
In practice, services that support JSONP do not dictate a function name like “handleResponse” that all clients must implement. Instead, they use the value of a query parameter to allow the client to specify a function name, and then use that function name as the padding in the response. Example 18-14 uses a query parameter named “jsonp” to specify the name of the callback function. Many services that support JSONP recognize this parameter name. Another common name is “callback”, and you might have to modify the code shown here to make it work with the particular requirements of the service you need to use.
Example 18-14 defines a function getJSONP()
that makes a JSONP request. This example is a little tricky, and there are some things you should note about it. First, notice how it creates a new <script>
element, sets its URL, and inserts it into the document. It is this insertion that triggers the HTTP request. Second, notice that the example creates a new internal callback function for each request, storing the function as a property of getJSONP()
itself. Finally, note that callback performs some necessary cleanup: it removes the script element and deletes itself.
Example 18-14. Making a JSONP request with a script element
The Server-Sent Events draft standard defines an EventSource object that makes Comet applications trivial to write. Simply pass a URL to the EventSource()
constructor and then listen for message events on the returned object:
The event object associated with a message event has a data
property that holds whatever string the server sent as the payload for this event. The event object also has a type
property like all event objects do. The default value is “message”, but the event source can specify a different string for the property. A single onmessage
event handler receives all events from a given server event source, and can dispatch them, if necessary, based on their type
property.
The Server-Sent Event protocol is straightforward. The client initiates a connection to the server (when it creates the EventSource
object) and the server keeps this connection open. When an event occurs, the server writes lines of text to the connection. An event going over the wire might look like this:
There are some additional details to the protocol that allow events to be given IDs and allow a reconnecting client to tell the server what the ID of the last event it received was, so that a server can resend any events it missed. Those details are not important here, however.
One obvious application for the Comet architecture is online chat: a chat client can post new messages to the chat room with XMLHttpRequest and can subscribe to the stream of chatter with an EventSource object. Example 18-15 demonstrates how easy it is to write a chat client like this with EventSource.
Example 18-15. A simple chat client, using EventSource
At the time of this writing, EventSource is supported in Chrome and Safari, and Mozilla is expected to implement it in the first release after Firefox 4.0. In browsers (like Firefox) whose XMLHttpRequest implementation fires a readystatechange event (for readyState
3) whenever there is download progress, it is relatively easy to emulate EventSource with XMLHttpRequest, and Example 18-16 shows how this can be done. With this emulation module, Example 18-15 works in Chrome, Safari, and Firefox. (Example 18-16 does not work in IE or Opera, since their XMLHttpRequest implementations do not generate events on download progress.)
Example 18-16. Emulating EventSource with XMLHttpRequest
We conclude this exploration of the Comet architecture with a server example. Example 18-17 is a custom HTTP server written in server-side JavaScript for the Node (Asynchronous I/O with Node) server-side environment. When a client requests the root URL “/”, it sends the chat client code shown in Example 18-15 and the emulation code from Example 18-16. When a client makes a GET request for the URL “/chat”, it saves the response stream in an array and keeps that connection open. And when a client makes a POST request to “/chat”, it uses the body of the request as a chat message and writes it, prefixed with the Server-Sent Events “data:” prefix, to each of the open response streams. If you install Node, you can run this server example locally. It listens on port 8000, so after starting the server, you’d point your browser to http://localhost:8000
to connect and begin chatting with yourself.
Example 18-17. A custom Server-Sent Events chat server
JavaScript has an intentionally simple core API and an overly complicated client-side API that is marred by major incompatibilities between browsers. The arrival of IE9 eliminates the worst of those incompatibilities, but many programmers find it easier to write web applications using a JavaScript framework or utility library to simplify common tasks and hide the differences between browsers. At the time of this writing, one of the most popular and widely used such libraries is jQuery.[47]
Because the jQuery library has become so widely used, web developers should be familiar with it: even if you don’t use it in your own code, you are likely to encounter it in code written by others. Fortunately, jQuery is stable and small enough to document in this book. You’ll find a comprehensive introduction in this chapter, and Part IV includes a jQuery quick reference. jQuery methods do not have individual entries in the reference section, but the jQuery gives a synopsis of each method.
jQuery makes it easy to find the elements of a document that you care about and then manipulate those elements by adding content, editing HTML attributes and CSS properties, defining event handlers, and performing animations. It also has Ajax utilities for dynamically making HTTP requests and general-purpose utility functions for working with objects and arrays.
As its name implies, the jQuery library is focused on queries. A typical query uses a CSS selector to identify a set of document elements and returns an object that represents those elements. This returned object provides many useful methods for operating on the matching elements as a group. Whenever possible, these methods return the object on which they are invoked, which allows a succinct method chaining idiom to be used. These features are at the heart of jQuery’s power and utility:
This chapter begins with an introduction to jQuery that shows how to make simple queries and work with the results. The sections that follow explain:
The jQuery library defines a single global function named jQuery()
. This function is so frequently used that the library also defines the global symbol $
as a shortcut for it. These are the only two symbols jQuery defines in the global namespace.[48]
This single global function with two names is the central query function for jQuery. Here, for example, is how we ask for the set of all <div>
elements in a document:
The value returned by this function represents a set of zero or more DOM elements and is known as a jQuery object. Note that jQuery()
is a factory function rather than a constructor: it returns a newly created object but is not used with the new
keyword. jQuery objects define many methods for operating on the sets of elements they represent, and most of this chapter is devoted to explaining those methods. Below, for example, is code that finds, highlights, and quickly displays all hidden <p>
elements that have a class of “details”:
The css()
method operates on the jQuery object returned by $()
, and returns that same object, so that the show()
method can be invoked next in a compact “method chain.” This method chaining idiom is common in jQuery programming. As another example, the code below finds all elements in the document that have the CSS class “clicktohide” and registers an event handler on each one. That event handler is invoked when the user clicks on the element and makes the element slowly “slide up” and disappear:
The jQuery library is free software. You can download it from http://jquery.com. Once you have the code, you can include it in your web pages with a <script>
element like this:
The “min” in the filename above indicates that this is the minimized version of the library, with unnecessary comments and whitespace removed, and internal identifiers replaced with shorter ones.
Another way to use jQuery in your web applications is to allow a content distribution network to serve it using a URL like one of these:
This chapter documents jQuery version 1.4. If you are using a different version, you should replace the “1.4.2” version number in the URLs above as necessary.[49] If you use the Google CDN, you can use “1.4” to get the latest release in the 1.4.x series, or just “1” to get the most current release less than 2.0. The major advantage of loading jQuery
from well-known URLs like these is that, because of jQuery’s popularity, visitors to your website will likely already have a copy of the library in their browser’s cache and no download will be necessary.
The jQuery()
function (a.k.a. $()
) is the most important one in the jQuery library. It is heavily overloaded, however, and there are four different ways you can invoke it.
The first, and most common, way to invoke $()
is to pass a CSS selector (a string) to it. When called this way, it returns the set of elements from the current document that match the selector. jQuery supports most of the CSS3 selector syntax, plus some extensions of its own. Complete details of the jQuery selector syntax are in jQuery Selectors. If you pass an element or a jQuery object as the second argument to $()
, it returns only matching descendants of the specified element or elements. This optional second argument value defines the starting point (or points) for the query and is often called the context.
The second way to invoke $()
is to pass it an Element or Document or Window object. Called like this, it simply wraps the element, document, or window in a jQuery object and returns that object. Doing this allows you to use jQuery methods to manipulate the element rather than using raw DOM methods. It is common to see jQuery programs call $(document)
or $(this)
, for example. jQuery objects can represent more than one element in a document, and you can also pass an array of elements to $()
. In this case, the returned jQuery object represents the set of elements in your array.
The third way to invoke $()
is to pass it a string of HTML text. When you do this, jQuery creates the HTML element or elements described by that text and then returns a jQuery object representing those elements. jQuery does not automatically insert the newly created elements into the document, but the jQuery methods described in Altering Document Structure allow you to easily insert them where you want them. Note that you cannot pass plain text when you invoke $()
in this way, or jQuery will think you are passing a CSS selector. For this style of invocation, the string you pass to $()
must include at least one HTML tag with angle brackets.
When invoked in this third way, $()
accepts an optional second argument. You can pass a Document object to specify the document with which the elements are to be associated. (If you are creating elements to be inserted into an <iframe>
, for example, you’ll need to explicitly specify the document object of that frame.) Or you can pass an object as the second argument. If you do this, the object properties are assumed to specify the names and values of HTML attributes to be set on the object. But if the object includes properties with any of the names “css”, “html”, “text”, “width”, “height”, “offset”, “val”, or “data”, or properties that have the same name as any of the jQuery event handler registration methods, jQuery will invoke the method of the same name on the newly created element and pass the property value to it. (Methods like css()
, html()
, and text()
are covered in jQuery Getters and Setters and event handler registration methods are in Handling Events with jQuery. For example:
Finally, the fourth way to invoke $()
is to pass a function to it. If you do this, the function you pass will be invoked when the document has been loaded and the DOM is ready to be manipulated. This is the jQuery version of the onLoad()
function from Example 13-5. It is very common to see jQuery programs written as anonymous functions defined within a call to jQuery()
:
You’ll sometimes see $(f)
written using the older and more verbose form: $(document).
ready(f)
.
The function you pass to jQuery()
will be invoked with the document object as its this
value and with the jQuery
function as its single argument. This means that you can undefine the global $
function and still use that convenient alias locally with this idiom:
jQuery triggers functions registered through $()
when the DOMContentLoaded event is fired (Client-Side JavaScript Timeline) or, in browsers that don’t support that event, when the load event is fired. This means that the document will be completely parsed, but that external resources such as images may not be loaded yet. If you pass a function to $()
after the DOM is ready, that function will be invoked immediately, before $()
returns.
The jQuery library also uses the jQuery()
function as its namespace and defines a number of utility functions and properties under it. The jQuery.noConflict()
function mentioned above is one such utility function. Others include jQuery.each()
for general-purpose iteration and jQuery.parseJSON()
for parsing JSON text. Utility Functions lists general-purpose utility functions, and other jQuery functions are described throughout this chapter.
Let’s pause here to define some important terms and phrases that you’ll see throughout this chapter:
The jQuery function is the value ofjQuery
or of$
. This is the function that creates jQuery objects, registers handlers to be invoked when the DOM is ready, and that also serves as the jQuery namespace. I usually refer to it as$()
. Because it serves as a namespace, the jQuery function might also be called “the global jQuery object,” but it is very important not to confuse it with “a jQuery object.”
When you pass a CSS selector to the jQuery function, it returns a jQuery object that represents the set of document elements that match that selector. When describing the methods of the jQuery object, I’ll often use the phrase “the selected elements” to refer to those matching elements. For example, to explain theattr()
method, I might write “theattr()
method sets HTML attributes on the selected elements.” This is instead of a more precise but awkward description like “theattr()
method sets HTML attributes on the elements of the jQuery object on which it was invoked.” Note that the word “selected” refers to the CSS selector and has nothing to do with any selection performed by the user.
A jQuery method is a method of a jQuery object returned by the jQuery function. The most important part of the jQuery library is the powerful methods it defines.
The distinction between jQuery functions and methods is sometimes tricky because a number of functions and methods have the same name. Note the differences between these two lines of code:
The official jQuery documentation at http://jquery.com uses names like $.each
to refer to jQuery functions and names like .each
(with a period but without a dollar sign) to refer to jQuery methods. In this book, I’ll use the terms “function” and “method” instead. Usually it will be clear from the context which is being discussed.
When you pass a CSS selector string to $()
, it returns a jQuery object that represents the set of matched (or “selected”) elements. CSS selectors were introduced in Selecting Elements with CSS Selectors, and you can review that section for examples—all of the examples shown there work when passed to $()
. The specific selector syntax supported by jQuery is detailed in jQuery Selectors. Rather than focus on those advanced selector details now, however, we’re going to first explore what you can do with the results of a query.
The value returned by $()
is a jQuery object. jQuery objects are array-like: they have a length
property and have numeric properties from 0 to length
-1. (See Array-Like Objects for more on array-like objects.) This means that you can access the contents of the jQuery object using standard square-bracket array notation:
If you prefer not to use array notation with jQuery objects, you can use the size()
method instead of the length
property and the get()
method instead of indexing with square brackets. If you need to convert a jQuery object to a true array, call the to
Array()
method.
In addition to the length
property, jQuery objects have three other properties that are sometimes of interest. The selector
property is the selector string (if any) that was used when the jQuery object was created. The context
property is the context object that was passed as the second argument to $()
, or the Document object otherwise. Finally, all jQuery objects have a property named jquery
, and testing for the existence of this property is a simple way to distinguish jQuery objects from other array-like objects. The value of the jquery
property is the jQuery version number as a string:
The $()
function is similar to the Document method querySelectorAll()
that was described in Selecting Elements with CSS Selectors: both take a CSS selector as their argument and return an array-like object that holds the elements that match the selector. The jQuery implementation uses querySelectorAll()
in browsers that support it, but there are good reasons to use $()
instead of querySelectorAll()
in your own code:
querySelectorAll()
has only recently been implemented by browser vendors. $()
works in older browsers as well as new ones. $()
work in all browsers, not just those browsers that support CSS3. $()
(a jQuery object) is much more useful than the array-like object (a NodeList) returned by querySelectorAll()
. If you want to loop over all elements in a jQuery object, you can call the each()
method instead of writing a for
loop. The each()
method is something like the ECMAScript 5 (ES5) forEach()
array method. It expects a callback function as its sole argument, and it invokes that callback function once for each element in the jQuery object (in document order). The callback is invoked as a method of the matched element, so within the callback the this
keyword refers to an Element object. each()
also passes the index and the element as the first and second arguments to the callback. Note that this
and the second argument are raw document elements, not jQuery objects; if you want to use a jQuery method to manipulate the element, you’ll need to pass it to $()
first.
jQuery’s each()
method has one feature that is quite different than forEach()
: if your callback returns false
for any element, iteration is terminated after that element (this is like using the break
keyword in a normal loop). each()
returns the jQuery object on which it is called, so that it can be used in method chains. Here is an example (it uses the prepend()
method that will be explained in Altering Document Structure):
Despite the power of the each()
method, it is not very commonly used, since jQuery methods usually iterate implicitly over the set of matched elements and operate on them all. You typically only need to use each()
if you need to manipulate the matched elements in different ways. Even then, you may not need to call each()
, since a number of jQuery methods allow you to pass a callback function.
The jQuery library predates the ES5 array methods, and it defines a couple of other methods that provide functionality similar to the ES5 methods. The jQuery method map()
works much like the Array.map()
method. It accepts a callback function as its argument and invokes that function once for each element of the jQuery object, collecting the return values of those invocations, and returning a new jQuery object holding those return values. map()
invokes the callback in the same way that the each()
method does: the element is passed as the this
value and as the second argument and the index of the element is passed as the first argument. If the callback returns null
or undefined
, that value is ignored and nothing is added to the new jQuery object for that invocation. If the callback returns an array or an array-like object (such as a jQuery object), it is “flattened” and its elements are added individually to the new jQuery object. Note that the jQuery object returned by map()
may not hold document elements, but it still works as an array-like object. Here is an example:
Along with each()
and map()
, another fundamental jQuery method is index()
. This method expects an element as its argument and returns the index of that element in the jQuery object, or –1 if it is not found. In typical jQuery fashion, however, this index()
method is overloaded. If you pass a jQuery object as the argument, index()
searches for the first element of that object. If you pass a string, index()
uses it as a CSS selector and returns the index of the first element of this jQuery object in the set of elements matching that selector. And if you pass no argument, index()
returns the index of the first element of this jQuery object within its sibling elements.
The final general-purpose jQuery method we’ll discuss here is is()
. It takes a selector as its argument and returns true
if at least one of the selected elements also matches the specified selector. You might use it in an each()
callback function, for example:
[47] Other commonly used libraries not covered in this book include Prototype, YUI, and dojo. Search the Web for “JavaScript libraries” to find many more.
[48] If you use $
in your own code, or are using another library, such as Prototype, that uses $
, you can call jQuery.noConflict()
to restore $
to its original value.
[49] When this chapter was written, the current version of jQuery was 1.4.2. As the book goes to press, jQuery 1.5 has just been released. The changes in jQuery 1.5 mostly involve the Ajax utility function, and they will be mentioned in passing in Ajax with jQuery.
Some of the simplest, and most common, operations on jQuery objects are those that get or set the value of HTML attributes, CSS styles, element content, or element geometry. This section describes those methods. First, however, it is worth making some generalizations about getter and setter methods in jQuery:
map()
if you want to query all elements.) Since getters do not return the jQuery object they are invoked on, they can only appear at the end of a method chain. this
value, the element index is passed as the first argument to the function, and the current value is passed as the second argument. Keep these generalizations about getters and setters in mind as you read the rest of this section. Each subsection below explains an important category of jQuery getter/setter methods.
The attr()
method is the jQuery getter/setter for HTML attributes, and it adheres to each of the generalizations described above. attr()
handles browser incompatibilities and special cases and allows you to use either HTML attribute names or their JavaScript property equivalents (where they differ). For example, you can use either “for” or “htmlFor” and either “class” or “className”. removeAttr()
is a related function that completely removes an attribute from all selected elements. Here are some examples:
The css()
method is very much like the attr()
method, but it works with the CSS styles of an element rather than the HTML attributes of the element. When querying style values, css()
returns the current (or “computed”; see Querying Computed Styles) style of the element: the returned value may come from the style
attribute or from a stylesheet. Note that it is not possible to query compound styles such as “font” or “margin”. You must instead query individual styles such as “font-weight”, “font-family”, “margin-top”, or “margin-left”. When setting styles, the css()
method simply adds the style to the element’s style
attribute. css()
allows you to use hyphenated CSS style names (“background-color”) or camel-case JavaScript style names (“backgroundColor”). When querying style values, css()
returns numeric values as strings, with units suffixes included. When setting, however, it converts numbers to strings and adds a “px” (pixels) suffix to them when necessary:
Recall that the value of the class
attribute (accessed via the className
property in JavaScript) is interpreted as a space-separated list of CSS class names. Usually, we want to add, remove, or test for the presence of a single name in the list rather than replacing one list of classes with another. For this reason, jQuery defines convenience methods for working with the class
attribute. addClass()
and removeClass()
add and remove classes from the selected elements. toggleClass()
adds classes to elements that don’t already have them and removes classes from those that do. hasClass()
tests for the presence of a specified class. Here are some examples:
Note that the hasClass()
method is less flexible than addClass()
, removeClass()
, and toggleClass()
. hasClass()
works for only a single class name and does not support function arguments. It returns true
if any of the selected elements has the specified CSS class and returns false
if none of them do. The is()
method (described in Queries and Query Results) is more flexible and can be used for the same purpose.
These jQuery methods are like the classList
methods described in Scripting CSS Classes, but the jQuery methods work in all browsers, not just those that support the HTML5 classList
property. Also, of course, the jQuery methods work for multiple elements and can be chained.
val()
is a method for setting and querying the value
attribute of HTML form elements and also for querying and setting the selection state of checkboxes, radio buttons, and <select>
elements:
The text()
and html()
methods query and set the plain-text or HTML content of an element or elements. When invoked with no arguments, text()
returns the plain-text content of all descendant text nodes of all matched elements. This works even in browsers that do not support the textContent
or innerText
properties (Element Content As Plain Text).
If you invoke the html()
method with no arguments, it returns the HTML content of just the first matched element. jQuery uses the innerHTML
property to do this: x.html()
is effectively the same as x[0].innerHTML
.
If you pass a string to text()
or html()
, that string will be used for the plain-text or HTML-formatted text content of the element, and it will replace all existing content. As with the other setter methods we’ve seen, you can also pass a function, which will be used to compute the new content string:
We learned in Document and Element Geometry and Scrolling that it can be tricky to correctly determine the size and position of an element, especially in browsers that do not support getBoundingClientRect()
(Querying the Geometry of an Element). jQuery simplifies these computations with methods that work in any browser. Note that all of the methods described here are getters, but only some can also be used as setters.
To query or set the position of an element, use the offset()
method. This method measures positions relative to the document and returns them in the form of an object with left
and top
properties that hold the X and Y coordinates. If you pass an object with these properties to the method, it sets the position you specify. It sets the CSS position
attribute as necessary to make elements positionable:
The position()
method is like offset()
, except that it is a getter only and it returns element positions relative to their offset parent, rather than relative to the document as a whole. In More on Element Size, Position and Overflow, we saw that every element has an offsetParent
property that its position is relative to. Positioned elements always serve as the offset parents for their descendants, but some browsers also make other elements, such as table cells, into offset parents. jQuery only considers positioned elements to be offset parents, and the offset
Parent()
method of a jQuery object maps each element to the nearest positioned ancestor element or to the <body>
element. Note the unfortunate naming mismatch for these methods: offset()
returns the absolute position of an element, in document coordinates. And position()
returns the offset of an element relative to its offsetParent()
.
There are three getters for querying the width of an element and three for querying the height. The width()
and height()
methods return the basic width and height and do not include padding, borders, or margins. innerWidth()
and innerHeight()
return the width and height of an element plus the width and height of its padding (the word “inner” refers to the fact that these methods return the dimensions measured to the inside of the border). outerWidth()
and outerHeight()
normally return the element’s dimensions plus its padding and border. If you pass the value true
to either of these methods, they also add in the size of the element’s margins. The code below shows four different widths that you can compute for an element:
The width()
and height()
methods have features that the other four methods (the inner and outer methods) do not. First, if the first element of the jQuery object is a Window or Document object, they return the size of the window’s viewport or the full size of the document. The other methods only work for elements, not windows or documents.
The other feature of the width()
and height()
methods is that they are setters as well as getters. If you pass a value to these methods, they set the width or height of every element in the jQuery object. (Note, however, that they cannot set the width or height of Window and Document objects.) If you pass a number, it is taken as a dimension in pixels. If you pass a string value, it is used as the value of the CSS width
or height
attribute and can therefore use any CSS unit. Finally, as with other setters, you can pass a function that will be called to compute the width or height.
There is a minor asymmetry between the getter and setter behavior of width()
and height()
. When used as getters, these methods return the dimensions of an element’s content box, excluding padding, borders, and margins. When you use them as setters, however, they simply set the CSS width
and height
attributes. By default, those attributes also specify the size of the content box. But if an element has its CSS box-sizing
attribute (The border-box model and the box-sizing property) set to border-box
, the width()
and height()
methods set dimensions that include the padding and border. For an element e
that uses the content-box box model, calling $(e).width(x).width()
returns the value x
. For elements that use the border-box model, however, this is not generally the case.
The final pair of geometry-related jQuery methods are scrollTop()
and scrollLeft()
, which query the scrollbar positions for an element or set the scrollbar positions for all elements. These methods work for the Window object as well as for document elements, and when invoked on a Document, they query or set the scrollbar positions of the Window that holds the document. Unlike with other setters, you cannot pass a function to scrollTop()
or scrollLeft()
.
We can use scrollTop()
as a getter and a setter, along with the height()
method to define a method that scrolls the window up or down by the number of pages you specify:
jQuery defines a getter/setter method named data()
that sets or queries data associated with any document element or with the Document or Window objects. The ability to associate data with any element is an important and powerful one: it is the basis for jQuery’s event handler registration and effects queuing mechanisms, and you may sometimes want to use the data()
method in your own code.
To associate data with the elements in a jQuery object, call data()
as a setter method, passing a name and a value as the two arguments. Alternatively, you can pass a single object to the data()
setter and each property of that object will be used as a name/value pair to associate with the element or elements of the jQuery object. Note, however, that when you pass an object to data()
, the properties of that object replace any data previously associated with the element or elements. Unlike many of the other setter methods we’ve seen, data()
does not invoke functions you pass. If you pass a function as the second argument to data()
, that function is stored, just as any other value would be.
The data()
method can also serve as a getter, of course. When invoked with no arguments, it returns an object containing all name/value pairs associated with the first element in the jQuery object. When you invoke data()
with a single string argument, it returns the value associated with that string for the first element.
Use the removeData()
method to remove data from an element or elements. (Using data()
to set a named value to null
or undefined
is not the same thing as actually deleting the named value.) If you pass a string to removeData()
, the method deletes any value associated with that string for the element or elements. If you call removeData()
with no arguments, it removes all data associated with the element or elements:
jQuery also defines utility function forms of the data()
and removeData()
methods. You can associate data with an individual element e
using either the method or function form of data()
:
jQuery’s data framework does not store element data as properties of the elements themselves, but it does need to add one special property to any element that has data associated with it. Some browsers do not allow properties to be added to <applet>
, <object>
, and <embed>
elements, so jQuery simply does not allow data to be associated with elements of these types.
In Getting and Setting Element Content we saw the html()
and text()
methods for setting element content. This section covers methods for making more complex changes to a document. Because HTML documents are represented as a tree of nodes rather than a linear sequence of characters, insertions, deletions, and replacements are not as simple as they are for strings and arrays. The subsections that follow explain the various jQuery methods for document modification.
Let’s begin with basic methods for insertions and replacements. Each of the methods demonstrated below takes an argument that specifies the content that is to be inserted into the document. This can be a string of plain text or of HTML to specify new content, or it can be a jQuery object or an Element or text Node. The insertion is made into or before or after or in place of (depending on the method) each of the selected elements. If the content to be inserted is an element that already exists in the document, it is moved from its current location. If it is to be inserted more than once, the element is cloned as necessary. These methods all return the jQuery object on which they are called. Note, however, that after replaceWith()
runs, the elements in the jQuery object are no longer in the document:
Each of these five structure-altering methods can also be passed a function that will be invoked to compute the value to be inserted. As usual, if you supply such a function, it will be invoked once for each selected element. The this
value will be that element and the first argument will be the index of that element within the jQuery object. For append()
, prepend()
, and replaceWith()
, the second argument is the current content of the element as an HTML string. For before()
and after()
, the function is invoked with no second argument.
The five methods demonstrated above are all invoked on target elements and are passed the content that is to be inserted as an argument. Each of those five methods can be paired with another method that works the other way around: invoked on the content and passed the target elements as the argument. This table shows the method pairs:
Operation | $(target). | $(content). |
---|---|---|
insert content at end of target | append() | appendTo() |
insert content at start of target | prepend() | prependTo() |
insert content after target | after() | insertAfter() |
insert content before target | before() | insertBefore() |
replace target with content | replaceWith() | replaceAll() |
The methods demonstrated in the example code above are the ones in the second column. The methods in the third column are demonstrated below. There are a couple of important things to understand about these pairs of methods:
With those differences listed, the code below performs the same operations as the code above, using the methods in the third column instead of the methods in the second column. Notice that in the second line we can’t pass plain text (without angle brackets to identify it as HTML) to the $()
method—it thinks we’re specifying a selector. For this reason, we must explicitly create the text node that we want to insert:
As noted above, if you insert elements that are already part of the document, those elements will simply be moved, not copied, to their new location. If you are inserting the elements in more than one place, jQuery will make copies as needed, but copies are not made when only one insertion is done. If you want to copy elements to a new location instead of moving them, you must first make a copy with the clone()
method. clone()
makes and returns a copy of each selected element (and of all of the descendants of those elements). The elements in the returned jQuery object are not part of the document yet, but you can insert them with one of the methods above:
clone()
does not normally copy event handlers (Handling Events with jQuery) or other data you have associated with elements (Getting and Setting Element Data); pass true
if you want to clone that additional data as well.
Another type of insertion into an HTML document involves wrapping a new element (or elements) around one or more elements. jQuery defines three wrapping functions. wrap()
wraps each of the selected elements. wrapInner()
wraps the contents of each selected element. And wrapAll()
wraps the selected elements as a group. These methods are usually passed a newly created wrapper element or a string of HTML used to create a wrapper. The HTML string can include multiple nested elements, if desired, but there must be a single innermost element. If you pass a function to any of these methods, it will be invoked once in the context of each element (with the element index as its only argument) and should return the wrapper string, Element, or jQuery object. Here are some examples:
Along with insertions and replacements, jQuery also defines methods for deleting elements. empty()
removes all children (including text nodes) of each of the selected elements, without altering the elements themselves. The remove()
method, by contrast, removes the selected elements (and all of their content) from the document. remove()
is normally invoked with no arguments and removes all elements in the jQuery object. If you pass an argument, however, that argument is treated as a selector, and only elements of the jQuery object that also match the selector are removed. (If you just want to remove elements from the set of selected elements, without removing them from the document, use the filter()
method, which is covered in Selection Methods.) Note that it is not necessary to remove elements before reinserting them into the document: you can simply insert them at a new location and they will be moved.
The remove()
method removes any event handlers (see Handling Events with jQuery) and other data (Getting and Setting Element Data) you may have bound to the removed elements. The detach()
method works just like remove()
but does not remove event handlers and data. detach()
may be more useful when you want to temporarily remove elements from the document for later reinsertion.
Finally, the unwrap()
method performs element removal in a way that is the opposite of the wrap()
or wrapAll()
method: it removes the parent element of each selected element without affecting the selected elements or their siblings. That is, for each selected element, it replaces the parent of that element with its children. Unlike remove()
and detach()
, unwrap()
does not accept an optional selector argument.
As we saw in Chapter 17, one of the difficulties of working with events is that IE (until IE9) implements a different event API than all other browsers do. To address this difficulty, jQuery defines a uniform event API that works in all browsers. In its simple form, the jQuery API is easier to use than the standard or IE event APIs. And in its more complex full-featured form, the jQuery API is more powerful than the standard API. The subsections below have all the details.
jQuery defines simple event-registration methods for each of the commonly used and universally implemented browser events. To register an event handler for click events, for example, just call the click()
method:
Calling a jQuery event-registration method registers your handler on all of the selected elements. This is typically much easier than one-at-a-time event handler registration with addEventListener()
or attachEvent()
.
These are the simple event handler registration methods jQuery defines:
Most of these registration methods are for common event types you are already familiar with from Chapter 17. A few notes are in order, however. Focus and blur events do not bubble, but the focusin and focusout events do, and jQuery ensures that these events work in all browsers. Conversely, the mouseover and mouseout events do bubble, and this is often inconvenient because it is difficult to know whether the mouse has left the element you’re interested in or whether it has simply moved out of one of the descendants of that element. mouseenter and mouseleave are nonbubbling events that solve this problem. These event types were originally introduced by IE, and jQuery ensures that they work correctly in all browsers.
The resize and unload event types are only ever fired on the Window object, so if you want to register handlers for these event types, you should invoke the resize()
and unload()
methods on $(window)
. The scroll()
method is also most often used on $(window)
, but it can also be used on any element that has scrollbars (such as when the CSS overflow
attribute is set to “scroll” or “auto”). The load()
method can be called on $(window)
to register a load event handler for the window, but it is usually better to pass your initialization function directly to $()
as shown in The jQuery() Function. You can use the load()
method on iframes and images, however. Note that when invoked with different arguments, load()
is also used to load new content (via scripted HTTP) into an element—see The load() Method. The error()
method can be used on
elements to register handlers that are invoked if an image fails to load. It should not be used to set the Window onerror
property that was described in Error Handling.
In addition to these simple event registration methods, there are two special forms that are sometimes useful. The hover()
method registers handlers for mouseenter and mouseleave events. Calling hover(f,g)
is like calling mouseenter(f)
and then calling mouseleave(g)
. If you pass just one argument to hover()
, that function is used as the handler for both enter and leave events.
The other special event registration method is toggle()
. This method binds event handler functions to the click event. You specify two or more handler functions and jQuery invokes one of them each time a click event occurs. If you call toggle(f,g,h)
, for example, the function f()
is invoked to handle the first click event, g()
is invoked to handle the second, h()
is invoked to handle the third, and f()
is invoked again to handle the fourth click event. Be careful when using toggle()
: as we’ll see in Simple Effects, this method can also be used to show or hide (i.e., toggle the visibility of) the selected elements.
We’ll learn about other more general ways to register event handlers in Advanced Event Handler Registration, and we’ll end this section with one more simple and convenient way to register handlers. Recall that you can pass a string of HTML to $()
to create the elements described by that string, and that you can pass (as a second argument) an object of attributes to be set on the newly created elements. This second argument can be any object that you would pass to the attr()
method. But in addition, if any of the properties have the same name as the event registration methods listed above, the property value is taken as a handler function and is registered as a handler for the named event type. For example:
The event handler functions in the examples above expect no arguments and return no values. It is quite normal to write event handlers like that, but jQuery does invoke every event handler with one or more arguments, and it does pay attention to the return value of your handlers. The most important thing you should know is that every event handler is passed a jQuery event object as its first argument. The fields of this object provide details (like mouse pointer coordinates) about the event. The properties of the standard Event object were described in Chapter 17. jQuery simulates that standard Event object, even in browsers (like IE8 and before) that do not support it, and jQuery event objects have the same set of fields in all browsers. This is explained in detail in The jQuery Event Object.
Normally, event handlers are invoked with only the single event object argument. But if you explicitly trigger an event with trigger()
(see Triggering Events), you can pass an array of extra arguments. If you do this, those arguments will be passed to the event handler after the first event object argument.
Regardless of how they are registered, the return value of a jQuery event handler function is always significant. If a handler returns false
, both the default action associated with the event and any future propagation of the event are canceled. That is, returning false
is the same as calling the preventDefault()
and stopPropagation()
methods of the Event object. Also, when an event handler returns a value (other than undefined
), jQuery stores that value in the result
property of the Event object where it can be accessed by subsequently invoked event handlers.
jQuery hides implementation differences between browsers by defining its own Event object. When a jQuery event handler is invoked, it is always passed a jQuery Event object as its first argument. The jQuery Event object is based heavily on W3C standards, but it also codifies some de facto event standards. jQuery copies all of the following fields from the native Event object into every jQuery Event object (though some of them will be undefined
for certain event types):
In addition to these properties, the Event object also defines the following methods:
Most of these event properties and methods were introduced in Chapter 17 and are documented in Part IV under Event. Some of these fields are specially handled by jQuery to give them a uniform cross-browser behavior and are worth noting here:
metaKey
If the native event object does not have ametaKey
property, jQuery sets this to the same value as thectrlKey
property. In MacOS, the Command key sets themetaKey
property.
pageX, pageY
target, currentTarget, relatedTarget
Thetarget
property is the document element on which the event occurred. If the native event object has a text node as the target, jQuery reports the containing Element instead.currentTarget
is the element on which the current executing event handler was registered. This should always be the same asthis
.IfcurrentTarget
is not the same astarget
, you’re handling an event that has bubbled up from the element on which it occurred and it may be useful to test thetarget
element with theis()
method (Queries and Query Results):if ($(event.target).is("a")) return; // Ignore events that start on linksrelatedTarget
is the other element involved in transition events such as mouseover and mouseout. For mouseover events, for example, therelatedTarget
property specifies the element that the mouse pointer exited as it moved over thetarget
. If the native event object does not definerelatedTarget
but does definetoElement
andfromElement
,relatedTarget
is set from those properties.
timeStamp
The time at which the event occurred, in the millisecond representation returned by theDate.getTime()
method. jQuery sets the field itself to work around a long-standing bug in Firefox.
which
jQuery normalizes this nonstandard event property so that it specifies which mouse button or keyboard key was pressed during the event. For keyboard events, if the native event does not definewhich
, but definescharCode
orkeyCode
,which
will be set to whichever of those properties is defined. For mouse events, ifwhich
is not defined but thebutton
property is defined,which
is set based on thebutton
value. 0 means no buttons are pressed. 1 means the left button is pressed, 2 means the middle button is pressed, and 3 means the right button is pressed. (Note that some browsers don’t generate mouse events for right-button clicks.)
In addition, the following fields of the jQuery Event object are jQuery-specific additions that you may sometimes find useful:
data
If additional data was specified when the event handler was registered (see Advanced Event Handler Registration), it is made available to the handler as the value of this field
handler
result
originalEvent
We’ve seen that jQuery defines quite a few simple methods for registering event handlers. Each of these simply invoke the single, more complex method bind()
to bind a handler for a named event type to each of the elements in the jQuery object. Using bind()
directly allows you to use advanced event registration features that are not available through the simpler methods.[50]
In its simplest form, bind()
expects an event type string as its first argument and an event handler function as its second. The simple event registration methods use this form of bind()
. The call $('p').click(f)
, for example, is equivalent to:
bind()
can also be invoked with three arguments. In this form, the event type is the first argument and the handler function is the third. You can pass any value between those two and jQuery will set the data
property of the Event object to the value you specify before it invokes the handler. It is sometimes useful to pass additional data to your handlers in this way without having to use closures.
There are other advanced features of bind()
as well. If the first argument is a space-separated list of event types, then the handler function will be registered for each of the named event types. The call $('a').hover(f)
(see Simple Event Handler Registration), for example, is the same as:
Another important feature of bind()
is that it allows you to specify a namespace (or namespaces) for your event handlers when you register them. This allows you to define groups of handlers and comes in handy if you later want to trigger or deregister the handlers in a particular namespace. Handler namespaces are particularly useful for programmers who are writing libraries or modules of reusable jQuery code. Event namespaces look like CSS class selectors. To bind an event handler in a namespace, add a period and the namespace name to the event type string:
You can even assign a handler to multiple namespaces like this:
The final feature of bind()
is that the first argument can be an object that maps event names to handler functions. To use the hover()
method as an example again, the call $('a').hover(f,g)
is the same as:
When you use this form of bind()
, the property names in the object you pass can be space-separated strings of event types and can include namespaces. If you specify a second argument after the first object argument, that value is used as the data argument for each of the event bindings.
jQuery has another event handler registration method. The one()
method is invoked and works just like bind()
does, except that the event handler you register will automatically deregister itself after it is invoked. This means, as the method name implies, that event handlers registered with one()
will never be triggered more than once.
One feature that bind()
and one()
do not have is the ability to register capturing event handlers as you can with addEventListener()
(addEventListener()). IE (until IE9) does not support capturing handlers, and jQuery does not attempt to simulate that feature.
After registering an event handler with bind()
(or with any of the simpler event registration methods), you can deregister it with unbind()
to prevent it from being triggered by future events. (Note that unbind()
only deregisters event handlers registered with bind()
and related jQuery methods. It does not deregister handlers passed to add
Event
Listener()
or the IE method attachEvent()
, and it does not remove handlers defined by element attributes such as onclick
and onmouseover
.) With no arguments, unbind()
deregisters all event handlers (for all event types) for all elements in the jQuery object:
With one string argument, all handlers for the named event type (or types, if the string names more than one) are unbound from all elements in the jQuery object:
This is a heavy-handed approach and should not be used in modular code because the user of your module might be using other modules that register their own handlers for the same event types on the same elements. If your module registered event handlers using namespaces, however, you can use this one-argument version of unbind()
to deregister only the handlers in your namespace or namespaces:
If you want to be careful to unbind only event handlers you registered yourself and you did not use namespaces, you must retain a reference to the event handler functions and use the two-argument version of unbind()
. In this form, the first argument is an event type string (without namespaces) and the second argument is a handler function:
When invoked this way, unbind()
deregisters the specified event handler function for events of the specified type (or types) from all elements in the jQuery object. Note that event handlers can be unbound using this two-argument version of unbind()
even when they were registered with an extra data value using the three-argument version of bind()
.
You can also pass a single object argument to unbind()
. In this case, unbind()
is invoked recursively for each property of the object. The property name is used as the event type string and the property value is used as the handler function:
Finally, there is one more way that unbind()
can be invoked. If you pass a jQuery Event object to it, it unbinds the event handler that that event was passed to. Calling unbind(ev)
is equivalent to unbind(ev.type, ev.handler)
.
The event handlers you register are automatically invoked when the user uses the mouse or keyboard or when other kinds of events occur. Sometimes, however, it is useful to be able to manually trigger events. The simple way to do this is to invoke one of the simple event registration methods (like click()
or mouseover()
) with no argument. Just as many jQuery methods serve as both getters and setters, these event methods register an event handler when invoked with an argument and trigger event handlers when invoked with no arguments. For example:
The submit()
method in the line above synthesizes an Event object and triggers any event handlers that have been registered for the submit event. If none of those event handlers return false
or call the preventDefault()
method of the Event object, the form will actually be submitted. Note that events that bubble will bubble even when triggered manually like this. This means that triggering an event on a selected set of elements may also trigger handlers on the ancestors of those elements.
It is important to note that jQuery’s event triggering methods will trigger any handlers registered with jQuery’s event registration methods, and they will also trigger handlers defined on HTML attributes or Element properties such as onsubmit
. But you cannot manually trigger event handlers registered with addEventListener()
or attachEvent()
(those handlers will still be invoked when a real event occurs, however).
Also note that jQuery’s event triggering mechanism is synchronous—there is no event queue involved. When you trigger an event, event handlers are invoked immediately, before the triggering method you called returns. If you trigger a click event and one of the triggered handlers triggers a submit event, all of the matching submit handlers are invoked before the next “click” handler is invoked.
Methods like submit()
are convenient for binding and triggering events, but just as jQuery defines a more general bind()
method, so too it defines a more general trigger()
method. Normally you invoke trigger()
with an event type string as the first argument and it triggers the handlers registered for events of that type on all elements in the jQuery object. So the submit()
call above is equivalent to:
Unlike the bind()
and unbind()
methods, you cannot specify more than one event type in this string. Like bind()
and unbind()
, however, you can specify event namespaces to trigger only the handlers defined in that namespace. If you want to trigger only event handlers that have no namespace, append an exclamation mark to the event type. Handlers registered through properties like onclick
are considered to have no namespace:
Instead of passing an event type string as the first argument to trigger()
, you can also pass an Event object (or any object that has a type
property). The type
property will be used to determine what kind of handlers to trigger. If you specified a jQuery Event object, that object will be the one passed to the triggered handlers. If you specified a plain object, a new jQuery Event object will be created, and the properties of the object you passed will be added to it. This is an easy way to pass additional data to event handlers:
Another way to pass additional data to event handlers when you trigger them manually is to use the second argument to trigger()
. The value you pass as the second argument to trigger()
will become the second argument to each of the event handlers that is triggered. If you pass an array as the second argument, each of its elements will be passed as arguments to the triggered handlers:
Sometimes you may want to trigger all handlers for a given event type, regardless of which document element those handlers are bound to. You could select all elements with $('*')
and then call trigger()
on the result, but that would be very inefficient. Instead, to trigger an event globally, call the jQuery.event.trigger()
utility function. This function takes the same arguments as the trigger()
method and efficiently triggers event handlers for the specified event type throughout the document. Note that “global events” triggered in this way do not bubble, and only handlers registered using jQuery methods (not event handlers registered with DOM properties like onclick
) are triggered with this technique.
After invoking event handlers, trigger()
(and the convenience methods that call it) perform whatever default action is associated with the triggered event (assuming that the event handlers didn’t return false or call preventDefault()
on the event object). For example, if you trigger a submit event on a <form>
element, trigger()
will call the submit()
method of that form, and if you trigger a focus event on an element, trigger()
will call the focus()
method of that element.
If you want to invoke event handlers without performing the default action, use trigger
Handler()
instead of trigger()
. This method works just like trigger()
, except that it first calls the preventDefault()
and cancelBubble()
methods of the Event object. This means that the synthetic event does not bubble or perform the default action associated with it.
jQuery’s event management system is designed around the standard events like mouse clicks and key presses that web browsers generate. But it is not tied to those events, and you can use any string you want as an event type name. With bind()
you can register handlers for this kind of “custom event” and with trigger()
you can cause those handlers to be invoked.
This kind of indirect invocation of custom event handlers turns out to be quite useful for writing modular code and implementing a publish/subscribe model or the Observer pattern. Often when using custom events you may find it useful to trigger them globally with the jQuery.event.trigger()
function instead of the trigger()
method:
We’ll see in Ajax Events that jQuery’s Ajax methods broadcast custom events like this to notify interested listeners.
The bind()
method binds event handlers to specific document elements just as add
Event
Listener()
and attachEvent()
(see Chapter 17) do. But web applications that use jQuery often dynamically create new elements. If we’ve used bind()
to bind an event handler to all <a>
elements in the document and then we create new document content with new <a>
elements, those new elements will not have the same event handlers as the old ones and will not behave in the same way.
jQuery addresses this issue with “live events.” To use live events, use the delegate()
and undelegate()
methods instead of bind()
and unbind()
. delegate()
is usually invoked on $(document)
and is passed a jQuery selector string, a jQuery event type string, and a jQuery event handler function. It registers an internal handler on the document or window (or on whatever elements are in the jQuery object). When an event of the specified type bubbles up to this internal handler, it determines whether the target of the event (the element that the event occurred on) matches the selector string. If so, it invokes the specified handler function. So to handle mouseover events on both old and newly created <a>
elements, you might register a handler like this:
Or you might use bind()
in the static portions of your document and then use delegate()
to handle the portions that change dynamically:
Just as the bind()
method has a three-argument version that allows you to specify the value of the data
property of the event object, the delegate()
method has a four-argument version that allows the same thing. To use this version, pass the data value as the third argument and the handler function as the fourth.
It is important to understand that live events depend on event bubbling. By the time an event bubbles up to the document object, it may have already been passed to a number of static event handlers. And if any of those handlers called the cancel
Bubble()
method of the Event object, the live event handler will never be invoked.
jQuery defines a method named live()
that can also be used to register live events. live()
is a little harder to understand than delegate()
, but it has the same two- or three-argument signature as bind()
and is more commonly used in practice. The two calls to delegate()
shown above could also be written as follows using live()
:
When the live()
method is invoked on a jQuery object, the elements in that object are not actually used. What matters instead is the selector string and the context object (the first and second arguments to $()
) that were used to create the jQuery object. jQuery objects make these values available through their context
and selector
properties (see Queries and Query Results). Normally, you invoke $()
with only one argument and the context is the current document. So for a jQuery object x
, the following two lines of code do the same thing:
To deregister live event handlers, use die()
or undelegate()
. die()
can be invoked with one or two arguments. With one event type argument, it removes all live event handlers that match the selector and the event type. And with an event type and handler function argument, it removes only the one specified handler. Some examples:
undelegate()
is like die()
but more explicitly separates the context (the elements on which the internal event handlers are registered) and the selector string. The calls to die()
above could instead be written like this:
Finally, undelegate()
can also be called with no arguments at all. In this case, it deregisters all live event handlers that are delegated from the selected elements.
[50] jQuery uses the term “bind” for event handler registration. ECMAScript 5, and a number of JavaScript frameworks, define a bind()
method on functions (The bind() Method), and use the term for the association of functions with objects on which they are to be invoked. jQuery’s version of the Function.bind()
method is a utility function named jQuery.proxy()
, and you can read about it in Utility Functions.
Chapter 16 showed how to script the CSS styles of document elements. By setting the CSS visibility
property, for example, you can make elements appear and disappear. CSS Animations went on to demonstrate how CSS scripting can be used to produce animated visual effects. Instead of just making an element disappear, for example, we might reduce the value of its opacity
property over the period of a half second so that it quickly fades away instead of just blinking out of existence. This kind of animated visual effect creates a more pleasing experience for users, and jQuery makes them easy.
jQuery defines simple methods such as fadeIn()
and fadeOut()
for basic visual effects. In addition to simple effects methods, it defines an animate()
method for producing more complex custom animations. The subsections below explain both the simple effects methods and the more general animate()
method. First, however, we’ll describe some general features of jQuery’s animation framework.
Every animation has a duration that specifies how long the effect should last for. You specify this as a number of milliseconds or by using a string. The string “fast” means 200ms. The string “slow” means 600ms. If you specify a duration string that jQuery does not recognize, you’ll get a default duration of 400ms. You can define new duration names by adding new string-to-number mappings to jQuery.fx.speeds
:
jQuery’s effect methods usually take effect duration as an optional first argument. If you omit the duration argument, you usually get the default 400ms. Some methods, however, produce an instant nonanimated effect when you omit the duration:
Animated visual effects have become the norm on many websites, but not all users like them: some users find them distracting and others feel they cause motion sickness. Disabled users may find that animations interfere with assistive technology like screen readers and users on old hardware may feel that they require too much processing power. As a courtesy to your users, you should generally keep your animations simple and understated and also provide an option to disable them completely. jQuery makes it easy to globally disable all effects: simply set jQuery.fx.off
to true
. This has the effect of changing the duration of every animation to 0ms, making them behave as instantaneous, nonanimated changes.
To allow end users to disable effects, you might use code like this in your scripts:
Then, if the web designer includes an element with class “stopmoving” on the page, the user can click it to disable animations.
jQuery’s effects are asynchronous. When you call an animation method like fadeIn()
, it returns right away and the animation is performed “in the background.” Because animation methods return before the animation is complete, the second argument (also optional) to many of jQuery’s effect methods is a function that will be invoked when the effect is complete. The function is not passed any arguments, but the this
value is set to the document element that was animated. The callback function is invoked once for each selected element:
Passing a callback function to an effect method allows you to perform actions at the end of an effect. Note, however, that this is not necessary when you simply want to perform multiple effects in sequence. By default, jQuery’s animations are queued (The animation options object shows how to override this default). If you call an animation method on an element that is already being animated, the new animation does not begin right away but is deferred until the current animation ends. For example, you can make an element blink before fading in permanently:
jQuery’s effect methods are declared to accept optional duration and callback arguments. It is also possible to invoke these methods with an object whose properties specify animation options:
Passing an object of animation objects is most commonly done with the general animate()
method, but it is also possible for the simpler effects methods. Using an options object allows you to set other advanced options to control queuing and easing, for example. The available options are explained in The animation options object.
jQuery defines nine simple effects methods to hide and show elements. They can be divided into three groups based on the kind of effect they perform:
fadeIn()
, fadeOut()
, fadeTo()
These are the simplest effects:fadeIn()
andfadeOut()
simply animate the CSSopacity
property to show or hide an element. Both accept optional duration and callback arguments.fadeTo()
is slightly different: it expects a target opacity argument and animates the change from the element’s current opacity to this target. For thefadeTo()
method, the duration (or options object) is required as the first argument and the target opacity is required as the second argument. The callback function is an optional third argument.
show()
, hide()
, toggle()
ThefadeOut()
method listed above makes elements invisible but retains space for them in the document layout. Thehide()
method, by contrast, removes the elements from the layout as if the CSSdisplay
property was set tonone
. When invoked with no arguments,hide()
andshow()
simply hide or show the selected elements immediately. With a duration (or options object) argument, however, they animate the hiding or showing process.hide()
shrinks an element’swidth
andheight
to 0 at the same time that it reduces the element’sopacity
to 0.show()
reverses the process.toggle()
changes the visibility state of the elements it is invoked on: if they are hidden, it callsshow()
, and if they are visible, it callshide()
. As withshow()
andhide()
, you must pass a duration or options object totoggle()
to get an animated effect. Passingtrue
totoggle()
is the same as callingshow()
with no arguments and passingfalse
is the same as callinghide()
with no arguments. Note also that if you pass two or more function arguments totoggle()
it registers event handlers, as described in Simple Event Handler Registration.
slideDown()
, slideUp()
, slideToggle()
slideUp()
hides the elements in the jQuery object by animating their height to 0 and then setting the CSSdisplay
property to “none”.slideDown()
reverses the process to make a hidden element visible again.slideToggle()
toggles the visibility of an item using a slide up or slide down animation. Each of the three methods accepts the optional duration and callback arguments (or the options object argument).
Here is an example that invokes methods from each of these groups. Keep in mind that jQuery’s animations are queued by default, so these animations are performed one after the other:
Various jQuery plug-ins (see Extending jQuery with Plug-ins) add additional effect methods to the library. The jQuery UI library (The jQuery UI Library) includes a particularly comprehensive set of effects.
You can use the animate()
method to produce more general animated effects than are available with the simple effects methods. The first argument to animate()
specifies what to animate and the remaining arguments specify how to animate it. The first argument is required: it must be an object whose properties specify CSS attributes and their target values. animate()
animates the CSS properties of each element from its current value to the specified target value. So, for example, the slideUp()
effect described above can also be performed with code like this:
As an optional second argument, you can pass an options object to animate()
:
Instead of passing an options object as the second argument, animate()
also allows you to specify three of the most commonly used options as arguments. You can pass the duration (as a number or string) as the second argument. You can specify the name of an easing function as the third argument. (Easing functions will be explained shortly.) And you can specify a callback function as the fourth argument.
In the most general case, animate()
accepts two object arguments. The first specifies what to animate and the second specifies how to animate it. To fully understand how to perform animations with jQuery, there are additional details about both objects that you must be aware of.
The first argument to animate()
must be an object. The property names for this object must be CSS attribute names, and the values of those properties must be the target values toward which the animation will move. Only numeric properties can be animated: it is not possible to animate colors, fonts, or enumerated properties such as display
. If the value of a property is a number, pixels are assumed. If the value is a string, you may specify units. If you omit the units, pixels are again assumed. To specify relative values, prefix the value string with “+=” to increase the value or with “-=” to decrease the value. For example:
Note the use of the quotes around the property name “margin-left” in the object literal above. The hyphen in this property name means that it is not a legal JavaScript identifier, so it must be quoted here. jQuery also allows you to use the mixed-case alternative marginLeft
, of course.
In addition to numeric values (with optional units and “+=” and “-=” prefixes), there are three other values that can be used in jQuery animation objects. The value “hide” will save the current state of the property and then animate that property toward 0. The value “show” will animate a CSS property toward its saved value. If an animation uses “show”, jQuery will call the show()
method when the animation completes. And if an animation uses “hide”, jQuery will call hide()
when the animation completes. You can also use the value “toggle” to perform either a show or a hide, depending on the current setting of the attribute. You can produce a “slideRight” effect (like the slideUp()
method, but animating element width) like this:
Replace the property values with “show” or “toggle” to produce sideways slide effects analogous to slideDown()
and slideToggle()
.
The second argument to animate()
is an optional object that holds options that specify how the animation is performed. You’ve already seen two of the most important options. The duration
property specifies the length of the animation in milliseconds, or as the string “fast” or “slow”, or any name you’ve defined in jQuery.fx.speeds
.
Another option you’ve already seen is the complete
property: it specifies a function that will be called when the animation is complete. A similar property, step
, specifies a function that is called for each step or frame of the animation. The element being animated is the this
value, and the current value of the property being animated is passed as the first argument.
The queue
property of the options object specifies whether the animation should be queued—whether it should be deferred until any pending animations have completed. All animations are queued by default. Set the queue
property to false
to disable queuing. Unqueued animations start immediately. Subsequent queued animations are not deferred for unqueued animations. Consider the following code:
The fadeIn()
and fadeOut()
effects are queued, but the call to animate()
(which animates the width
property for 1000ms) is not queued. The width animation begins at the same time the fadeIn()
effect begins. The fadeOut()
effect begins as soon as the fadeIn()
effect ends: it does not wait for the width animation to complete.
The straightforward but naive way to perform animations involves a linear mapping between time and the value being animated. If we are 100ms into a 400ms animation, for example, the animation is 25 percent done. If we are animating the opacity
property from 1.0 to 0.0 (for a fadeOut()
call, perhaps) in a linear animation, the opacity should be at 0.75 at this point of the animation. It turns out, however, that visual effects are more pleasing if they are not linear. So jQuery interposes an “easing function” that maps from a time-based completion percentage to the desired effect percentage. jQuery calls the easing function with a time-based value between 0 and 1. It returns another value between 0 and 1 and jQuery computes the value of the CSS property based on this computed value. Generally, easing functions are expected to return 0 when passed the value 0 and 1 when passed the value 1, of course, but they can be nonlinear between those two values and this nonlinearity makes the animation appear to accelerate and decelerate.
jQuery’s default easing function is a sinusoid: it starts off slow, then speeds up, then slows down again to “ease” the animation to its final value. jQuery gives its easing functions names. The default one is named “swing”, and jQuery also implements a linear function named “linear”. You can add your own easing functions to the jQuery.easing
object:
The jQuery UI library and a plug-in known simply as “the jQuery Easing Plugin” define a comprehensive set of additional easing functions.
The remaining animation options involve easing functions. The easing
property of the options object specifies the name of an easing function. By default, jQuery uses the sinusoidal function it calls “swing”. If you want your animations to be linear, use an options object like this:
Recall that the duration
, easing
, and complete
options can also be specified by arguments to animate()
instead of passing an options object. So the animation above could also be written like this:
Finally, jQuery’s animation framework even allows you to specify different easing functions for the different CSS properties you want to animate. There are two different ways to achieve this, demonstrated by the code below:
jQuery defines a few more animation and queue-related methods that you should know about. The stop()
method is first: it stops any currently executing animations on the selected elements. stop()
accepts two optional boolean arguments. If the first argument is true
, the animation queue will be cleared for the selected elements: this will cancel any pending animations as well as stopping the current one. The default is false
: if this argument is omitted, queued animations are not canceled. The second argument specifies whether the CSS properties being animated should be left as they are currently or whether they should be set to their final target values. Passing true
sets them to their final values. Passing false (or omitting the argument) leaves them at whatever their current value is.
When animations are triggered by user events, you may want to cancel any current or queued animations before beginning a new one. For example:
The second animation-related method we’ll cover here is delay()
. This simply adds a timed delay to the animation queue: pass a duration in milliseconds (or a duration string) as the first argument and a queue name as the optional second argument (the second argument is not normally needed: we’ll talk about queue names below). You can use delay()
in compound animations like this one:
In the stop()
method example above, we used mouseover and mouseout events to animate the opacity of images. We can refine that example by adding a short delay before beginning the animation. That way, if the mouse quickly moves through an image without stopping, no distracting animation occurs:
The final animation-related methods are ones that give low-level access to the jQuery queuing mechanism. jQuery queues are lists of functions to be executed in sequence. Each queue is associated with a document element (or the Document or Window objects) and each element’s queues are independent of the queues of other elements. You can add a new function to the queue with the queue()
method. When your function reaches the head of the queue, it will be automatically dequeued and invoked. When your function is invoked, the this
value is the element with which it is associated. Your function will be passed a function as its single argument. When your function has completed its operation, it must invoke the function that was passed to it. This runs the next operation in the queue, and if you don’t call the function, the queue will stall and queued functions will never get invoked.
We’ve seen that you can pass a callback function to jQuery’s effect methods in order to perform some kind of action after the effect completes. You can achieve the same effect by queuing up your function:
The function argument to queued functions is a new feature in jQuery 1.4. In code written for earlier versions of the library, queued functions dequeue the next function “manually” by calling the dequeue()
method:
If there is nothing in the queue, calling dequeue()
does nothing. Otherwise, it removes a function from the head of the queue and invokes it, setting the this
value and passing the function described above.
There are a few more heavy-handed ways to manipulate the queue as well. clearQueue()
clears the queue. Passing an array of functions to queue()
instead of a single function replaces the queue with the new array of functions. And calling queue()
with neither a function nor an array of functions returns the current queue as an array. Also, jQuery defines versions of the queue()
and dequeue()
methods as utility functions. If you want to add the function f
to the queue for an element e
, you can use either the method or the function:
Finally, note that queue()
, dequeue()
, and clearQueue()
all take an optional queue name as their first argument. jQuery’s effects and animation methods use a queue named “fx”, and this is the queue that is used if you do not specify a queue name. jQuery’s queue mechanism is useful whenever you need to perform asynchronous operations sequentially: instead of passing a callback function to each asynchronous operation so that it can trigger the next function in the sequence, you can use a queue to manage the sequence instead. Simply pass a queue name other than “fx”, and remember that queued functions do not execute automatically. You must explicitly call dequeue()
to run the first one, and each operation must dequeue the next one when it finishes.
Ajax is the popular name for web application programming techniques that use HTTP scripting (see Chapter 18) to load data as needed, without causing page refreshes. Because Ajax techniques are so useful in modern web apps, jQuery includes Ajax utilities to simplify them. jQuery defines one high-level utility method and four high-level utility functions. These high-level utilities are all based on a single powerful low-level function, jQuery.ajax()
. The subsections that follow describe the high-level utilities first, and then cover the jQuery.ajax()
function in detail. In order to fully understand the operation of the high-level utilities, you’ll need to understand jQuery.ajax()
, even if you never need to use it explicitly.
The load()
method is the simplest of all jQuery utilities: pass it a URL and it will asynchronously load the content of that URL and then insert that content into each of the selected elements, replacing any content that is already there. For example:
We also saw the load()
method in Simple Event Handler Registration, where it was used to register a handler for load events. If the first argument to this method is a function instead of a string, it behaves as an event handler registration method instead of as an Ajax method.
If you only want to display a portion of the loaded document, add a space to the URL and follow it with a jQuery selector. When the URL has loaded, the selector you specified will be used to select the portions of the loaded HTML to be displayed:
Note that the selector at the end of this URL looks very much like a fragment identifier (the hash
portion of the URL described in Browser Location and Navigation). The space is required, however, if you want jQuery to insert only the selected portion (or portions) of the loaded document.
The load()
method accepts two optional arguments in addition to the required URL. The first is data to append to the URL or to send along with the request. If you pass a string, it is appended to the URL (after a ?
or &
as needed). If you pass an object, it is converted to a string of ampersand-separated name=value pairs and sent along with the request. (The details of object-to-string conversion for Ajax are in the sidebar of jQuery.getJSON()). The load()
method normally makes an HTTP GET request, but if you pass a data object, it makes a POST request instead. Here are two examples:
Another optional argument to load()
is a callback function that will be invoked when the Ajax request completes successfully or unsuccessfully and (in the case of success) after the URL has been loaded and inserted into the selected elements. If you don’t specify any data, you can pass this callback function as the second argument. Otherwise, it should be the third argument. The callback you specify will be invoked once as a method of each of the elements in the jQuery object and will be passed three arguments to each invocation: the complete text of the loaded URL, a status code string, and the XMLHttpRequest object that was used to load the URL. The status argument is a jQuery status code, not an HTTP status code, and it will be a string like “success”, “error”, or “timeout”.
All of jQuery’s Ajax utilities, including the load()
method, invoke callback functions to provide asynchronous notification of the success or failure of the request. The second argument to these callbacks is a string with one of the following values:
Indicates that the request completed successfully.
This code indicates that the request completed normally but that the server sent an HTTP 304 “Not Modified” response, indicating that the requested URL has not changed since it was last requested. This status code only occurs if you set theifModified
option to true. (See Common Options.) jQuery 1.4 considers a “notmodified” status code a success, but earlier versions consider it an error.
Indicates that the request did not complete successfully, because of an HTTP error of some sort. For more details, you can check the HTTP status code in the XMLHttpRequest object, which is also passed to each callback.
If an Ajax request does not complete within the timeout interval that you select, the error callback is invoked with this status code. By default, jQuery Ajax requests do not time out; you’ll only see this status code if you set thetimeout
option (Common Options).
This status code indicates that the HTTP request completed successfully, but that jQuery could not parse it in the way it expected to. This status code occurs if the server sends a malformed XML document or malformed JSON text, for example. Note that this status code is “parsererror”, not “parseerror”.
The other high-level jQuery Ajax utilities are functions, not methods, and are invoked directly through jQuery
or $
, not on a jQuery object. jQuery.getScript()
loads and executes files of JavaScript code. jQuery.getJSON()
loads a URL, parses it as JSON, and passes the resulting object to the callback you specify. Both of these functions call jQuery.get()
, which is a more general-purpose URL fetching function. Finally, jQuery.post()
works just like jQuery.get()
, but it performs an HTTP POST request instead of a GET. Like the load()
method, all of these functions are asynchronous: they return to their caller before anything is loaded and notify you of the results by invoking a callback function you specify.
The jQuery.getScript()
function takes the URL of a file of JavaScript code as its first argument. It asynchronously loads and then executes that code in the global scope. It can work for both same-origin and cross-origin scripts:
You can pass a callback function as the second argument, and if you do, jQuery will invoke that function once after the code has been loaded and executed.
jQuery.getScript()
normally uses an XMLHttpRequest object to fetch the text of the script to be executed. But for cross-domain requests (when the script is served by a server other than the one that served the current document), jQuery loads the script with a <script>
element (see HTTP by <script>: JSONP). In the same-origin case, the first argument to your callback is the text of the script, the second argument is the status code “success”, and the third argument is the XMLHttpRequest object used to fetch the text of the script. The return value of jQuery.getScript()
is also the XMLHttpRequest object in this case. For cross-origin requests, there is no XMLHttpRequest object, and the text of the script is not captured. In this case, the callback function is called with its first and third arguments undefined
, and the return value of jQuery.getScript()
is also undefined
.
The callback function you pass to jQuery.getScript()
is invoked only if the request completes successfully. If you need to be notified of errors as well as success, you’ll need to use the lower-level jQuery.ajax()
function. The same is true of the three other utility functions described in this section.
jQuery.getJSON()
is like jQuery.getScript()
: it fetches text and then processes it specially before invoking the callback you specify. Instead of executing the text as a script, jQuery.getJSON()
parses it as JSON (using the jQuery.parseJSON()
function: see Utility Functions). jQuery.getJSON()
is only useful when passed a callback argument. If the URL is loaded successfully and if its content is successfully parsed as JSON, the resulting object will be passed as the first argument to the callback function. As with jQuery.getScript()
, the second and third arguments to the callback are the status code “success” and the XMLHttpRequest object:
Unlike jQuery.getScript()
, jQuery.getJSON()
accepts an optional data argument like the one passed to the load()
method. If you pass data to jQuery.getJSON()
, it must be the second argument and the callback must be the third. If you do not pass any data, the callback may be the second argument. If the data is a string, it is appended to the URL, following a ?
or &
. If the data is an object, it is converted to a string (see the sidebar) and then appended to the URL.
Most of jQuery’s Ajax methods accept an argument (or an option) that specifies data to send to the server along with the URL. Usually this data takes the form of URL-encoded name=value
pairs separated from each other by ampersands. (This data format is known by the MIME type “application/x-www-form-urlencoded”. You can think of it as an analog of JSON: a format for converting simple JavaScript objects to and from strings.) For HTTP GET requests, this string of data is appended to the request URL. For POST requests, it is sent as the request body, after all the HTTP headers are sent.
One way to obtain a string of data in this format is to call the serialize()
method of a jQuery object that contains forms or form elements. To submit an HTML form using the load()
method, for example, you might use code like this:
If you set the data argument (or option) of a jQuery Ajax function to an object rather than a string, jQuery will normally (with an exception described below) convert that object to a string for you by calling jQuery.param()
. This utility function treats object properties as name=value pairs and converts the object {x:1,y:"hello"}
, for example, to the string "x=1&y=hello"
.
In jQuery 1.4, jQuery.param()
handles more complicated JavaScript objects. If the value of an object property is an array, each element of that array will have its own name/value pair in the resulting string and the property name will have square brackets appended. And if the value of a property is an object, the property names of that nested object are placed in square brackets and appended to the outer property name. For example:
For backward compatibility with jQuery 1.3 and before, you can pass true
as the second argument to jQuery.param()
or set the traditional
option to true
. This will prevent the advanced serialization of properties whose values are arrays or objects.
Occasionally, you may want to pass a Document (or some other object that should not be automatically converted) as the body of a POST request. In this case you can set the contentType
option to specify the type of your data and set the processData
option to false
, to prevent jQuery from passing your data object to jQuery.param()
.
If either the URL or data string passed to jQuery.getJSON()
contains the string “=?” at the end of the string or before an ampersand, it is taken to specify a JSONP request. (See HTTP by <script>: JSONP for an explanation of JSONP.) jQuery will replace the question mark with the name of a callback function it creates, and jQuery.getJSON()
will then behave as if a script is being requested rather than a JSON object. This does not work for static JSON data files: it only works with server-side scripts that support JSONP. Because JSONP requests are handled as scripts, however, it does mean that JSON-formatted data can be requested cross-domain.
jQuery.get()
and jQuery.post()
fetch the content of the specified URL, passing the specified data, if any, and pass the result to the specified callback. jQuery.get()
does this using an HTTP GET request and jQuery.post()
uses a POST request, but otherwise these two utility functions are the same. These two methods take the same three arguments that jQuery.getJSON()
does: a required URL, an optional data string or object, and a technically optional but almost always used callback function. The callback function is invoked with the returned data as its first argument, the string “success” as its second, and the XMLHttpRequest (if there was one) as its third:
In addition to the three arguments described above, these two methods accept a fourth optional argument (passed as the third argument if the data is omitted) that specifies the type of the data being requested. This fourth argument affects the way the data is processed before being passed to your callback. The load()
method uses the type “html”, jQuery.getScript()
uses the type “script”, and jQuery.getJSON()
uses the type “json”. jQuery.get()
and jQuery.post()
are more flexible than those special-purpose utilities, however, and you can specify any of these types. The legal values for this argument, as well as jQuery’s behavior when you omit the argument, are explained in the sidebar.
You can pass any of the following six types as an argument to jQuery.get()
or jQuery.post()
. Additionally, as we’ll see below, you can pass one of these types to jQuery.ajax()
using the dataType
option:
"text"
Returns the server’s response as plain text with no processing.
"html"
This type works just like “text”: the response is plain text. Theload()
method uses this type and inserts the returned text into the document itself.
"xml"
The URL is assumed to refer to XML-formatted data, and jQuery uses theresponse
XML
property of the XMLHttpRequest object instead of theresponseText
property. The value passed to the callback is a Document object representing the XML document instead of a string holding the document text.
"script"
The URL is assumed to reference a file of JavaScript, and the returned text is executed as a script before being passed to the callback.jQuery.getScript()
uses this type. When the type is “script”, jQuery can handle cross-domain requests using a<script>
element instead of an XMLHttpRequest object.
"json"
The URL is assumed to reference a file of JSON-formatted data. The value passed to the callback is the object obtained by parsing the URL contents withjQuery.
parse
JSON()
(Utility Functions).jQuery.getJSON()
uses this type. If the type is “json” and the URL or data string contains"=?"
, the type is converted to “jsonp”.
"jsonp"
The URL is assumed to refer to a server-side script that supports the JSONP protocol for passing JSON-formatted data as an argument to a client-specified function. (See HTTP by <script>: JSONP for more on JSONP.) This type passes the parsed object to the callback function. Because JSONP requests can be made with<script>
elements, this type can be used to make cross-domain requests, like the “script” type can. When you use this type, your URL or data string should typically include a parameter like"&jsonp=?"
or"&callback=?"
. jQuery will replace the question mark with the name of an automatically generated callback function. (But see thejsonp
andjsonpCallback
options in Uncommon options and hooks for alternatives.)
If you do not specify one of these types when you invoke a jQuery.get()
, jQuery.post()
, or jQuery.ajax()
, jQuery examines the Content-Type header of the HTTP response. If that header includes the string “xml”, an XML document is passed to the callback. Otherwise, if the header includes the string “json”, the data is parsed as JSON and the parsed object is passed to the callback. Otherwise, if the header includes the string “javascript”, the data is executed as a script. Otherwise, the data is treated as plain text.
All of jQuery’s Ajax utilities end up invoking jQuery.ajax()
—the most complicated function in the entire library. jQuery.ajax()
accepts just a single argument: an options object whose properties specify many details about how the Ajax request is to be performed. A call to jQuery.getScript(url,callback)
, for example, is equivalent to this jQuery.ajax()
invocation:
You can set these five fundamental options with jQuery.get()
and jQuery.post()
. jQuery.ajax()
supports quite a few other options, however, if you invoke it directly. The options (including the basic five shown above) are explained in detail below.
Before we dive into the options, note that you can set defaults for any of these options by passing an options object to jQuery.ajaxSetup()
:
After running the code above, the specified timeout
and cache
options will be used for all Ajax requests (including high-level ones like jQuery.get()
and the load()
method) that do not specify their own values for these options.
While reading about jQuery’s many options and callbacks in the sections that follow, you may find it helpful to refer to the sidebars about jQuery’s Ajax status code and data type strings in The load() Method and jQuery.get() and jQuery.post().
jQuery 1.5, which was released as this book was going to press, features a rewritten Ajax module, with several convenient new features. The most important is that jQuery.ajax()
and all of the Ajax utility functions described earlier now return a jqXHR object. This object simulates the XMLHttpRequest API, even for requests (like those made with $.getScript()
) that do not use an XMLHttpRequest object. Furthermore, the jqXHR object defines success()
, error()
methods that you can use to register callback functions to be invoked when the request succeeds or fails. So instead of passing a callback to jQuery.get()
, for example, you might instead pass it to the success()
method of the jqXHR object returned by that utility function:
The most commonly used jQuery.ajax()
options are the following:
type
Specifies the HTTP request method. The default is “GET”. “POST” is another commonly used value. You can specify other HTTP request methods, such as “DELETE” and “PUT”, but not all browsers support them. Note that this option is misleadingly named: it has nothing to do with the data type of the request or response, and “method” would be a better name.
url
The URL to be fetched. For GET requests, thedata
option will be appended to this URL. jQuery may add parameters to the URL for JSONP requests and when thecache
option isfalse
.
data
Data to be appended to the URL (for GET requests) or sent in the body of the request (for POST requests). This can be a string or an object. Objects are usually converted to strings as described in the sidebar of jQuery.getJSON(), but see theprocessData
option for an exception.
dataType
Specifies the type of data expected in the response, and the way that that data should be processed by jQuery. Legal values are “text”, “html”, “script”, “json”, “jsonp”, and “xml”. The meanings of these values were explained in the sidebar in jQuery.get() and jQuery.post(). This option has no default value. When left unspecified, jQuery examines theContent-Type
header of the response to determine what to do with the returned data.
contentType
Specifies the HTTPContent-Type
header for the request. The default is “application/x-www-form-urlencoded”, which is the normal value used by HTML forms and most server-side scripts. If you have settype
to “POST” and want to send plain text or an XML document as the request body, you also need to set this option.
timeout
A timeout, in milliseconds. If this option is set and the request has not completed within the specified timeout, the request will be aborted and theerror
callback will be called with status “timeout”. The default timeout is 0, which means that requests continue until they complete and are never aborted.
cache
For GET requests, if this option is set tofalse
, jQuery will add a_=
parameter to the URL or replace an existing parameter with that name. The value of this parameter is set to the current time (in millisecond format). This defeats browser-based caching, since the URL will be different each time the request is made.
ifModified
When this option is set totrue
, jQuery records the values of theLast-Modified
andIf-None-Match
response headers for each URL it requests and then sets those headers in any subsequent requests for the same URL. This instructs the server to send an HTTP 304 “Not Modified” response if the URL has not changed since the last time it was requested. By default, this option is unset and jQuery does not set or record these headers.jQuery translates an HTTP 304 response to the status code “notmodified”. The “notmodified” status is not considered an error, and this value is passed to thesuccess
callback instead of the normal “success” status code. Thus, if you set theifModified
option, you must check the status code in your callback—if the status is “notmodified”, the first argument (the response data) will be undefined. Note that in versions of jQuery before 1.4, a HTTP 304 code was considered an error and the “notmodified” status code was passed to the error callback instead of the success callback. See the sidebar in The load() Method for more on jQuery’s Ajax status codes.
global
This option specifies whether jQuery should trigger events that describe the progress of the Ajax request. The default istrue
; set this option tofalse
to disable all Ajax-related events. (See Ajax Events for full event details.) The name of this option is confusing: it is named “global” because jQuery normally triggers its events globally rather than on a specific object.
The following options specify functions to be invoked at various stages during the Ajax request. The success
option is already familiar: it is the callback function that you pass to methods like jQuery.getJSON()
. Note that jQuery also sends notification about the progress of an Ajax request as events (unless you have set the global
option to false
) .
context
This option specifies the object to be used as the context—thethis
value—for invocations of the various callback functions. This option has no default value, and if left unset, callbacks are invoked on the options object that holds them. Setting thecontext
option also affects the way Ajax events are triggered (see Ajax Events). If you set it, the value should be a Window, Document, or Element on which events can be triggered.
beforeSend
This option specifies a callback function that will be invoked before the Ajax request is sent to the server. The first argument is the XMLHttpRequest object and the second argument is the options object for the request. ThebeforeSend
callback gives programs the opportunity to set custom HTTP headers on theXMLHttp
Request
object. If this callback function returnsfalse
, the Ajax request will be aborted. Note that cross-domain “script” and “jsonp” requests do not use an XMLHttpRequest object and do not trigger thebeforeSend
callback.
success
This option specifies the callback function to be invoked when an Ajax request completes successfully. The first argument is the data sent by the server. The second argument is the jQuery status code, and the third argument is the XMLHttpRequest object that was used to make the request. As explained in jQuery.get() and jQuery.post(), the type of the first argument depends on thedataType
option or on theContent-Type
header of the server’s response. If the type is “xml”, the first argument is a Document object. If the type is “json” or “jsonp”, the first argument is the object that results from parsing the server’s JSON-formatted response. If the type was “script”, the response is the text of the loaded script (that script will already have been executed, however, so the response can usually be ignored in this case). For other types, the response is simply the text of the requested resource.The second argument status code is normally the string “success”, but if you have set theifModified
option, this argument might be “notmodified” instead. In this case, the server does not send a response and the first argument is undefined. Cross-domain requests of type “script” and “jsonp” are performed with a<script>
element instead of an XMLHttpRequest, so for those requests, the third argument will be undefined.
error
This option specifies the callback function to be invoked if the Ajax request does not succeed. The first argument to this callback is the XMLHttpRequest object of the request (if it used one). The second argument is the jQuery status code. This may be “error” for an HTTP error, “timeout” for a timeout, and “parsererror” for an error that occurred while parsing the server’s response. If an XML document or JSON object is not well-formed, for example, the status code will be “parsererror”. In this case, the third argument to theerror
callback will be the Error object that was thrown. Note that requests withdataType
“script” that return invalid JavaScript code do not cause errors. Any errors in the script are silently ignored, and thesuccess
callback is invoked instead of theerror
callback.
complete
This option specifies a callback function to be invoked when the Ajax request is complete. Every Ajax request either succeeds and calls thesuccess
callback or fails and calls theerror
callback. jQuery invokes thecomplete
callback after invoking eithersuccess
orerror
. The first argument to thecomplete
callback is the XMLHttpRequest object, and the second is the status code.
The following Ajax options are not commonly used. Some specify options that you are not likely to set and others provide customization hooks for those who need to modify jQuery’s default handling of Ajax requests.
async
Scripted HTTP requests are asynchronous by their very nature. The XMLHttpRequest object provides an option to block until the response is received, however. Set this option tofalse
if you want jQuery to block. Setting this option does not change the return value ofjQuery.ajax()
: the function always returns the XMLHttpRequest object, if it used one. For synchronous requests, you can extract the server’s response and HTTP status code from the XMLHttpRequest object yourself, or you can specify acomplete
callback (as you would for an asynchronous request) if you want jQuery’s parsed response and status code.
dataFilter
This option specifies a function to filter or preprocess the data returned by the server. The first argument will be the raw data from the server (either as a string or Document object for XML requests) and the second argument will be the value of thedataType
option. If this function is specified, it must return a value, and that value will be used in place of the server’s response. Note that thedataFilter
function is invoked before JSON parsing or script execution is performed. Also note thatdataFilter
is not invoked for cross-origin “script” and “jsonp” requests.
jsonp
When you set thedataType
option to “jsonp”, yoururl
ordata
option usually includes a parameter like “jsonp=?”. If jQuery does not find such a parameter in the URL or data, it inserts one, using this option as the parameter name. The default value of this option is “callback”. Set this option if you are using JSONP with a server that expects a different parameter name and have not already encoded that parameter into your URL or data. See HTTP by <script>: JSONP for more about JSONP.
jsonpCallback
For requests withdataType
“jsonp” (or type “json” when the URL includes a JSONP parameter like “jsonp=?”), jQuery must alter the URL to replace the question mark with the name of the wrapper function that the server will pass its data to. Normally, jQuery synthesizes a unique function name based on the current time. Set this option if you want to substitute your own function for jQuery’s. If you do this, however, it will prevent jQuery from invoking thesuccess
andcomplete
callbacks and from triggering its normal events.
processData
When you set thedata
option to an object (or pass an object as the second argument tojQuery.get()
and related methods), jQuery normally converts that object to a string in the standard HTML “application/x-www-form-urlencoded” format (see the sidebar in jQuery.getJSON()). If you want to avoid this step (such as when you want to pass a Document object as the body of a POST request), set this option tofalse
.
scriptCharset
For cross-origin “script” and “jsonp” requests that use a<script>
element, this option specifies the value of thecharset
attribute of that element. It has no effect for regular XMLHttpRequest-based requests.
traditional
jQuery 1.4 altered slightly the way that data objects were serialized to “application/x-www-form-urlencoded” strings (see the sidebar in jQuery.getJSON() for details). Set this option totrue
if you need jQuery to revert to its old behavior.
username
, password
If a request requires password-based authentication, specify the username and password using these two options.
xhr
This option specifies a factory function for obtaining an XMLHttpRequest. It is invoked with no arguments and must return an object that implements the XMLHttpRequest API. This very low-level hook allows you create your own wrapper around XMLHttpRequest, adding features or instrumentation to its methods.
Callbacks explained that jQuery.ajax()
has four callback options: beforeSend
, success
, error
, and complete
. In addition to invoking these individually specified callback functions, jQuery’s Ajax functions also fire custom events at each of the same stages in a Ajax request. The following table shows the callback options and the corresponding events:
Callback | Event Type | Handler Registration Method |
---|---|---|
beforeSend | “ajaxSend” | ajaxSend() |
success | “ajaxSuccess” | ajaxSuccess() |
error | “ajaxError” | ajaxError() |
complete | “ajaxComplete” | ajaxComplete() |
| “ajaxStart” | ajaxStart() |
| “ajaxStop” | ajaxStop() |
You can register handlers for these custom Ajax events using the bind()
method (Advanced Event Handler Registration) and the event type string shown in the second column or using the event registration methods shown in the third column. ajaxSuccess()
and the other methods work just like the click()
, mouseover()
, and other simple event registration methods of Simple Event Handler Registration.
Since the Ajax events are custom events, generated by jQuery rather than the browser, the Event object passed to the event handler does not contain much useful detail. The ajaxSend, ajaxSuccess, ajaxError, and ajaxComplete events are all triggered with additional arguments, however. Handlers for these events will all be invoked with two extra arguments after the event. The first extra argument is the XMLHttpRequest object and the second extra argument is the options object. This means, for example, that a handler for the ajaxSend event can add custom headers to an XMLHttpRequest object just like the beforeSend
callback can. The ajaxError event is triggered with a third extra argument, in addition to the two just described. This final argument to the event handler is the Error object, if any, that was thrown when the error occurred. Surprisingly, these Ajax events are not passed jQuery’s status code. If the handler for an ajaxSuccess event needs to distinguish “success” from “notmodified”, for example, it will need to examine the raw HTTP status code in the XMLHttpRequest object.
The last two events listed in the table above are different from the others, most obviously because they have no corresponding callback functions, and also because they are triggered with no extra arguments. ajaxStart and ajaxStop are a pair of events that indicate the start and stop of Ajax-related network activity. When jQuery is not performing any Ajax requests and a new request is initiated, it fires an ajaxStart event. If other requests begin before this first one ends, those new requests do not cause a new ajaxStart event. The ajaxStop event is triggered when the last pending Ajax request is completed and jQuery is no longer performing any network activity. This pair of events can be useful to show and hide some kind of “Loading...” animation or network activity icon. For example:
These ajaxStart and ajaxStop event handlers can be bound to any document element: jQuery triggers them globally (Triggering Events) rather than on any one particular element. The other four Ajax events, ajaxSend, ajaxSuccess, ajaxError, and ajaxComplete, are also normally triggered globally, so you can bind handlers to any element. If you set the context
option in your call to jQuery.ajax()
, however, these four events are triggered on the context element rather than globally.
Finally, remember that you can prevent jQuery from triggering any Ajax-related events by setting the global
option to false
. Despite its confusing name, setting global
to false
stops jQuery from triggering events on a context
object as well as stopping jQuery from triggering events globally.
The jQuery library defines a number of utility functions (as well as two properties) that you may find useful in your programs. As you’ll see in the list below, a number of these functions now have equivalents in ECMAScript 5 (ES5). jQuery’s functions predate ES5 and work in all browsers. In alphabetical order, the utility functions are:
jQuery.browser
Thebrowser
property is not a function but an object that you can use for client sniffing (Browser Testing). This object will have the propertymsie
set totrue
if the browser is IE. Themozilla
property will be true if the browser is Firefox or related. Thewebkit
property will be true for Safari and Chrome, and theopera
property will be true for Opera. In addition to this browser-specific property, theversion
property contains the browser version number. Client sniffing is best avoided whenever possible, but you can use this property to work around browser-specific bugs with code like this:if ($.browser.mozilla && parseInt($.browser.version) < 4) {
// Work around a hypothetical Firefox bug here...
}
jQuery.contains()
jQuery.each()
Unlike theeach()
method which iterates only over jQuery objects, thejQuery.each()
utility function iterates through the elements of an array or the properties of an object. The first argument is the array or object to be iterated. The second argument is the function to be called for each array element or object property. That function will be invoked with two arguments: the index or name of the array element or object property, and the value of the array element or object property. Thethis
value for the function is the same as the second argument. If the function returnsfalse
,jQuery.each()
returns immediately without completing the iteration.jQuery.each()
always returns its first argument.jQuery.each()
enumerates object properties with an ordinaryfor/in
loop, so all enumerable properties are iterated, even inherited properties.jQuery.each()
enumerates array elements in numerical order by index and does not skip the undefined properties of sparse arrays.
jQuery.extend()
This function expects objects as its arguments. It copies the properties of the second and subsequent objects into the first object, overwriting any properties with the same name in the first argument. This function skips any properties whose value isundefined
ornull
. If only one object is passed, the properties of that object are copied into thejQuery
object itself. The return value is the object into which properties were copied. If the first argument is the valuetrue
, a deep or recursive copy is performed: the second argument is extended with the properties of the third (and any subsequent) objects.This function is useful for cloning objects and for merging options objects with sets of defaults:var clone = jQuery.extend({}, original);
var options = jQuery.extend({}, default_options, user_options);
jQuery.globalEval()
jQuery.grep()
This function is like the ES5filter()
method of the Array object. It expects an array as its first argument and a predicate function as its second, and it invokes the predicate once for each element in the array, passing the element value and the element index.jQuery.grep()
returns a new array that contains only those elements of the argument array for which the predicate returnedtrue
(or another truthy value). If you passtrue
as the third argument tojQuery.grep()
, it inverts the sense of the predicate and returns an array of elements for which the predicate returnedfalse
or another falsy value.
jQuery.inArray()
jQuery.isArray()
jQuery.isEmptyObject
jQuery.isFunction()
jQuery.isPlainObject()
jQuery.makeArray()
jQuery.map()
This function is like the ES5map()
method of the Array object. It expects an array or array-like object as its first argument and a function as its second. It passes each array element along with the index of that element to the function and returns a new array that collects the values returned by the function.jQuery.map()
differs from the ES5map()
method in a couple of ways. If your mapping function returnsnull
, that value will not be included in the result array. And if your mapping function returns an array, the elements of that array will be added to the result rather than the array itself.
jQuery.merge()
This function expects two arrays or array-like objects. It appends the elements of the second to the first and returns the first. The first array is modified, the second is not. Note that you can use this function to shallowly clone an array like this:var clone = jQuery.merge([], original);
jQuery.parseJSON()
jQuery.proxy()
This function is something like the ES5bind()
(The bind() Method) method of the Function object. It takes a function as its first argument and an object as its second and returns a new function that invokes the function as a method of the object. It does not perform partial application of arguments like thebind()
method does.jQuery.proxy()
can also be invoked with an object as its first argument and a property name as its second. The value of the named property should be a function. Invoked in this way, the functionjQuery.proxy(o,n)
returns the same thing thatjQuery.proxy(o[n],o)
does.jQuery.proxy()
is intended for use with jQuery’s event handler binding mechanism. If you bind a proxied function, you can unbind it using the original function.
jQuery.support
This is a property likejQuery.browser
, but it is intended for portable feature testing (Feature Testing) rather than more brittle browser testing. The value ofjQuery.support
is an object whose properties are all boolean values that specify the presence or absence of browser features. Most of thesejQuery.support
properties are low-level details used internally by jQuery. They may be of interest to plug-in writers, but most are not generally useful to application writers. One exception isjQuery.
support.
boxModel
: this property istrue
if the browser uses the CSS standard “context-box” model and isfalse
in IE6 and IE7 in quirks mode (see The border-box model and the box-sizing property).
jQuery.trim()
Throughout this chapter, we’ve been using the jQuery selection function, $()
, with simple CSS selectors. It is now time to study the jQuery selector grammar in depth, along with a number of methods for refining and augmenting the set of selected elements.
jQuery supports a fairly complete subset of the selector grammar defined by the CSS3 Selectors draft standard, with the addition of some nonstandard but very useful pseudoclasses. Basic CSS selectors were described in Selecting Elements with CSS Selectors. We repeat that material here, and add explanations for more advanced selectors as well. Bear in mind that this section documents jQuery selectors. Many, but not all, of these selectors can also be used in CSS stylesheets.
The selector grammar has three layers. You’ve undoubtedly seen the simplest kind of selectors before. “#test” selects an element with an id
attribute of “test”. “blockquote” selects all <blockquote>
elements in the document, and “div.note” selects all <div>
elements with a class
attribute of “note”. Simple selectors can be combined into “selector combinations” such as “div.note>p” and “blockquote i” by separating them with a combinator character. And simple selectors and selector combinations can be grouped into comma-separated lists. These selector groups are the most general kind of selector that we pass to $()
. Before explaining selector combinations and selector groups, we must explain the syntax of simple selectors.
A simple selector begins (explicitly or implicitly) with a tag type specification. If you are only interested in <p>
elements, for example, your simple selector would begin with “p”. If you want to select elements without regard to their tagname, use the wildcard “*” instead. If a selector does not begin with either a tagname or a wildcard, the wildcard is implicit.
The tagname or wildcard specifies an initial set of document elements that are candidates for selection. The portion of the simple selector that follows this type specification consists of zero or more filters. The filters are applied left-to-right, in the order that they appear, and each one narrows the set of selected elements. Table 19-1 lists the filters supported by jQuery.
Table 19-1. jQuery Selector Filters
Filter | Meaning |
---|---|
id | Matches the element with an |
. class | Matches any elements whose |
[attr] | Matches any elements that have an |
[attr = val] | Matches any elements that have an |
[attr != val] | Matches elements that have no |
[attr ^= val] | Matches elements whose |
[attr $= val] | Matches elements whose |
[attr *= val] | Matches elements whose |
[attr ~= val] | Matches elements whose |
[attr |= val] | Matches elements whose |
:animated | Matches elements that are currently being animated by jQuery. |
:button | Matches |
:checkbox | Matches |
:checked | Matches input elements that are checked. |
:contains(text) | Matches elements that contain the specified |
:disabled | Matches disabled elements. |
:empty | Matches elements that have no children, including no text content. |
:enabled | Matches elements that are not disabled. |
:eq(n) | Matches only the |
:even | Matches elements with even indexes in the list. Since the first element has an index of 0, this actually matches the first, third, and fifth (and so on) elements (jQuery extension). |
:file | Matches |
:first | Matches only the first element in the list. Same as |
:first-child | Matches only elements that are the first child of their parent. Note that this is completely different than |
:gt(n) | Matches elements in the document-order list of matches whose zero-based index is greater than |
:has(sel) | Matches elements that have a descendant matching the nested selector |
:header | Matches any header element: |
:hidden | Matches any element that is not visible on the screen: roughly those elements whose |
:image | Matches |
:input | Matches user input elements: |
:last | Matches the last element in the list of matches (jQuery extension). |
:last-child | Matches any element that is the last child of its parent. Note that this is not the same as : |
:lt(n) | Matches all elements in the document-order list of matches whose zero-based index is less than |
:not(sel) | Matches elements that are not matched by the nested selector |
:nth(n) | A synonym for |
:nth-child(n) | Matches elements that are the Most generally, Note that this filter uses one-based indexes, so an element that is the first child of its parent is considered odd and is matched by |
:odd | Matches elements with odd (zero-based) indexes in the list. Note that elements 1 and 3 are the second and fourth matched element, respectively (jQuery extension). |
:only-child | Matches elements that are the only child of their parent. |
:parent | Matches elements that are parents. This is the opposite of |
:password | Matches |
:radio | Matches |
:reset | Matches |
:selected | Matches |
:submit | Matches |
:text | Matches |
:visible | Matches all elements that are currently visible: roughly those that have nonzero |
Notice that some of the filters listed in Table 19-1 accept arguments within parentheses. The following selector, for example, selects paragraphs that are the first or every third subsequent child of their parent, as long as they contain the word “JavaScript” and do not contain an <a>
element.
Filters typically run most efficiently if prefixed with a tag type. Rather than simply using “:radio” to select radio buttons, for example, it is better to use “input:radio”. The exception is ID filters, which are most efficient when they stand alone. The selector “#address” is typically more efficient than the more explicit “form#address”, for example.
Simple selectors can be combined using special operators or “combinators” to represent relationships between elements in the document tree. Table 19-2 lists the selector combinations supported by jQuery. These are the same selector combinations that CSS3 supports.
Table 19-2. jQuery Selector Combinations
Combination | Meaning |
---|---|
A B | Selects document elements that match selector B that are descendants of elements that match selector A. Note that the combinator character is simply whitespace for this combination. |
A > B | Selects document elements that match selector B that are direct children of elements that match selector A. |
A + B | Selects document elements that match selector B and immediately follow (ignoring text nodes and comments) elements that match selector A. |
A ~ B | Selects document elements matching B that are sibling elements that come after elements that match A. |
Here are some example selector combinations:
Note that selector combinations are not limited to combinations of two selectors: three or more selectors are allowed, too. Selector combinations are processed left to right.
A selector group, which is the kind of selector that we pass to $()
(or use in a stylesheet), is simply a comma-separated list of one or more simple selectors or selector combinations. A selector group matches all elements that match any of the selector combinations in the group. For our purposes here, even a simple selector can be considered a selector combination. Here are some example selector groups:
Note that the CSS and jQuery selector syntax uses parentheses for some of the filters in simple selectors, but it does not allow parentheses to be used more generally for grouping. You cannot put a selector group or selector combination in parentheses and treat it like a simple selector, for example:
In addition to the selector grammar supported by $()
, jQuery defines a number of selection methods. Most of the jQuery methods we’ve seen so far in this chapter perform some action on the selected elements. The selection methods are different: they alter the set of selected elements by refining it, augmenting it, or just using it as a starting point for a new selection.
This section describes these selection methods. You’ll notice that many of the methods provide the same functionality as the selector grammar itself.
The simplest way to refine a selection is by position within the selection. first()
returns a jQuery object that contains only the first selected element, and last()
returns a jQuery object that contains only the last element. More generally, the eq()
method returns a jQuery object that contains only the single selected element at the specified index. (In jQuery 1.4, negative indexes are allowed and count from the end of the selection.) Note that these methods return a jQuery object with a single element. This is different than regular array indexing, which returns a single element with no jQuery object wrapped around it:
The general method for refining a selection by position is slice()
. The jQuery slice()
method works like the Array.slice()
method: it accepts a start and an end index (with negative indexes measured from the end of the array) and returns a jQuery object that contains elements from the start index up to, but not including, the end index. If the end index is omitted, the returned object includes all elements at or after the start index:
filter()
is a general-purpose selection filtering method, and you can invoke it in three different ways:
filter()
, it returns a jQuery object containing only those selected elements that also match that selector. filter()
, it returns a new jQuery object that contains the intersection of the two jQuery objects. You can also pass an array of elements, or even a single document element, to filter()
.filter()
, that function is called for each matched element, and filter()
returns a jQuery object containing only those elements for which the predicate returned true
(or any truthy value). The predicate function is called with the element as its this
value and the element index as an argument. (See also jQuery.grep()
in Utility Functions.) The not()
method is just like filter()
, except that it inverts the sense of the filter. If you pass a selector string to not()
, it returns a new jQuery object containing only the selected elements that do not match the selector. If you pass a jQuery object or an array of elements or a single element, not()
returns all of the selected elements except for the elements you’ve explicitly excluded. If you pass a predicate function to not()
, it is invoked just as it is for filter()
, but the returned jQuery object includes only those elements for which the predicate returns false
or a falsy value:
In jQuery 1.4, the has()
method is another way to refine a selection. If you pass a selector, it returns a new jQuery object that contains only the selected elements that have a descendant that matches the selector. If you pass a document element to has()
, it refines the selection to match only those elements that are ancestors of the specified element:
The add()
method augments a selection rather than filtering or refining it. You can invoke add()
with any arguments (other than a function) that you would pass to $()
. add()
returns the originally selected elements plus whatever elements would be selected (or created) by the arguments if those arguments were passed to $()
. add()
removes duplicate elements and sorts the combined selection so that the elements are in document order:
The filter()
, add()
, and not()
methods described above perform set intersection, union, and subtraction operations on independent selections. jQuery defines a number of other selection methods that use the current selection as the context. For each selected element, these methods make a new selection using the selected element as the context or starting point, and then return a new jQuery object that contains the union of those selections. As with the add()
method, duplicates are removed and the elements are sorted so that they are in document order.
The most general of this category of selection methods is find()
. It searches the descendants of each of the currently selected elements for elements that match the specified selector string, and it returns a new jQuery object that represents that new set of matching descendants. Note that the newly selected elements are not merged with the existing selection; they are returned as a new set of elements. Note also that find()
is not the same as filter()
, which simply narrows the currently selected set of elements without selecting new elements:
The other methods in this category return new jQuery objects that represent the children, siblings, or parents of each of the currently selected elements. Most accept an optional selector string as an argument. With no selector, they return all appropriate children, siblings, or parents. With the selector, they filter the list to return only those that match.
The children()
method returns the immediate child elements of each selected element, filtering them with an optional selector:
The contents()
method is similar to children()
, but it returns all child nodes, including text nodes, of each element. Also, if any of the selected elements is an <iframe>
, contents()
returns the document object for the content of that <iframe>
. Note that contents()
does not accept an optional selector string—this is because it returns document nodes that are not elements, and selector strings only describe element nodes.
The next()
and prev()
methods return the next and previous sibling of each selected element that has one. If a selector is specified, the sibling is selected only if it matches the selector:
nextAll()
and prevAll()
return all siblings following and all siblings preceding (if there are any) each selected element. And the siblings()
method returns all siblings of each selected element (elements are not considered siblings of themselves). If a selector is passed to any of these methods, only siblings that match are returned:
In jQuery 1.4 and later, the nextUntil()
and prevUntil()
methods take a selector argument and select all siblings following or preceding the selected element until a sibling is found that matches the selector. If you omit the selector, these methods work just like nextAll()
and prevAll()
with no selector.
The parent()
method returns the parent of each selected element:
The parents()
method returns the ancestors (up to the <html>
element) of each selected element. Both parent()
and parents()
accept an optional selector string argument:
parentsUntil()
returns the ancestors of each selected element until the first ancestor that matches the specified selector. The closest()
method requires a selector string and returns the closest ancestor (if any) of each selected element that matches the selector. For this method, an element is considered an ancestor of itself. In jQuery 1.4, you can also pass an ancestor element as the second argument to closest()
, to prevent jQuery from climbing the ancestor tree beyond the specified element:
To facilitate method chaining, most jQuery object methods return the object on which they are called. The methods we’ve covered in this section all return new jQuery objects, however. Method chaining works, but you must keep in mind that methods called later in the chain may be operating on a different set of elements than those near the start of the chain.
The situation is a little more complicated than this, however. When the selection methods described here create and return a new jQuery object, they give that object an internal reference to the older jQuery object from which it was derived. This creates a linked list or stack of jQuery objects. The end()
method pops this stack, returning the saved jQuery object. Calling end()
in a method chain restores the set of matched elements to its previous state. Consider the following code:
If you ever want to manually define the set of selected elements in a way that is compatible with the end()
method, pass the new set of elements as an array or array-like object to the pushStack()
method. The elements you specify become the new selected elements, and the previous set of selected elements is pushed on the stack, where they can be restored with end()
:
Now that we’ve covered the end()
method and the selection stack that it uses, there is one final method we can cover. andSelf()
returns a new jQuery object that includes all of the elements of the current selection plus all of the elements (minus duplicates) of the previous selection. andSelf()
works like the add()
method, and “addPrev” might be a more descriptive name for it. As an example, consider the following variant on the code above: it highlights <p>
elements and the <div>
elements that hold them, and then adds a border to the <div>
elements:
jQuery is written so that it is easy to add new functionality. Modules that add new functionality are called plug-ins, and you can find many of them at http://plugins.jquery.com. jQuery plug-ins are just ordinary files of JavaScript code, and to use them in your web pages, you just include them with a <script>
element as you would any other JavaScript library (you must include plug-ins after you include jQuery itself, of course).
It is almost trivially easy to write your own jQuery extensions. The trick is to know that jQuery.fn
is the prototype object for all jQuery objects. If you add a function to this object, that function becomes a jQuery method. Here is an example:
With that jQuery.fn.println
function defined, we can now invoke a println()
method on any jQuery object like this:
It is common practice to add new methods to jQuery.fn
. If you find yourself using the each()
method to “manually” iterate through the elements in a jQuery object and perform some kind of operation on them, ask yourself whether it might make sense to re-factor your code so that the each()
invocation is moved into an extension method. If you follow basic modular coding practices when writing your extension and abide by a few jQuery-specific conventions, you can call your extension a plug-in and share it with others. These are the jQuery plug-in conventions to be aware of:
$
identifier: the including page may have called
jQuery.no
Conflict()
and $()
may no longer be a synonym for the jQuery()
function. In short plug-ins like the one shown above, you can just use jQuery
instead of $
. If you are writing a longer extension, you are likely to wrap it all within one anonymous function to avoid the creation of global variables. If you do so, you can use the idiom of passing the jQuery as an argument to your anonymous function, and receiving that value in a parameter named $
:this
object and you can return it unmodified. In the example above, the method ended with the line return this;
. The method could have been made slightly shorter (and less readable) following another jQuery idiom: returning the result of the each()
method. Then the println()
method would have included the code return this.each(function() {...});
animate()
method in Custom Animations and the jQuery.ajax()
function in The jQuery.ajax() Function). jQuery.fn
. This one method takes a string as its first argument and interprets that string as the name of a function to pass its remaining arguments to. When you are able to limit your plug-in to a single method, the name of that method should be the same as the name of the plug-in. If you must define more than one method, use the plug-in name as a prefix for each of your method names.data()
method to associate data with elements, place all of your data values in a single object, and store that object as a single value, giving it the same name as your plug-in.A plug-in can add new utility functions to jQuery by adding them to the jQuery object itself. For example:
In addition to defining new methods, it is also possible to extend other parts of the jQuery library. In Animated Effects, for example, we saw that it is possible to add new effect duration names (in addition to “fast” and “slow”) by adding properties to jQuery.fx.speeds
and that it is possible to add new easing functions by adding them to jQuery.easing
. Plug-ins can even extend the jQuery CSS selector engine! You can add new pseudoclass filters (like :first
and :input
) by adding properties to the jQuery.expr[':']
object. Here is an example that defines a new :draggable
filter that returns only elements that have a draggable=true
attribute:
With this selector defined, we can select draggable images with $("img:draggable")
instead of the more verbose $("img[draggable=true]")
.
As you can see from the code above, a custom selector function is passed a candidate DOM element as its first argument. It should return true
if the element matches the selector and false
otherwise. Many custom selectors need only the one element argument, but they are actually invoked with four arguments. The second argument is an integer index that gives the position of this element within an array of candidate elements. That array is passed as the fourth argument and your selector must not modify it. The third argument is an interesting one: it is the array result of a call to the RegExp.exec()
method. The fourth element of this array (at index 3) is the value, if any, within parentheses after the pseudoclass filter. The parentheses and any quotes inside are stripped, leaving only the argument string. Here, for example, is how you could implement a :data(
pseudoclass that returns x
)true
only for arguments that have a data-
x
attribute (see Dataset Attributes):
jQuery limits itself to providing core DOM, CSS, event handling, and Ajax functionality. These provide an excellent foundation for building higher-level abstractions, such as user interface widgets, and the jQuery UI library does just that. Full coverage of jQuery UI is beyond the scope of this book, and all we can do here is offer a simple overview. You can find the library and its documentation at http://jqueryui.com.
As its name implies, jQuery UI defines a number of user interface widgets: autocompletion input fields, date pickers for entering dates, accordions and tabs for organizing information, sliders and progress bars for visually displaying numbers, and modal dialogs for urgent communication with the user. In addition to these widgets, jQuery UI implements more general “interactions”, which allow any document element to be easily made draggable, droppable, resizable, selectable, or sortable. Finally, jQuery UI adds a number of new visual effects methods (including the ability to animate colors) to those offered by jQuery itself, and it defines lots of new easing functions as well.
Think of jQuery UI as a bunch of related jQuery plug-ins packed into a single JavaScript file. To use it, simply include the jQuery UI script in your web page after including the jQuery code. The Download page at http://jqueryui.com allows you to select the components you plan to use and will build a custom download bundle for you that may reduce your page load times compared to the full jQuery UI library.
jQuery UI is fully themeable, and its themes take the form of CSS files. So in addition to loading the jQuery UI JavaScript code into your web pages, you’ll have to include the CSS file for your selected theme as well. The jQuery UI website features a number of prebuilt themes and also a “ThemeRoller” page that allows you to customize and download your own theme.
jQuery UI widgets and interactions are structured as jQuery plug-ins, and each defines a single jQuery method. Typically, when you call this method on an existing document element, it transforms that element into the widget. For example, to alter a text input field so that it pops up a date picker widget when clicked or focused, simply call the datepicker()
method with code like this:
In order to make full use of a jQuery UI widget, you must be familiar with three things: its configuration options, its methods, and its events. All jQuery UI widgets are configurable, and some have many configuration options. You can customize the behavior and appearance of your widgets by passing an options object (like the animations options object passed to animate()
) to the widget method.
jQuery UI widgets usually define at least a handful of “methods” for interacting with the widget. In order to avoid a proliferation of jQuery methods, however, jQuery UI widgets do not define their “methods” as true methods. Each widget has only a single method (like the datepicker()
method in the example above). When you want to call a “method” of the widget, you pass the name of the desired “method” to the single true method defined by the widget. To disable a date picker widget, for example, you don’t call a disableDatepicker()
method; instead, you call datepicker
("disable")
.
jQuery UI widgets generally define custom events that they trigger in response to user interaction. You can bind event handlers for these custom events with the normal bind()
method, and you can also usually specify event handler functions as properties in the options object you pass to the widget method. The first argument to these handler methods is an Event object as usual. Some widgets pass a second “UI” object as the second argument to the event handler. This object typically provides state information about the widget.
Note that the jQuery UI documentation sometimes describes “events” that are not truly custom events and could better be described as callback functions set through the configuration options object. The date picker widget, for example, supports a number of callback functions that it can call at various times. None of these functions have the standard event handler signature, however, and you cannot register handlers for these “events” with bind()
. Instead, you specify appropriate callbacks when you configure the widget in your initial call to the datepicker()
method.
Web applications can use browser APIs to store data locally on the user’s computer. This client-side storage serves to give the web browser a memory. Web apps can store user preferences, for example, or even store their complete state, so that they can resume exactly where you left off at the end of your last visit. Client-side storage is segregated by origin, so pages from one site can’t read the data stored by pages from another site. But two pages from the same site can share storage and can use it as a communication mechanism. Data input in a form on one page can be displayed in a table on another page, for example. Web applications can choose the lifetime of the data they store: data can be stored temporarily so that it is retained only until the window closes or the browser exits, or it can be saved to the hard drive and stored permanently, so that it is available months or years later.
There are a number of forms of client-side storage:
Web Storage is an API that was originally defined as part of HTML5 but was spun off as a standalone specification. That specification is still in draft form, but it is partially (and interoperably) implemented in all current browsers including IE8. This API consists of thelocalStorage
andsessionStorage
objects, which are essentially persistent associative arrays that map string keys to string values. Web Storage is very easy to use, is suitable for storing large (but not huge) amounts of data, and is available on all current browsers, but it is not supported by older browsers.localStorage
andsessionStorage
are covered in localStorage and sessionStorage.
Cookies are an old client-side storage mechanism that was designed for use by server-side scripts. An awkward JavaScript API makes cookies scriptable on the client-side, but they are hard to use and are suitable only for storing small amounts of textual data. Also, any data stored as cookies is always transmitted to the server with every HTTP request, even if the data is only of interest to the client. Cookies continue to be of interest to client-side programmers because all browsers, old and new, support them. Once Web Storage is universally available, however, cookies will revert to their original role as a client-side storage mechanism for server-side scripts. Cookies are covered in Cookies.
Microsoft implements its own proprietary client-side storage mechanism, known as “userData,” in IE5 and later. userData enables the storage of medium amounts of string data and can be used as an alternative to Web Storage in versions of IE before IE8. The userData API is covered in IE userData Persistence.
HTML5 defines an “Offline Web Applications” API that allows the caching of web pages and their associated resources (scripts, CSS files, images, and so on). This is client-side storage for web applications themselves rather than just their data, and it allows web apps to install themselves so that they are available even when there is no connection to the Internet. Offline web apps are covered in Application Storage and Offline Webapps.
Developers who need to work with really huge amounts of data like to use databases, and the most recent browsers have started to integrate client-side database functionality into their browsers. Safari, Chrome, and Opera include a client-side API to a SQL database. The standardization effort for that API has failed, however, and it is unlikely to be implemented by Firefox or IE. An alternative database API is being standardized under the name “Indexed Database API.” This is an API to a simple object database without a query language. Both of the client-side database APIs are asynchronous and require the use of event handlers, which makes them somewhat complicated. They are not documented in this chapter, but see Client-Side Databases for an overview and an example of the IndexedDB API.
Filesystem API
We saw in Chapter 18 that modern browsers support a File object that allows user-selected files to be uploaded through an XMLHttpRequest. Related draft standards define an API for obtaining a private local filesystem and for reading and writing files from and to that filesystem. These emerging APIs are described in The Filesystem API. When they are more widely implemented, web applications will be able to use the kind of file-based storage mechanisms that are already familiar to many programmers.
Web browsers often offer to remember web passwords for you, and they store them safely in encrypted form on the disk. But none of the forms of client-side data storage described in this chapter involve encryption: anything you save resides on the user’s hard disk in unencrypted form. Stored data is therefore accessible to curious users who share access to the computer and to malicious software (such as spyware) that exists on the computer. For this reason, no form of client-side storage should ever be used for passwords, financial account numbers, or other similarly sensitive information. Remember: just because a user types something into a form field when interacting with your website doesn’t mean that he wants a copy of that value stored on disk. Consider a credit card number as an example. This is sensitive information that people keep hidden in their wallets. If you save this information using client-side persistence, it is almost as if you wrote the credit card number on a sticky note and stuck it to the user’s keyboard.
Also, bear in mind that many web users mistrust websites that use cookies or other client-side storage mechanisms to do anything that resembles “tracking.” Try to use the storage mechanisms discussed in this chapter to enhance a user’s experience at your site; don’t use them as a privacy-invading data collection mechanism. If too many sites abuse client-side storage, users will disable it or clear it frequently, which will defeat the purpose and cripple the sites that depend on it.
Browsers that implement the “Web Storage” draft specification define two properties on the Window object: localStorage
and sessionStorage
. Both properties refer to a Storage object—a persistent associative array that maps string keys to string values. Storage objects work much like regular JavaScript objects: simply set a property of the object to a string, and the browser will store that string for you. The difference between localStorage
and sessionStorage
has to do with lifetime and scope: how long the data is saved for and who the data is accessible to.
Storage lifetime and scope are explained in more detail below. First, however, let’s look at some examples. The following code uses localStorage
, but it would also work with sessionStorage
:
Storage objects also define methods for storing, retrieving, iterating, and deleting data. Those methods are covered in Storage API.
The Web Storage draft specification says that we should be able to store structured data (objects and arrays) as well as primitive values and built-in types such as dates, regular expressions, and even File objects. At the time of this writing, however, browsers only allow the storage of strings. If you want to store and retrieve other kinds of data, you’ll have to encode and decode it yourself. For example:
The difference between localStorage
and sessionStorage
involves the lifetime and scope of the storage. Data stored through localStorage
is permanent: it does not expire and remains stored on the user’s computer until a web app deletes it or the user asks the browser (through some browser-specific UI) to delete it.
localStorage
is scoped to the document origin. As explained in The Same-Origin Policy, the origin of a document is defined by its protocol, hostname, and port, so each of the following URLs has a different origin:
All documents with the same origin share the same localStorage
data (regardless of the origin of the scripts that actually access localStorage
). They can read each other’s data. And they can overwrite each other’s data. But documents with different origins can never read or overwrite each other’s data (even if they’re both running a script from the same third-party server).
Note that localStorage
is also scoped by browser vendor. If you visit a site using Firefox, and then visit again using Chrome (for example), any data stored during the first visit will not be accessible during the second visit.
Data stored through sessionStorage
has a different lifetime than data stored through localStorage
: it has the same lifetime as the top-level window or browser tab in which the script that stored it is running. When the window or tab is permanently closed, any data stored through sessionStorage
is deleted. (Note, however, that modern browsers have the ability to reopen recently closed tabs and restore the last browsing session, so the lifetime of these tabs and their associated sessionStorage
may be longer than it seems.)
Like localStorage
, sessionStorage
is scoped to the document origin so that documents with different origins will never share sessionStorage
. But sessionStorage
is also scoped on a per-window basis. If a user has two browser tabs displaying documents from the same origin, those two tabs have separate sessionStorage
data: the scripts running in one tab cannot read or overwrite the data written by scripts in the other tab, even if both tabs are visiting exactly the same page and are running exactly the same scripts.
Note that this window-based scoping of sessionStorage
is only for top-level windows. If one browser tab contains two <iframe>
elements, and those frames hold two documents with the same origin, those two framed documents will share session
Storage
.
localStorage
and sessionStorage
are often used as if they were regular JavaScript objects: set a property to store a string and query the property to retrieve it. But these objects also define a more formal method-based API. To store a value, pass the name and value to setItem()
. To retrieve a value, pass the name to getItem()
. To delete a value, pass the name to removeItem()
. (In most browsers you can also use the delete
operator to remove a value, just as you would for an ordinary object, but this technique does not work in IE8.) To delete all stored values, call clear()
(with no arguments). Finally, to enumerate the names of all stored values, use the length
property and pass numbers from 0 to length
-1 to the key()
method. Here are some examples using localStorage
. The same code would work using sessionStorage
instead:
Although it is usually more convenient to store and retrieve values by setting and querying properties, there are some times when you might want to use these methods. First, the clear()
method has no equivalent and is the only way to delete all name/value pairs in a Storage object. Similarly, the removeItem()
method is the only portable way to delete a single name/value pair, since IE8 does not allow the delete
operator to be used in that way.
If browser vendors fully implement the specification and allow objects and arrays to be stored in a Storage object, there will be another reason to use methods like setItem()
and getItem()
. Objects and array values are normally mutable, so a Storage object is required to make a copy when you store a value, so that any subsequent changes to the original value have no effect on the stored value. The Storage object is also required to make a copy when you retrieve a value so that any changes you make to the retrieved value have no effect on the stored value. When this kind of copying is being done, using the property-based API can be confusing. Consider this (hypothetical, until browsers support structured values) code:
The second line of code above wants to set a property of the stored object, but instead it retrieves a copy of the stored object, sets a property in that copied object, and then discards the copy. The stored object remains unchanged. There would be less chance of confusion if we used getItem()
here:
Finally, another reason to use the explicit method-based Storage API is that we can emulate that API on top of other storage mechanisms in browsers that do not yet support the Web Storage specification. The sections that follow will implement the Storage API using cookies and IE userData. If you use the method-based API, you can write code that makes use of localStorage
when available and falls back on one of the other storage mechanisms in other browsers. Your code might start like this:
Whenever the data stored in localStorage
or sessionStorage
changes, the browser triggers a storage event on any other Window objects to which that data is visible (but not on the window that made the change). If a browser has two tabs open to pages with the same origin, and one of those pages stores a value in localStorage
, the other tab will receive a storage event. Remember that sessionStorage
is scoped to the top-level window, so storage events are only triggered for sessionStorage
changes when there are frames involved. Also note that storage events are only triggered when storage actually changes. Setting an existing stored item to its current value does not trigger an event, nor does removing an item that does not exist in storage.
Register a handler for storage events with addEventListener()
(or attachEvent()
in IE). In most browsers, you can also set the onstorage
property of the Window object, but at the time of this writing, Firefox does not support that property.
The event object associated with a storage event has five important properties (they are not supported by IE8, unfortunately):
key
The name or key of the item that was set or removed. If theclear()
method was called, this property will benull
.
newValue
Holds the new value of the item, ornull
ifremoveItem()
was called.
oldValue
Holds the old value of an existing item that changed or was deleted, ornull
if a new item was inserted.
storageArea
This property will equal either thelocalStorage
or thesessionStorage
property of the target Window object.
url
The URL (as a string) of the document whose script made this storage change.
Finally, note that localStorage
and the storage event can serve as a broadcast mechanism by which a browser sends a message to all windows that are currently visiting the same website. If a user requests that a website stop performing animations, for example, the site might store that preference in localStorage
so that it can honor it in future visits. And by storing the preference, it generates an event that allows other windows displaying the same site to honor the request as well. As another example, imagine a web-based image editing application that allows the user to display tool palettes in separate windows. When the user selects a tool, the application uses localStorage
to save the current state and to generate a notification to other windows that a new tool has been selected.
A cookie is a small amount of named data stored by the web browser and associated with a particular web page or website. Cookies were originally designed for server-side programming, and at the lowest level, they are implemented as an extension to the HTTP protocol. Cookie data is automatically transmitted between the web browser and web server, so server-side scripts can read and write cookie values that are stored on the client. This section demonstrates how client-side scripts can also manipulate cookies using the cookie
property of the Document object.
The name “cookie” does not have a lot of significance, but it is not used without precedent. In the annals of computing history, the term “cookie” or “magic cookie” has been used to refer to a small chunk of data, particularly a chunk of privileged or secret data, akin to a password, that proves identity or permits access. In JavaScript, cookies are used to save state and can establish a kind of identity for a web browser. Cookies in JavaScript do not use any kind of cryptography, however, and are not secure in any way (although transmitting them across an https:
connection helps).
The API for manipulating cookies is a very old one, which means that it is universally supported. Unfortunately, the API is also quite cryptic. There are no methods involved: cookies are queried, set, and deleted by reading and writing the cookie
property of the Document object using specially formatted strings. The lifetime and scope of each cookie can be individually specified with cookie attributes. These attributes are also specified with specially formatted strings set on the same cookie
property.
The subsections that follow explain the cookie attributes that specify lifetime and scope, and then demonstrate how to set and query cookie values in JavaScript. The section concludes with an example that implements the Storage API on top of cookies.
Cookies have gotten a bad reputation for many web users because of the unscrupulous use of third-party cookies—cookies associated with the images on a web page rather than the web page itself. Third-party cookies enable an ad-hosting company to track a user from one client site to another client site, for example, and the privacy implications of this practice cause some users to disable cookies in their web browsers. Before using cookies in your JavaScript code, you may want to first check that they are enabled. In most browsers, you can do this by checking the navigator.cookieEnabled
property. If true
, cookies are enabled, and if false
, cookies are disabled (although nonpersistent cookies that last for only the current browsing session may still be enabled). This is not a standard property, and if you find that it is undefined in the browser your code is running in, you must test for cookie support by trying to write, read, and delete a test cookie using the techniques explained below.
In addition to a name and a value, each cookie has optional attributes that control its lifetime and scope. Cookies are transient by default; the values they store last for the duration of the web browser session but are lost when the user exits the browser. Note that this is a subtly different lifetime than sessionStorage
: cookies are not scoped to a single window, and their default lifetime is the same as the entire browser process, not the lifetime of any one window. If you want a cookie to last beyond a single browsing session, you must tell the browser how long (in seconds) you would like it to retain the cookie by specifying a max-age attribute. If you specify a lifetime, the browser will store cookies in a file and delete them only once they expire.
Cookie visibility is scoped by document origin as localStorage
and sessionStorage
are, and also by document path. This scope is configurable through cookie attributes path and domain. By default, a cookie is associated with, and accessible to, the web page that created it and any other web pages in the same directory or any subdirectories of that directory. If the web page http://www.example.com/catalog/index.html creates a cookie, for example, that cookie is also visible to http://www.example.com/catalog/order.html and http://www.example.com/catalog/widgets/index.html, but it is not visible to http://www.example.com/about.html.
This default visibility behavior is often exactly what you want. Sometimes, though, you’ll want to use cookie values throughout a website, regardless of which page creates the cookie. For instance, if the user enters his mailing address in a form on one page, you may want to save that address to use as the default the next time he returns to the page and also as the default in an entirely unrelated form on another page where he is asked to enter a billing address. To allow this usage, you specify a path for the cookie. Then, any web page from the same web server whose URL begins with the path prefix you specified can share the cookie. For example, if a cookie set by http://www.example.com/catalog/widgets/index.html has its path set to “/catalog”, that cookie is also visible to http://www.example.com/catalog/order.html. Or, if the path is set to “/”, the cookie is visible to any page on the http://www.example.com web server.
Setting the path of a cookie to “/” gives scoping like that of localStorage
and also specifies that the browser must transmit the cookie name and value to the server whenever it requests any web page on the site. Note that cookie path attribute should not be treated as any kind of access-control mechanism. If a web page wants to read the cookies from some other page of the same website, it can simply load that other page into a hidden <iframe>
and read the cookies from the framed document. The same-origin policy (The Same-Origin Policy) prevents this kind of cookie-snooping from happening across sites, but it is perfectly legal for documents from the same site.
By default, cookies are scoped by document origin. Large websites may want cookies to be shared across subdomains, however. For example, the server at order.example.com may need to read cookie values set from catalog.example.com. This is where the domain attribute comes in. If a cookie created by a page on catalog.example.com sets its path attribute to “/” and its domain attribute to “.example.com”, that cookie is available to all web pages on catalog.example.com, orders.example.com, and any other server in the example.com domain. If the domain attribute is not set for a cookie, the default is the hostname of the web server that serves the page. Note that you cannot set the domain of a cookie to a domain other than the domain of your server.
The final cookie attribute is a boolean attribute named secure that specifies how cookie values are transmitted over the network. By default, cookies are insecure, which means that they are transmitted over a normal, insecure HTTP connection. If a cookie is marked secure, however, it is transmitted only when the browser and server are connected via HTTPS or another secure protocol.
To associate a transient cookie value with the current document, simply set the cookie
property to a string of the form:
name
=value
For example:
The next time you read the cookie
property, the name/value pair you stored is included in the list of cookies for the document. Cookie values cannot include semicolons, commas, or whitespace. For this reason, you may want to use the core JavaScript global function encodeURIComponent()
to encode the value before storing it in the cookie. If you do this, you’ll have to use the corresponding decodeURIComponent()
function when you read the cookie value.
A cookie written with a simple name/value pair lasts for the current web-browsing session but is lost when the user exits the browser. To create a cookie that can last across browser sessions, specify its lifetime (in seconds) with a max-age
attribute. You can do this by setting the cookie
property to a string of the form:
name
=value
; max-age=seconds
The following function sets a cookie with an optional max-age
attribute:
Similarly, you can set the path
, domain
, and secure
attributes of a cookie by appending strings of the following format to the cookie value before that value is written to the cookie
property:
path
domain
To change the value of a cookie, set its value again using the same name, path, and domain along with the new value. You can change the lifetime of a cookie when you change its value by specifying a new max-age
attribute.
To delete a cookie, set it again using the same name, path, and domain, specifying an arbitrary (or empty) value, and a max-age
attribute of 0.
When you use the cookie
property in a JavaScript expression, the value it returns is a string that contains all the cookies that apply to the current document. The string is a list of name
=
value
pairs separated from each other by a semicolon and a space. The cookie value
does not include any of the attributes that may have been set for the cookie. In order to make use of the document.cookie
property, you must typically call the split()
method to break it into individual name=value pairs.
Once you have extracted the value of a cookie from the cookie
property, you must interpret that value based on whatever format or encoding was used by the cookie’s creator. You might, for example, pass the cookie value to decodeURIComponent()
and then to JSON.parse()
.
Example 20-1 defines a getCookie()
function that parses the document.cookie
property and returns an object whose properties specify the name and values of the document’s cookies.
Example 20-1. Parsing the document.cookies property
Cookies are intended for storage of small amounts of data by server-side scripts, and that data is transferred to the server each time a relevant URL is requested. The standard that defines cookies encourages browser manufacturers to allow unlimited numbers of cookies of unrestricted size but does not require browsers to retain more than 300 cookies total, 20 cookies per web server, or 4 KB of data per cookie (both name and value count toward this 4 KB limit). In practice, browsers allow many more than 300 cookies total, but the 4 KB size limit may still be enforced by some.
Example 20-2 demonstrates how to implement the methods of the Storage API on top of cookies. Pass the desired max-age and path attributes to the CookieStorage()
constructor, and then use the resulting object as you would use localStorage
or sessionStorage
. Note, though, that the example does not implement the storage event and it does not automatically store and retrieve values when you set and query properties of the CookieStorage object.
Example 20-2. Implementing the Storage API using cookies
IE5 and later enable client-side storage by attaching a proprietary “DHTML behavior” to a document element. You can do that with code like this:
Once you add the “userData” behavior to an element, that element gets new load()
and save()
methods. Call load()
to load stored data. You must pass a string to this method—it is like a file name, identifying a particular batch of stored data. When data is loaded, the name/value pairs become available as attributes of the element, and you can query them with getAttribute()
. To save new data, set attributes with set
Attribute()
and then call the save()
method. To delete a value, use removeAttribute()
and save()
. Here is an example, using the memory
element initialized above:
By default, data saved with userData has an indefinite lifetime and lasts until you delete it. But you can specify an expiration date by setting the expires
property. For example, you might add the following lines to the previous code to specify an expiration date 100 days in the future:
IE userData is scoped to documents in the same directory as the document that set it. This is a narrower scope than cookies, which also make cookies available to documents in subdirectories of the original directory. The userData mechanism does not have any equivalent of the cookie path and domain attributes to widen the scope of the data.
userData allows much more data to be stored than cookies do, but much less than localStorage
and sessionStorage
do.
Example 20-3 implements the getItem()
, setItem()
, and removeItem()
methods of the Storage API on top of IE’s userData. (It does not implement key()
or clear()
, because userData does not define a way to iterate through all stored items.)
Example 20-3. A partial Storage API based on IE’s userData
Because the code in Example 20-3 can only work in IE, you might use IE conditional comments to prevent browsers other than IE from loading it:
HTML5 adds an “application cache” that web applications can use to store themselves locally in a user’s browser. localStorage
and sessionStorage
store data for a web application, but the application cache stores the application itself—all the files (HTML, CSS, JavaScript, images, and so on) the application needs to run. The application cache is different from a web browser’s regular cache: it isn’t cleared when the user clears the regular cache. And cached applications aren’t cleared out on a LRU (least-recently used) basis as they might be in an ordinary fixed-size cache. Applications aren’t temporarily stored in the cache: they’re installed there, and they remain there until they uninstall themselves or the user deletes them. The application cache is really not a cache at all: a better name would be “application storage.”
The reason to allow web applications to be locally installed is to guarantee their availability when offline (such as when on an airplane or when a cellphone isn’t receiving a signal). Web applications that work while offline install themselves in the application cache, use localStorage to store their data, and have a synchronization mechanism to transfer stored data to the server when they go back online. We’ll see an example offline webapp in Offline Web Applications. First, however, we’ll see how an application can install itself in the application cache.
In order to install an application in the application cache, you must create a manifest: a file that lists all of the URLs the application requires. Then, simply link the main HTML page of your application to the manifest by setting the manifest
attribute of the <html>
tag:
Manifest files must begin with the string “CACHE MANIFEST” as their first line. The lines that follow should list URLs to be cached, one URL per line. Relative URLs are relative to the URL of the manifest file. Blank lines are ignored. Lines that begin with # are comments and are ignored. Comments may have space before them, but they cannot follow any nonspace characters on the same line. Here is a simple manifest file:
By convention, application cache manifest files are given the filename extension .appcache. This is a convention only, however, and to actually identify the file type, the web server must serve a manifest with MIME type “text/cache-manifest”. If the server sets the manifest’s Content-Type header to any other MIME type, your application will not be cached. You may have to configure your web server to use this MIME type by, for example, creating an Apache .htaccess file in the web app directory.
It is the manifest file that serves as the identity of the cached application. If a web app has more than one web page (more than one HTML file that the user can link to), each one of these pages should use the <html manifest=>
attribute to link to the manifest file. The fact that these pages all link to the same manifest file makes it clear that they are all to be cached together as part of the same web app. If there are only a few HTML pages in the application, it is conventional to list those pages explicitly in the manifest file. But this is not required: any file that links to the manifest file will be considered part of the web app and will be cached along with it.
A simple manifest like the one shown above must list all of the resources required by the web application. Once a web app has been downloaded the first time and cached, any subsequent loads will be from the cache. When an application is loaded from the cache, any resources it requires must be listed in the manifest. Resources that are not listed will not be loaded. This policy simulates being offline. If a simple cached application can run from the cache, it will also be able to run while the browser is offline. More complicated web apps cannot, in general, cache every single resource they require. They can still use the application cache if they have a more complex manifest.
When an application is loaded from the application cache, only resources listed in its manifest file will be loaded. The example manifest file shown previously lists resources one URL at a time. Manifest files actually have a more complicated syntax than that example shows, and there are two other ways to list resources in a manifest file. Special section header lines are used to identify the type of manifest entry that follows the header. Simple cache entries like those shown above go in a “CACHE:” section, which is the default section. The other two sections begin with the headers “NETWORK:” and “FALLBACK:”. (A manifest can have any number of sections and can switch back and forth between sections as needed.)
The “NETWORK:” section specifies URLs that must never be cached and should always be retrieved from the network. You might list server-side scripts here, for example. The URLs in a “NETWORK:” section are actually URL prefixes. A resource whose URL begins with any one of these prefixes will be loaded from the network. If the browser is offline, that attempt will fail, of course. The “NETWORK:” section allows a wildcard URL “*”. If you use this wildcard, the browser will attempt to load any resource not mentioned in the manifest from the network. This effectively defeats the rule that says that cached applications must list all their resources in the manifest.
The manifest entries in the “FALLBACK:” section include two URLs on each line. The second URL is loaded and is stored in the cache. The first URL is a prefix. URLs matching this prefix will not be cached, but they will be loaded from the network when possible. If the attempt to load such a URL fails, the cached resource specified by the second URL will be used instead. Imagine a web application that includes a number of video tutorials. Because these videos are very large, they are not appropriate to cache locally. For offline use, a manifest file could fall back on a text-based help file instead.
Here is a more complicated cache manifest:
When you load a web application that has been cached, all of its files come directly from the cache. If the browser is online, it will also asynchronously check to see if the manifest file has changed. If it has changed, the new manifest file, and all the files it references, are downloaded and reinstalled in the application cache. Note that the browser does not check to see whether any of the cached files have changed: only the manifest. If you modify a cached JavaScript file, for example, and want sites that have cached your web app to update their cache, you must update the manifest. Since the list of files required by your app has not changed, the easiest way to do this is by updating a version number:
Similarly, if you want a web app to uninstall itself from the application cache, you should delete the manifest file on the server, so that requests for it return an HTTP 404 Not Found error, and modify your HTML file or files so that they no longer link to the manifest.
Note that the browser checks the manifest and updates the cache asynchronously, after (or while) loading the cached copy of an application. For simple web apps, this means that after you update the manifest, the user must load the application twice before he sees the new version: the first load loads the old version from the cache and then updates the cache. Then the second load loads the new version from the cache.
The browser fires a number of events during the cache update process, and you can register handlers to track the process and provide feedback to the user. For example:
Note that this event handler is registered on the ApplicationCache object that is the value of the applicationCache
property of the Window. Browsers that support an application cache will define this property. In addition to the updateready event shown above, there are seven other application cache events you can monitor. Example 20-4 shows simple handlers that display messages to the user informing them of the progress of the cache update and of the current cache status.
Example 20-4. Handling application cache events
Each time an HTML file with a manifest
attribute is loaded, the browser fires a checking event and loads the manifest file from the network. The events that follow the checking event are different in different situations:
If the application is already in the cache, and the manifest file has not changed, the browser fires a noupdate event.
If an application is cached, and its manifest file has changed, the browser fires a downloading event and begins downloading and caching all the files listed in the manifest. As this download occurs, it fires progress events. And when the download is complete, it fires an updateready event.
If the application is not yet in the cache, downloading and progress events are fired as they are for the cache update case above. Once this initial download is complete, however, the browser fires a cached event rather than an updateready event.
If the browser is offline, it cannot check the manifest and it fires an error event. This also happens when an application that has not yet been cached refers to a manifest file that does not exist.
If the browser is online and the application is already cached, but the manifest file returns a 404 Not Found error, it fires an obsolete event and removes the application from the cache.
Note that all of these events are cancelable. The handlers in Example 20-4 returns false
to cancel the default action associated with the events. This prevents browsers from displaying their own cache status messages. (At the time of this writing, browsers do not display any such messages.)
As an alternative to the event handlers, an application can also use the application
Cache.
status
property to determine the cache status. There are six possible values for this property:
ApplicationCache.UNCACHED (0)
This application does not have amanifest
attribute: it is not cached.
ApplicationCache.IDLE (1)
The manifest has been checked and this application is cached and up to date.
ApplicationCache.CHECKING (2)
The browser is checking the manifest file.
ApplicationCache.DOWNLOADING (3)
The browser is downloading and caching files listed in the manifest.
ApplicationCache.UPDATEREADY (4)
A new version of the application has been downloaded and cached.
ApplicationCache.OBSOLETE (5)
The manifest no longer exists and the cache will be deleted.
The ApplicationCache object also defines two methods. update()
explicitly invokes the cache update algorithm to check for a new version of the application. This causes the browser to run through the same manifest check (and fire the same events) as it does when an application is first loaded.
The swapCache()
method is trickier. Recall that when the browser downloads and caches an updated version of an application, the user is still running the out-of-date version. If the user reloads the app, she’ll see the new version. But if the user does not reload, the old version must still run correctly. And notice that the old version may still be loading resources from the cache: it might be using XMLHttpRequest to request files, for example, and these requests must be satisfied by files in the old version of the cache. Therefore, the browser must generally keep the old version of the cache until the user reloads the application.
The swapCache()
method tells the browser that it can discard the old cache and satisfy any future requests from the new cache. Note that this does not reload the application: HTML files, images, scripts, and so on that have already been loaded are not changed. But any future requests will come from the new version of the cache. This can cause version-skew issues and is not generally a good idea unless your app is carefully designed to allow it. Imagine, for example, an application that does nothing but display a splash screen of some sort while the browser is checking the manifest. When it sees the noupdate event, it goes ahead and loads the application’s start page. If it sees a downloading event, it displays appropriate progress feedback while the cache is updated. And when it gets an updateready event, it calls swapCache()
and then loads the updated start page from the latest version of the cache.
Note that it only makes sense to call swapCache()
when the status
property has the value ApplicationCache.UPDATEREADY
or ApplicationCache.OBSOLETE
. (Calling swap
Cache()
when the status
is OBSOLETE
discards the obsolete cache immediately, and satisfies all future requests via the network.) If you call swapCache()
when status
has any other value, it will throw an exception.
An offline web application is one that installs itself in the application cache so that it is always available, even when the browser is offline. For the simplest cases—things like clocks and fractal generators—this is all a web app needs to do to become an offline web app. But most nontrivial web apps need to upload data to the server as well: even simple game apps might want to upload a user’s high score to the server. Apps that need to upload data to a server can be offline web apps if they use localStorage
to store application data, and then upload it when an Internet connection is available. Synchronizing data between local storage and the server can be the trickiest part of converting a web app for offline use, especially when the user might be accessing the data from more than one device.
In order to work offline, a web application needs to be able to tell whether it is offline or online and needs to know when the state of the Internet connection changes. To check whether the browser is online, a web app can use the navigator.onLine
property. And to detect changes in the connection state, it can register handlers for online and offline events on the Window object.
This chapter concludes with a simple offline web app that demonstrates these techniques. The app is called PermaNote—it is a simple note application that saves the user’s text to localStorage
and by uploading it to the server whenever an Internet connection is available.[51] PermaNote only allows the user to edit a single note, and it ignores authorization and authentication issues—it assumes the server has some way of distinguishing one user from another, but does not include any kind of login screen. The PermaNote implementation consists of three files. Example 20-5 is the cache manifest. It lists the other two files and specifies that the URL “note” should not be cached: that is the URL we use to read and write the note to the server.
Example 20-6 is the second PermaNote file: it is an HTML file that defines a very simple editor UI. It displays a <textarea>
element with a row of buttons across the top and a status line for messages along the bottom. Notice that the <html>
tag has a manifest
attribute.
Example 20-6. permanote.html
Finally, Example 20-7 lists the JavaScript code that makes the PermaNote web application work. It defines a status()
function for displaying messages on the status line, a save()
function for saving the current version of the note to the server, and a sync()
function for making sure that the server’s copy and the local copy are in sync. The save()
and sync()
functions use scripted HTTP techniques from Chapter 18. (Interestingly, the save()
function uses the HTTP “PUT” method instead of the much more common POST method.)
In addition to these three basic functions, Example 20-7 defines event handlers. In order to keep the local copy and the server’s copy of the note synchronized, the app requires quite a few event handlers:
onload
Try to sync with the server, in case there is a newer version of the note there, and once synchronization is complete, enable the editor window.Thesave()
andsync()
functions make HTTP requests, and they register an onload handler on the XMLHttpRequest object to be notified when the upload or download is complete.
onbeforeunload
Save the current version of the note to the server if it has not been uploaded.
oninput
Whenever the text in the<textarea>
changes, save it inlocalStorage
, and start a timer. If the user stops editing for 5 seconds, save the note to the server.
onoffline
When the browser goes offline, display a message in the status line.
ononline
When the browser comes back online, synchronize with the server, checking for a newer version, and saving the current version.
onupdateready
If a new version of the cached application is ready, display a message in the status line to let the user know.
onnoupdate
If the application cache has not changed, let the user know that he or she is running the current version.
With that overview of PermaNote’s event-driven logic, here is Example 20-7.
Example 20-7. permanote.js
[51] This example was loosely inspired by Halfnote, by Aaron Boodman. Halfnote was one of the first offline web apps.
This chapter describes how to use JavaScript to manipulate images, control audio and video streams, and draw graphics. Scripting Images explains traditional JavaScript techniques for visual effects such as image rollovers in which one static image is replaced by another when the mouse pointer moves over it. Scripting Audio and Video covers the HTML5 <audio>
and <video>
elements and their JavaScript APIs.
After these first two sections on images, audio and video, the chapter moves on to cover two powerful technologies for drawing client-side graphics. The ability to dynamically generate sophisticated graphics in the browser is important for several reasons:
SVG: Scalable Vector Graphics explains Scalable Vector Graphics, or SVG. SVG is an XML-based language for describing graphics, and SVG drawings can be created and scripted using JavaScript and the DOM. Finally, Graphics in a <canvas> covers the HTML5 <canvas>
element and its full-featured JavaScript API for client-side drawing. The <canvas>
element is a revolutionary technology, and this chapter covers it in detail.
Web pages include images using the HTML
element. Like all HTML elements, an
element can be scripted: setting the src
property to a new URL causes the browser to load (if necessary) and display a new image. (You can also script the width and height of an image, which will make the browser shrink or enlarge the image, but that technique is not demonstrated here.)
The ability to dynamically replace one image with another in an HTML document opens the door to a number of special effects. One common use for image replacement is to implement image rollovers, in which an image changes when the mouse pointer moves over it. When you make images clickable by placing them inside your hyperlinks, rollover effects are a powerful way to invite the user to click on the image. (Similar effects can be achieved without scripting using the CSS :hover
pseudoclass to alter the background image of an element.) The following HTML fragment is a simple example: it creates an image that changes when the mouse moves over it:
The event handlers of the
element set the src
property when the mouse moves over or out of the image. Image rollovers are strongly associated with clickability, so this
element should still be enclosed in an <a>
element or given an onclick
event handler.
In order to be useful, image rollovers (and similar effects) need to be responsive. This means that you need some way to ensure that the necessary images are “prefetched” into the browser’s cache. Client-side JavaScript defines a special-purpose API for this purpose: to force an image to be cached, create an offscreen Image object using the Image()
constructor. Next, load an image into it by setting the src
property of this object to the desired URL. This image is not added to the document, so it does not become visible, but the browser nevertheless loads and caches the image data. Later, when the same URL is used for an onscreen image, it can be quickly loaded from the browser’s cache, rather than slowly loaded over the network.
The image-rollover code fragment shown in the previous section did not prefetch the rollover image it used, so the user might notice a delay in the rollover effect the first time she moves the mouse over the image. To fix this problem, modify the code as follows:
The image rollover code just shown requires one <script>
element and two JavaScript event-handler attributes to implement a single rollover effect. This is a perfect example of obtrusive JavaScript: the amount of JavaScript code is so large that it effectively obscures the HTML. Example 21-1 shows an unobtrusive alternative that allows you to create image rollovers by simply specifying a data-rollover
attribute (see Dataset Attributes) on any
element. Note that this example uses the onLoad()
function of Example 13-5. It also uses the document.images[]
array (see Selecting Elements by Type) to find all
elements in the document.
Example 21-1. Unobtrusive Image Rollovers
HTML5 introduces <audio>
and <video>
elements that are, in theory, as easy to use as the
element. In HTML5-enabled browsers, you no longer need to use plug-ins (like Flash) to embed sounds and movies in your HTML documents:
In practice, the use of these elements is trickier than this, since browser vendors have not been able to agree on a standard audio and video codec that all will support, so you typically end up using <source>
elements to specify multiple media sources in different formats:
Note that <source>
elements have no content: there is no closing </source>
tag, and you do not need to end them with />
Browsers that support <audio>
and <video>
elements will not render these element’s content. But browsers that do not support them do render their content, so you can put fallback content (such as an <object>
element that invokes the Flash plug-in) inside:
<audio>
and <video>
elements support a controls
attribute. If present (or if the corresponding JavaScript property is set to true
), they display a set of playback controls that includes play and pause buttons, a volume control, and so on. In addition, however, the <audio>
and <video>
elements expose an API that gives scripts the power to control media playback, and you can use this API to add simple sound effects to your web application or to create your own custom control panels for sound and video. Although their visual appearance is very different, the <audio>
and <video>
elements share essentially the same API (the only real difference between them is that the <video>
element has width
and height
properties) and almost everything that follows in this section applies to both elements.
<audio>
elements don’t have any visual appearance in the document unless you set the controls
attribute. And just as you can create an offscreen image with the Image()
constructor, the HTML5 media API allows you to create an offscreen audio element with the Audio()
constructor, passing a source URL as the argument:
The return value of the Audio()
constructor is the same kind of object you’d get when querying an <audio>
element from the document, or creating a new one with document.
createElement("audio")
. Note that this is an audio-only feature of the media API: there is no corresponding Video()
constructor.
Despite the frustrating requirement to define media in multiple file formats, the ability to play audio and video natively in the browser, without the use of plug-ins, is a powerful new feature in HTML5. Note that the problem of media codecs and browser compatibility is beyond the scope of this book. The subsections that follow focus only on the JavaScript API for working with audio and video streams.
If you want to test whether a media element can play a particular type of media, pass the media MIME type (possibly including a codec
parameter) to the canPlayType()
method. The element returns the empty string (a falsy value) if it cannot play that media type. Otherwise, it returns the string “maybe” or “probably”. Because of the complicated nature of audio and video codecs, a player cannot in general be more certain than “probably” that it can play a particular media type without actually downloading the media and trying:
When you set the src
property of a media element, it begins the process of loading that media. (That process won’t go very far unless preload
is “auto”.) Setting src
when some other media is loading or playing will abort the loading or playing of the old media. If you add <source>
elements to a media element instead of setting the src
attribute, the element cannot know when you have inserted a complete set of elements, and it will not begin choosing among the <source>
elements and loading data until you explicitly call the load()
method.
The most important methods of the <audio>
and <video>
elements are play()
and pause()
, which start and stop playback of the media:
In addition to starting and stopping sound and video, you can skip (or “seek”) to a desired location within the media by setting the currentTime
property. This property specifies the time in seconds to which the player should skip, and it can be set while the media is playing or while it is paused. (The initialTime
and duration
properties give the legal range of values for currentTime
; more about those properties follows.)
The volume
property specifies playback volume as a number between 0 (silent) and 1 (maximum volume). The muted
property can be set to true
to mute playback or set to false
to resume playing sound at the specified volume
level.
The playbackRate
property specifies the speed at which the media is played. A value of 1.0 is the normal speed. Values greater than 1 are “fast forward” and values between 0 and 1 are “slow motion.” Negative values are supposed to play the sound or video backward, but browsers do not support that feature at the time of this writing. <audio>
and <video>
elements also have a defaultPlaybackRate
property. Whenever the play()
method is invoked, the playbackRate
property is set to defaultPlaybackRate
.
Note that the currentTime
, volume
, muted
, and playbackRate
properties are not only for controlling media playback. If an <audio>
or <video>
element has the controls
attribute, it displays player controls, giving the user control over playback. In that case, a script might query properties like muted
and currentTime
to discover how the media is being played.
The HTML attributes controls
, loop
, preload
, and autoplay
affect audio and video playback and can also be set and queried as JavaScript properties. controls
specifies whether playback controls are displayed in the browser. Set this property to true
to display controls or false
to hide controls. The loop
property is a boolean that specifies whether the media should play in a loop (true
) or stop when it reaches the end (false
). The preload
property specifies whether (or how much) media content should be preloaded before the user starts playing the media. The value “none” means no data should be preloaded. The value “metadata” means that metadata such as duration, bitrate, and frame size should be loaded, but not media data itself. Browsers typically load metadata if you do not specify a preload
attribute. The preload
value “auto” means that the browser should preload as much of the media as it deems appropriate. Finally, the autoplay
property specifies whether the media should begin to play automatically when a sufficient amount has been buffered. Setting autoplay
to true
obviously implies that the browser should preload media data.
<audio>
and <video>
elements have a number of read-only properties that describe the current state of the media and of the player. paused
is true
if the player is paused. seeking
is true
if the player is skipping to a new playback position. ended
is true
if the player has reached the end of the media and has stopped. (ended
never becomes true
if loop
is true.)
The duration
property specifies the duration of the media in seconds. If you query this property before the media metadata has been loaded, it returns NaN
. For streaming media, such as Internet radio, with an indefinite duration, this property returns Infinity
.
The initialTime
property specifies the start time of the media, in seconds. For media clips of fixed duration, this is usually 0. For streaming media, this property gives the earliest time for which data is still buffered and which it is possible to seek back to. currentTime
can never be set to less than initialTime
.
Three other properties provide a finer-grained view of the media timeline and its playback and buffering status. The played
property returns the time range or ranges that have been played. The buffered
property returns the time range or ranges that are currently buffered, and the seekable
property returns the time range or ranges that the player can currently seek to. (You might use these properties to implement a progress bar that illustrates the currentTime
and duration
along with how much of the media has played and how much is buffered.)
played
, buffered
, and seekable
are TimeRanges
objects. Each object has a length
property that specifies the number of ranges it represents and start()
and end()
methods that return the start and end times (in seconds) of a numbered range. In the most common case of a single contiguous range of times, you’d use start(0)
and end(0)
. Assuming that no seeking has happened and media is buffered from the beginning, for example, you might use code like this to determine what percentage of a resource was buffered:
Finally, three more properties, readyState
, networkState
, and error
, give low-level status details about <audio>
and <video>
elements. Each of the properties has a numeric value, and constants are defined for each of the legal values. Note that these constants are defined on the media object (or the error object) itself. You might use one in code like this:
readyState
specifies how much media data has been loaded, and therefore, how ready the element is to begin playing that data. The values for this property and their meanings are as follows:
Constant | Value | Description |
---|---|---|
HAVE_NOTHING | 0 | No media data or metadata has been loaded. |
HAVE_METADATA | 1 | The media metadata has been loaded, but no data for the current playback position has been loaded. This means that you can query the |
HAVE_CURRENT_DATA | 2 | Media data for |
HAVE_FUTURE_DATA | 3 | Enough media data has been loaded to begin playing, but it is likely not enough to play to the end of the media without pausing to download more data. |
HAVE_ENOUGH_DATA | 4 | Enough media data has been loaded that the browser is likely to be able to play to the end without pausing. |
The networkState
property specifies whether (or why not) a media element is using the network:
Constant | Value | Description |
---|---|---|
NETWORK_EMPTY | 0 | The element has not started using the network. This would be the state before the |
NETWORK_IDLE | 1 | The element is not currently loading data from the network. It might have loaded the complete resource, or might have buffered all the data it currently needs. Or it might have |
NETWORK_LOADING | 2 | The element is currently using the network to load media data. |
NETWORK_NO_SOURCE | 3 | The element was not able to find a media source that it is able to play. |
When an error occurs in media loading or playback, the browser sets the error
property of the <audio>
or <video>
element. If no error has occurred, error
is null
. Otherwise, it is an object with a numeric code
property that describes the error. The error object also defines constants that describe the possible error codes:
Constant | Value | Description |
---|---|---|
MEDIA_ERR_ABORTED | 1 | The user asked the browser to stop loading the media |
MEDIA_ERR_NETWORK | 2 | The media is of the right type, but a network error prevented it from being loaded. |
MEDIA_ERR_DECODE | 3 | The media is of the right type, but an encoding error prevented it from being decoded and played. |
MEDIA_ERR_SRC_NOT_SUPPORTED | 4 | The media specified by the |
You might use the error
property with code like this:
<audio>
and <video>
are fairly complex elements—they must respond to user interaction with their playback controls, to network activity, and even, during playback, to the simple passage of time—and we’ve just seen that these elements have quite a few properties that define their current state. Like most HTML elements, <audio>
and <video>
fire events whenever their state changes. Because these elements have such a complicated state, they can fire quite a few events.
The table below summarizes the 22 media events, loosely in the order in which they are likely to occur. There are no event registration properties for these events. Use the addEventListener()
method of the <audio>
or <video>
element to register handler functions.
Event Type | Description |
---|---|
loadstart | Triggered when the element begins requesting media data. |
progress | Network activity is continuing to load media data. |
loadedmetadata | The media metadata has been loaded, and the duration and dimensions of the media are ready. |
loadeddata | Data for the current playback position has loaded for the first time, and |
canplay | Enough media data has loaded that playback can begin, but additional buffering is likely to be required. |
canplaythrough | Enough media data has loaded that the media can probably be played all the way through without pausing to buffer more data. |
suspend | The element has buffered enough data and has temporarily stopped downloading. |
stalled | The element is trying to load data, but no data is arriving. |
play | The |
waiting | Playback cannot begin, or playback has stopped, because there is not enough data buffered. A playing event will follow when enough data is ready. |
playing | The media has begun to play. |
timeupdate | The |
pause | The |
seeking | The script or user has requested that playback skip to an unbuffered portion of the media and playback has stopped while data loads. The |
seeked | The |
ended | Playback has stopped because the end of the media has been reached. |
durationchange | The |
volumechange | The |
ratechange | The |
abort | The element has stopped loading data, typically at the user’s request. |
error | A network or other error prevented media data from being loaded. |
emptied | An error or abort has caused the |
SVG is an XML grammar for graphics. The word “vector” in its name indicates that it is fundamentally different from raster image formats, such as GIF, JPEG, and PNG, that specify a matrix of pixel values. Instead, an SVG “image” is a precise, resolution-independent (hence “scalable”) description of the steps necessary to draw the desired graphic. Here is what a simple SVG file looks like:
Figure 21-1 shows what this SVG file looks like when rendered graphically.
SVG is a large and moderately complex grammar. In addition to simple shape-drawing primitives, it includes support for arbitrary curves, text, and animation. SVG graphics can even incorporate JavaScript scripts and CSS stylesheets to add behavior and presentation information. This section shows how client-side JavaScript code (embedded in HTML, not in SVG) can dynamically draw graphics using SVG. It includes examples of SVG drawing but can only scratch the surface of what is possible with SVG. Full details about SVG are available in the comprehensive, but quite readable, specification. The specification is maintained by the W3C at http://www.w3.org/TR/SVG/. Note that the specification includes a complete Document Object Model for SVG documents. This section manipulates SVG graphics using the standard XML DOM and does not use the SVG DOM at all.
At the time of this writing, all current browsers except IE support SVG (and IE9 will support it). In the latest browsers, you can display SVG images using an ordinary
element. Some slightly older browsers (such as Firefox 3.6) do not support this and require the use of an <object>
element:
When used with an
or <object>
element, SVG is just another image format, and it is not particularly interesting to JavaScript programmers. It is more useful to embed SVG images directly within your documents, so they can be scripted. Since SVG is an XML grammar, you can embed it within XHTML documents like this:
This technique works in all current browsers except IE. Figure 21-2 shows how Firefox renders this XHTML document.
HTML5 minimizes the distinction between XML and HTML and allows SVG (and MathML) markup to appear directly in HTML files, without namespace declarations or tag prefixes:
At the time of this writing, direct embedding of SVG into HTML works only in the very newest browsers.
Since SVG is an XML grammar, drawing SVG graphics is simply a matter of using the DOM to create appropriate XML elements. Example 21-2 is a listing of a pieChart()
function that creates the SVG elements to produce the pie chart shown in Figure 21-3.
Example 21-2. Drawing a pie chart with JavaScript and SVG
The code in Example 21-2 is relatively straightforward. There is a little math to convert the data being charted into pie-wedge angles. The bulk of the example, however, is DOM code that creates SVG elements and sets attributes on those elements. In order to work with browsers that do not fully support HTML5, this example treats SVG as an XML grammar and uses the SVG namespace and the DOM method create
ElementNS()
instead of createElement()
.
The most opaque part of this example is the code that draws the actual pie wedges. The element used to display each wedge is <svg:path>
. This SVG element describes arbitrary shapes comprised of lines and curves. The shape description is specified by the d
attribute of the <svg:path>
element. The value of this attribute uses a compact grammar of letter codes and numbers that specify coordinates, angles, and other values. The letter M, for example, means “move to” and is followed by X and Y coordinates. The letter L means “line to” and draws a line from the current point to the coordinates that follow it. This example also uses the letter A to draw an arc. This letter is followed by seven numbers describing the arc. The precise details are not important here, but you can look them up in the specification at http://www.w3.org/TR/SVG/.
Note that the pieChart()
function returns an <svg>
element that contains a description of the pie chart, but it does not insert that element into the document. The caller is expected to do that. The pie chart in Figure 21-3 was created using a file like this:
Example 21-3 is another scripted SVG example: it uses SVG to display an analog clock. (See Figure 21-4.) Rather than dynamically building the tree of SVG elements from scratch, however, it starts with a static SVG image of a clock embedded in the HTML page. This static graphic includes two SVG <line>
elements that represent the hour hand and the minute hand. Both lines point straight up, and the static image displays the time 12:00. To turn this image into a functioning clock, we use JavaScript to set a transform
attribute on each of <line>
elements, rotating them by the appropriate angles so that the clock displays the current time.
Note that Example 21-3 embeds SVG markup directly into an HTML5 file and does not use XML namespaces within an XHTML file. This means that as shown here it will work only with browsers that support direct embedding of SVG. By converting the HTML file to XHTML, however, this same technique works in older SVG-capable browsers.
Example 21-3. Displaying the time by manipulating an SVG image
The <canvas>
element has no appearance of its own but creates a drawing surface within the document and exposes a powerful drawing API to client-side JavaScript. The canvas element is standardized by HTML5 but has been around for longer than that. It was introduced by Apple in Safari 1.3, and it has been supported by Firefox since version 1.5 and Opera since version 9. It is also supported in all versions of Chrome. The <canvas>
element is not supported by IE before IE9, but it can be reasonably well emulated in IE6, 7, and 8 using the open source ExplorerCanvas project at http://code.google.com/p/explorercanvas/.
An important difference between the <canvas>
element and SVG is that with the canvas you create drawings by calling methods and with SVG you create drawings by building a tree of XML elements. These two approaches are equivalently powerful: either one can be simulated with the other. On the surface, they are quite different, however, and each has its strengths and weaknesses. An SVG drawing, for example, is easily edited by removing elements from its description. To remove an element from the same graphic in a <canvas>
, it is often necessary to erase the drawing and redraw it from scratch. Since the Canvas drawing API is JavaScript-based and relatively compact (unlike the SVG grammar), it is documented completely in this book. See Canvas, CanvasRenderingContext2D, and related entries in the client-side reference section.
Most of the Canvas drawing API is defined not on the <canvas>
element itself, but instead on a “drawing context” object obtained with the getContext()
method of the canvas. Call getContext()
with the argument “2d” to obtain a CanvasRenderingContext2D object that you can use to draw two-dimensional graphics into the canvas. It is important to understand that the canvas element and its context object are two very different objects. Because it has such a long class name, I do not often refer to the CanvasRenderingContext2D object by name, instead simply calling it the “context object”. Similarly, when I write about the “Canvas API,” I usually mean “the methods of the CanvasRenderingContext2D object.”
At the time of this writing, browser vendors are starting to implement a 3D graphics API for the <canvas>
element. The API is known as WebGL, and it is a JavaScript binding to the OpenGL standard API. To obtain a context object for 3D graphics, pass the string “webgl” to the getContext()
method of the canvas. WebGL is a large, complicated, and low-level API that is not documented in this book: web developers are more likely to use utility libraries built on top of WebGL than to use the WebGL API directly.
As a simple example of the Canvas API, the following code draws a red square and blue circle into <canvas>
elements to produce output like the SVG graphics shown in Figure 21-2 :
We’ve seen that SVG describes complex shapes as a “path” of lines and curves that can be drawn or filled. The Canvas API also uses the notion of a path. Instead of describing a path as a string of letters and numbers, a path is defined by a series of method calls, such as the beginPath()
and arc()
invocations in the code above. Once a path is defined, other methods, such as fill()
, operate on that path. Various properties of the context object, such as fillStyle
, specify how these operations are performed. The subsections that follow explain:
<canvas>
. The section ends with a practical example that uses <canvas>
elements to render small inline charts known as sparklines.
Much of the <canvas>
example code that follows operates on a variable c
. This variable holds the CanvasRenderingContext2D object of the canvas, but the code to initialize that variable is not typically shown. In order to make these examples run, you would need to add HTML markup to define a canvas with appropriate width
and height
attributes, and then add code like this to initialize the variable c
:
The figures that follow were all generated by JavaScript code drawing into a <canvas>
element—typically into a large offscreen canvas to produce high-resolution print-quality graphics.
To draw lines on a canvas and to fill the areas enclosed by those lines, you begin by defining a path. A path is a sequence of one or more subpaths. A subpath is a sequence of two or more points connected by line segments (or, as we’ll see later, by curve segments). Begin a new path with the beginPath()
method. Begin a new subpath with the moveTo()
method. Once you have established the starting point of a subpath with moveTo()
, you can connect that point to a new point with a straight line by calling lineTo()
. The following code defines a path that includes two line segments:
The code above simply defines a path; it does not draw anything on the canvas. To draw (or “stroke”) the two line segments in the path, call the stroke()
method, and to fill the area defined by those line segments, call fill()
:
The code above (along with some additional code to set line widths and fill colors) produced the drawing shown in Figure 21-5.
Notice that the subpath defined above is “open”. It consists of just two line segments and the end point is not connected back to the starting point. This means that it does not enclose a region. The fill()
method fills open subpaths by acting as if a straight line connected the last point in the subpath to the first point in the subpath. That is why the code above fills a triangle, but strokes only two sides of the triangle.
If you wanted to stroke all three sides of the triangle above, you would call the closePath()
method to connect the end point of the subpath to the start point. (You could also call lineTo(100,100)
, but then you end up with three line segments that share a start and end point but are not truly closed. When drawing with wide lines, the visual results are better if you use closePath()
.)
There are two other important points to notice about stroke()
and fill()
. First, both methods operate on all subpaths in the current path. Suppose we had added another subpath in the code above:
If we then called stroke()
, we would draw two connected edges of a triangle and a disconnected vertical line.
The second point to note about stroke()
and fill()
is that neither one alters the current path: you can call fill()
and the path will still be there when you call stroke()
. When you are done with a path and want to begin another, you must remember to call beginPath()
. If you don’t, you’ll end up adding new subpaths to the existing path and you may end up drawing those old subpaths over and over again.
Example 21-4 defines a function for drawing regular polygons and demonstrates the use of moveTo()
, lineTo()
, and closePath()
for defining subpaths and of fill()
and stroke()
for drawing those paths. It produces the drawing shown in Figure 21-6.
Example 21-4. Regular polygons with moveTo(), lineTo() and closePath()
Notice that this example draws a hexagon with a square inside it. The square and the hexagon are separate subpaths, but they overlap. When this happens (or when a single subpath intersects itself), the canvas needs to be able to determine which regions are inside the path and which are outside. The canvas uses a test known as the “nonzero winding rule” to achieve this. In this case, the interior of the square is not filled because the square and the hexagon were drawn in the opposite directions: the vertexes of the hexagon were connected with line segments moving clockwise around the circle. The vertexes of the square were connected counterclockwise. Had the square been drawn clockwise as well, the call to fill()
would have filled the interior of the square as well.
To test whether a point P is inside a path, using the nonzero winding rule, imagine a ray drawn from P, in any direction, off to infinity (or, more practically, to some point outside of the path’s bounding box). Now initialize a counter to zero and enumerate all places where the path crosses the ray. Each time the path crosses the ray in a clockwise direction, add one to the count. Each time the path crosses the ray counterclockwise, subtract one from the count. If, after all crossings have been enumerated, the count is nonzero, the point P is inside the path. If, on the other hand, the count is zero, P is outside the path.
Example 21-4 set the properties fillStyle
, strokeStyle
, and lineWidth
on the context object of the canvas. These properties are graphics attributes that specify the color to be used by fill()
, the color to be used by stroke()
, and the width of the lines to be drawn by stroke()
. Notice that these parameters are not passed to the fill()
and stroke()
methods, but are instead part of the general graphics state of the canvas. If you define a method that draws a shape and do not set these properties yourself, the caller of your method can define the color of the shape by setting the strokeStyle
and fillStyle
properties before calling your method. This separation of graphics state from drawing commands is fundamental to the Canvas API and is akin to the separation of presentation from content achieved by applying CSS stylesheets to HTML documents.
The Canvas API defines 15 graphics attribute properties on the CanvasRenderingContext2D object. These properties are listed in Table 21-1 and explained in detail in the relevant sections below.
Table 21-1. Graphics attributes of the Canvas API
Property | Meaning |
---|---|
fillStyle | the color, gradient, or pattern for fills |
font | the CSS font for text-drawing commands |
globalAlpha | transparency to be added to all pixels drawn |
globalCompositeOperation | how to combine new pixels with the ones underneath |
lineCap | how the ends of lines are rendered |
lineJoin | how vertexes are rendered |
lineWidth | the width of stroked lines |
miterLimit | maximum length of acute mitered vertexes |
textAlign | horizontal alignment of text |
textBaseline | vertical alignment of text |
shadowBlur | how crisp or fuzzy shadows are |
shadowColor | the color of drop shadows |
shadowOffsetX | the horizontal offset of shadows |
shadowOffsetY | the vertical offset of shadows |
strokeStyle | the color, gradient, or pattern for lines |
Since the Canvas API defines graphics attributes on the context object, you might be tempted to call getContext()
multiple times to obtain multiple context objects. If you could do this, you could define different attributes on each context: each context would then be like a different brush and would paint with a different color or draw lines of different widths. Unfortunately, you cannot use the canvas in this way. Each <canvas>
element has only a single context object, and every call to getContext()
returns the same CanvasRenderingContext2D object.
Although the Canvas API only allows you to define a single set of graphics attributes at a time, it does allow you to save the current graphics state so that you can alter it and then easily restore it later. The save()
method pushes the current graphics state onto a stack of saved states. The restore()
method pops the stack and restores the most recently saved state. All of the properties listed in Table 21-1 are part of the saved state, as are the current transformation and clipping region (both are explained below). Importantly, the currently defined path and the current point are not part of the graphics state and cannot be saved and restored.
If you need more flexibility than a simple stack of graphics states allows, you may find it helpful to define utility methods like the ones shown in Example 21-5.
Example 21-5. Graphics state management utilities
The width
and height
attributes of the <canvas>
element and the corresponding width
and height
properties of the Canvas object specify the dimensions of the canvas. The default canvas coordinate system places the origin (0,0) at the upper left corner of the canvas. X coordinates increase to the right and Y coordinates increase as you go down the screen. Points on the canvas can be specified using floating-point values, and these are not automatically rounded to integers—the Canvas uses anti-aliasing techniques to simulate partially filled pixels.
The dimensions of a canvas are so fundamental that they cannot be altered without completely resetting the canvas. Setting either the width
or height
properties of a Canvas (even setting them to their current value) clears the canvas, erases the current path, and resets all graphics attributes (including current transformation and clipping region) to their original state.
Despite this fundamental importance of canvas dimensions, they do not necessarily match either the on-screen size of the canvas or the number of pixels that make up the canvas drawing surface. Canvas dimensions (and also the default coordinate system) are measured in CSS pixels. CSS pixels are usually the same thing as regular pixels. On high-resolution displays, however, implementations are allowed to map multiple device pixels to single CSS pixels. This means that the rectangle of pixels that the canvas draws into may be larger than the canvas’s nominal dimensions. You need to be aware of this when working with the pixel-manipulation features (see Pixel Manipulation) of the canvas, but the distinction between virtual CSS pixels and actual hardware pixels does not otherwise have any effect on the canvas code you write.
By default, a <canvas>
is displayed on-screen at the size (in CSS pixels) specified by its HTML width
and height
attributes. Like any HTML element, however, a <canvas>
element can have its on-screen size specified by CSS width
and height
style attributes. If you specify an on-screen size that is different than the actual dimensions of the canvas, the pixels of the canvas are automatically scaled as needed to fit the screen dimensions specified by the CSS attributes. The on-screen size of the canvas does not affect the number of CSS or hardware pixels reserved in the canvas bitmap and the scaling that is done is an image scaling operation. If the on-screen dimensions are substantially larger than the actual dimensions of the canvas, this results in pixelated graphics. This is an issue for graphic designers and does not affect canvas programming.
As noted above, the default coordinate system of a canvas places the origin in the upper left corner, has X coordinates increasing to the right, and has Y coordinates increasing downward. In this default system, the coordinates of a point map directly to a CSS pixel (which then maps directly to one or more device pixels). Certain canvas operations and attributes (such as extracting raw pixel values and setting shadow offsets) always use this default coordinate system. In addition to the default coordinate system, however, every canvas has a “current transformation matrix” as part of its graphics state. This matrix defines the current coordinate system of the canvas. In most canvas operations, when you specify the coordinates of a point, it is taken to be a point in the current coordinate system, not in the default coordinate system. The current transformation matrix is used to convert the coordinates you specified to the equivalent coordinates in the default coordinate system.
The setTransform()
method allows you to set a canvas’s transformation matrix directly, but coordinate system transformations are usually easier to specify as a sequence of translations, rotations, and scaling operations. Figure 21-7 illustrates these operations and their effect on the canvas coordinate system. The program that produced the figure drew the same set of axes seven times in a row. The only thing that changed each time was the current transform. Notice that the transforms affect the text as well as the lines that are drawn.
The translate()
method simply moves the origin of the coordinate system left, right, up, or down. The rotate()
method rotates the axes clockwise by the specified angle. (The Canvas API always specifies angles in radians. To convert degrees to radians, divide by 180 and multiply by Math.PI
.) The scale()
method stretches or contracts distances along the X or Y axes.
Passing a negative scale factor to the scale()
method flips that axis across the origin, as if it were reflected in a mirror. This is what was done in the lower left of Figure 21-7: translate()
was used to move the origin to the bottom left corner of the canvas, and then scale()
was used to flip the Y axis around so that Y coordinates increase as we go up the page. A flipped coordinate system like this is familiar from algebra class and may be useful for plotting data points on charts. Note, however, that it makes text difficult to read!
I find it easiest to understand transforms geometrically, thinking about translate()
, rotate()
, and scale()
as transforming the axes of the coordinate system as illustrated in Figure 21-7. It is also possible to understand transforms algebraically, as equations that map the coordinates of a point (x,y)
in the transformed coordinate system back to the coordinates of the same point (x',y')
in the previous coordinate system.
The method call c.translate(dx,dy)
can be described with these equations:
Scaling operations have similarly simple equations. A call c.scale(sx,sy)
can be described like this:
Rotations are more complicated. The call c.rotate(a)
is described by these trigonometric equations:
Notice that the order of transformations matters. Suppose we start with the default coordinate system of a canvas, and then translate it, and then scale it. In order to map the point (x,y)
in the current coordinate system back to the point (x'',y'')
in the default coordinate system, we must first apply the scaling equations to map the point to an intermediate point (x', y')
in the translated but unscaled coordinate system, and then use the translation equations to map from this intermediate point to (x'',y'')
. The result is this:
If, on the other hand, we’d called scale()
before calling translate()
, the resulting equations would be different:
The key thing to remember when thinking algebraically about sequences of transformations is that you must work backward from the last (most recent) transformation to the first. When thinking geometrically about transformed axes, however, you work forward from first transformation to last.
The transformations supported by the canvas are known as affine transforms. Affine transforms may modify the distances between points and the angles between lines, but parallel lines always remain parallel after an affine transformation—it is not possible, for example, to specify a fish-eye lens distortion with an affine transform. An arbitrary affine transform can be described by the six parameters a
through f
in these equations:
You can apply an arbitrary transformation to the current coordinate system by passing those six parameters to the transform()
method. Figure 21-7 illustrates two types of transformations—shears and rotations about a specified point—that you can implement with the transform()
method like this:
The setTransform()
method takes the same arguments as transform()
, but instead of transforming the current coordinate system, it ignores the current system, transforms the default coordinate system, and makes the result the new current coordinate system. setTransform()
is useful to temporarily reset the canvas to its default coordinate system:
Example 21-6 demonstrates the power of coordinate system transformations by using the translate()
, rotate()
, and scale()
methods recursively to draw a Koch snowflake fractal. The output of this example appears in Figure 21-8, which shows Koch snowflakes with 0, 1, 2, 3, and 4 levels of recursion.
The code that produces these figures is elegant, but its use of recursive coordinate system transformations makes it somewhat difficult to understand. Even if you don’t follow all the nuances, note that the code includes only a single invocation of the lineTo()
method. Every single line segment in Figure 21-8 is drawn like this:
The value of the variable len
does not change during the execution of the program, so the position, orientation, and length of each of the line segments is determined by translations, rotations, and scaling operations.
Example 21-6. A Koch snowflake with transformations
A path is a sequence of subpaths, and a subpath is a sequence of connected points. In the paths we defined in Drawing Lines and Filling Polygons, those points were connected with straight line segments, but that need not always be the case. The CanvasRenderingContext2D object defines a number of methods that add a new point to the subpath and connect the current point to that new point with a curve:
arc()
This method adds an arc to the current subpath. It connects the current point to the beginning of the arc with a straight line, and then connects the beginning of the arc to the end of the arc with a portion of a circle, leaving the end of the arc as the new current point. The arc to be drawn is specified with six parameters: the X and Y coordinates of the center of a circle, the radius of the circle, the start and end angles of the arc, and the direction (clockwise or counterclockwise) of the arc between those two angles.
arcTo()
This method draws a straight line and a circular arc just like thearc()
method does, but it specifies the arc to be drawn using different parameters. The arguments toarcTo()
specify points P1 and P2 and a radius. The arc that is added to the path has the specified radius and is tangent to the line between the current point and P1 and also the line between P1 and P2. This unusual-seeming method of specifying arcs is actually quite useful for drawing shapes with rounded corners. If you specify a radius of 0, this method just draws a straight line from the current point to P1. With a nonzero radius, however, it draws a straight line from the current point in the direction of P1 then curves that line around in a circle until it is heading in the direction of P2.
bezierCurveTo()
This method adds a new point P to the subpath and connects it to the current point with a cubic Bezier curve. The shape of the curve is specified by two “control points” C1 and C2. At the start of the curve (at the current point), the curve heads in the direction of C1. At the end of the curve (at point P), the curve arrives from the direction of C2. In between these points the direction of the curve varies smoothly. The point P becomes the new current point for the subpath.
quadraticCurveTo()
You can use these methods to draw paths like those in Figure 21-9.
Example 21-7 shows the code used to create Figure 21-9. The methods demonstrated in this code are some of the most complicated in the Canvas API; see the reference section for complete details on the methods and their arguments.
Example 21-7. Adding curves to a path
CanvasRenderingContext2D defines four methods for drawing rectangles. Example 21-7 used one of them, fillRect()
, to mark the control points of the Bezier curves. All four of these rectangle methods expect two arguments that specify one corner of the rectangle followed by the rectangle width and height. Normally, you specify the upper left corner and then pass a positive width and positive height, but you may also specify other corners and pass negative dimensions.
fillRect()
fills the specified rectangle with the current fillStyle
. strokeRect()
strokes the outline of the specified rectangle using the current strokeStyle
and other line attributes. clearRect()
is like fillRect()
, but it ignores the current fill style and fills the rectangle with transparent black pixels (the default color of all blank canvases). The important thing about these three methods is that they do not affect the current path or the current point within that path.
The final rectangle method is named rect()
, and it does affect the current path: it adds the specified rectangle, in a subpath of its own, to the path. Like other path-definition methods, it does not fill or stroke anything itself.
The strokeStyle
and fillStyle
attributes specify how lines are stroked and regions are filled. Most often, these attributes are used to specify opaque or translucent colors, but you can also set them to CanvasPattern or CanvasGradient objects to stroke or fill with a repeated background image or with a linear or radial color gradient. In addition, you can set the globalAlpha
property to make everything you draw translucent.
To specify a solid color, use one of the color names defined by the HTML4 standard,[52] or use a CSS color string:
The default value for both strokeStyle
and fillStyle
is “#000000”: opaque black.
Current browsers support CSS3 colors and allow the use of the RGB, RGBA, HSL, and HSLA color spaces in addition to basic hexadecimal RGB colors. Here are some examples:
The HSL color space defines a color with three numbers that specify its hue, saturation, and lightness. Hue is an angle in degrees around a color wheel. A hue of 0 is red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300 is magenta, and 360 is back to red again. Saturation describes the intensity of the color, and it is specified as a percentage. Colors with 0 percent saturation are shades of gray. Lightness describes how light or dark a color is and is also specified as a percentage. Any HSL color with 100 percent lightness is pure white, and any color with 0 percent lightness is pure black. The HSLA color space is just like HSL, but it adds an alpha value that ranges from 0.0 (transparent) to 1.0 (opaque).
If you want to work with translucent colors, but do not want to explicitly specify an alpha channel for each color, or if you want to add translucency to opaque images or patterns (for example), you can set the globalAlpha
property. Every pixel you draw will have its alpha value multiplied by globalAlpha
. The default is 1, which adds no transparency. If you set globalAlpha
to 0, everything you draw will be fully transparent and nothing will appear in the canvas. If you set this property to 0.5, pixels that would otherwise have been opaque will be 50 percent opaque. And pixels that would have been 50 percent opaque will be 25 percent opaque instead. If you set globalAlpha
, all your pixels will be translucent and you may have to consider how those pixels are combined (or “composited”) with the pixels they are drawn over—see Compositing for details about Canvas compositing modes.
Instead of drawing with solid (but possibly translucent) colors, you can also use color gradients and repeating images when filling and stroking paths. Figure 21-10 shows a rectangle stroked with wide lines and a patterned stroke style on top of a linear gradient fill and underneath a translucent radial gradient fill. The code fragments below show how the pattern and gradients were created.
To fill or stroke using a background image pattern instead of a color, set fillStyle
or strokeStyle
to the CanvasPattern object returned by the createPattern()
method of the context object:
The first argument to createPattern()
specifies the image to use as the pattern. It must be an
, <canvas>
, or <video>
element from the document (or an image object created with the Image()
constructor). The second argument is typically “repeat” for a repeating image fill that is independent of the size of the image, but you can also use “repeat-x”, “repeat-y”, or “no-repeat”.
Note that you can use a <canvas>
element (even one that has never been added to the document and is not visible) as the pattern source for another <canvas>
:
To fill (or stroke) with a color gradient, set fillStyle
(or strokeStyle
) to a CanvasGradient object returned by the createLinearGradient()
or createRadialGradient()
methods of the context. Creating gradients is a multistep process, and using them is trickier than using patterns.
The first step is to create the CanvasGradient object. The arguments to createLinearGradient()
are the coordinates of two points that define a line (it does not need to be horizontal or vertical) along which the colors will vary. The arguments to create
Radial
Gradient()
specify the centers and radii of two circles. (They need not be concentric, but the first circle typically lies entirely inside the second.) Areas inside the smaller circle or outside the larger will be filled with solid colors: areas between the two will be filled with a color gradient.
After creating the CanvasGradient object and defining the regions of the canvas that will be filled, you must define the gradient colors by calling the addColorStop()
method of the CanvasGradient. The first argument to this method is a number between 0.0 and 1.0. The second argument is a CSS color specification. You must call this method at least twice to define a simple color gradient, but you may call it more than that. The color at 0.0 will appear at the start of the gradient, and the color at 1.0 will appear at the end. If you specify additional colors, they will appear at the specified fractional position within the gradient. Elsewhere, colors will be smoothly interpolated. Here are some examples:
An important point to understand about gradients is that they are not position-independent. When you create a gradient, you specify bounds for the gradient. If you then attempt to fill an area outside of those bounds, you’ll get the solid color defined at one end or the other of the gradient. If you define a gradient along the line between (0,0) and (100, 100), for example, you should only use that gradient to fill objects located within the rectangle (0,0,100,100).
The graphic shown in Figure 21-10 was created with the pattern
pattern and the bgfade
and peekhole
gradients defined above using this code:
You’ve already seen the lineWidth
property, which specifies the width of the lines drawn by stroke()
and strokeRect()
. In addition to lineWidth
(and strokeStyle
, of course), there are three other graphics attributes that affect line drawing.
The default value of the lineWidth
property is 1, and you can set it to any positive number, even fractional values less than 1. (Lines that are less than one pixel wide are drawn with translucent colors, so they look less dark than 1-pixel-wide lines). To fully understand the lineWidth
property, it is important to visualize paths as infinitely thin one-dimensional lines. The lines and curves drawn by the stroke()
method are centered over the path, with half of the lineWidth
on either side. If you’re stroking a closed path and only want the line to appear outside the path, stroke the path first, and then fill with an opaque color to hide the portion of the stroke that appears inside the path. Or if you only want the line to appear inside a closed path, call the save()
and clip()
methods (Clipping) first, and then call stroke()
and restore()
.
Line widths are affected by the current transformation, as you may be able to make out in the scaled axes of Figure 21-7. If you call scale(2,1)
to scale the X dimension and leave Y unaffected, vertical lines will be twice as wide as horizontal lines drawn with the same lineWidth
setting. It is important to understand that line width is determined by the lineWidth
and the current transform at the time stroke()
is called, not at the time that lineTo()
or another path-building method is called.
The other three line drawing attributes affect the appearance of the unconnected ends of paths and the vertexes where two path segments meet. They have very little visual impact for narrow lines, but they make a big difference when you are drawing with wide lines. Two of these properties are illustrated in Figure 21-11. The figure shows the path as a thin black line and the stroke as the gray area that surrounds it.
The lineCap
property specifies how the ends of an open subpath are “capped.” The value “butt” (the default) means that the line terminates abruptly at the end point. The value “square” means that the line extends, by half of the line width, beyond the endpoint. And the value “round” means that the line is extended with a half circle (of radius one-half the line width) beyond the endpoint.
The lineJoin
property specifies how the vertexes between subpath segments are connected. The default value is “miter”, which means that the outside edges of the two path segments are extended until they meet at a point. The value “round” means that the vertex is rounded off, and the value “bevel” means that the vertex is cut off with a straight line.
The final line drawing property is miterLimit
, which only applies when lineJoin
is “miter”. When two lines meet at a sharp angle, the miter between them can become quite long, and these long jagged miters are visually distracting. The miterLimit
property places an upper bound on miter length. If the miter at a given vertex would be longer than half of the line width times miterLimit
, that vertex will be drawn with a beveled join instead of a mitered join.
To draw text in a canvas, you normally use the fillText()
method, which draws text using the color (or gradient or pattern) specified by the fillStyle
property. For special effects at large text sizes, you can use strokeText()
to draw the outline of the individual text glyphs (an example of outlined text appears in Figure 21-13). Both methods take the text to be drawn as their first argument and take the X and Y coordinates of the text as the second and third arguments. Neither method affects the current path or the current point. As you can see in Figure 21-7, text is affected by the current transformation.
The font
property specifies the font to be used for text drawing. The value should be a string in the same syntax as the CSS font
attribute. Some examples:
The textAlign
property specifies how the text should be horizontally aligned with respect to the X coordinate passed to fillText()
or strokeText()
. The textBaseline
property specifies how the text should be vertically aligned with respect to the Y coordinate. Figure 21-12 illustrates the allowed values for these properties. The thin line near each string of text is the baseline, and the small square marks the point (x,y)
that was passed to fillText()
.
The default textAlign
is “start”. Note that for left-to-right text, an alignment of “start” is the same as “left” and an alignment of “end” is the same as “right”. If you set the dir
attribute of the <canvas>
element to “rtl” (right-to-left), however, “start” alignment is the same and “right” alignment and “end” is the same as “left”.
The default textBaseline
is “alphabetic”, and it is appropriate for Latin and similar scripts. The value “ideographic” is used with ideographic scripts such as Chinese and Japanese. The value “hanging” is intended for use with Devangari and similar scripts (which are used for many of the languages of India). The “top”, “middle”, and “bottom” baselines are purely geometric baselines, based on the “em square” of the font.
fillText()
and strokeText()
take an optional fourth argument. If given, this argument specifies the maximum width of the text to be displayed. If the text would be wider than the specified value when drawn using the font
property, the canvas will make it fit by scaling it or by using a narrower or smaller font.
If you need to measure text yourself before drawing it, pass it to the measureText()
method. This method returns a TextMetrics object that specifies the measurements of the text when drawn with the current font
. At the time of this writing, the only “metric” contained in the TextMetrics
object is the width. Query the on-screen width of a string like this:
After defining a path, you usually call stroke()
or fill()
(or both). You can also call the clip()
method to define a clipping region. Once a clipping region is defined, nothing will be drawn outside of it. Figure 21-13 shows a complex drawing produced using clipping regions. The vertical stripe running down the middle and the text along the bottom of the figure were stroked with no clipping region and then filled after the triangular clipping region was defined.
Figure 21-13 was generated using the polygon()
method of Example 21-4 and the following code:
It is important to note that when you call clip()
, the current path is itself clipped to the current clipping region, and then that clipped path becomes the new clipping region. This means that the clip()
method can shrink the clipping region but can never enlarge it. There is no method to reset the clipping region, so before calling clip()
you should typically call save()
, so that you can later restore()
the unclipped region.
Four graphics attribute properties of the CanvasRenderingContext2D object control the drawing of drop shadows. If you set these properties appropriately, any line, area, text, or image you draw will be given a drop shadow, which will make it appear as if it is floating above the canvas surface. Figure 21-14 shows shadows beneath a filled rectangle, a stroked rectangle, and filled text.
The shadowColor
property specifies the color of the shadow. The default is fully transparent black, and shadows will never appear unless you set this property to a translucent or opaque color. This property can only be set to a color string: patterns and gradients are not allowed for shadows. Using a translucent shadow color produces the most realistic shadow effects because it allows the background to show through.
The shadowOffsetX
and shadowOffsetY
properties specify the X and Y offsets of the shadow. The default for both properties is 0, which places the shadow directly beneath your drawing, where it is not visible. If you set both properties to a positive value, shadows will appear below and to the right of what you draw, as if there were a light source above and to the left, shining onto the canvas from outside the computer screen. Larger offsets produce larger shadows and make drawn objects appear as if they are floating “higher” above the canvas.
The shadowBlur
property specifies how blurred the edges of the shadow are. The default value is 0, which produces crisp, unblurred shadows. Larger values produce more blur, up to an implementation-defined upper bound. This property is a parameter to a Gaussian blur function and is not a size or length in pixels.
Example 21-8 shows the code used to produce Figure 21-14 and demonstrates each of these four shadow properties.
Example 21-8. Setting shadow attributes
The shadowOffsetX
and shadowOffsetY
properties are always measured in the default coordinate space and are not affected by the rotate()
or scale()
methods. Suppose, for example, that you rotate the coordinate system by 90 degrees to draw some vertical text and then restore the old coordinate system to draw horizontal text. Both the vertical and horizontal text will have shadows oriented in the same direction, which is what you probably want. Similarly, shapes drawn with different scaling transforms will still have shadows of the same “height”.[53]
In addition to vector graphics (paths, lines, etc.), the Canvas API also supports bitmap images. The drawImage()
method copies the pixels of a source image (or of a rectangle within the source image) onto the canvas, scaling and rotating the pixels of the image as necessary.
drawImage()
can be invoked with three, five, or nine arguments. In all cases, the first argument is the source image from which pixels are to be copied. This image argument is often an
element or an off-screen image created with the Image()
constructor, but it can also be another <canvas>
element or even a <video>
element. If you specify an
or <video>
element that is still loading its data, the drawImage()
call will do nothing.
In the three-argument version of drawImage()
, the second and third arguments specify the X and Y coordinates at which the upper left corner of the image is to be drawn. In this version of the method, the entire source image is copied to the canvas. The X and Y coordinates are interpreted in the current coordinate system and the image is scaled and rotated if necessary.
The five-argument version of drawImage()
adds width
and height
arguments to the x
and y
arguments described above. These four arguments define a destination rectangle within the canvas. The upper left corner of the source image goes at (x,y)
and the lower right corner goes at (x+width, y+height)
. Again, the entire source image is copied. The destination rectangle is measured in the current coordinate system. With this version of the method, the source image will be scaled to fit the destination rectangle, even if no scaling transform has ever been specified.
The nine-argument version of drawImage()
specifies both a source rectangle and a destination rectangle and copies only the pixels within the source rectangle. Arguments two through five specify the source rectangle. They are measured in CSS pixels. If the source image is another canvas the source rectangle uses the default coordinate system for that canvas and ignores any transformations that have been specified. Arguments six through nine specify the destination rectangle into which the image is drawn and are in the current coordinate system of the canvas, not in the default coordinate system.
Example 21-9 is a simple demonstration of drawImage()
. It uses the nine-argument version to copy pixels from a portion of a canvas and draw them, enlarged and rotated back onto the same canvas. As you can see in Figure 21-15, the image is enlarged enough to be pixelated, and you can see the translucent pixels used to smooth the edges of the line.
Example 21-9. Using drawImage()
In addition to drawing images into a canvas, we can also extract the content of a canvas as an image using the toDataURL()
method. Unlike all the other methods described here, toDataURL()
is a method of the Canvas element itself, not of the CanvasRenderingContext2D object. You normally invoke toDataURL()
with no arguments, and it returns the content of the canvas as a PNG image, encoded as a string using a data:
URL. The returned URL is suitable for use with an
element, and you can make a static snapshot of a canvas with code like this:
All browsers are required to support the PNG image format. Some implementations may support other formats as well, and you can specify the desired MIME type with the optional first argument to toDataURL()
. See the reference page for details.
There is one important security restriction you must be aware of when using to
Data
URL()
. To prevent cross-origin information leaks, toDataURL()
does not work on <canvas>
elements that are not “origin-clean.” A canvas is not origin-clean if it has ever had an image drawn in it (directly by drawImage()
or indirectly through a CanvasPattern) that has a different origin than the document that contains the canvas.
When you stroke lines, fill regions, draw text, or copy images, you expect the new pixels to be drawn on top of the pixels that are already in the canvas. If you are drawing opaque pixels, they simply replace the pixels that are already there. If you are drawing with translucent pixels, the new (“source”) pixel is combined with the old (“destination”) pixel so that the old pixel shows through the new pixel based on how transparent that pixel is.
This process of combining new translucent source pixels with existing destination pixels is called compositing, and the compositing process described above is the default way that the Canvas API combines pixels. You don’t always want compositing to happen, however. Suppose you’ve drawn into a canvas using translucent pixels and now want to make a temporary alteration to the canvas and then restore it to its original state. An easy way to do this is to copy the canvas (or a region of it) to an offscreen canvas using drawImage()
. Then, when it is time to restore the canvas, you can copy your pixels from the offscreen canvas in which you saved them back to the on-screen canvas. Remember, though, that the pixels you saved were translucent. If compositing is on, they won’t fully obscure and erase the temporary drawing you’ve done. In this scenario, you need a way to turn compositing off: to draw the source pixels and ignore the destination pixels regardless of the transparency of the source.
To specify the kind of compositing to be done, set the globalCompositeOperation
property. The default value is “source-over”, which means that source pixels are drawn “over” the destination pixels and are combined with them if the source is translucent. If you set this property to “copy”, compositing is turned off: source pixels are copied to the canvas unchanged and destination pixels are ignored. Another global
Composite
Operation
value that is sometimes useful is “destination-over”. This kind of compositing combines pixels as if the new source pixels were drawn beneath the existing destination pixels. If the destination is translucent or transparent, some or all of the source pixel color is visible in the resulting color.
“source-over”, “destination-over”, and “copy” are three of the most commonly used types of compositing, but the Canvas API supports 11 values for the global
Composite
Operation
attribute. The names of these compositing operations are suggestive of what they do, and you can go a long way toward understanding compositing by combining the operation names with visual examples of how they work. Figure 21-16 illustrates all 11 operations using “hard” transparency: all the pixels involved are fully opaque or fully transparent. In each of the 11 boxes, the square is drawn first and serves as the destination. Next globalCompositeOperation
is set, and the circle is drawn as the source.
Figure 21-17 is a similar example that uses “soft” transparency. In this version, the source circle and destination square are drawn using color gradients so that the pixels have a range of transparencies.
You may find that it is not so easy to understand the compositing operations when used with translucent pixels like these. If you are interested in a deeper understanding, the reference page for CanvasRenderingContext2D
includes the equations that specify how individual pixel values are computed from source and destination pixels for each of the 11 compositing operations.
At the time of this writing, browser vendors disagree on the implementation of 5 of the 11 compositing modes: “copy”, “source-in”, “source-out”, “destination-atop”, and “destination-in” behave differently in different browsers and cannot be used portably. A detailed explanation follows, but you can skip to the next section if you don’t plan on using any of these compositing operations.
The five compositing modes listed above either ignore the destination pixel values in the computation of result pixels or make the result transparent anywhere the source is transparent. The difference in implementation has to do with the definition of the source pixels. Safari and Chrome perform compositing “locally”: only the pixels actually drawn by the fill()
, stroke()
, or other drawing operation count as part of the source. IE9 is likely to follow suit. Firefox and Opera perform compositing “globally”: every pixel within the current clipping region is composited for every drawing operation. If the source does not set that pixel, it is treated as transparent black. In Firefox and Opera, this means that the five compositing modes listed above actually erase destination pixels outside of the source and inside the clipping region. Figures 21-16 and 21-17 were generated in Firefox, and this is why the boxes around “copy”, “source-in”, “source-out”, “destination-atop”, and “destination-in” are thinner than the other boxes: the rectangle around each sample is the clipping region and these four compositing operations erase the portion of the stroke (half of the lineWidth
) that falls inside the path. For comparison, Figure 21-18 shows the same figure as Figure 21-17, but generated in Chrome.
The HTML5 draft current at the time of this writing specifies the global compositing approach implemented by Firefox and Opera. Browser vendors are aware of the incompatibility and are not satisfied with the current state of the specification. There is a distinct possibility that the specification will be altered to require local compositing instead of global compositing.
Finally, note that it is possible to perform global compositing in browsers like Safari and Chrome that implement local compositing. First, create a blank offscreen canvas of the same dimensions as the on-screen canvas. Then draw your source pixels into the offscreen canvas and use drawImage()
to copy the offscreen pixels to the on-screen canvas and composite them globally within the clipping region. There is not a general technique for performing local compositing in browsers like Firefox that implement global compositing, but you can often come close by defining an appropriate clipping region before performing the drawing operation that is to be locally composited.
The getImageData()
method returns an ImageData object that represents the raw (non-premultiplied) pixels (as R, G, B, and A components) from a rectangular region of your canvas. You can create empty blank ImageData
objects with createImageData()
. The pixels in an ImageData object are writable, so you can set them any way you want, and then copy those pixels back onto the canvas with putImageData()
.
These pixel manipulation methods provide very low-level access to the canvas. The rectangle you pass to getImageData()
is in the default coordinate system: its dimensions are measured in CSS pixels and it is not affected by the current transformation. When you call putImageData()
, the position you specify is also measured in the default coordinate system. Furthermore, putImageData()
ignores all graphics attributes. It does not perform any compositing, it does not multiply pixels by globalAlpha
, and it does not draw shadows.
Pixel manipulation methods are useful for implementing image processing. Example 21-10 shows how to create a simple motion blur or “smear” effect on the graphics in a canvas. The example demonstrates getImageData()
and putImageData()
and shows how to iterate through and modify the pixel values in an ImageData object, but it does not explain these things in any detail. See the CanvasRenderingContext2D reference pages for complete details on getImageData()
and putImageData()
and see the ImageData reference page for details on that object.
Example 21-10. Motion blur with ImageData
Note that getImageData()
is subject to the same cross-origin security restriction that the toDataURL()
is: it does not work on any canvas that has ever had an image drawn in it (directly by drawImage()
or indirectly through a CanvasPattern) that has a different origin than the document that contains the canvas.
The method isPointInPath()
determines whether a specified point falls within (or on the boundary of) the current path and returns true
if so, or false
otherwise. The point you pass to the method is in the default coordinate system and is not transformed. This makes this method useful for hit detection: determining whether a mouse click occurred over a particular shape.
You can’t pass the clientX
and clientY
fields of a MouseEvent object directly to is
Point
InPath()
, however. First, the mouse event coordinates must be translated to be relative to the canvas element rather than the Window object. Second, if the onscreen size of the canvas is different than its actual dimensions, the mouse event coordinates must be scaled appropriately. Example 21-11 shows a utility function you can use to determine whether a give MouseEvent was over the current path.
Example 21-11. Testing whether a mouse event is over the current path
You might use this hitpath()
function in an event handler like this:
Instead of doing path-based hit detection, you can use getImageData()
to test whether the pixel under the mouse point has been painted. If the returned pixel (or pixels) are fully transparent, nothing has been drawn into that pixel and the mouse event is a miss. Example 21-12 shows how you can do this kind of hit detection.
Example 21-12. Testing whether a mouse event is over a painted pixel
We’ll end this chapter with a practical example for drawing sparklines. A sparkline is a small data-display graphic intended to be included within the flow of text, like this one: . The term “sparkline” was coined by author Edward Tufte, who describes them as “small, high-resolution graphics embedded in a context of words, numbers, images. Sparklines are data-intense, design-simple, word-sized graphics.” (Learn more about sparklines in Tufte’s book Beautiful Evidence [Graphics Press].)
Example 21-13 is a relatively simple module of unobtrusive JavaScript code for enabling sparklines in your web pages. The comments explain how it works. Note that it uses the onLoad()
function of Example 13-5.
Example 21-13. Sparklines with the <canvas> element
The term HTML5 refers to the latest version of the HTML specification, of course, but it has also come to refer to an entire suite of web application technologies that are being developed and specified as part of or alongside HTML. A more formal term for these technologies is the Open Web Platform. In practice, however, “HTML5” is a convenient shorthand, and this chapter uses it in that way. Some of the new HTML5 APIs are documented elsewhere in this book:
getElementsByClassName()
and querySelectorAll()
methods and the dataset
attribute of document elements. classList
property of elements. <audio>
, <video>
, and <canvas>
elements and SVG graphics. This chapter covers a number of other HTML5 APIs:
The features documented in this chapter either do not fit naturally into any of the previous chapters or are not yet stable and mature enough to integrate into the main chapters of the book. Some of the APIs seem stable enough to document in the reference section, while in other cases the API is still in flux and is not covered in Part IV. All but one of the examples in this chapter (Example 22-9), worked in at least one browser when this book went to press. Because the specifications being covered here are still evolving, some of these examples may no longer work when you read this chapter.
The Geolocation API allows JavaScript programs to ask the browser for the user’s real-world location. Location-aware applications can display maps, directions, and other information relevant to the user’s current position. There are, of course, significant privacy concerns here, and browsers that support the Geolocation API always ask the user before allowing a JavaScript program to access the user’s physical location.
Browsers that support the Geolocation API define navigator.geolocation
. This property refers to an object with three methods:
navigator.geolocation.getCurrentPosition()
Request the user’s current position.
navigator.geolocation.watchPosition()
Request the current position, but also continue to monitor position and invoke the specified callback when the user’s position changes.
navigator.geolocation.clearWatch()
Stop watching the user’s location. The argument to this method should be the number returned by the corresponding call towatchPosition()
.
In devices that include GPS hardware, very precise location information can be obtained from the GPS unit. More commonly, however, location information comes via the Web. If a browser submits your Internet IP address to a web service, it can usually determine (based on ISP records) what city you are in (and it is common for advertisers to do this on the server side). A browser can often obtain an even more precise location by asking the operating system for the list of nearby wireless networks and their signal strengths. This information, when submitted to a sophisticated web service allows your location to be computed with surprising accuracy (usually within one city block).
These geolocation technologies involve either an exchange over the network or communication with multiple satellites, so the Geolocation API is asynchronous: get
Current
Position()
and watchPosition()
return immediately but accept a callback argument that the browser invokes when it has determined the user’s position (or when the position has changed). The simplest form of location request looks like this:
In addition to latitude and longitude, every successful geolocation request also returns an accuracy value (in meters) that specifies how closely the position is known. Example 22-1 demonstrates: it calls getCurrentPosition()
to determine the current position and uses the resulting information to display a map (from Google Maps) of the current location, zoomed approximately to the location accuracy.
Example 22-1. Using geolocation to display a map
The Geolocation API has several features that are not demonstrated by Example 22-1:
getCurrentPosition()
and watch
Position()
accept an optional second callback that is invoked if the geolocation request fails. Example 22-2 demonstrates these additional features.
Example 22-2. A demonstration of all geolocation features
Web browsers keep track of what documents have been loaded into a window and display Back and Forward buttons that allow the user to navigate among those documents. This browser history model dates back to the days in which documents were passive and all computation was performed on the server. Today, web applications often generate or load content dynamically and display new application states without performing new document loads. Applications like these must perform their own history management if they want to user to be able to use the Back and Forward buttons to navigate from one application state to another in an intuitive way. HTML5 defines two mechanisms for history management.
The simpler history management technique involves location.hash
and the hashchange event. This technique is also somewhat more widely implemented at the time of this writing: browsers were beginning to implement it even before HTML5 standardized it. In most browsers (but not older versions of IE), setting the location.hash
property updates the URL displayed in the location bar and adds an entry to the browser’s history. The hash
property sets the fragment identifier of the URL and is traditionally used to specify the ID of a document section to scroll to. But location.hash
does not have to be an element ID: you can set it to any string. If you can encode your application state as a string, you can use that string as a fragment identifier.
By setting the location.hash
property, then, you allow the user to use the Back and Forward buttons to navigate between document states. For this to work, your application must have some way to detect these changes of state, so that it can read the state stored in the fragment identifier and update itself accordingly. In HTML5, the browser fires a hashchange event at the Window whenever the fragment identifier changes. In browsers that support the hashchange event, you can set window.onhashchange
to a handler function that will be called whenever the fragment identifier changes as a result of history navigation. When this handler function is called, your function would parse the location.hash
value and redisplay the application using the state information it contains.
HTML5 also defines a somewhat more complex and robust method of history management involving the history.pushState()
method and the popstate event. When a web app enters a new state, it calls history.pushState()
to add that state to the browsing history. The first argument is an object that contains all the state information necessary to restore the current state of the document. Any object that can be converted to a string with JSON.stringify()
will work, and certain other native types such as Date and RegExp should also work as well (see the sidebar below). The second argument is an optional title (a plain text string) that the browser can use (in a <Back>
menu, for example) to identify the saved state in the browsing history. The third argument is an optional URL that will be displayed as the location of the current state. Relative URLs are resolved against the current location of the document, and it is common to simply specify a hash (or “fragment identifier”) portion of the URL, such as #state
. Associating a URL with each state allows the user to bookmark internal states of your application, and if you include sufficient information in the URL, your application can restore its state when loaded from a bookmark.
As noted above, the pushState()
method accepts a state object and makes a private copy of it. This is a deep copy or deep clone of the object: it recursively copies the contents of any nested objects or arrays. The HTML5 standard calls this kind of copy a structured clone. The process of creating a structured clone is something like passing the object to JSON.stringify()
and then passing the resulting string to JSON.parse()
(see Serializing Objects). But JSON only supports JavaScript primitives plus objects and arrays. The HTML5 standard says that the structured clone algorithm must also be able to clone Date and RegExp objects, ImageData objects (from the <canvas>
element: see Pixel Manipulation), and FileList, File, and Blob objects (described in Blobs). JavaScript functions and errors are explicitly excluded from the structured clone algorithm, as are most host objects such as windows, documents, elements, and so on.
You may not have any reason to store files or image data as part of your history state, but structured clones are also used by a number of other HTML5-related standards, and we’ll see them again throughout this chapter.
In addition to the pushState()
method, the History object also defines replace
State()
, which takes the same arguments but replaces the current history state instead of adding a new state to the browsing history.
When the user navigates to saved history states using the Back or Forward buttons, the browser fires a popstate event on the Window object. The event object associated with the event has a property named state
, which contains a copy (another structured clone) of the state object you passed to pushState()
.
Example 22-3 is a simple web application—the number guessing game pictured in Figure 22-1 —that uses these HTML5 techniques to save its history, allowing the user to “go back” to review or redo her guesses.
As this book goes to press, Firefox 4 has made two modifications to the History API that other browsers may follow. First, Firefox 4 makes the current state available through the state
property of the History object itself, which means that newly loaded pages do not need to wait for a popstate event. Second, Firefox 4 no longer fires a popstate event for newly loaded pages that do not have any saved state. This second change means that the example below does not work quite right in Firefox 4.
Example 22-3. History management with pushState()
As noted in Multiple Windows and Frames, some browser windows and tabs are completely isolated from each other, and the code running in one is completely unaware of the others. In other cases, when a script explicitly opens new windows or works with nested frames, the multiple windows and frames are aware of each other. If they contain documents from the same web server, scripts in these windows and frames can interact with each other and manipulate each other’s documents.
Sometimes, however, a script can refer to another Window object, but because the content in that window is from a different origin, the web browser (following the same-origin policy) will not allow the script to see the document content of that other window. For the most part, the browser won’t allow the script to read properties or invoke methods of that other window, either. One window method that scripts from different origins are allowed to invoke is called postMessage()
, and this method enables a limited kind of communication—in the form of asynchronous message passing—between scripts from different origins. This kind of communication is defined by HTML5 and is implemented by all current browsers (including IE8 and later). The technique is known as “cross-document messaging,” but since the API is defined on the Window object instead of the document, it might be better known as “inter-window message passing” or “cross-origin messaging.”
The postMessage()
method expects two arguments. The first is the message to be sent. The HTML5 specification says that this can be any primitive value or object that can be cloned (see Structured Clones), but some current browser implementations (including Firefox 4 beta) expect strings, so if you want to pass an object or array as a message you should serialize it with JSON.stringify()
(Serializing Objects) first.
The second argument is a string that specifies the expected origin of the destination window. Include the protocol, hostname, and (optionally) the port portions of a URL (you can pass a complete URL, but anything other than the protocol, host, and port will be ignored). This is a security feature: malicious code or ordinary users can navigate windows to new documents that you don’t expect, so postMessage()
won’t deliver your message if the window contains a document from a different origin than the one you specified. If the message you are passing doesn’t contain any sensitive information and you are willing to pass it to code from any origin, you can pass the string "*"
as a wildcard instead. If you want to specify the same origin as the current window, you can simply use "/"
.
If the origins match, the call to postMessage()
will result in a message event being fired at the target Window object. A script in that window can define an event handler function to be notified of message events. This handler is passed an event object with the following properties:
data
source
origin
Most onmessage()
handlers should first check the origin
property of their argument and should ignore messages from unexpected domains.
Cross-origin messaging via postMessage()
and the message event can be useful when you want to include a module or “gadget” from another site within your web page. If the gadget is simple and self-contained, you can simply isolate it in an <iframe>
. Suppose, however, that it is a more complex gadget that defines an API and your web page has to control it or interact with it somehow. If the gadget is defined as a <script>
element, it can expose a normal JavaScript API, but including in your page allows it to take complete control of the page and its content. It is not uncommon to do this on the Web today (particularly for web advertising), but it is not really a good idea, even when you trust the other site.
Cross-origin messaging provides an alternative: the gadget author can package the gadget within an HTML file that listens for message events and dispatches those events to the appropriate JavaScript functions. Then the web page that includes the gadget can interact with it by sending messages with postMessage()
. Examples 22-4 and 22-5 demonstrate this. Example 22-4 is a simple gadget, included via <iframe>
, that searches Twitter and displays tweets that match a specified search term. To make this gadget search for something, the containing page simply sends it the desired search term as a message.
Example 22-4. A Twitter search gadget, controlled by postMessage()
Example 22-5 is a simple JavaScript file that can be inserted into any web page that wants to use the Twitter search gadget. It inserts the gadget into the document and then adds an event handler to all links in the document so that moving the mouse over a link calls postMessage()
on the gadget’s frame to make the gadget search for the URL of the link. This allows a user to see what, if anything, people are tweeting about a website before visiting the site.
Example 22-5. Using the Twitter search gadget with postMessage()
One of the fundamental features of client-side JavaScript is that it is single-threaded: a browser will never run two event handlers at the same time, and it will never trigger a timer while an event handler is running, for example. Concurrent updates to application state or to the document are simply not possible, and client-side programmers do not need to think about, or even understand, concurrent programming. A corollary is that client-side JavaScript functions must not run too long: otherwise they will tie up the event loop and the web browser will become unresponsive to user input. This is the reason that Ajax APIs are always asynchronous and the reason that client-side JavaScript cannot have a simple, synchronous load()
or require()
function for loading JavaScript libraries.
The Web Workers specification[54] very carefully relaxes the single-threaded requirement for client-side JavaScript. The “workers” it defines are effectively parallel threads of execution. Web workers live in a self-contained execution environment, however, with no access to the Window or Document object and can communicate with the main thread only through asynchronous message passing. This means that concurrent modifications of the DOM are still not possible, but it also means that there is now a way to use synchronous APIs and write long-running functions that do not stall the event loop and hang the browser. Creating a new worker is not a heavyweight operation like opening a new browser window, but workers are not flyweight threads either, and it does not make sense to create new workers to perform trivial operations. Complex web applications may find it useful to create tens of workers, but it is unlikely that an application with hundreds or thousands of workers would be practical.
As with any threading API, there are two pieces to the Web Workers specification. The first is the Worker object: this is what a worker looks like from the outside, to the thread that creates it. The second is the WorkerGlobalScope: this is the global object for a new worker, and it is what a worker thread looks like, on the inside, to itself. The subsections that follow explain both. They are followed by a section of examples.
To create a new worker, just use the Worker()
constructor, passing a URL that specifies the JavaScript code that the worker is to run:
If you specify a relative URL, it is resolved relative to the URL of the document that contains the script that called the Worker()
constructor. If you specify an absolute URL, it must have the same origin (same protocol, host, and port) as that containing document.
Once you have a Worker object, you can send data to it with postMessage()
. The value you pass to postMessage()
will be cloned (see Structured Clones), and the resulting copy will be delivered to the worker via a message event:
Note that the postMessage()
method of a Worker does not have the origin argument that the postMessage()
method of a Window does (Cross-Origin Messaging). Also, the postMessage()
method of a Worker correctly clones the message in current browsers, unlike Window
.postMessage()
, which is still restricted to string messages in some important browsers.
You can receive messages from a worker by listening for message events on the Worker object:
If a worker throws an exception and does not catch or handle it itself, that exception propagates as an event that you can listen for:
Like all event targets, Worker objects define the standard addEventListener()
and removeEventListener()
methods, and you can use these in place of the onmessage
and onerror
properties if you want to manage multiple event handlers.
The Worker object has just one other method, terminate()
, which forces a worker thread to stop running.
When you create a new worker with the Worker()
constructor, you specify the URL of a file of JavaScript code. That code is executed in a new, pristine JavaScript execution environment, completely isolated from the script that created the worker. The global object for that new execution environment is a WorkerGlobalScope object. A WorkerGlobalScope is something more than the core JavaScript global object, but less than a full-blown client-side Window object.
The WorkerGlobalScope object has a postMessage()
method and an onmessage
event handler property that are just like those of the Worker object but work in the opposite direction: calling postMessage()
inside a worker generates a message event outside the worker, and messages sent from outside the worker are turned into events and delivered to the onmessage
handler. Note that since the WorkerGlobalScope is the global object for a worker, postMessage()
and onmessage
look like a global function and global variable to worker code.
The close()
function allows a worker to terminate itself, and it is similar in effect to the terminate()
method of a Worker object. Note, however, that there is no API on the Worker object to test whether a worker has closed itself, and there is no onclose
event handler property, either. If you call postMessage()
on a worker that has closed, your message will be discarded silently and no error will be raised. In general, if a worker is going to close()
itself, it may be a good idea to first post some kind of “closing” message.
The most interesting global function defined by WorkerGlobalScope is importScripts()
: workers use this function to load any library code they require. For example:
importScripts()
takes one or more URL arguments, each of which should refer to a file of JavaScript code. Relative URLs are resolved relative to the URL that was passed to the Worker()
constructor. It loads and executes these files one after the other, in the order in which they were specified. If loading a script causes a network error, or if executing throws an error of any sort, none of the subsequent scripts are loaded or executed. A script loaded with importScripts()
can itself call importScripts()
to load the files it depends on. Note, however, that importScripts()
does not try to keep track of what scripts have already loaded and does nothing to prevent dependency cycles.
importScripts()
is a synchronous function: it does not return until all of the scripts have loaded and executed. You can start using the scripts you loaded as soon as importScripts()
returns: there is no need for a callback or event handler. Once you have internalized the asynchronous nature of client-side JavaScript, it can seem strange to go back to simple, synchronous programming again. But that is the beauty of threads: you can use a blocking function call in a worker without blocking the event loop in the main thread, and without blocking the computations being concurrently performed in other workers.
Worker threads run their code (and all imported scripts) synchronously from top to bottom, and then enter an asynchronous phase in which they respond to events and timers. If a worker registers an onmessage
event handler, it will never exit as long as there is a possibility that message events will still arrive. But if a worker doesn’t listen for messages, it will run until there are no further pending tasks (such as download and timers) and all task-related callbacks have been called. Once all registered callbacks have been called, there is no way a worker can begin a new task, so it is safe for the thread to exit. Imagine a worker with no onmessage
event handler that downloads a file using XMLHttpRequest. If the onload
handler for that download begins a new download or registers a timeout with setTimeout()
, the thread has new tasks and keeps running. Otherwise, the thread exits.
Since WorkerGlobalScope is the global object for workers, it has all of the properties of the core JavaScript global object, such as the JSON
object, the isNaN()
function, and the Date()
constructor. (Look up Global in the core language reference section for a complete list.) In addition, however, WorkerGlobalScope also has the following properties of the client-side Window object:
self
is a reference to the global object itself. Note, however, that WorkerGlobalScope does not have the synonymous window
property that Window objects have. setTimeout()
, clearTimeout()
, setInterval()
and clear
Interval()
.location
property that describes the URL that was passed to the Worker()
constructor. This property refers to a Location object, just as the location
property of a Window does. The Location object has properties href
, protocol
, host
, hostname
, port
, pathname
, search
, and hash
. In a worker, these properties are read-only.navigator
property that refers to an object with properties like those of the Navigator object of a window. A worker’s navigator object has properties appName
, appVersion
, platform
, userAgent
, and onLine
.addEventListener()
and removeEventListener()
.onerror
property that you can set to an error handler function like the Window
.onerror
handler described in Error Handling. An error handler, if you register one, is passed the error message, URL, and line number as three string arguments. It can return false
to indicate that the error has been handled and should not be propagated as an error event on the Worker object. (At the time of this writing, however, error handling within a worker is not implemented interoperably across browsers.)Finally, the WorkerGlobalScope object includes important client-side JavaScript constructor objects. These include XMLHttpRequest()
so that workers can perform scripted HTTP (see Chapter 18) and the Worker()
constructor so that workers can create their own worker threads. (At the time of this writing, the Worker()
constructor is not available to workers in Chrome and Safari, however.)
A number of the HTML5 APIs described later in this chapter define features that are available through both an ordinary Window object and also in workers through the WorkerGlobalScope. Often, the Window object will define an asynchronous API and the WorkerGlobalScope will add a synchronous version of the same basic API. These “worker-enabled” APIs will be described when we come to them later in the chapter.
The worker threads described in this section are dedicated workers: they are associated with, or dedicated to, a single parent thread. The Web Workers specification defines another type of worker, the shared worker. As I write this, browsers do not yet implement shared workers. The intent, however, is that a shared worker is a kind of named resource that can provide a computational service to any thread that cares to connect to it. In practice, interacting with a shared worker is like communicating with a server over a network socket.
The “socket” for a shared worker is known as a MessagePort. MessagePorts define a message-passing API like we’ve seen for dedicated workers and cross-document messaging: they have a postMessage()
method and an onmessage
event handler attribute. HTML5 allows you to create connected pairs of MessagePort objects with the MessageChannel()
constructor. You can pass MessagePorts (via a special postMessage()
argument) to other windows or other workers and use them as dedicated communication channels. MessagePorts and MessageChannels are an advanced API that is not yet supported by many browsers and is not covered here.
We’ll end this section with two Web Worker examples. The first demonstrates how to perform long computations in a worker thread so that they don’t affect the UI responsiveness of the main thread. The second example demonstrates how worker threads can use simpler synchronous APIs.
Example 22-6 defines a smear()
function that expects an
element as its argument. It applies a motion blur effect to “smear” the image to the right. It uses techniques from Chapter 21 to copy the image to an offscreen <canvas>
element and then to extract the image’s pixels to an ImageData object. You cannot pass an
or a <canvas>
element to a worker via postMessage()
, but you can pass an ImageData object (details are in Structured Clones). Example 22-6 creates a Worker object and calls postMessage()
to send it the pixels to be smeared. When the worker sends the processed pixels back, the code copies them back into the <canvas>
, extracts them as a data://
URL, and sets that URL on the src
property of the original
element.
Example 22-6. Creating a Web Worker for image processing
Example 22-7 is the code used by the worker thread created in Example 22-6. The bulk of this example is the image processing function: a modified version of the code from Example 21-10. Note that this example sets up its message-passing infrastructure in a single line of code: the onmessage
event handler simply smears the image it is passed and posts it right back.
Example 22-7. Image processing in a Web Worker
Note that the code in Example 22-7 can process any number of images that are sent to it. For simplicity, however, Example 22-6 creates a new Worker object for each image it processes. To ensure that the worker does not just sit around waiting for messages, it kills the thread with terminate()
when done.
One of the APIs not available (at least as I write this) in WorkerGlobalScope is the console API and its invaluable console.log()
function. Worker threads can’t log output and can’t interact with the document at all, so they can be tricky to debug. If a worker throws an error, the main thread will receive an error event on the Worker object. But often, you need a way for a worker to output debugging messages that are visible in the browser’s web console. One straightforward way to do this is to modify the message passing protocol you use with the worker so that the worker can send debugging messages somehow. In Example 22-6, for example, we could insert the following code at the start of the onmessage
event handler:
With that additional code in place, the Worker thread could display debugging messages simply by passing strings to postMessage()
.
The next example demonstrates how Web Workers allow you to write synchronous code and use it safely in client-side JavaScript. Synchronous responses showed how to make synchronous HTTP requests with XMLHttpRequest, but it warned that doing so on the main browser thread was a very bad practice. In a worker thread, however, it is perfectly reasonable to make synchronous requests, and Example 22-8 demonstrates worker code that does just that. Its onmessage
event handler expects an array of URLs to be fetched. It uses the synchronous XMLHttpRequest API to fetch them, and then posts the textual content of the URLs as an array of strings back to the main thread. Or, if any of the HTTP requests fail, it throws an error that propagates to the onerror
handler of the Worker.
Example 22-8. Making synchronous XMLHttpRequests in a Web Worker
[54] Web workers were originally part of the HTML5 specification, but they were broken off into an independent, but closely related specification. At the time of this writing, specification drafts are available at http://dev.w3.org/html5/workers/ and http://whatwg.org/ww.
As you know from Chapter 7, JavaScript arrays are general-purpose objects with numeric properties and a special length
property. Array elements can be any JavaScript value. Arrays can grow or shrink dynamically and can be sparse. JavaScript implementations perform lots of optimizations so that typical uses of JavaScript arrays are very fast. Typed arrays are array-like objects (Array-Like Objects) that differ from regular arrays in some important ways:
There are eight kinds of typed arrays, each with a different element type. You can create them with the following constructors:
Constructor | Numeric type |
---|---|
Int8Array() | signed bytes |
Uint8Array() | unsigned bytes |
Int16Array() | signed 16-bit short integers |
Uint16Array() | unsigned 16-bit short integers |
Int32Array() | signed 32-bit integers |
Uint32Array() | unsigned 32-bit integers |
Float32Array() | 32-bit floating-point value |
Float64Array() | 64-bit floating-point value: a regular JavaScript number |
Typed arrays are an essential part of the WebGL 3D graphics API for the <canvas>
element, and browsers have implemented them as part of WebGL. WebGL is not covered in this book, but typed arrays are generally useful and are covered here. You may recall from Chapter 21 that the Canvas API defines a getImageData()
method that returns an ImageData object. The data
property of an ImageData is an array of bytes. The HTML standard calls this a CanvasPixelArray, but it is essentially the same as the Uint8Array described here, except for the way it handles values outside of the range 0 to 255.
Note that these types are not part of the core language. A future version of the JavaScript language is likely to include support for typed arrays like these, but at the time of this writing, it is unclear whether the language will adopt the API described here or will create a new API.
When you create a typed array, you pass the array size to the constructor or pass an array or typed array to initialize the array elements with. Once you have created a typed array, you can read and write its elements with regular square-bracket notation, just as you would with any other array-like object:
Modern JavaScript implementations optimize arrays to make them very efficient. Nevertheless, typed arrays can be even more efficient in both execution time and memory use. The following function computes the largest prime number less than the value you specify. It uses the Sieve of Eratosthenes algorithm, which requires a large array to keep track of which numbers are prime and which are composite. Since only a single bit of information is required for each array element, an Int8Array can be used more efficiently than a regular JavaScript array:
The sieve()
function continues to work if you replace the Int8Array()
constructor with the traditional Array()
constructor, but it runs two to three times more slowly and requires substantially more memory for large values of the parameter n
. You might also find typed arrays useful when working with numbers for graphics or mathematics:
JavaScript square-bracket notation allows you to get and set individual elements of a typed array. But typed arrays also define methods for setting and querying entire regions of the array. The set()
method copies the elements of regular or typed arrays into a typed array:
Typed arrays also have a subarray
method that returns a portion of the array on which it is called:
Note that subarray()
does not make a copy of the data. It just returns a new view of the same underlying values:
The fact that the subarray()
method returns a new view of an existing array reveals something important about typed arrays: they are all views on an underlying chunk of bytes known as an ArrayBuffer. Every typed array has three properties that relate to the underlying buffer:
The ArrayBuffer object itself has only a single property that returns its length:
ArrayBuffers are just opaque chunks of bytes. You can access those bytes with typed arrays, but an ArrayBuffer is not itself a typed array. Be careful, however: you can use numeric array indexing with ArrayBuffers just as you can with any JavaScript object. Doing so does not give you access to the bytes in the buffer, however:
You can create ArrayBuffers directly with the ArrayBuffer()
constructor, and, given an ArrayBuffer object, you can create any number of typed array views of that buffer:
Typed arrays allow you to view the same sequence of bytes in chunks of 8, 16, 32, or 64 bits. This exposes the “endianness”: the order in which bytes are arranged into longer words. For efficiency, typed arrays use the native endianness of the underlying hardware. On little-endian systems, the bytes of a number are arranged in an ArrayBuffer from least significant to most significant. On big-endian platforms, the bytes are arranged from most significant to least significant. You can determine the endianness of the underlying platform with code like this:
Today, the most common CPU architectures are little-endian. Many network protocols, however, and some binary file formats, require big-endian byte ordering. In Blobs, you’ll learn how you can use ArrayBuffers to hold bytes read from files or downloaded from the network. When you do this, you can’t just assume that the platform endianness matches the byte order of the data. In general, when working with external data, you can use Int8Array and Uint8Array to view the data as an array of individual bytes, but you should not use the other typed arrays with multibyte word sizes. Instead, you can use the DataView class, which defines methods for reading and writing values from an ArrayBuffer with explicitly specified byte ordering:
DataView defines eight get
methods for each of the eight typed array formats. They have names like getInt16()
, getUint32()
, and getFloat64()
. The first argument is the byte offset within the ArrayBuffer at which the value begins. All of these getter methods, other than getInt8()
and getUint8()
, accept an optional boolean value as their second argument. If the second argument is omitted or is false, big-endian byte ordering is used. If the second argument is true
, little-endian ordering is used.
DataView defines eight corresponding set
methods that write values into the underlying ArrayBuffer. The first argument is the offset at which the value begins. The second argument is the value to write. Each of the methods, except setInt8()
and setUint8()
, accepts an optional third argument. If the argument is omitted or is false
, the value is written in big-endian format with most significant byte first. If the argument is true
, the value is written in little-endian format with the least significant byte first.
A Blob is an opaque reference to, or handle for, a chunk of data. The name comes from SQL databases, where it means “Binary Large Object.” In JavaScript, Blobs often represent binary data, and they can be large, but neither is required: a Blob could also represent the contents of a small text file. Blobs are opaque: all you can do with them directly is determine their size in bytes, ask for their MIME type, and chop them up into smaller Blobs:
The web browser can store Blobs in memory or on disk, and Blobs can represent really enormous chunks of data (such as video files) that are too large to fit in main memory without first being broken into smaller pieces with slice()
. Because Blobs can be so large and may require disk access, the APIs that work with them are asynchronous (with synchronous versions available for use by worker threads).
Blobs are not terribly interesting by themselves, but they serve as a critical data interchange mechanism for various JavaScript APIs that work with binary data. Figure 22-2 illustrates how Blobs can be read from and written to the Web, the local filesystem, local databases, and also other windows and workers. It also shows how Blob content can be accessed as text, as typed arrays, or as URLs.
Before you can work with a Blob, you must obtain one somehow. There are a number of ways to do this, some involving APIs we’ve already covered and some involving APIs that are described later in this chapter:
<input type="file">
elements and from the drag-and-drop API, as explained in Files As Blobs. File objects can also be obtained using the Filesystem API, which is covered in The Filesystem API. Once you have a Blob, there are various things you can do with it, many of them symmetrical to the items above:
postMessage()
. See Cross-Origin Messaging and Web Workers.send()
method of an XMLHttpRequest object. The file upload example (Example 18-9) demonstrated how to do this (remember, a File object is just a specialized kind of Blob). createObjectURL()
function to obtain a special blob://
URL that refers to the content of a Blob, and then use this URL with the DOM or with CSS. Blob URLs demonstrates this. The subsections below demonstrate simple ways to obtain and use Blobs. The more complicated techniques involving the local filesystem and client-side databases are covered later, in sections of their own.
The <input type="file">
element was originally intended to enable file uploads in HTML forms. Browsers have always been careful to implement this element so that it only allows the upload of files explicitly selected by the user. Scripts cannot set the value
property of this element to a filename, so they cannot go uploading arbitrary files from the user’s computer. More recently, browser vendors have extended this element to allow client-side access to user-selected files. Note that allowing a client-side script to read the contents of selected files is no more or less secure than allowing those files to be uploaded to the server.
In browsers that support local file access, the files
property of an <input type="file">
element will be a FileList object. This is an array-like object whose elements are zero or more user-selected File objects. A File object is a Blob that also has name
and lastModifiedDate
properties:
Being able to display the names, types, and sizes of selected files isn’t terribly interesting. In Blob URLs and Reading Blobs, we’ll see how you can actually make use of the content of the file.
In addition to selecting files with an <input>
element, a user can also give a script access to local files by dropping them into the browser. When an application receives a drop event, the dataTransfer.files
property of the event object will be the FileList associated with the drop, if there was one. The drag-and-drop API was covered in Drag and Drop Events and Example 22-10 below demonstrates its use with files.
Chapter 18 covered scripted HTTP with the XMLHttpRequest object and also documented some of the new features of the XMLHttpRequest Level 2 (XHR2) draft specification. At the time of this writing, XHR2 defines a way to download the contents of a URL as a Blob, but browser implementations do not yet support it. Because the code cannot yet be tested, this section is only a simple sketch of the XHR2 API for working with Blobs.
Example 22-9 shows the basic technique for downloading a Blob from the Web. Contrast this example with Example 18-2, which downloads the contents of a URL as plain text:
Example 22-9. Downloading a Blob with XMLHttpRequest
If the Blob you’re downloading is quite large and you want to start processing it while it is downloading, you can use an onprogress
event handler, along with the Blob reading techniques demonstrated in Reading Blobs.
Blobs often represent chunks of data from an external source such as a local file, a URL, or a database. But sometimes a web application wants to create its own Blobs to be uploaded to the Web or stored in a file or database or passed to another thread. To create a Blob from your own data, use a BlobBuilder:
We saw at the beginning of this section that Blobs have a slice()
method that breaks them into pieces. You can join Blobs together by passing Blobs to the append()
method of a BlobBuilder.
The preceding sections have shown how you can obtain or create Blobs. We’ll now shift gears and start talking about what you can actually do with the Blobs you obtain or create. One of the simplest things you can do with a Blob is create a URL that refers to the Blob. You can then use this URL anywhere you’d use a regular URL: in the DOM, in a stylesheet, or even as the target of an XMLHttpRequest.
Create a Blob URL with the function createObjectURL()
. At the time of this writing, the draft specification and Firefox 4 put this function in a global object named URL
, and Chrome and Webkit prefix that new global, calling it webkitURL
. Earlier versions of the specification (and earlier browser implementations) put the function directly on the Window object. To create Blob URLs portably across browsers, you can define a utility like this:
Web workers are also allowed to use this API and have access to these same functions, in the same URL
(or webkitURL
) object.
Pass a blob to createObjectURL()
and it returns a URL (as an ordinary string). The URL will begin with blob://
, and that URL scheme will be followed by a short string of text that identifies the Blob with some kind of opaque unique identifier. Note that this is very different than a data://
URL, which encodes its own contents. A Blob URL is simply a reference to a Blob that is stored by the browser in memory or on the disk. blob://
URLs are also quite different from file://
URLs, which refer directly to a file in the local filesystem, exposing the path of the file, allowing directory browsing, and otherwise raising security issues.
Example 22-10 demonstrates two important techniques. First, it implements a “drop target” that listens for drag-and-drop events involving files. Then, when the user drops one or more files on the drop target, it uses createObjectURL()
to obtain a URL for each one and then creates
elements to display thumbnails of the images referenced by those URLs.
Example 22-10. Displaying dropped image files with Blob URLs
Blob URLs have the same origin (The Same-Origin Policy) as the script that creates them. This makes them much more versatile than file://
URLs, which have a distinct origin and are therefore difficult to use within a web application. A Blob URL is only valid in documents of the same origin. If, for example, you passed a Blob URL via postMessage()
to a window with a different origin, the URL would be meaningless to that window.
Blob URLs are not permanent. A Blob URL is no longer valid once the user has closed or navigated away from the document whose script created the URL. It is not possible, for example, to save a Blob URL to local storage and then reuse it when the user begins a new session with a web application.
It is also possible to manually “revoke” the validity of a Blob URL by calling URL.
revoke
ObjectURL()
(or webkitURL.revokeObjectURL()
) and you may have noticed that Example 22-10 does this. This is a memory management issue. Once the thumbnail image has been displayed, the Blob is no longer needed and it should be allowed to be garbage collected. But if the web browser is maintaining a mapping from the Blob URL we’ve created to the Blob, that Blob cannot be garbage collected even if we’re not using it. The JavaScript interpreter cannot track the usage of strings, and if the URL is still valid, it has to assume that it might still be used. This means that it cannot garbage collect the Blob until the URL has been revoked. Example 22-10 uses local files that don’t require any cleanup, but you can imagine a more serious memory management issue if the Blob in question were one that had been built in memory with a BlobBuilder or one that had been downloaded with XMLHttpRequest and stored in a temporary file.
The blob://
URL scheme is explicitly designed to work like a simplified http://
URL, and browsers are required to act like mini HTTP servers when blob://
URLs are requested. If a Blob URL that is no longer valid is requested, the browser must send a 404 Not Found status code. If a Blob URL from a different origin is requested, the browser must respond with 403 Not Allowed. Blob URLs only work with GET requests, and when one is successfully requested, the browser sends an HTTP 200 OK status code and also sends a Content-Type
header that uses the type
property of the Blob. Because Blob URLs work like simple HTTP URLs, you can “download” their content with XMLHttpRequest. (As we’ll see in the next section, however, you can read the content of a Blob more directly using a FileReader object.)
So far, Blobs have been opaque chunks of data that allow only indirect access, through Blob URLs, to their contents. The FileReader object allows us read access to the characters or bytes contained in a Blob, and you can think of it as the opposite of a BlobBuilder. (A better name would be BlobReader, since it works with any Blob, not just Files.) Since Blobs can be very large objects stored in the filesystem, the API for reading them is asynchronous, much like the XMLHttpRequest API. A synchronous version of the API, FileReaderSync, is available in worker threads, although workers can also use the asynchronous version.
To use a FileReader, first create an instance with the FileReader()
constructor. Next, define event handlers. Typically you’ll define handlers for load and error events and possibly also for progress events. You can do this with onload
, onerror
, and on
progress
or with the standard addEventListener()
method. FileReader objects also trigger loadstart, loadend, and abort events, which are like the XMLHttpRequest events with the same names: see HTTP Progress Events.
Once you’ve created a FileReader and registered suitable event handlers, you must pass the Blob you want to read to one of four methods: readAsText()
, readAsArrayBuffer()
, readAsDataURL()
, and readAsBinaryString()
. (You can, of course, call one of these methods first and then register event handlers—the single-threaded nature of JavaScript, described in Web Workers, means that event handlers will never be called until your function has returned and the browser is back in its event loop.) The first two methods are the most important and are the ones covered here. Each of these read methods takes a Blob as its first argument. readAsText()
takes an optional second argument that specifies the name of a text encoding. If you omit the encoding, it will automatically work with ASCII and UTF-8 text (and also UTF-16 text with a byte-order mark or BOM).
As the FileReader reads the Blob you’ve specified, it updates its readyState
property. The value starts off at 0, indicating that nothing has been read. It changes to 1 when some data is available, and changes to 2 when the read has completed. The result
property holds a partial or complete result as a string or ArrayBuffer. You do not normally poll the state
and result
properties, but instead use them from your on
progress
or onload
event handler.
Example 22-11 demonstrates how to use the readAsText()
method to read local text files that the user selects.
Example 22-11. Reading text files with FileReader
The readAsArrayBuffer()
method is similar to readAsText()
, except that it generally takes a little more effort to make use of an ArrayBuffer result than a string result. Example 22-12 is an example that uses readAsArrayBuffer()
to read the first four bytes of a file as a big-endian integer.
Example 22-12. Reading the first four bytes of a file
In worker threads, you can use FileReaderSync instead of FileReader. The synchronous API defines the same readAsText()
and readAsArrayBuffer()
methods that take the same arguments as the asynchronous methods. The difference is that the synchronous methods block until the operation is complete and return the resulting string or ArrayBuffer directly, with no need for event handlers. Example 22-14 below uses FileReaderSync.
In Reading Blobs, you saw the FileReader class used to read the content of user-selected files, or of any Blob. The File and Blob types are defined by a draft specification known as the File API. Another draft specification, even newer than the File API, gives web applications controlled access to a private local filesystem “sandbox” in which they can write files, read files, create directories, list directories, and so on. At the time of this writing, this Filesystem API is implemented only by Google’s Chrome browser, but it is a powerful and important form of local storage, so it is covered here, even though the API is even less stable than most of the other APIs described in this chapter. This section covers basic filesystem tasks but does not demonstrate all features of the API. Because the API is new and unstable, it is not documented in the reference section of this book.
Working with files in the local filesystem is a multistep process. First, you must obtain an object that represents the filesystem itself. There is a synchronous API for doing this in worker threads and an asynchronous API for use on the main thread:
In both the synchronous and asynchronous versions of the API, you specify the lifetime and the size of the filesystem you want. A PERSISTENT
filesystem is suitable for web apps that want to store user data permanently. The browser won’t delete it except at the user’s explicit request. A TEMPORARY
filesystem is appropriate for web apps that want to cache data but can still operate if the web browser deletes the filesystem. The size of the filesystem is specified in bytes and should be a reasonable upper bound on the amount of data you need to store. A browser may enforce this as a quota.
The filesystem obtained with these functions depends on the origin of the containing document. All documents or web apps from the same origin (host, port, and protocol) share a filesystem. Two documents or applications from different origins have completely distinct and disjoint filesystems. The filesystem is also walled off from the rest of the files on the user’s hard drive: there is no way for a web application to “break out” beyond the local root directory or otherwise access arbitrary files.
Note that these functions have “request” in their names. The first time you call one, the browser may ask the user for permission before creating a filesystem and granting access.[55] Once permission has been granted, subsequent calls to the request method should simply return an object that represents the already existing local filesystem.
The filesystem object you obtain with one of the methods above has a root
property that refers to the root directory of the filesystem. This is a DirectoryEntry object, and it may have nested directories that are themselves represented by DirectoryEntry objects. Each directory in the file system may contain files, represented by FileEntry objects. The DirectoryEntry object defines methods for obtaining DirectoryEntry and FileEntry objects by pathname (they will optionally create new directories or files if you specify a name that doesn’t exist). DirectoryEntry also defines a createReader()
factory method that returns a DirectoryReader for listing the contents of a directory.
The FileEntry class defines a method for obtaining the File object (a Blob) that represents the contents of a file. You can then use a FileReader object (as shown in Reading Blobs) to read the file. FileEntry defines another method to return a FileWriter object that you can use to write content into a file.
Reading or writing a file with this API is a multistep process. First you obtain the filesystem object. Then you use the root directory of that object to look up (and optionally create) the FileEntry object for the file you’re interested in. Then you use the FileEntry object to obtain the File or FileWriter object for reading or writing. This multistep process is particularly complex when using the asynchronous API:
Example 22-13 is a more fully fleshed-out example. It demonstrates how to use the asynchronous API to read files, write files, delete files, create directories, and list directories.
Example 22-13. Using the asynchronous filesystem API
Working with files and the filesystem is quite a bit easier in worker threads, where it is okay to make blocking calls and we can use the synchronous API. Example 22-14 defines the same filesystem utility functions as Example 22-13 does, but it uses the synchronous API and is quite a bit shorter.
Example 22-14. The synchronous filesystem API
[55] At the time of this writing, Chrome doesn’t ask for permission, but it requires you to launch it with the --unlimited
-quota-for-files
command-line flag.
Web application architecture has traditionally featured HTML, CSS, and JavaScript on the client and a database on the server. Among the most surprising HTML5 APIs, therefore, are client-side databases. These are not just client-side APIs for accessing database servers across the network, but actual client-side databases stored on the user’s computer and directly accessed by JavaScript code in the browser.
The Web Storage API described in localStorage and sessionStorage can be thought of as a particularly simple kind of database that persists simple key/value pairs. But in addition, there are two client-side database APIs that are “real” databases. One, known as Web SQL Database, is a simple relational database that supports basic SQL queries. Chrome, Safari, and Opera implemented this API, but Firefox and IE have not, and likely never will. Work on the official specification of this API has stopped and this full-featured SQL database will probably never become an official standard nor an unofficial but interoperable feature of the web platform.
Standardization efforts are now focused on another database API, known as IndexedDB. It is too early to document this API in any detail (it is not covered in Part IV), but Firefox 4 and Chrome 11 include implementations, and this section includes a working example that demonstrates some of the most important features of the IndexedDB API.
IndexedDB is an object database, not a relational database, and it is much simpler than databases that support SQL queries. It is more powerful, efficient, and robust than the key/value storage provided by the Web Storage API, however. Like the Web Storage and the Filesystem API, IndexedDB databases are scoped to the origin of the containing document: two web pages with the same origin can access each other’s data, but web pages from different origins cannot.
Each origin can have any number of IndexedDB databases. Each one has a name that must be unique within the origin. In the IndexedDB API, a database is simply a collection of named object stores. As the name implies, an object store stores objects (or any value that can be cloned—see Structured Clones). Each object must have a key by which it can be sorted and retrieved from the store. Keys must be unique—two objects in the same store may not have the same key—and they must have a natural ordering so that they can be sorted. JavaScript strings, numbers, and Date objects are valid keys. An IndexedDB database can automatically generate a unique key for each object you insert into the database. Often, though, the objects you insert into an object store will already have a property that is suitable for use as a key. In this case, you specify a “key path” for that property when you create the object store. Conceptually, a key path is a value that tells the database how to extract an object’s key from the object.
In addition to retrieving objects from an object store by their primary key value, you may want to be able to search based on the value of other properties in the object. In order to be able to do this, you can define any number of indexes on the object store. (The ability to index an object store explains the name “IndexedDB.”) Each index defines a secondary key for the stored objects. These indexes are not generally unique and multiple objects may match a single key value. So when querying an object store via an index, you generally use a cursor, which defines an API for retrieving streaming query results one at a time. Cursors can also be used when querying an object store (or index) for a range of keys, and the IndexedDB API includes an object for describing ranges (upper-bounded and/or lower-bounded, inclusive bounds or exclusive bounds) of keys.
IndexedDB provides atomicity guarantees: queries and updates to the database are grouped within a transaction so that they all succeed together or all fail together and never leave the database in an undefined partially updated state. Transactions in IndexedDB are simpler than in many database APIs; we’ll mention them again below.
Conceptually, the IndexedDB API is quite simple. To query or update a database, you first open the database you want (specifying it by name). Next, you create a transaction object and use that object to look up the desired object store within the database, also by name. Finally, you look up an object by calling the get()
method of the object store or store a new object by calling put()
. (Or by calling add()
, if you want to avoid overwriting existing objects.) If you want to look up the objects for a range of keys, you create an IDBRange object and pass it to the openCursor()
method of the object store. Or, if you want to make a query using a secondary key, you look up the named index of the object store, and then call the get()
or openCursor()
method of the index object.
This conceptual simplicity is complicated, however, by the fact that the API must be asynchronous so that web apps can use it without blocking the browser’s main UI thread. (The IndexedDB specification defines a synchronous version of the API for use by worker threads, but at the time of this writing, no browser has yet implemented that version of the API, so it is not covered here.) Creating transactions and looking up object stores and indexes are easy synchronous operations. But opening a database, updating an object store with put()
, and querying a store or index with get()
or openCursor()
are all asynchronous operations. These asynchronous methods all immediately return a request object. The browser triggers a success or error event on the request object when the request succeeds or fails, and you can define handlers with the on
success
and onerror
properties. Inside an onsuccess
handler, the result of the operation is available as the result
property of the request object.
One convenient feature of this asynchronous API is that it simplifies transaction management. In a typical use of the IndexedDB API, you first open the database. This is an asynchronous operation, so it triggers an onsuccess handler. In that event handler, you create a transaction object, and then use that transaction object to look up the object store or stores you’ll be using. Then you make any number of get()
and put()
calls on the object stores. They are asynchronous, so nothing happens right away, but the requests generated by those get()
and put()
calls are automatically associated with the transaction object. If you need to, you can cancel all the pending operations (and undo any that have already completed) in the transaction by calling the abort()
method of the transaction object. In many other database APIs, you’d expect the transaction object to have a commit()
method to finalize the transaction. In IndexedDB, however, the transaction is committed after the original onsuccess event handler that created the transaction exits and the browser returns to its event loop and after all the operations pending on that transaction complete (without starting any new operations in their callback functions). This sounds complicated, but in practice, it is straightforward. The IndexedDB API forces you to create transaction objects in order to look up object stores, but in common use cases, you really don’t have to think about the transactions very much.
Finally, there is one special kind of transaction that enables a very important part of the IndexedDB API. Creating a new database in the IndexedDB API is easy: you just pick a name and request that that database be opened. But a new database is completely empty, and it is useless unless you add one or more object stores (and possibly some indexes as well) to it. The only way to create object stores and indexes is within the onsuccess event handler of the request object returned by a call to the setVersion()
method of the database object. Calling setVersion()
allows you to specify a version number for the database—in typical usage, you update the version number each time you alter the structure of the database. More importantly, however, setVersion()
implicitly begins a special kind of transaction that enables you to call the createObjectStore()
method of the database object and the createIndex()
method of an object store.
With this high-level overview of IndexedDB in mind, you should now be able to understand Example 22-15. That example uses IndexedDB to create and query a database that maps US postal codes (zipcodes) to US cities. It demonstrates many, but not all, of the basic features of IndexedDB. At the time of this writing, the example works in Firefox 4 and Chrome 11, but because the specification is still in flux and implementations are still quite preliminary, there is a chance that it won’t work exactly as written when you read this. Nevertheless, the overall structure of the example should still be useful to you. Example 22-15 is long, but it has lots of comments that make it easy to understand.
Example 22-15. A IndexedDB database of US postal codes
Chapter 18 showed how client-side JavaScript code can communicate over the network. The examples in that chapter all used HTTP, which means that they were all constrained by the fundamental nature of the HTTP: it is a stateless protocol that consists of client requests and server responses. HTTP is actually a fairly specialized network protocol. More general network connections over the Internet (or over local intranets) often involve longer-lived connections and bidirectional message exchange over TCP sockets. It is not safe to give untrusted client-side JavaScript code access to low-level TCP sockets, but the WebSocket API defines a secure alternative: it allows client-side code to create bidirectional socket-type connections to servers that support the WebSocket protocol. This makes it much easier to perform certain kinds of networking tasks.
In order to use WebSockets from JavaScript, you only need to understand the client-side WebSocket API described here. There is no equivalent server-side API for writing WebSocket servers, but this section does include a simple server example that uses Node (Asynchronous I/O with Node) along with a third-party WebSocket server library. The client and server communicate over a long-lived TCP socket following rules defined by the WebSocket protocol. The details of the protocol are not relevant here, but it is worth noting that the WebSocket protocol is carefully designed so that web servers can easily handle both HTTP and WebSocket connections over the same port.
WebSockets enjoy wide support among web browser vendors. An early draft version of the WebSocket protocol was found to have an important security hole, however, and at the time of this writing, some browsers have disabled their WebSocket support until a secure version of the protocol has been standardized. In Firefox 4, for example, you may need to explicitly enable WebSockets by visiting the about:config
page and setting the configuration variable “network.websocket.override-security-block” to true
.
The WebSocket API is surprisingly easy to use. First, create a socket with the WebSocket()
constructor:
The argument to the WebSocket()
constructor is a URL that uses the ws://
protocol (or wss://
for a secure connection like that used by https://
). The URL specifies the host to connect to, and may also specify a port (WebSockets use the same default ports as HTTP and HTTPS) and a path or resource.
Once you have created a socket, you generally register event handlers on it:
In order to send data to the server over the socket, you call the send() method of the socket:
The current version of the WebSocket API supports only textual messages, and sends them as UTF-8 encoded strings. The current WebSocket protocol includes support for binary messages, however, and a future version of the API may allow binary data to be exchanged with a WebSocket server.
When your code is done communicating with the server, you can close a WebSocket by calling its close()
method.
WebSocket is completely bidirectional, and once a WebSocket connection has been established, the client and server can send messages to each other at any time, and that communication does not have to take the form of requests and responses. Each WebSocket-based service will define its own “subprotocol” for transferring data between client and server. Over time, these “subprotocols” may evolve, and you may end up with clients and servers that need to support more than one version of a subprotocol. Fortunately, the WebSocket protocol includes a negotiation mechanism for choosing a subprotocol that both client and server can understand. You can pass an array of strings to the WebSocket()
constructor. The server will take these as a list of the subprotocols that the client understands. It will pick one to use and send it back to the client. Once the connection is established, the client can determine which subprotocol is in use by checking the protocol
property of the socket.
Comet with Server-Sent Events explained the EventSource API and demonstrated it with an online chat client and server. WebSockets make it even easier to write this kind of application. Example 22-16 is a very simple chat client: it is a lot like Example 18-15, but it uses a WebSocket for bidirectional communication instead of using an EventSource to receive messages and an XMLHttpRequest to send them.
Example 22-16. A WebSocket-based chat client
Example 22-17 is a WebSocket-based chat server intended to be run in Node (Asynchronous I/O with Node). You can compare this example to Example 18-17 to see that WebSockets simplify the server-side of the chat application as well as the client-side.
Example 22-17. A chat server using WebSockets and Node
This part of the book is a reference that documents the classes, methods, and properties defined by the core JavaScript language. This reference is arranged alphabetically by class or object name:
Arguments | EvalError | Number | String |
Array | Function | Object | SyntaxError |
Boolean | Global | RangeError | TypeError |
Date | JSON | ReferenceError | URIError |
Error | Math | RegExp |
The reference pages for the methods and properties of classes are alphabetized by their full names, which include the names of the classes that define them. For example, if you want to read about the replace()
method of the String class, you would look under String.replace()
, not just replace
.
Core JavaScript defines some global functions and properties, such as eval()
and NaN
. Technically, these are properties of the global object. Since the global object has no name, however, they are listed in this reference section under their own unqualified names. For convenience, the full set of global functions and properties in core JavaScript is summarized in a special reference page named “Global” (even though there is no object or class by that name).
arguments[] — an array of function arguments
The arguments[]
array is defined only within a function body. Within the body of a function, arguments
refers to the Arguments object for the function. This object has numbered properties and serves as an array containing all arguments passed to the function. The arguments
identifier is essentially a local variable automatically declared and initialized within every function. It refers to an Arguments object only within the body of a function and is undefined in global code.
Arguments — arguments and other properties of a function
Object → Arguments
The Arguments object is defined only within a function body. Although it is not technically an array, the Arguments object has numbered properties that function as array elements and a length
property that specifies the number of array elements. Its elements are the values that are passed as arguments to the function. Element 0 is the first argument, element 1 is the second argument, and so on. All values passed as arguments become array elements of the Arguments object, whether or not those arguments are given names in the function declaration.
callee
A reference to the function that is currently executing.
length
The number of arguments passed to the function and the number of array elements in the Arguments object.
When a function is invoked, an Arguments object is created for it, and the local variable arguments
is automatically initialized to refer to that Arguments object. The main purpose of the Arguments object is to provide a way to determine how many arguments are passed to the function and to refer to unnamed arguments. In addition to the array elements and length
property, however, the callee
property allows an unnamed function to refer to itself.
For most purposes, the Arguments object can be thought of as an array with the addition of the callee
property. However, it is not an instance of Array, and the Arguments.length
property does not have any of the special behaviors of the Array.length
property and cannot be used to change the size of the array.
In non-strict mode, the Arguments object has one very unusual feature. When a function has named arguments, the array elements of the Arguments object are synonyms for the local variables that hold the function arguments. The Arguments object and the argument names provide two different ways of referring to the same variable. Changing the value of an argument with an argument name changes the value that is retrieved through the Arguments object, and changing the value of an argument through the Arguments object changes the value that is retrieved by the argument name.
Arguments.callee — the function that is currently running
not defined in strict mode
Arguments.length — the number of arguments passed to a function
The length
property of the Arguments object specifies the number of arguments passed to the current function. This property is defined only within a function body.
Note that this property specifies the number of arguments actually passed, not the number expected. See Function.length for the number of declared arguments. Note also that this property does not have any of the special behavior of the Array.length
property.
Array — built-in support for arrays
Object → Array
size
)element0
, element1
, ..., elementn
)size
element0, ... elementn
An argument list of two or more arbitrary values. When theArray()
constructor is invoked with these arguments, the newly created array is initialized with the specified argument values as its elements and itslength
field set to the number of arguments.
The newly created and initialized array. When Array()
is invoked with no arguments, the returned array is empty and has a length
field of 0. When invoked with a single numeric argument, the constructor returns an array with the specified number of undefined elements. When invoked with any other arguments, the constructor initializes the array with the values specified by the arguments. When the Array()
constructor is called as a function, without the new
operator, it behaves exactly as it does when called with the new
operator.
ECMAScript v3 specifies an array literal syntax. You may also create and initialize an array by placing a comma-separated list of expressions within square brackets. The values of these expressions become the elements of the array. For example:
The methods every()
, filter()
, forEach()
, indexOf()
, lastIndexOf()
, map()
, reduce()
, reduceRight()
, and some()
are new in ECMAScript 5 but were implemented by browsers other than IE before ES5 was standardized.
concat()
Concatenates elements to an array.
every()
Test whether a predicate is true for every array element.
filter()
Return array elements that satisfy a predicate function.
forEach()
Invoke a function for each element of the array.
indexOf()
Search an array for a matching element.
join()
Converts all array elements to strings and concatenates them.
lastIndexOf()
Search backward through an array.
map()
Compute new array elements from the elements of this array.
pop()
Removes an item from the end of an array.
push()
Pushes an item to the end of an array.
reduce()
Compute a value from the elements of this array.
reduceRight()
Reduce this array from right-to-left.
reverse()
Reverses, in place, the order of the elements of an array.
shift()
Shifts an element off the beginning of an array.
slice()
Returns a subarray slice of an array.
some()
Test whether a predicate is true for at least one element of this array.
sort()
Sorts, in place, the elements of an array.
splice()
Inserts, deletes, or replaces array elements.
toLocaleString()
Converts an array to a localized string.
toString()
Converts an array to a string.
unshift()
Inserts elements at the beginning of an array.
Array.concat() — concatenate arrays
concat()
creates and returns a new array that is the result of concatenating each of its arguments to array
. It does not modify array
. If any of the arguments to concat()
is itself an array, the elements of that array are concatenated, rather than the array itself.
Array.every() — test whether a predicate is true for every element
ECMAScript 5
The every()
method tests whether some condition holds for all elements of an array. It loops through the elements of array
, in ascending order, and invokes the specified predicate
function on each element in turn. If predicate
returns false
(or any value that converts to false
), then every()
stops looping and returns false
immediately. If every invocation of predicate
returns true
, then every()
returns true
. When invoked on an empty array, every()
returns true
.
For each array index i
, predicate
is invoked with three arguments:
predicate
(array
[i], i, array
)The return value of predicate
is interpreted as a boolean value. true
and all truthy values indicate that the array element passes the test or meets the condition described by that function. A return value of false
or any falsy value means that the array element does not pass the test.
See Array.forEach() for further details.
Array.filter() — return array elements that pass a predicate
ECMAScript 5
filter()
creates a new array and then populates it with the elements of array
for which the predicate
function returns true
(or a truthy value). The filter()
method does not modify array
itself (though the predicate
function may do so).
filter()
loops through the indexes of array
, in ascending order, and invokes predicate
once for each element. For an index i
, predicate
is invoked with three arguments,
predicate
(array
[i], i, array
)If predicate
returns true
or a truthy value, then the element at index i
of array
is appended to the newly created array. Once filter()
has tested each element of array
it returns the new array.
See Array.forEach() for further details.
Array.forEach() — invoke a function for each array element
ECMAScript 5
forEach()
loops through the indexes of array
, in ascending order, and invokes f
once for each element. For an index i
, f
is invoked with three arguments:
f
(array
[i], i, array
)The return value, if any, of f
is ignored. Note that forEach()
does not have a return value. In particular, it does not return array
.
The following details apply to the forEach()
method, and also to the related methods map()
, filter()
, every()
, and some()
.
Each of these methods expects a function as its first argument and accepts an optional second argument. If a second argument o
is specified, then the function is invoked as if it was a method of o
. That is, within the body of the function, this
will evaluate to o
. If the second argument is not specified, then the function is invoked as a function (not a method) and this
will be the global object in non-strict code or null
in strict code.
Each of these methods notes the length of array
before it begins looping. If the invoked function appends new elements to array
, those newly-added elements will not be looped over. If the function alters existing elements that have not yet been looped over, it is the altered values that will be passed.
When invoked on sparse arrays, these methods do not invoke the function for indexes at which no element actually exists.
Array.indexOf() — search an array
ECMAScript 5
This method searches array
for an element that is equal to value
, and returns the index of the first element it finds. The search begins at the array index specified by start
, or at index 0, and continues with successively higher indexes until a match is found or all elements have been checked. The ===
operator is used to test equality. The return value is the index of the first matching element found, or -1 if no match is found.
Array.join() — concatenate array elements to form a string
join()
converts each element of an array to a string and then concatenates those strings, inserting the specified separator
string between the elements. It returns the resulting string.
You can perform a conversion in the opposite direction—splitting a string into array elements—with the split()
method of the String object. See String.split() for details.
Array.lastIndexOf() — search backward through an array
ECMAScript 5
This method searches backward through successively lower elements of array
for an element that is equal to value
, and returns the index of the first such element it finds. If start
is specified, it is used as the starting position for the search; otherwise the search begins at the end of the array. The ===
operator is used to test equality. The return value is the index of the first matching element found, or -1 if no match is found.
Array.length — the size of an array
The length
property of an array is always one larger than the index of the highest element defined in the array. For traditional “dense” arrays that have contiguous elements and begin with element 0, the length
property specifies the number of elements in the array.
The length
property of an array is initialized when the array is created with the Array()
constructor method. Adding new elements to an array updates the length
, if necessary:
You can set the value of the length
property to change the size of an array. If you set length
to be smaller than its previous value, the array is truncated, and elements at the end are lost. If you set length
to be larger than its previous value, the array becomes bigger, and the new elements added at the end of the array have the undefined
value.
Array.map() — compute new array elements from old
ECMAScript 5
map()
creates a new array with the same length as array
, and computes the elements of this new array by passing the elements of array
to the function f
. map()
loops through the indexes of array
, in ascending order, and invokes f
once for each element. For an index i
, f
is invoked with three arguments, and its return value is stored at index i
of the newly created array:
f
(array
[i], i, array
)Once map()
has passed each element of array
to f
and has stored the results in the new array, it returns that new array.
See Array.forEach() for further details.
Array.pop() — remove and return the last element of an array
pop()
deletes the last element of array
, decrements the array length, and returns the value of the element that it deleted. If the array is already empty, pop()
does not change the array and returns the undefined
value.
pop()
, and its companion method push()
, provide the functionality of a first-in, last-out stack. For example:
Array.push() — append elements to an array
push()
appends its arguments, in order, to the end of array
. It modifies array
directly, rather than creating a new array. push()
, and its companion method pop()
, use arrays to provide the functionality of a first in, last out stack. See Array.pop() for an example.
Array.reduce() — compute a value from the elements of an array
ECMAScript 5
The reduce()
method expects a function f
as its first argument. This function should behave like a binary operator: it takes two values, performs some operation on them and returns a result. If array
has n
elements, the reduce()
method invokes f
n-1
times to reduce those elements to a single combined value. (You may be familiar with this array reduction operation from other programming languages where it is sometimes called “fold” or “inject”.)
The first invocation of f
is passed the first two elements of array
. Each subsequent invocation of f
is passed the return value of the previous invocation and the next element (in ascending order) of array
. The return value of the final invocation of f
becomes the return value of the reduce()
method itself.
reduce()
may be invoked with an optional second argument, initial
. If initial
is specified, then reduce()
behaves as if that argument has been inserted at the beginning of array
(it does not actually modify array
, however). Another way to say this is that if reduce()
is invoked with two arguments, then initial
is used as if it had previously been returned from f
. In this case, the first invocation of f
is passed initial
and the first element of array
. When initial
is specified, there are n+1
elements to reduce (n
elements of array
, plus the initial
value) and f
is invoked n
times.
If array
is empty and initial
is not specified, reduce()
throws a TypeError. If array
is empty and initial
is specified, then reduce()
returns initial
and never calls f
. If array
has only a single element and initial
is not specified, then reduce()
returns the single element of array
without calling f
.
The paragraphs above describe two arguments to f
, but reduce()
actually invokes that function with four arguments. The third argument is the array index of the second argument. The fourth argument is array
itself. f
is always invoked as a function, not as a method.
Array.reduceRight() — reduce an array from right-to-left
ECMAScript 5
reduceRight()
works like the reduce()
method: it invokes the function f
n-1
times to reduce the n
elements of array
to a single value. reduceRight()
differs from reduce()
only in that it enumerates array elements from right to left (from highest index to lowest) rather than left to right. See Array.reduce() for details.
Array.reverse() — reverse the elements of an array
The reverse()
method of an Array object reverses the order of the elements of an array. It does this in place: it rearranges the elements of the specified array
without creating a new array. If there are multiple references to array
, the new order of the array elements is visible through all references.
Array.shift() — shift array elements down
shift()
removes and returns the first element of array
, shifting all subsequent elements down one place to occupy the newly vacant space at the start of the array. If the array is empty, shift()
does nothing and returns the undefined
value. Note that shift()
does not create a new array; instead, it modifies array
directly.
shift()
is similar to Array.pop()
, except it operates on the beginning of an array rather than the end. shift()
is often used in conjunction with unshift()
.
Array.slice() — return a portion of an array
array
.slice(start
, end
)slice()
returns a slice, or subarray, of array
. The returned array contains the element specified by start
and all subsequent elements up to, but not including, the element specified by end
. If end
is not specified, the returned array contains all elements from the start
to the end of array
.
Note that slice()
does not modify the array. If you want to actually remove a slice of an array, use Array.splice()
.
Array.some() — test whether a predicate is true for any element
ECMAScript 5
The some()
method tests whether a condition holds for at least one element of an array. It loops through the elements of array
, in ascending order, and invokes the specified predicate
function on each element in turn. If predicate
returns true
(or a value that converts to true
), then some()
stops looping and returns true
immediately. If every invocation of predicate
returns false
(or a value that converts to false
), then some()
returns false
. When invoked on an empty array, some()
returns false
.
This method is very much like every()
. See Array.every() and Array.forEach() for further details.
Array.sort() — sort the elements of an array
The sort()
method sorts the elements of array
in place: no copy of the array is made. If sort()
is called with no arguments, the elements of the array are arranged in alphabetical order (more precisely, the order determined by the character encoding). To do this, elements are first converted to strings, if necessary, so that they can be compared.
If you want to sort the array elements in some other order, you must supply a comparison function that compares two values and returns a number indicating their relative order. The comparison function should take two arguments, a
and b
, and should return one of the following:
a
is less than b
and should appear before b
in the sorted array. a
and b
are equivalent for the purposes of this sort. a
is greater than b
for the purposes of the sort. Note that undefined elements of an array are always sorted to the end of the array. This is true even if you provide a custom ordering function: undefined values are never passed to the orderfunc
you supply.
The following code shows how you might write a comparison function to sort an array of numbers in numerical, rather than alphabetical order:
Array.splice() — insert, remove, or replace array elements
array
.splice(start
, deleteCount
, value
, ...)splice()
deletes zero or more array elements starting with and including the element start
and replaces them with zero or more values specified in the argument list. Array elements that appear after the insertion or deletion are moved as necessary so that they remain contiguous with the rest of the array. Note that, unlike the similarly named slice()
, splice()
modifies array
directly.
Array.toLocaleString() — convert an array to a localized string
Overrides Object.toLocaleString()
Array.toString() — convert an array to a string
Overrides Object.toString()
The toString()
method of an array converts an array to a string and returns the string. When an array is used in a string context, JavaScript automatically converts it to a string by calling this method. On some occasions, however, you may want to call toString()
explicitly.
toString()
converts an array to a string by first converting each array element to strings (by calling its toString()
method). Once each element is converted to a string, toString()
outputs them in a comma-separated list. This return value is the same string that would be returned by the join()
method with no arguments.
Array.unshift() — insert elements at the beginning of an array
unshift()
inserts its arguments at the beginning of array
, shifting the existing elements to higher indexes to make room. The first argument to shift()
becomes the new element 0 of the array; the second argument, if any, becomes the new element 1; and so on. Note that unshift()
does not create a new array; it modifies array
directly.
Boolean — support for boolean values
Object → Boolean
value
) // Constructor functionvalue
) // Conversion functionWhen invoked as a constructor with the new
operator, Boolean()
converts its argument to a boolean value and returns a Boolean object that contains that value. When invoked as a function, without the new
operator, Boolean()
simply converts its argument to a primitive boolean value and returns that value.
The values 0, NaN
, null
, the empty string ""
, and the undefined
value are all converted to false
. All other primitive values, except false
(but including the string “false”), and all objects and arrays are converted to true
.
toString()
Returns “true” or “false”, depending on the boolean value represented by the Boolean object.
valueOf()
Returns the primitive boolean value contained in the Boolean object.
Boolean values are a fundamental datatype in JavaScript. The Boolean object is an object wrapper around the boolean value. This Boolean object type exists primarily to provide a toString()
method to convert boolean values to strings. When the toString()
method is invoked to convert a boolean value to a string (and it is often invoked implicitly by JavaScript), JavaScript internally converts the boolean value to a transient Boolean object, on which the method can be invoked.
Boolean.toString() — convert a boolean value to a string
Overrides Object.toString()
Boolean.valueOf() — the boolean value of a Boolean object
Overrides Object.valueOf()
milliseconds
)datestring
)year
, month
, day
, hours
, minutes
, seconds
, ms
)With no arguments, the Date()
constructor creates a Date object set to the current date and time. When one numeric argument is passed, it is taken as the internal numeric representation of the date in milliseconds, as returned by the getTime()
method. When one string argument is passed, it is a string representation of a date, in the format accepted by the Date.parse()
method. Otherwise, the constructor is passed between two and seven numeric arguments that specify the individual fields of the date and time. All but the first two arguments—the year and month fields—are optional. Note that these date and time fields are specified using local time, not Coordinated Universal Time (UTC) (which is similar to Greenwich Mean Time [GMT]). See the static Date.UTC() method for an alternative.
Date()
may also be called as a function, without the new
operator. When invoked in this way, Date()
ignores any arguments passed to it and returns a string representation of the current date and time.
milliseconds
The number of milliseconds between the desired date and midnight on January 1, 1970 (UTC). For example, passing the argument 5000 creates a date that represents five seconds past midnight on 1/1/70.
datestring
A single argument that specifies the date and, optionally, the time as a string. The string should be in a format accepted byDate.parse()
.
year
The year, in four-digit format. For example, specify2001
for the year 2001. For compatibility with early implementations of JavaScript, if this argument is between 0 and 99, 1900 is added to it.
month
The month, specified as an integer from 0 (January) to 11 (December).
day
The day of the month, specified as an integer from 1 to 31. Note that this argument uses 1 as its lowest value, while other arguments use 0 as their lowest value. Optional.
hours
The hour, specified as an integer from 0 (midnight) to 23 (11 p.m.). Optional.
minutes
The minutes in the hour, specified as an integer from 0 to 59. Optional.
seconds
The seconds in the minute, specified as an integer from 0 to 59. Optional.
ms
The milliseconds in the second, specified as an integer from 0 to 999. Optional.
The Date object has no properties that can be read and written directly; instead, all access to date and time values is done through methods. Most methods of the Date object come in two forms: one that operates using local time and one that operates using universal (UTC or GMT) time. If a method has “UTC” in its name, it operates using universal time. These pairs of methods are listed together below. For example, the listing for get[UTC]Day()
refers to both the methods getDay()
and getUTCDay()
.
Date methods may be invoked only on Date objects, and they throw a TypeError exception if you attempt to invoke them on any other type of object:
get[UTC]Date()
Returns the day of the month of a Date object, in local or universal time.
get[UTC]Day()
Returns the day of the week of a Date object, in local or universal time.
get[UTC]FullYear()
Returns the year of the date in full four-digit form, in local or universal time.
get[UTC]Hours()
Returns the hours field of a Date object, in local or universal time.
get[UTC]Milliseconds()
Returns the milliseconds field of a Date object, in local or universal time.
get[UTC]Minutes()
Returns the minutes field of a Date object, in local or universal time.
get[UTC]Month()
Returns the month field of a Date object, in local or universal time.
get[UTC]Seconds()
Returns the seconds field of a Date object, in local or universal time.
getTime()
Returns the internal, millisecond representation of a Date object. Note that this value is independent of time zone, and therefore, there is not a separategetUTCTime()
method.
getTimezoneOffset()
Returns the difference, in minutes, between the local and UTC representations of this date. Note that the value returned depends on whether daylight saving time is or would be in effect at the specified date.
getYear()
Returns the year field of a Date object. Deprecated in favor ofgetFullYear()
.
set[UTC]Date()
Sets the day of the month field of the date, using local or universal time.
set[UTC]FullYear()
Sets the year (and optionally month and day) field of the date, using local or universal time.
set[UTC]Hours()
Sets the hour field (and optionally the minutes, seconds, and milliseconds fields) of the date, using local or universal time.
set[UTC]Milliseconds()
Sets the milliseconds field of a date, using local or universal time.
set[UTC]Minutes()
Sets the minutes field (and optionally the seconds and milliseconds fields) of a date, using local or universal time.
set[UTC]Month()
Sets the month field (and optionally the day of the month) of a date, using local or universal time.
set[UTC]Seconds()
Sets the seconds field (and optionally the milliseconds field) of a date, using local or universal time.
setTime()
Sets the fields of a Date object using the millisecond format.
setYear()
Sets the year field of a Date object. Deprecated in favor ofsetFullYear()
.
toDateString()
Returns a string that represents the date portion of the date, expressed in the local time zone.
toGMTString()
Converts a Date to a string, using the GMT time zone. Deprecated in favor oftoUTCString()
.
toISOString()
Converts a Date to a string, using the ISO-8601 standard combined date/time format and UTC.
toJSON()
JSON serializes a Date object, usingtoISOString()
.
toLocaleDateString()
Returns a string that represents the date portion of the date, expressed in the local time zone, using the local date formatting conventions.
toLocaleString()
Converts a Date to a string, using the local time zone and the local date formatting conventions.
toLocaleTimeString()
Returns a string that represents the time portion of the date, expressed in the local time zone, using the local time formatting conventions.
toString()
Converts a Date to a string using the local time zone.
toTimeString()
Returns a string that represents the time portion of the date, expressed in the local time zone.
toUTCString()
Converts a Date to a string, using universal time.
valueOf()
Converts a Date to its internal millisecond format.
In addition to the many instance methods listed previously, the Date object also defines three static methods. These methods are invoked through the Date()
constructor itself, not through individual Date objects:
Date.now()
Returns the current time, as milliseconds since the epoch.
Date.parse()
Parses a string representation of a date and time and returns the internal millisecond representation of that date.
Date.UTC()
Returns the millisecond representation of the specified UTC date and time.
The Date object is a datatype built into the JavaScript language. Date objects are created with the new Date()
syntax shown earlier.
Once a Date object is created, a number of methods allow you to operate on it. Most methods simply allow you to get and set the year, month, day, hour, minute, second, and millisecond fields of the object, using either local time or UTC (universal, or GMT) time. The toString()
method and its variants convert dates to human-readable strings. getTime()
and setTime()
convert to and from the internal representation of the Date object—the number of milliseconds since midnight (GMT) on January 1, 1970. In this standard millisecond format, a date and time are represented by a single integer, which makes date arithmetic particularly easy. The ECMAScript standard requires the Date object to be able to represent any date and time, to millisecond precision, within 100 million days before or after 1/1/1970. This is a range of plus or minus 273,785 years, so the JavaScript clock will not “roll over” until the year 275755.
Once you create a Date object, there are a variety of methods you can use to operate on it:
Another common use of the Date object is to subtract the millisecond representations of the current time from some other time to determine the difference between the two times. The following client-side example shows two such uses:
Date.getTime() — return a Date in milliseconds
getTime()
converts a date and time to a single integer. This is useful when you want to compare two Date objects or to determine the time elapsed between two dates. Note that the millisecond representation of a date is independent of the time zone, so there is no getUTCTime()
method in addition to this one. Don’t confuse this getTime()
method with the getDay()
and getDate()
methods, which return the day of the week and the day of the month, respectively.
Date.parse()
and Date.UTC()
allow you to convert a date and time specification to a millisecond representation without going through the overhead of first creating a Date object.
Date.getTimezoneOffset() — determine the offset from GMT
getTimezoneOffset()
returns the number of minutes difference between the GMT or UTC time and the local time. In effect, this function tells you what time zone the JavaScript code is running in and whether or not daylight saving time is (or would be) in effect at the specified date
.
The return value is measured in minutes, rather than hours, because some countries have time zones that are not at even one-hour intervals.
Date.now() — return the current time in milliseconds
ECMAScript 5
Date.parse() — parse a date/time string
Date.parse()
is a static method of Date. It parses the date specified by its single string argument returns it as the number of milliseconds since the epoch. This return value can be used directly, used to create a new Date object, or used to set the date in an existing Date object with Date.setTime()
.
ECMAScript 5 requires this method to be able to parse strings returned by the Date.toISOString()
method. In ECMAScript 5 and before, this method is also required to be able to parse the implementation-dependent strings returned by the toUTCString()
and toString()
methods.
Date.setFullYear() — set the year and, optionally, the month and date fields of a Date
date
.setFullYear(year
)date
.setFullYear(year
, month
)date
.setFullYear(year
, month
, day
)Date.setHours() — set the hours, minutes, seconds, and milliseconds fields of a Date
date
.setHours(hours
)date
.setHours(hours
, minutes
)date
.setHours(hours
, minutes
, seconds
)date
.setHours(hours
, minutes
, seconds
, millis
)hours
minutes
An optional integer, between 0 and 59, that is used as the new value (in local time) of the minutes field ofdate
. This argument is not supported prior to ECMAScript standardization.
seconds
An optional integer, between 0 and 59, that is used as the new value (in local time) of the seconds field ofdate
. This argument is not supported prior to ECMAScript standardization.
millis
An optional integer, between 0 and 999, that is used as the new value (in local time) of the milliseconds field ofdate
. This argument is not supported prior to ECMAScript standardization.
Date.setMinutes() — set the minutes, seconds, and milliseconds fields of a Date
date
.setMinutes(minutes
)date
.setMinutes(minutes
, seconds
)date
.setMinutes(minutes
, seconds
, millis
)minutes
seconds
An optional integer, between 0 and 59, that is used as the new value (in local time) of the seconds field ofdate
. This argument is not supported prior to ECMAScript standardization.
millis
An optional integer, between 0 and 999, that is used as the new value (in local time) of the milliseconds field ofdate
. This argument is not supported prior to ECMAScript standardization.
Date.setMonth() — set the month and day fields of a Date
Date.setSeconds() — set the seconds and milliseconds fields of a Date
Date.setTime() — set a Date in milliseconds
date
.setTime(milliseconds
)milliseconds
The number of milliseconds between the desired date and time and midnight GMT on January 1, 1970. A millisecond value of this type may also be passed to theDate()
constructor and may be obtained by calling theDate.UTC()
andDate.parse()
methods. Representing a date in this millisecond format makes it independent of time zone.
date
.setUTCFullYear(year
)date
.setSeconds(seconds
, millis
)date
.setUTCFullYear(year
, month
, day
)year
month
An optional integer between 0 and 11 that is used as the new value (in universal time) of the month field ofdate
. Note that months are numbered beginning with 0, while days within the month are numbered beginning with 1.
day
An optional integer between 1 and 31 that is used as the new value (in universal time) of the day-of-the-month field ofdate
.
Date.setUTCHours() — set the hours, minutes, seconds, and milliseconds fields of a Date (universal time)
date
.setUTCHours(hours
)date
.setUTCHours(hours
, minutes
)date
.setUTCHours(hours
, minutes
, seconds
)date
.setUTCHours(hours
, minutes
, seconds
, millis
)hours
minutes
An optional integer, between 0 and 59, that is used as the new value (in universal time) of the minutes field ofdate
.
seconds
An optional integer, between 0 and 59, that is used as the new value (in universal time) of the seconds field ofdate
.
millis
An optional integer, between 0 and 999, that is used as the new value (in universal time) of the milliseconds field ofdate
.
Date.setUTCMinutes() — set the minutes, seconds, and milliseconds fields of a Date (universal time)
Date.setUTCMonth() — set the month and day fields of a Date (universal time)
Date.setUTCSeconds() — set the seconds and milliseconds fields of a Date (universal time)
Date.setYear() — set the year field of a Date
deprecated
Date.toDateString() — return the date portion of a Date as a string
Date.toGMTString() — convert a Date to a universal time string
deprecated
Date.toISOString() — convert a Date to an ISO8601-formatted string
ECMAScript 5
Date.toJSON — JSON-serialize a Date object
ECMAScript 5
Date.toLocaleDateString() — return the date portion of a Date as a locally formatted string
Date.toLocaleString() — convert a Date to a locally formatted string
toLocaleString()
converts a date to a string, using the local time zone. This method also uses local conventions for date and time formatting, so the format may vary from platform to platform and from country to country. toLocaleString()
returns a string formatted in what is likely the user’s preferred date and time format.
Date.toLocaleTimeString() — return the time portion of a Date as a locally formatted string
Date.toString() — convert a Date to a string
Overrides Object.toString()
Date.toTimeString() — return the time portion of a Date as a string
Date.toUTCString() — convert a Date to a string (universal time)
Date.UTC() — convert a Date specification to milliseconds
year
, month
, day
, hours
, minutes
, seconds
, ms
)year
month
The month, specified as an integer from 0 (January) to 11 (December).
day
The day of the month, specified as an integer from 1 to 31. Note that this argument uses 1 as its lowest value, while other arguments use 0 as their lowest value. This argument is optional.
hours
The hour, specified as an integer from 0 (midnight) to 23 (11 p.m.). This argument is optional.
minutes
The minutes in the hour, specified as an integer from 0 to 59. This argument is optional.
seconds
The seconds in the minute, specified as an integer from 0 to 59. This argument is optional.
ms
The number of milliseconds, specified as an integer from 0 to 999. This argument is optional and is ignored prior to ECMAScript standardization.
Date.UTC()
is a static method; it is invoked through the Date()
constructor, not through an individual Date object.
The arguments to Date.UTC()
specify a date and time and are understood to be in UTC; they are in the GMT time zone. The specified UTC time is converted to the millisecond format, which can be used by the Date()
constructor method and by the Date.setTime()
method.
The Date()
constructor method can accept date and time arguments identical to those that Date.UTC()
accepts. The difference is that the Date()
constructor assumes local time, while Date.UTC()
assumes universal time (GMT). To create a Date object using a UTC time specification, you can use code like this:
Date.valueOf() — convert a Date to millisecond representation
Overrides Object.valueOf()
decodeURI() — unescape characters in a URI
uri
)decodeURIComponent() — unescape characters in a URI component
s
)encodeURI() — escape characters in a URI
encodeURI()
is a global function that returns an encoded copy of its uri
argument. ASCII letters and digits are not encoded, nor are the following ASCII punctuation characters:
Because encodeURI()
is intended to encode complete URIs, the following ASCII punctuation characters, which have special meaning in URIs, are not escaped either:
Any other characters in uri
are replaced by converting each character to its UTF-8 encoding and then encoding each of the resulting one, two, or three bytes with a hexadecimal escape sequence of the form %xx
. In this encoding scheme, ASCII characters are replaced with a single %xx
escape, characters with encodings between \u0080
and \u07ff
are replaced with two escape sequences, and all other 16-bit Unicode characters are replaced with three escape sequences.
If you use this method to encode a URI, you should be certain that none of the components of the URI (such as the query string) contain URI separator characters such as ? and #. If the components have to contain these characters, you should encode each component separately with encodeURIComponent()
.
Use decodeURI()
to reverse the encoding applied by this method. Prior to ECMAScript v3, you can use escape()
and unescape()
methods (which are now deprecated) to perform a similar kind of encoding and decoding.
encodeURIComponent() — escape characters in a URI component
encodeURIComponent()
is a global function that returns an encoded copy of its s
argument. ASCII letters and digits are not encoded, nor are the following ASCII punctuation characters:
All other characters, including punctuation characters such as /, :, and # that serve to separate the various components of a URI, are replaced with one or more hexadecimal escape sequences. See encodeURI() for a description of the encoding scheme used.
Note the difference between encodeURIComponent()
and encodeURI()
: encodeURIComponent()
assumes that its argument is a portion (such as the protocol, hostname, path, or query string) of a URI. Therefore it escapes the punctuation characters that are used to separate the portions of a URI.
message
)A newly constructed Error object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the Error()
constructor is called as a function, without the new
operator, it behaves just as it does when called with the new
operator.
message
name
A string that specifies the type of the exception. For instances of the Error class and all of its subclasses, this property specifies the name of the constructor used to create the instance.
Instances of the Error class represent errors or exceptions and are typically used with the throw
and try/catch
statements. The name
property specifies the type of the exception, and the message
property can provide human-readable details about the exception.
The JavaScript interpreter never throws Error objects directly; instead, it throws instances of one of the Error subclasses, such as SyntaxError or RangeError. In your own code, you may find it convenient to throw Error objects to signal exceptions, or you may prefer to simply throw an error message or error code as a primitive string or number value.
Note that the ECMAScript specification defines a toString()
method for the Error class (it is inherited by each of the subclasses of Error) but that it does not require this toString()
method to return a string that contains the contents of the message
property. Therefore, you should not expect the toString()
method to convert an Error object to a meaningful, human-readable string. To display an error message to a user, you should explicitly use the name
and message
properties of the Error object.
You might signal an exception with code like the following:
And if you catch an exception, you might display its to the user with code like the following (which uses the client-side Window.alert()
method):
Error.message — a human-readable error message
The message
property of an Error object (or of an instance of any subclass of Error) is intended to contain a human-readable string that provides details about the error or exception that occurred. If a message
argument is passed to the Error()
constructor, this message becomes the value of the message
property. If no message
argument is passed, an Error object inherits an implementation-defined default value (which may be the empty string) for this property.
Error.name — the type of an error
The name
property of an Error object (or of an instance of any subclass of Error) specifies the type of error or exception that occurred. All Error objects inherit this property from their constructor. The value of the property is the same as the name of the constructor. Thus SyntaxError objects have a name
property of “SyntaxError”, and EvalError objects have a name
of “EvalError”.
Error.toString() — convert an Error object to a string
Overrides Object.toString()
escape() — encode a string
deprecated
escape()
is a global function. It returns a new string that contains an encoded version of s
. The string s
itself is not modified.
escape()
returns a string in which all characters of s
other than ASCII letters, digits, and the punctuation characters @, *, _, +, -, ., and / have been replaced by escape sequences of the form %
xx
or %u
xxxx
(where x
represents a hexadecimal digit). Unicode characters \u0000
to \u00ff
are replaced with the %
xx
escape sequence, and all other Unicode characters are replaced with the %u
xxxx
sequence.
Use the unescape()
function to decode a string encoded with escape()
.
Although the escape()
function was standardized in the first version of ECMAScript, it was deprecated and removed from the standard by ECMAScript v3. Implementations of ECMAScript are likely to implement this function, but they are not required to. You should use encodeURI()
and encodeURIComponent()
instead of escape()
.
code
)eval()
is a global method that evaluates a string of JavaScript code. If code
contains an expression, eval
evaluates the expression and returns its value. (Some expressions, such as object and function literals look like statements and must be enclosed in parentheses when passed to eval()
in order to resolve the ambiguity.) If code
contains a JavaScript statement or statements, eval()
executes those statements and returns the value, if any, returned by the last statement. If code
does not return any value, eval()
returns undefined
. Finally, if code
throws an exception, eval()
passes that exception on to the caller.
eval()
behaves different in ECMAScript 3 and ECMAScript 5, and in ECMAScript 5, it behaves differently in strict mode and non-strict mode, and a minor digression is necessary in order to explain these differences. It is much easier to implement efficient interpreters when a programming language defines eval
as an operator instead of as a function. JavaScript’s eval
is a function, but for the sake of efficiency, the language draws a distinction between direct, operator-like calls to eval()
and indirect calls. A direct call uses the identifier eval
directly and, if you removed the parentheses, it would look like eval
was an operator. Any other invocation of eval()
is an indirect call. If you assign the eval()
function to a variable with a different name and invoke it through that variable, it is an indirect call. Similarly, if you invoke eval() as a method of the global object, it is an indirect call.
With that distinction between direct and indirect calls made, we can document the behavior of eval()
like this:
eval()
evaluatescode
in the current lexical scope. Ifcode
contains variable or function declarations they are defined in the local scope. This is the normal use-case foreval()
.
The ECMAScript 3 specification allows interpreters to throw an EvalError for any indirect call toeval()
. Implementations of ES3 don’t generally do this in practice, but indirect calls should be avoided.
Indirect call, ES5
In ECMAScript 5, indirect calls toeval()
must not throw an EvalError, and instead must evaluatecode
in the global scope, ignoring any local variables in the current lexical scope. In ES5, we can assignvar geval = eval;
, then we can usegeval()
to evaluatecode
in the global scope.
In strict mode variable and function definitions incode
are defined in a private scope that lasts only for the duration of theeval()
call. This means that direct calls toeval()
in strict mode cannot alter the lexical scope and indirect calls in strict mode cannot alter the global scope. These rules apply if the invocation ofeval()
is in strict mode, or ifcode
begins with a “use strict” directive.
eval()
provides a very powerful capability to the JavaScript language, but its use is infrequent in real-world programs. Obvious uses are to write programs that act as recursive JavaScript interpreters and to write programs that dynamically generate and evaluate JavaScript code.
Most JavaScript functions that expect string arguments convert whatever value they are passed to a string before proceeding. eval()
does not behave like this: if code
is not a primitive string value, it is simply returned unchanged. Be careful, therefore, that you do not inadvertently pass a String object to eval()
when you intended to pass a primitive string value.
EvalError — thrown when eval() is used improperly
Object → Error → EvalError
message
)A newly constructed EvalError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the EvalError()
constructor is called as a function without the new
operator, it behaves just as it does when called with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor or an implementation-defined default string. See Error.message for details.
name
Function — a JavaScript function
Object → Function
argument_names...
, body
)argument_names...
Any number of string arguments, each naming one or more arguments of the Function object being created.
body
A string that specifies the body of the function. It may contain any number of JavaScript statements, separated with semicolons, and may refer to any of the argument names specified by previous arguments to the constructor.
arguments[]
caller
A reference to the Function object that invoked this one, ornull
if the function was invoked from top-level code. Deprecated.
length
The number of named arguments specified when the function was declared.
prototype
An object which, for a constructor function, defines properties and methods shared by all objects created with that constructor function.
apply()
bind()
Return a new function that invokes this one as a method of the specified object with the optionally specified arguments.
call()
Invokes a function as a method of a specified object, passing the specified arguments.
toString()
Returns a string representation of the function.
A function is a fundamental datatype in JavaScript. Chapter 8 explains how to define and use functions, and Chapter 9 covers the related topics of methods, constructors, and the prototype
property of functions. See those chapters for complete details. Note that although function objects may be created with the Function()
constructor described here, this is not efficient, and the preferred way to define functions, in most cases, is with a function definition statement or a function literal.
In JavaScript 1.1 and later, the body of a function is automatically given a local variable, named arguments
, that refers to an Arguments object. This object is an array of the values passed as arguments to the function. Don’t confuse this with the deprecated arguments[]
property listed earlier. See the Arguments reference page for details.
Function.apply() — invoke a function as a method of an object
apply()
invokes the specified function
as if it were a method of thisobj
, passing it the arguments contained in the args
array. It returns the value returned by the function invocation. Within the body of the function, the this
keyword refers to the thisobj
object.
The args
argument must be an array or an Arguments object. Use Function.call()
instead if you want to specify the arguments to pass to the function individually instead of as array elements.
Function.arguments[] — arguments passed to a function
deprecated
The arguments
property of a Function object is an array of the arguments that are passed to a function. It is defined only while the function is executing. arguments.length
specifies the number of elements in the array.
This property is deprecated in favor of the Arguments object; it should never be used in new JavaScript code.
Function.bind() — return a function that invokes this as a method
ECMAScript 5
The bind()
method returns a new function which invokes this function as a method of the object o
. The arguments passed to this function consist of the args
passed to bind()
followed by whatever values are passed to the new function.
Function.call() — invoke a function as a method of an object
call()
invokes the specified function
as if it were a method of thisobj
, passing it any arguments that follow thisobj
in the argument list. The return value of call()
is the value returned by the function invocation. Within the body of the function, the this
keyword refers to the thisobj
object, or to the global object if thisobj
is null
.
Use Function.apply()
instead if you want to specify the arguments to pass to the function in an array.
Function.caller — the function that called this one
deprecated; not defined in strict mode
In early versions of JavaScript, the caller
property of a Function object is a reference to the function that invoked the current one. If the function is invoked from the top level of a JavaScript program, caller
is null
. This property may be used only from within the function (i.e., the caller
property is only defined for a function while that function is executing).
Function.caller
is not part of the ECMAScript standard and is not required in conforming implementations. It should not be used.
The length
property of a function specifies the number of named arguments declared when the function was defined. The function may actually be invoked with more than or fewer than this number of arguments. Don’t confuse this property of a Function object with the length
property of the Arguments object, which specifies the number of arguments actually passed to the function. See Arguments.length for an example.
Function.prototype — the prototype for a class of objects
The prototype
property is used when a function is used as a constructor. It refers to an object that serves as the prototype for an entire class of objects. Any object created by the constructor inherits all properties of the object referred to by the prototype
property.
See Chapter 9 for a full discussion of constructor functions, the prototype
property, and the definition of classes in JavaScript.
Function.toString() — convert a function to a string
The toString()
method of the Function object converts a function to a string in an implementation-dependent way. In most implementations, such as the implementations in Firefox and IE, this method returns a string of valid JavaScript code—code that includes the function
keyword, argument list, the complete body of the function, and so on. In these implementations, the output of this toString()
method is valid input for the global eval()
function. This behavior is not required by the specification, however, and should not be relied upon.
Global — the global object
Object → Global
The global object is not a class, so the following global properties have individual reference entries under their own names. That is, you can find details on the undefined
property listed under the name undefined
, not under Global.undefined
. Note that all top-level variables are also properties of the global object:
Infinity
A numeric value that represents positive infinity.
NaN
The not-a-number value.
undefined
Theundefined
value.
The global object is an object, not a class. The global functions listed here are not methods of any object, and their reference entries appear under the function name. For example, you’ll find details on the parseInt()
function under parseInt()
, not Global.parseInt()
:
decodeURI()
Decodes a string escaped withencodeURI()
.
decodeURIComponent()
Decodes a string escaped withencodeURIComponent()
.
encodeURI
Encodes a URI by escaping certain characters.
encodeURIComponent
Encodes a URI component by escaping certain characters.
escape()
Encodes a string by replacing certain characters with escape sequences.
eval()
Evaluates a string of JavaScript code and returns the result.
isFinite()
Tests whether a value is a finite number.
isNaN()
Tests whether a value is the not-a-number value.
parseFloat()
Parses a number from a string.
parseInt()
Parses an integer from a string.
unescape()
Decodes a string encoded withescape()
.
In addition to the global properties and functions listed earlier, the global object also defines properties that refer to all the other predefined JavaScript objects. Most of these properties are constructor functions:
Array
TheArray()
constructor.
Boolean
TheBoolean()
constructor.
Date
TheDate()
constructor.
Error
TheError()
constructor.
EvalError
TheEvalError()
constructor.
Function
TheFunction()
constructor.
JSON
A reference to an object that defines JSON parsing and serialization functions.
Math
A reference to an object that defines mathematical functions.
Number
TheNumber()
constructor.
Object
TheObject()
constructor.
RangeError
TheRangeError()
constructor.
ReferenceError
TheReferenceError()
constructor.
RegExp
TheRegExp()
constructor.
String
TheString()
constructor.
SyntaxError
TheSyntaxError()
constructor.
TypeError
TheTypeError()
constructor.
URIError
TheURIError()
constructor.
The global object is a predefined object that serves as a placeholder for the global properties and functions of JavaScript. All other predefined objects, functions, and properties are accessible through the global object. The global object is not a property of any other object, so it does not have a name. (The title of this reference page was chosen simply for organizational convenience and does not indicate that the global object is named “Global”). In top-level JavaScript code, you can refer to the global object with the keyword this
. It is rarely necessary to refer to the global object in this way, however, because the global object serves as the top of the scope chain, which means that unqualified variable and function names are looked up as properties of the object. When JavaScript code refers to the parseInt()
function, for example, it is referring to the parseInt
property of the global object. The fact that the global object is the top of the scope chain also means that all variables declared in top-level JavaScript code become properties of the global object.
The global object is simply an object, not a class. There is no Global()
constructor, and there is no way to instantiate a new global object.
When JavaScript is embedded in a particular environment, the global object is usually given additional properties that are specific to that environment. In fact, the type of the global object is not specified by the ECMAScript standard, and an implementation or embedding of JavaScript may use an object of any type as the global object, as long as the object defines the basic properties and functions listed here. In client-side JavaScript, for example, the global object is a Window object and represents the web browser window within which the JavaScript code is running.
Infinity — a numeric property that represents infinity
Infinity
is a global property that contains the special numeric value representing positive infinity. The Infinity
property is not enumerated by for/in
loops and cannot be deleted with the delete
operator. Note that Infinity
is not a constant and can be set to any other value, something that you should take care not to do. (Number.POSITIVE_INFINITY
is a constant, however.)
isNaN() — check for not-a-number
“NaN” is an acronym for “not-a-number”. The global variable NaN
holds a special numeric value (also known as NaN
) that represents an illegal number (such as the result of zero divided by zero). isNaN()
tests whether its argument is not a number. This function returns false
if x
is, or can be converted to, a number other than NaN
. It returns true
if x
is not and cannot be converted to a number, or if it is equal to NaN
.
NaN
has the special property that it is not equal to any value including itself. So if you want to test specifically for the NaN
value, rather than generically for any non-number, do not write x === NaN
: that will always be false
. Instead use the expression x !== x
: this will evaluate to true
only if x
is NaN
.
A common use of isNaN()
is to test the results of parseFloat()
and parseInt()
to determine if they represent legal numbers.
JSON — JSON parsing and stringification
ECMAScript 5
JSON
is a simple object that serves as the namespace for the global ECMAScript 5 functions JSON.parse() and JSON.stringify(). JSON
is not a constructor. Prior to ECMAScript 5, compatible JSON parsing and serialization functions are available from http://json.org/json2.js.
“JSON” stands for JavaScript Object Notation. JSON is a data serialization format based on JavaScript literals, and can represent the null
value, the boolean values true
and false
, floating-point numbers (using JavaScript numeric literals), strings (using JavaScript string literals), arrays of values (using JavaScript array literal syntax) and string to value mappings (using JavaScript object literal syntax). The primitive value undefined
as well as the numbers NaN and Infinity are not representable in JSON. JavaScript functions, Dates, RegExps and Errors are not supported either.
JSON.parse() — parse a JSON-formatted string
ECMAScript 5
JSON.parse()
is a global function for parsing JSON-formatted strings. Typically, you pass a single string argument and JSON.parse()
returns the JavaScript value that the string represents.
You can use the optional reviver
argument to filter or post-process the parsed value before it is returned. If it is specified, the reviver
function is invoked once for each primitive value (but not the objects or arrays that contain those primitive values) parsed from s
. reviver
is invoked with two arguments. The first is a property name—either an object property name or an array index converted to a string. The second argument is the primitive value of that object property or array element. reviver
is invoked as a method of the object or array that contains the primitive value. As a special case, if the string s
represents a primitive value rather than the more typical object or array, then that primitive value will be stored in a newly-created object using a property whose name is the empty string. In this case, reviver
will be invoked once on that newly created object, with an empty string as its first argument and the primitive value as its second.
The return value of the reviver
function becomes the new value of the named property. If reviver
returns its second argument, then the property will remain unchanged. If reviver returns undefined
(or returns no value at all) then the named property will be deleted from the object or array before JSON.parse()
returns to the user.
Many uses of JSON.parse()
are trivial:
The JSON.stringify()
function converts Date objects to strings, and you can use a reviver
function to reverse this transformation. The example below also filters property names and returns undefined
to remove certain properties from the result object:
JSON.stringify() — serialize an object, array or primitive value
ECMAScript 5
o
)o
, filter
)o
, filter
, indent
)o
filter
An optional function that can replace values before stringification, or an array that contains the names of properties to be stringified.
indent
An optional argument that specifies an indentation string or the number of spaces to use for indentation when formatted human-readable output is desired. If omitted, the returned string contains no extraneous spaces and is machine-readable, but not easily human-readable.
JSON.stringify()
converts a primitive value, object or array to a JSON-formatted string that can later be parsed with JSON.parse()
. Usually, this function is called with a single argument and returns the corresponding string.
When JSON.stringify()
is called with a single argument, and when that value consists only of objects, arrays, strings, numbers, booleans and the null
value the stringification is completely straightforward. When the value to be stringified contains objects that are instances of a class, however, the stringification process is more complex. If JSON.stringify()
encounters any object (or array) with a method named toJSON()
, it invokes that method on the object and stringifies the return value instead of the object itself. It invokes toJSON()
with a single string argument which is the property name or array index of the object. The Date class defines a toJSON()
method that converts Dates to strings using the Date.toISOString()
method. No other built-in JavaScript class defines a toJSON()
method, but you can define them for your own classes. Remember that, despite its name, toJSON()
does not have to stringify the object on which it is invoked: it merely has to return a value that will be stringified in place of the original object.
The second argument to JSON.stringify()
allows a second layer of filtering for the stringification process. This optional argument may be a function or an array and the two cases provide completely different filtering functionality. If you pass a function, it is a replacer function, and works something like the toJSON()
method described above. If specified, the replacer function is invoked for each value to be stringified. The this
value is the object or array within which the value is defined. The first argument to the replacer function is the object property name or array index of the value within that object, and the second argument is the value itself. That value is replaced by the return value of the replacer function. If the replacer returns undefined
or returns nothing at all, then that value (and its array element or object property) are omitted from the stringification.
If an array of strings (or numbers—they are converted to strings) is passed instead as the second argument, these are used as the names of object properties. Any property whose name is not in the array will be omitted from stringification. Furthermore, the returned string will include properties in the same order that they appear in the array.
JSON.stringify()
normally returns a machine-readable string without any whitespace or newlines inserted. If you want the output to be more human readable, specify a third argument. If you specify a number between 1 and 10, JSON.stringify()
will insert newlines and use the specified number of spaces to indent each “level” of output. If you specify a non-empty string instead, JSON.stringify()
will insert newlines and use that string (or the first 10 characters of it) to indent each level.
Math.E
Math.LN10
The natural logarithm of 10.
Math.LN2
The natural logarithm of 2.
Math.LOG10E
The base-10 logarithm of e.
Math.LOG2E
The base-2 logarithm of e.
Math.PI
The constant π.
Math.SQRT1_2
The number 1 divided by the square root of 2.
Math.SQRT2
The square root of 2.
Math.abs()
Math.acos()
Computes an arccosine.
Math.asin()
Computes an arcsine.
Math.atan()
Computes an arctangent.
Math.atan2()
Computes the angle from the X axis to a point.
Math.ceil()
Rounds a number up.
Math.cos()
Computes a cosine.
Math.exp()
Computes a power of e.
Math.floor()
Rounds a number down.
Math.log()
Computes a natural logarithm.
Math.max()
Returns the larger of two numbers.
Math.min()
Returns the smaller of two numbers.
Math.pow()
Computes x y
Math.random()
Computes a random number.
Math.round()
Rounds to the nearest integer.
Math.sin()
Computes a sine.
Math.sqrt()
Computes a square root.
Math.tan()
Computes a tangent.
Math is an object that defines properties that refer to useful mathematical functions and constants. These functions and constants are invoked with syntax like this:
Math is not a class of objects as Date and String are. There is no Math()
constructor, and functions like Math.sin()
are simply functions, not methods that operate on an object.
The Math.atan2()
function computes the arc tangent of the ratio y
/x
. The y
argument can be considered the Y coordinate (or “rise”) of a point, and the x
argument can be considered the X coordinate (or “run”) of the point. Note the unusual order of the arguments to this function: the Y coordinate is passed before the X coordinate.
Math.ceil()
computes the ceiling function—i.e., it returns the closest integer value that is greater than or equal to the function argument. Math.ceil()
differs from Math.round()
in that it always rounds up, rather than rounding up or down to the closest integer. Also note that Math.ceil()
does not round negative numbers to larger negative numbers; it rounds them up toward zero.
Math.floor()
computes the floor function; in other words, it returns the nearest integer value that is less than or equal to the function argument.
Math.floor()
rounds a floating-point value down to the closest integer. This behavior differs from that of Math.round()
, which rounds up or down to the nearest integer. Also note that Math.floor()
rounds negative numbers down (i.e., to be more negative), not up (i.e., closer to zero).
Math.log()
computes log e x, the natural logarithm of its argument. The argument must be greater than zero.
You can compute the base-10 and base-2 logarithms of a number with these formulas:
These formulas translate into the following JavaScript functions:
Math.pow() — compute x y
Math.pow()
computes x
to the power of y
. Any values of x
and y
may be passed to Math.pow()
. However, if the result is an imaginary or complex number, Math.pow()
returns NaN
. In practice, this means that if x
is negative, y
should be a positive or negative integer. Also, bear in mind that large exponents can easily cause floating-point overflow and return a value of Infinity
.
NaN
is a global property that refers to the special numeric not-a-number value. The NaN
property is not enumerated by for/in
loops and cannot be deleted with the delete
operator. Note that NaN
is not a constant and can be set to any other value, something that you should take care not to do.
To determine if a value is not a number, use isNaN()
, because NaN
always compares as nonequal to any other value, including itself!
toString()
toLocaleString()
Converts a number to a string using local number-formatting conventions.
toFixed()
Converts a number to a string that contains a specified number of digits after the decimal place.
toExponential()
Converts a number to a string using exponential notation with the specified number of digits after the decimal place.
toPrecision()
Converts a number to a string using the specified number of significant digits. Uses exponential or fixed-point notation depending on the size of the number and the number of significant digits specified.
valueOf()
Returns the primitive numeric value of a Number object.
Numbers are a basic, primitive datatype in JavaScript. JavaScript also supports the Number object, which is a wrapper object around a primitive numeric value. JavaScript automatically converts between the primitive and object forms as necessary. You can explicitly create a Number object with the Number()
constructor, although there is rarely any need to do so.
The Number()
constructor can also be used without the new
operator, as a conversion function. When invoked in this way, it attempts to convert its argument to a number and returns the primitive numeric value (or NaN
) that results from the conversion.
The Number()
constructor is also used as a placeholder for five useful numeric constants: the largest and smallest representable numbers, positive and negative infinity, and the special NaN
value. Note that these values are properties of the Number()
constructor function itself, not of individual number objects. For example, you can use the MAX_VALUE
property as follows:
but not like this:
By contrast, the toString()
and other methods of the Number object are methods of each Number object, not of the Number()
constructor function. As noted earlier, JavaScript automatically converts from primitive numeric values to Number objects whenever necessary. This means that you can use the Number methods with primitive numeric values as well as with Number objects.
Number.NaN
is a special value that indicates that the result of some mathematical operation (such as taking the square root of a negative number) is not a number. parseInt()
and parseFloat()
return this value when they cannot parse the specified string, and you might use Number.NaN
in a similar way to indicate an error condition for some function that normally returns a valid number.
JavaScript prints the Number.NaN
value as NaN
. Note that the NaN
value always compares as unequal to any other number, including NaN
itself. Thus, you cannot check for the not-a-number value by comparing to Number.NaN
; use the isNaN()
function instead. In ECMAScript v1 and later, you can also use the predefined global property NaN
instead of Number.NaN
.
Number.NEGATIVE_INFINITY
is a special numeric value that is returned when an arithmetic operation or mathematical function generates a negative value greater than the largest representable number in JavaScript (i.e., more negative than -Number.MAX_VALUE)
.
JavaScript displays the NEGATIVE_INFINITY
value as -Infinity
. This value behaves mathematically like infinity; for example, anything multiplied by infinity is infinity, and anything divided by infinity is zero. In ECMAScript v1 and later, you can also use -Infinity
instead of Number.NEGATIVE_INFINITY
.
Number.POSITIVE_INFINITY
is a special numeric value returned when an arithmetic operation or mathematical function overflows or generates a value greater than the largest representable number in JavaScript (i.e., greater than Number.MAX_VALUE)
. Note that when numbers “underflow,” or become less than Number.MIN_VALUE
, JavaScript converts them to zero.
JavaScript displays the POSITIVE_INFINITY
value as Infinity
. This value behaves mathematically like infinity; for example, anything multiplied by infinity is infinity, and anything divided by infinity is zero. In ECMAScript v1 and later, you can also use the predefined global property Infinity
instead of Number.POSITIVE_INFINITY
.
number
.toExponential(digits
)number
.toFixed(digits
)A string representation of number
that does not use exponential notation and has exactly digits
digits after the decimal place. The number is rounded if necessary, and the fractional part is padded with zeros if necessary so that it has the specified length. If number
is greater than 1e+21, this method simply calls Number.toString()
and returns a string in exponential notation.
number
.toPrecision(precision
)precision
The number of significant digits to appear in the returned string. This may be a value between 1 and 21, inclusive. Implementations are allowed to optionally support larger and smaller values ofprecision
. If this argument is omitted, thetoString()
method is used instead to convert the number to a base-10 value.
A string representation of number
that contains precision
significant digits. If precision
is large enough to include all the digits of the integer part of number
, the returned string uses fixed-point notation. Otherwise, exponential notation is used with one digit before the decimal place and precision
−1 digits after the decimal place. The number is rounded or padded with zeros as necessary.
number
.toString(radix
)radix
An optional argument that specifies the radix, or base, between 2 and 36, in which the number should be represented. If omitted, base 10 is used. Note, however, that the ECMAScript specification allows an implementation to return any value if this argument is specified as any value other than 10.
The toString()
method of the Number object converts a number to a string. When the radix
argument is omitted or is specified as 10, the number is converted to a base-10 string. Although the ECMAScript specification does not require implementations to honor any other values for radix, all implementations in common use accept values between 2 and 36.
value
)value
This optional argument specifies a primitive JavaScript value—a number, boolean, or string—that is to be converted to a Number, Boolean, or String object.
If no value
argument is passed, this constructor returns a newly created Object instance. If a primitive value
argument is specified, the constructor creates and returns a Number, Boolean, or String object wrapper for the primitive value. When the Object()
constructor is called as a function, without the new
operator, it behaves just as it does when used with the new
operator.
hasOwnProperty()
isPrototypeOf()
Checks whether this object is the prototype object of a specified object.
propertyIsEnumerable()
Checks whether a named property exists and would be enumerated by afor/in
loop.
toLocaleString()
Returns a localized string representation of the object. The default implementation of this method simply callstoString()
, but subclasses may override it to provide localization.
toString()
Returns a string representation of the object. The implementation of this method provided by the Object class is quite generic and does not provide much useful information. Subclasses of Object typically override this method by defining their owntoString()
method, which produces more useful output.
valueOf()
Returns the primitive value of the object, if any. For objects of type Object, this method simply returns the object itself. Subclasses of Object, such as Number and Boolean, override this method to return the primitive value associated with the object.
In ECMAScript 5, the Object constructor serves as a namespace for the following global functions:
Object.create()
Create a new object with specified prototype and properties.
Object.defineProperties()
Create or configure one or more properties of a specified object.
Object.defineProperty()
Create or configure a property of a specified object.
Object.freeze()
Make the specified object immutable.
Object.getOwnPropertyDescriptor()
Query the attributes of the specified property of the specified object.
Object.getOwnPropertyNames()
Return an array of the names of all non-inherited properties of the specified object, including non-enumerable properties.
Object.getPrototypeOf()
Return the prototype of the specified object.
Object.isExtensible()
Determine whether new properties can be added to the specified object.
Object.isFrozen()
Determine whether the specified object is frozen.
Object.isSealed()
Determine whether the specified object is sealed.
Object.keys()
Return an array of the names of the non-inherited enumerable properties of the specified object.
Object.preventExtensions()
Object.seal()
Prevent the addition of new properties and the deletion of existing properties for the specified object.
The Object class is a built-in datatype of the JavaScript language. It serves as the superclass for all other JavaScript objects; therefore, methods and behavior of the Object class are inherited by all other objects. The basic behavior of objects in JavaScript is explained in Chapter 6.
In addition to the Object()
constructor shown above, objects can also be created and initialized using the Object literal syntax described in Creating Objects.
Object.constructor — an object’s constructor function
The constructor
property of any object is a reference to the function that was used as the constructor for that object. For example, if you create an array a
with the Array()
constructor, a.constructor
is an Array:
One common use of the constructor
property is to determine the type of unknown objects. Given an unknown value, you can use the typeof
operator to determine whether it is a primitive value or an object. If it is an object, you can use the constructor
property to determine what type of object it is. For example, the following function determines whether a given value is an array:
Note, however, that while this technique works for the objects built into core JavaScript, it is not guaranteed to work with host objects such as the Window object of client-side JavaScript. The default implementation of the Object.toString()
method provides another way to determine the type of an unknown object.
Object.create() — create an object with specified prototype and properties
ECMAScript 5
proto
)proto
, descriptors
)Object.create()
creates and returns a new object with proto
as its prototype. This means that the new object inherits properties from proto
.
If the optional descriptors
argument is specified, Object.create()
adds properties to the new object as if by calling Object.defineProperties()
. That is the two-argument invocation Object.create(p,d)
is equivalent to:
See Object.defineProperties() for more on the descriptors
argument, and see Object.getOwnPropertyDescriptor() for an explanation of property descriptor objects.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.defineProperties() — create or configure multiple object properties
ECMAScript 5
o
, descriptors
)Ifo
is not an object, or if any of the specified properties cannot be created or configured. This function is not atomic: it may create or configure certain properties and then throw an error, before even attempting to create or configure other properties. See Property Attributes for a list of property configuration errors that can cause a TypeError.
Object.defineProperties()
creates or configures on the object o
the properties named and described by descriptors
. The names of the properties in descriptors
are the names of the properties to be created or configured on o
, and the values of those properties are the property descriptor objects that specify the attributes of the properties to be created or configured.
Object.defineProperties()
works much like Object.defineProperty() does; see that function for more details. See Object.getOwnPropertyDescriptor() for more on property descriptor objects.
Object.defineProperty() — create or configure an object property
ECMAScript 5
o
, name
, desc
)Ifo
is not an object, or if the property cannot be created (becauseo
is not extensible) or configured (because it already exists and is non-configurable, for example). See Property Attributes for a list of property configuration errors that can cause this function to throw a TypeError.
Object.defineProperty()
creates or configures the property named name
of the object o
, using the property descriptor desc
. See Object.getOwnPropertyDescriptor() for an explanation of property descriptor objects.
If o
does not already have a property named name
, then this function simply creates a new property with the attributes and value specified in desc
. If any properties are missing from desc
, then the corresponding attributes are set to false
or undefined
.
If name
is the name of an existing property of o
, then Object.defineProperty()
configures that property by altering its value or attributes. In this case, desc
only needs to contain the attributes to be changed: attributes not mentioned in desc
will not be altered.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.freeze()
makes o
non-extensible (see Object.preventExtensions()) and makes all of its own properties non-configurable, like Object.seal() does. In addition, however, it also makes all non-inherited data properties read-only. This means that new properties cannot be added to o
and that existing properties cannot be set or deleted. Freezing an object is a permanent change: once frozen and object cannot be unfrozen.
Note that Object.freeze()
only sets the writable attribute of data properties. Properties that have a setter function defined are not affected. Also note that Object.freeze()
does not affect inherited properties.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.getOwnPropertyDescriptor() — query property attributes
ECMAScript 5
Object.getOwnPropertyDescriptor()
returns a property descriptor for the specified property of the specified object. A property descriptor is an object that describes the attributes and value of a property. See the sub-section below for complete details. Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
A property descriptor is an ordinary JavaScript object that describes the attributes (and sometimes the value) of a property. There are two kinds of JavaScript properties. A data property has a value and three attributes: enumerable, writable, and configurable. An accessor property has a getter and/or a setter method as well as enumerable and configurable attributes.
The descriptor for a data property looks like this:
The descriptor for an accessor property looks like this:
Object.getOwnPropertyNames() — return the names of non-inherited properties
ECMAScript 5
Object.getOwnPropertyNames()
returns an array that contains the names of all non-inherited properties of o
, including non-enumerable properties. See Object.keys()
for a function that returns only the names of enumerable properties.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.getPrototypeOf() — return the prototype of an object
ECMAScript 5
Object.getPrototypeOf()
returns the prototype of its argument. Note that this is a global function, and you must pass an object to it. It is not a method that is invoked on an object.
As explained in Chapter 9, JavaScript objects may have properties of their own, and they may also inherit properties from their prototype object. The hasOwnProperty()
method provides a way to distinguish between inherited properties and noninherited local properties.
Object.isExtensible() — can new properties be added to an object?
ECMAScript 5
An object is extensible (or extendable) if it can have new properties added to it. All objects are extendable when they are created and remain that way unless they are passed to Object.preventExtensions(), Object.seal(), or Object.freeze().
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.isFrozen() — is an object immutable?
ECMAScript 5
An object is frozen if all of its non-inherited properties (except those with setter methods) are read-only, and if it is sealed. An object is sealed if no new (non-inherited) properties can be added to it, no existing (non-inherited) properties can be deleted from it. Object.isFrozen()
tests whether its argument is frozen or not. Once frozen, an object can never be unfrozen.
The usual way to freeze an object is by passing it to Object.freeze(). It is also possible to freeze an object by passing it to Object.preventExtensions() and then using Object.defineProperty() to make all of its properties read-only and nondeletable.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
As explained in Chapter 9, JavaScript objects inherit properties from their prototype object. The prototype of an object is referred to by the prototype
property of the constructor function that creates and initializes the object. The isPrototypeOf()
method provides a way to determine if one object is the prototype of another. This technique can be used to determine the class of an object.
Object.isSealed() — can properties be added to or deleted from an object?
ECMAScript 5
An object is sealed if no new (non-inherited) properties can be added to it and no existing (non-inherited) properties can be deleted from it. Object.isSealed()
tests whether its argument is sealed or not. Once sealed, an object can never be unsealed. The usual way to seal an object is by passing it to Object.seal() or Object.freeze(). It is also possible to seal an object by passing it to Object.preventExtensions() and then using Object.defineProperty() to make all of its properties non-deleteable.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.keys() — return own enumerable property names
ECMAScript 5
Object.keys()
returns an array of property names for the object o
. The array only includes the names of properties that are enumerable and are defined directly on o
: inherited properties are not included. (See Object.getOwnPropertyNames()
for a way to obtain the names of non-enumerable properties.) Property names appear in the returned array in the same order they would be enumerated by a for/in
loop.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
Object.preventExtensions() — don’t allow new properties on an object
ECMAScript 5
Object.preventExtensions()
sets the extensible attribute of o
to false so that no new properties can be added to it. This is a permanent change: once an object has been made non-extensible, it cannot be make extensible again.
Note that Object.preventExtensions()
does not affect the prototype chain, and a nonextensible object can still gain new inherited properties.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
The for/in
statement loops through the enumerable properties of an object. Not all properties of an object are enumerable, however: properties added to an object by JavaScript code are enumerable, but the predefined properties (such as methods) of built-in objects are not usually enumerable. The propertyIsEnumerable()
method provides a way to distinguish between enumerable and nonenumerable properties. Note, however, that the ECMAScript specification states that propertyIsEnumerable()
does not examine the prototype chain, which means it works only for local properties of an object and does not provide any way to test the enumerability of inherited properties.
Object.seal() — prevent the addition or deletion of properties
ECMAScript 5
Object.seal()
makes o
non-extensible (see Object.preventExtensions()) and makes all of its own properties non-configurable. This has the effect of preventing the addition of new properties and preventing the deletion of existing properties. Sealing an object is permanent: once sealed, an object cannot be unsealed.
Note that Object.seal()
does not make properties read-only; see Object.freeze() for that. Also note that Object.seal()
does not affect inherited properties. If a sealed object has a non-sealed object in its prototype chain, then inherited properties may be added or removed.
Note that this is not a method to be invoked on an object: it is a global function and you must pass an object to it.
This method is intended to return a string representation of the object, localized as appropriate for the current locale. The default toLocaleString()
method provided by the Object class simply calls the toString()
method and returns the nonlocalized string that it returns. Note, however, that other classes, including Array, Date, and Number, define their own versions of this method to perform localized string conversions. When defining your own classes, you may want to override this method as well.
The toString()
method is not one you often call explicitly in your JavaScript programs. Instead, you define this method in your objects, and the system calls it whenever it needs to convert your object to a string.
The JavaScript system invokes the toString()
method to convert an object to a string whenever the object is used in a string context. For example, an object is converted to a string when it is passed to a function that expects a string argument:
Similarly, objects are converted to strings when they are concatenated to strings with the +
operator:
The toString()
method is invoked without arguments and should return a string. To be useful, the string you return should be based, in some way, on the value of the object for which the method was invoked.
When you define a custom class in JavaScript, it is good practice to define a toString()
method for the class. If you do not, the object inherits the default toString()
method from the Object class. This default method returns a string of the form:
class
]where class
is the class of the object: a value such as “Object”, “String”, “Number”, “Function”, “Window”, “Document”, and so on. This behavior of the default toString()
method is occasionally useful to determine the type or class of an unknown object. Because most objects have a custom version of toString()
, however, you must explicitly invoke the Object.toString()
method on an object o
with code like this:
Note that this technique for identifying unknown objects works only for built-in objects. If you define your own object class, it will have a class
of “Object”. In this case, you can use the Object.constructor
property to obtain more information about the object.
The toString()
method can be quite useful when you are debugging JavaScript programs; it allows you to print objects and see their value. For this reason alone, it is a good idea to define a toString()
method for every object class you create.
Although the toString()
method is usually invoked automatically by the system, there are times when you may invoke it yourself. For example, you might want to do an explicit conversion of an object to a string in a situation where JavaScript does not do it automatically for you:
Note in this example that numbers have a built-in toString()
method you can use to force a conversion.
In other circumstances, you can choose to use a toString()
call even in a context where JavaScript does the conversion automatically. Using toString()
explicitly can help to make your code clearer:
The valueOf()
method of an object returns the primitive value associated with that object, if there is one. For objects of type Object, there is no primitive value, and this method simply returns the object itself.
For objects of type Number, however, valueOf()
returns the primitive numeric value represented by the object. Similarly, it returns the primitive boolean value associated with a Boolean object and the string associated with a String object.
It is rarely necessary to invoke the valueOf()
method yourself. JavaScript does this automatically whenever an object is used where a primitive value is expected. In fact, because of this automatic invocation of the valueOf()
method, it is difficult to even distinguish between primitive values and their corresponding objects. The typeof
operator shows you the difference between strings and String objects for example, but in practical terms, you can use them equivalently in your JavaScript code.
The valueOf()
methods of the Number, Boolean, and String objects convert these wrapper objects to the primitive values they represent. The Object()
constructor performs the opposite operation when invoked with a number, boolean, or string argument: it wraps the primitive value in an appropriate object wrapper. JavaScript performs this primitive-to-object conversion for you in almost all circumstances, so it is rarely necessary to invoke the Object()
constructor in this way.
In some circumstances, you may want to define a custom valueOf()
method for your own objects. For example, you might define a JavaScript object type to represent complex numbers (a real number plus an imaginary number). As part of this object type, you would probably define methods for performing complex addition, multiplication, and so on (see Example 9-3). But you might also want to treat your complex numbers like ordinary real numbers by discarding the imaginary part. To achieve this, you might do something like the following:
With this valueOf()
method defined for your Complex object type, you can, for example, pass one of your complex number objects to Math.sqrt()
, which computes the square root of the real portion of the complex number.
parseFloat()
parses and returns the first number that occurs in s
. Parsing stops, and the value is returned, when parseFloat()
encounters a character in s
that is not a valid part of the number. If s
does not begin with a number that parseFloat()
can parse, the function returns the not-a-number value NaN
. Test for this return value with the isNaN()
function. If you want to parse only the integer portion of a number, use parseInt()
instead of parseFloat()
.
parseInt() — convert a string to an integer
s
)s
, radix
)s
radix
An optional integer argument that represents the radix (i.e., base) of the number to be parsed. If this argument is omitted or is 0, the number is parsed in base 10—or in base 16 if it begins with 0x or 0X. If this argument is less than 2 or greater than 36,parseInt()
returnsNaN
.
parseInt()
parses and returns the first number (with an optional leading minus sign) that occurs in s
. Parsing stops, and the value is returned, when parseInt()
encounters a character in s
that is not a valid digit for the specified radix
. If s
does not begin with a number that parseInt()
can parse, the function returns the not-a-number value NaN
. Use the isNaN()
function to test for this return value.
The radix
argument specifies the base of the number to be parsed. Specifying 10 makes parseInt()
parse a decimal number. The value 8 specifies that an octal number (using digits 0 through 7) is to be parsed. The value 16 specifies a hexadecimal value, using digits 0 through 9 and letters A through F. radix
can be any value between 2 and 36.
If radix
is 0 or is not specified, parseInt()
tries to determine the radix of the number from s
. If s
begins (after an optional minus sign) with 0x
, parseInt()
parses the remainder of s
as a hexadecimal number. Otherwise parseInt()
parses it as a decimal number.
RangeError — thrown when a number is out of its legal range
Object → Error → RangeError
message
)A newly constructed RangeError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the RangeError()
constructor is called as a function, without the new
operator, it behaves just as it would when called with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor or an implementation-defined default string. See Error.message for details.
name
A string that specifies the type of the exception. All RangeError objects inherit the value “RangeError” for this property.
An instance of the RangeError class is thrown when a numeric value is not in its legal range. For example, setting the length of an array to a negative number causes a RangeError to be thrown. See Error for details about throwing and catching exceptions.
ReferenceError — thrown when reading a variable that does not exist
Object → Error → ReferenceError
message
)A newly constructed ReferenceError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the ReferenceError()
constructor is called as a function, without the new
operator, it behaves just as it would with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor or an implementation-defined default string. See Error.message for details.
name
An instance of the ReferenceError class is thrown when you attempt to read the value of a variable that does not exist. See Error for details about throwing and catching exceptions.
pattern
A string that specifies the pattern of the regular expression or another regular expression.
attributes
An optional string containing any of the “g”, “i”, and “m” attributes that specify global, case-insensitive, and multiline matches, respectively. The “m” attribute is not available prior to ECMAScript standardization. If thepattern
argument is a regular expression instead of a string, this argument must be omitted.
A new RegExp
object, with the specified pattern and flags. If the pattern
argument is a regular expression rather than a string, the RegExp()
constructor creates a new RegExp object using the same pattern and flags as the specified RegExp. If RegExp()
is called as a function without the new
operator, it behaves just as it would with the new
operator, except when pattern
is a regular expression; in that case, it simply returns pattern
instead of creating a new RegExp object.
global
ignoreCase
Whether the RegExp has the “i” attribute.
lastIndex
The character position of the last match; used for finding multiple matches in a string.
multiline
source
The source text of the regular expression.
exec()
Performs powerful, general-purpose pattern matching.
test()
Tests whether a string contains a pattern.
The RegExp object represents a regular expression, a powerful tool for performing pattern matching on strings. See Chapter 10 for complete details on regular-expression syntax and use.
RegExp.exec() — general-purpose pattern matching
regexp
.exec(string
)exec()
is the most powerful of all the RegExp and String pattern-matching methods. It is a general-purpose method that is somewhat more complex to use than RegExp.test()
, String.search()
, String.replace()
, and String.match()
.
exec()
searches string
for text that matches regexp
. If it finds a match, it returns an array of results; otherwise, it returns null
. Element 0 of the returned array is the matched text. Element 1 is the text that matched the first parenthesized subexpression, if any, within regexp
. Element 2 contains the text that matched the second subexpression, and so on. The array length
property specifies the number of elements in the array, as usual. In addition to the array elements and the length
property, the value returned by exec()
also has two other properties. The index
property specifies the character position of the first character of the matched text. The input
property refers to string
. This returned array is the same as the array that is returned by the String.match()
method, when invoked on a nonglobal RegExp object.
When exec()
is invoked on a nonglobal pattern, it performs the search and returns the result described earlier. When regexp
is a global regular expression, however, exec()
behaves in a slightly more complex way. It begins searching string
at the character position specified by the lastIndex
property of regexp
. When it finds a match, it sets lastIndex
to the position of the first character after the match. This means that you can invoke exec()
repeatedly in order to loop through all matches in a string. When exec()
cannot find any more matches, it returns null
and resets lastIndex
to zero. If you begin searching a new string immediately after successfully finding a match in another string, you must be careful to manually reset lastIndex
to zero.
Note that exec()
always includes full details of every match in the array it returns, whether or not regexp
is a global pattern. This is where exec()
differs from String.match()
, which returns much less information when used with global patterns. Calling the exec()
method repeatedly in a loop is the only way to obtain complete pattern-matching information for a global pattern.
You can use exec()
in a loop to find all matches within a string. For example:
lastIndex
is a read/write property of RegExp objects. For regular expressions with the “g” attribute set, it contains an integer that specifies the character position immediately following the last match found by the RegExp.exec()
and RegExp.test()
methods. These methods use this property as the starting point for the next search they conduct. This allows you to call those methods repeatedly, to loop through all matches in a string. Note that lastIndex
is not used by RegExp objects that do not have the “g” attribute set and do not represent global patterns.
This property is read/write, so you can set it at any time to specify where in the target string the next search should begin. exec()
and test()
automatically reset lastIndex
to 0 when they fail to find a match (or another match). If you begin to search a new string after a successful match of some other string, you have to explicitly set this property to 0.
test()
tests string
to see if it contains text that matches regexp
. If so, it returns true
; otherwise, it returns false
. Calling the test()
method of a RegExp r
and passing it the string s
is equivalent to the following expression:
RegExp.toString() — convert a regular expression to a string
Overrides Object.toString()
The RegExp.toString()
method returns a string representation of a regular expression in the form of a regular-expression literal.
Note that implementations are not required to add escape sequences to ensure that the returned string is a legal regular-expression literal. Consider the regular expression created by the expression new RegExp("/","g")
. An implementation of RegExp.toString()
could return ///g
for this regular expression; it could also add an escape sequence and return /\//g
.
charAt()
charCodeAt()
Returns the encoding of the character at a given position in a string.
concat()
Concatenates one or more values to a string.
indexOf()
Searches the string for a character or substring.
lastIndexOf()
Searches the string backward for a character or substring.
localeCompare()
Compares strings using locale-specific ordering.
match()
Performs pattern matching with a regular expression.
replace()
Performs a search-and-replace operation with a regular expression.
search()
Searches a string for a substring that matches a regular expression.
slice()
Returns a slice or substring of a string.
split()
Splits a string into an array of strings, breaking at a specified delimiter string or regular expression.
substr()
Extracts a substring of a string; a variant ofsubstring()
.
substring()
Extracts a substring of a string.
toLowerCase()
Returns a copy of the string, with all characters converted to lowercase.
toString()
Returns the primitive string value.
toUpperCase()
Returns a copy of the string, with all characters converted to uppercase.
trim()
Returns a copy of the string with all leading and trailing whitespace removed.
valueOf()
Returns the primitive string value.
Since the earliest days of JavaScript, the String class has defined a number of methods that return a string modified by placing it within HTML tags. These methods have never been standardized by ECMAScript but can be useful in both client- and server-side JavaScript code that dynamically generates HTML. If you are willing to use nonstandard methods, you might create the HTML source for a bold, red hyperlink with code like this:
Because these methods are not standardized, they do not have individual reference entries in the pages that follow:
anchor(
name
)
Returns a copy of the string, in an
environment.
big()
Returns a copy of the string, in a<big>
environment.
blink()
Returns a copy of the string, in a<blink>
environment.
bold()
Returns a copy of the string, in a
environment.
fixed()
Returns a copy of the string, in a<tt>
environment.
fontcolor(
color
)
Returns a copy of the string, in a
environment.
fontsize(
size
)
Returns a copy of the string, in a
environment.
italics()
Returns a copy of the string, in an<i>
environment.
link(
url
)
Returns a copy of the string, in an
environment.
small()
Returns a copy of the string, in a<small>
environment.
strike()
Returns a copy of the string, in a<strike>
environment.
sub()
Returns a copy of the string, in a<sub>
sup()
Returns a copy of the string, in a<sup>
environment.
Strings are a primitive datatype in JavaScript. The String class type exists to provide methods for operating on primitive string values. The length
property of a String object specifies the number of characters in the string. The String class defines a number of methods for operating on strings; for example, there are methods for extracting a character or a substring from the string or searching for a character or a substring. Note that JavaScript strings are immutable: none of the methods defined by the String class allows you to change the contents of a string. Instead, methods such as String.toUpperCase()
return an entirely new string, without modifying the original.
In ECMAScript 5, and in many JavaScript implementations prior to ES5, strings behave like read-only arrays in which each element is a single-character string. For example, to extract the third character from a string s
, you can write s[2]
instead of s.charAt(2)
. When the for/in
statement is applied to a string, it enumerates these array indexes for each character in the string.
String.charAt()
returns the n
th character of the string string
. The first character of the string is numbered 0. If n
is not between 0 and string.length
−1, this method returns an empty string. Note that JavaScript does not have a character data type that is distinct from the string type, so the returned character is a string of length 1.
charCodeAt()
is like charAt()
, except that it returns the character encoding at a specific location, rather than returning a substring that contains the character itself. If n
is negative or greater than or equal to the string length, charCodeAt()
returns NaN
.
See String.fromCharCode() for a way to create a string from Unicode encodings.
concat()
converts each of its arguments to a string (if necessary) and appends them, in order, to the end of string
. It returns the resulting concatenation. Note that string
itself is not modified.
String.concat()
is an analog to Array.concat()
. Note that it is often easier to use the +
operator to perform string concatenation.
This static method provides a way to create a string by specifying the individual numeric Unicode encodings of its characters. Note that as a static method, fromCharCode()
is a property of the String()
constructor and is not actually a method of strings or String objects.
String.charCodeAt()
is a companion instance method that provides a way to obtain the encodings of the individual characters of a string.
string
.indexOf(substring
)string
.indexOf(substring
, start
)substring
start
An optional integer argument that specifies the position withinstring
at which the search is to start. Legal values are 0 (the position of the first character in the string) tostring
.length
−1 (the position of the last character in the string). If this argument is omitted, the search begins at the first character of the string.
String.indexOf()
searches the string string
from beginning to end to see if it contains an occurrence of substring
. The search begins at position start
within string
, or at the beginning of string
if start
is not specified. If an occurrence of substring
is found, String.indexOf()
returns the position of the first character of the first occurrence of substring
within string
. Character positions within string
are numbered starting with zero.
If no occurrence of substring
is found within string
, String.indexOf()
returns −1.
string
.lastIndexOf(substring
)string
.lastIndexOf(substring
, start
)substring
start
An optional integer argument that specifies the position withinstring
where the search is to start. Legal values are from 0 (the position of the first character in the string) tostring
.length
−1 (the position of the last character in the string). If this argument is omitted, the search begins with the last character of the string.
String.lastIndexOf()
searches the string from end to beginning to see if it contains an occurrence of substring
. The search begins at position start
within string
, or at the end of string
if start
is not specified. If an occurrence of substring
is found, String.lastIndexOf()
returns the position of the first character of that occurrence. Since this method searches from end to beginning of the string, the first occurrence found is the last one in the string that occurs before the start
position.
If no occurrence of substring
is found, String.lastIndexOf()
returns −1.
Note that although String.lastIndexOf()
searches string
from end to beginning, it still numbers character positions within string
from the beginning. The first character of the string has position 0, and the last has position string
.length
−1.
The String.length
property is a read-only integer that indicates the number of characters in the specified string
. For any string s
, the index of the last character is s
.length
−1. The length
property of a string is not enumerated by a for/in
loop and may not be deleted with the delete
operator.
string
.localeCompare(target
)A number that indicates the result of the comparison. If string
is “less than” target
, localeCompare()
returns a number less than zero. If string
is “greater than” target
, the method returns a number greater than zero. And if the strings are identical or indistinguishable according to the locale ordering conventions, the method returns 0.
When the <
and >
operators are applied to strings, they compare those strings using only the Unicode encodings of those characters and do not consider the collation order of the current locale. The ordering produced in this way is not always correct. Consider Spanish, for example, in which the letters “ch” are traditionally sorted as if they were a single letter that appeared between the letters “c” and “d”.
localeCompare()
provides a way to compare strings that does take the collation order of the default locale into account. The ECMAScript standard does not specify how the locale-specific comparison is done; it merely specifies that this function utilize the collation order provided by the underlying operating system.
string
.match(regexp
)match()
searches string
for one or more matches of regexp
. The behavior of this method depends significantly on whether regexp
has the “g” attribute or not (see Chapter 10 for full details on regular expressions).
If regexp
does not have the “g” attribute, match()
searches string
for a single match. If no match is found, match()
returns null
. Otherwise, it returns an array containing information about the match that it found. Element 0 of the array contains the matched text. The remaining elements contain the text that matches any parenthesized subexpressions within the regular expression. In addition to these normal array elements, the returned array also has two object properties. The index
property of the array specifies the character position within string
of the start of the matched text. Also, the input
property of the returned array is a reference to string
itself.
If regexp
has the “g” flag, match()
does a global search, searching string
for all matching substrings. It returns null
if no match is found, and it returns an array if one or more matches are found. The contents of this returned array are quite different for global matches, however. In this case, the array elements contain each of the matched substrings within string
. The returned array does not have index
or input
properties in this case. Note that for global matches, match()
does not provide information about parenthesized subexpressions, nor does it specify where within string
each match occurred. If you need to obtain this information for a global search, you can use RegExp.exec()
.
The following global match finds all numbers within a string:
The following nonglobal match uses a more complex regular expression with several parenthesized subexpressions. It matches a URL, and its subexpressions match the protocol, host, and path portions of the URL:
string
.replace(regexp
, replacement
)regexp
The RegExp object that specifies the pattern to be replaced. If this argument is a string, it is used as a literal text pattern to be searched for; it is not first converted to a RegExp object.
replacement
A string that specifies the replacement text, or a function that is invoked to generate the replacement text. See the Description section for details.
replace()
performs a search-and-replace operation on string
. It searches string
for one or more substrings that match regexp
and replaces them with replacement
. If regexp
has the global “g” attribute specified, replace()
replaces all matching substrings. Otherwise, it replaces only the first matching substring.
replacement
may be a string or a function. If it is a string, each match is replaced by the string. Note that the $
character has special meaning within the replacement
string. As shown in the following table, it indicates that a string derived from the pattern match is used in the replacement.
Characters | Replacement |
---|---|
| The text that matched the 1st through 99th parenthesized subexpression within |
| The substring that matched |
| The text to the left of the matched substring |
| The text to the right of the matched substring |
| A literal dollar sign |
ECMAScript v3 specifies that the replacement
argument to replace()
may be a function instead of a string. In this case, the function is invoked for each match, and the string it returns is used as the replacement text. The first argument to the function is the string that matches the pattern. The next arguments are the strings that match any parenthesized subexpressions within the pattern; there may be zero or more of these arguments. The next argument is an integer that specifies the position within string
at which the match occurred, and the final argument to the replacement
function is string
itself.
To ensure that the capitalization of the word “JavaScript” is correct:
To convert a single name from “Doe, John” format to “John Doe” format:
To replace all double quotes with double back and forward single quotes:
To capitalize the first letter of all words in a string:
string
.search(regexp
)search()
looks for a substring matching regexp
within string
and returns the position of the first character of the matching substring, or −1 if no match was found.
search()
does not do global matches; it ignores the g
flag. It also ignores the lastIndex
property of regexp
and always searches from the beginning of the string, which means that it always returns the position of the first match in string
.
string
.slice(start
, end
)start
The string index where the slice is to begin. If negative, this argument specifies a position measured from the end of the string. That is, −1 indicates the last character, −2 indicates the second from last character, and so on.
end
The string index immediately after the end of the slice. If not specified, the slice includes all characters fromstart
to the end of the string. If this argument is negative, it specifies a position measured from the end of the string.
slice()
returns a string containing a slice, or substring, of string
. It does not modify string
.
The String methods slice()
, substring()
, and the deprecated substr()
all return specified portions of a string. slice()
is more flexible than substring()
because it allows negative argument values. slice()
differs from substr()
in that it specifies a substring with two character positions, while substr()
uses one position and a length. Note also that String.slice()
is an analog of Array.slice()
.
string
.split(delimiter
, limit
)delimiter
The string or regular expression at which thestring
splits.
limit
This optional integer specifies the maximum length of the returned array. If specified, no more than this number of substrings will be returned. If not specified, the entire string will be split, regardless of its length.
The split()
method creates and returns an array of as many as limit
substrings of the specified string. These substrings are created by searching the string from start to end for text that matches delimiter
and breaking the string before and after that matching text. The delimiting text is not included in any of the returned substrings, except as noted at the end of this section. Note that if the delimiter matches the beginning of the string, the first element of the returned array will be an empty string—the text that appears before the delimiter. Similarly, if the delimiter matches the end of the string, the last element of the array (assuming no conflicting limit
) will be the empty string.
If no delimiter
is specified, the string is not split at all, and the returned array contains only a single, unbroken string element. If delimiter
is the empty string or a regular expression that matches the empty string, the string is broken between each character, and the returned array has the same length as the string does, assuming no smaller limit
is specified. (Note that this is a special case because the empty strings before the first character and after the last character are not matched.)
As noted earlier, the substrings in the array returned by this method do not contain the delimiting text used to split the string. However, if delimiter
is a regular expression that contains parenthesized subexpressions, the substrings that match those parenthesized subexpressions (but not the text that matches the regular expression as a whole) are included in the returned array.
Note that the String.split()
method is the inverse of the Array.join()
method.
The split()
method is most useful when you are working with highly structured strings. For example:
Another common use of the split()
method is to parse commands and similar strings by breaking them down into words delimited by spaces:
It is easier to split a string into words using a regular expression as a delimiter:
To split a string into an array of characters, use the empty string as the delimiter. Use the limit
argument if you only want to split a prefix of the string into an array of characters:
If you want the delimiters or one or more portions of the delimiter included in the returned array, use a regular expression with parenthesized subexpressions. For example, the following code breaks a string at HTML tags and includes those tags in the returned array:
String.substr() — extract a substring
deprecated
string
.substr(start
, length
)substr()
extracts and returns a substring of string
. It does not modify string
.
Note that substr()
specifies the desired substring with a character position and a length. This provides a useful alternative to String.substring()
and String.splice()
, which specify a substring with two character positions. Note, however, that this method has not been standardized by ECMAScript and is therefore deprecated.
string
.substring(from
, to
)from
A nonnegative integer that specifies the position withinstring
of the first character of the desired substring.
to
A nonnegative optional integer that is one greater than the position of the last character of the desired substring. If this argument is omitted, the returned substring runs to the end of the string.
String.substring()
returns a substring of string
consisting of the characters between positions from
and to
. The character at position from
is included, but the character at position to
is not included.
If from
equals to
, this method returns an empty (length 0) string. If from
is greater than to
, this method first swaps the two arguments and then returns the substring between them.
It is important to remember that the character at position from
is included in the substring but that the character at position to
is not included in the substring. While this may seem arbitrary or counterintuitive, a notable feature of this system is that the length of the returned substring is always equal to to
-from
.
Note that String.slice()
and the nonstandard String.substr()
can also extract substrings from a string. Unlike those methods, String.substring()
does not accept negative arguments.
String.toString() — return the string
Overrides Object.toString()
message
)message
An optional error message that provides details about the exception. If specified, this argument is used as the value for themessage
property of the SyntaxError object.
A newly constructed SyntaxError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the SyntaxError()
constructor is called as a function, without the new
operator, it behaves just as it does when called with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor, or an implementation-defined default string. See Error.message for details.
name
A string that specifies the type of the exception. All SyntaxError objects inherit the value “SyntaxError” for this property.
An instance of the SyntaxError class is thrown to signal a syntax error in JavaScript code. The eval()
method, the Function()
constructor, and the RegExp()
constructor may all throw exceptions of this type. See Error for details about throwing and catching exceptions.
message
)message
An optional error message that provides details about the exception. If specified, this argument is used as the value for themessage
property of the TypeError object.
A newly constructed TypeError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the TypeError()
constructor is called as a function, without the new
operator, it behaves just as it does when called with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor, or an implementation-defined default string. See Error.message for details.
name
A string that specifies the type of the exception. All TypeError objects inherit the value “TypeError” for this property.
An instance of the TypeError class is thrown when a value is not of the type expected. This happens most often when you attempt to access a property of a null
or undefined
value. It can also occur if you invoke a method defined by one class on an object that is an instance of some other class, or if you use the new
operator with a value that is not a constructor function, for example. JavaScript implementations are also permitted to throw TypeError objects when a built-in function or method is called with more arguments than expected. See Error for details about throwing and catching exceptions.
undefined
is a global property that holds the JavaScript undefined
value. This is the same value that is returned when you attempt to read the value of a nonexistent object property. The undefined
property is not enumerated by for/in
loops and cannot be deleted with the delete
operator. Note that undefined
is not a constant and can be set to any other value, something that you should take care not to do.
When testing a value to see whether it is undefined, use the ===
operator, because the ==
operator treats the undefined
value as equal to null
.
unescape() — decode an escaped string
deprecated
unescape()
is a global function that decodes a string encoded with escape()
. It decodes s
by finding and replacing character sequences of the form %
xx
and %u
xxxx
(where x
represents a hexadecimal digit) with the Unicode characters \u00
xx
and \
u
xxxx
.
Although unescape()
was standardized in the first version of ECMAScript, it has been deprecated and removed from the standard by ECMAScript v3. Implementations of ECMAScript are likely to implement this function, but they are not required to. You should use decodeURI()
and decodeURIComponent()
instead of unescape()
. See escape() for more details and an example.
message
)message
An optional error message that provides details about the exception. If specified, this argument is used as the value for themessage
property of the URIError object.
A newly constructed URIError object. If the message
argument is specified, the Error object uses it as the value of its message
property; otherwise, it uses an implementation-defined default string as the value of that property. When the URIError()
constructor is called as a function without the new
operator, it behaves just as it does when called with the new
operator.
message
An error message that provides details about the exception. This property holds the string passed to the constructor, or an implementation-defined default string. See Error.message for details.
name
An instance of the URIError class is thrown by decodeURI()
and decodeURIComponent()
if the specified string contains illegal hexadecimal escapes. It can also be thrown by encodeURI()
and encodeURIComponent()
if the specified string contains illegal Unicode surrogate pairs. See Error for details about throwing and catching exceptions.
This part of the book is a reference to client-side JavaScript. It includes entries for important client-side JavaScript object such as Window, Document, Element, Event, XMLHttpRequest, Storage, Canvas, and File. There is also an entry for the jQuery library. The entries are arranged alphabetically by object name and each entry includes a complete list of the constants, properties, methods and event handlers supported by that object.
Previous editions of this book included a separate reference entry for each method, but in this edition, the reference material is made more compact (without omitting details) by including the method descriptions directly in the parent entry.
The ApplicationCache object is the value of the applicationCache
property of the Window object. It defines an API for managing updates to cached applications. For simple cached applications, there is no need to use this API: it is sufficient to create (and update, as needed) an appropriate cache manifest, as described in Application Storage and Offline Webapps. More complex cached applications that want to more actively manage updates can use the properties, methods, and event handlers described here. See Cache Updates for more details.
The following constants are the possible values of the status
property.
unsigned short UNCACHED
= 0
This application does not have amanifest
attribute: it is not cached.
unsigned short IDLE
= 1
The manifest has been checked and this application is cached and up-to-date.
unsigned short CHECKING
= 2
The browser is currently checking the manifest file.
unsigned short DOWNLOADING
= 3
The browser is downloading and caching files listed in the manifest.
unsigned short UPDATEREADY
= 4
A new version of the application has been downloaded and cached.
unsigned short OBSOLETE
= 5
The manifest no longer exists and the cache will be deleted.
readonly unsigned short status
This property describes the cache status of the current document. Its value will be one of the constants listed above.
void swapCache
()
When the status
property is UPDATEREADY
, the browser is maintaining two cached versions of the application: files are being served from the old version of the cache, and the new version is freshly downloaded and ready for use when the application is next reloaded. You can call swapCache()
to tell the browser to immediately discard the old cache and begin serving files from the new cache. Note, however, that this can lead to version skew issues, and a safer way to flush the old cache and begin using the new one is to reload the application with Location.reload()
.
The browser fires a sequence of events on the ApplicationCache during the manifest check and cache update process. You can use the following event handler properties of the ApplicationCache object to register event handlers, or you can use the EventTarget methods implemented by the ApplicationCache object. Handlers for most of these events are passed a simple Event object. Handlers for progress events, however, are passed a ProgressEvent object, which can be used to track how many bytes have been downloaded.
oncached
Triggered when an application has cached for the first time. This will be the last event in the sequence of events.
onchecking
Triggered when the browser begins checking the manifest file for updates. This is the first event in any sequence of application cache events.
ondownloading
Triggered when the browser begins downloading the resources listed in a manifest file, either the first time the application is cached or when there is an update. This event will generally be followed by one or more progress events.
onerror
Triggered when an error occurs during the cache update process. This can occur if the browser is offline, for example, or if an uncached application references a nonexistent manifest file.
onnoupdate
Triggered when the browser determines that the manifest has not changed and the cached application is current. This is the last event in the sequence.
onobsolete
Triggered when the manifest file for a cached application no longer exists. This causes the cache to be deleted. This is the last event in the sequence.
onprogress
Triggered periodically while the application files are being downloaded and cached. The event object associated with this event is a ProgressEvent.
onupdateready
Triggered when a new version of the application has been downloaded and cached (and is ready for use the next time the application is loaded). This is the last event in the sequence.
ArrayBuffer — a fixed-length sequence of bytes
An ArrayBuffer represents a fixed-length sequence of bytes in memory, but it defines no way to get or set those bytes. ArrayBufferViews like the TypedArray classes provide a way to access and interpret the bytes.
ArrayBufferView — common properties for types based on ArrayBuffers
ArrayBufferView serves as a superclass for types that provide access to the bytes of an ArrayBuffer. You can’t create an ArrayBufferView directly: it exists to define the common properties for subtypes like TypedArray and DataView.
An Attr object represents an attribute of an Element node. You can obtain an Attr object through the attributes
property of the Node interface or by calling the getAttributeNode()
or getAttributeNodeNS()
methods of the Element interface.
Since attribute values can be completely represented by strings, it is not usually necessary to use the Attr interface at all. In most cases, the easiest way to work with attributes is with the Element.getAttribute()
and Element.setAttribute()
methods. These methods use strings for attribute values and avoid the use of Attr objects altogether.
Audio — an HTML <audio> element
Node, Element, MediaElement
An Audio object represents an HTML <audio>
element. Except for its constructor, an Audio object has no properties, methods or event handlers other than those inherited from MediaElement.
The unload event is triggered on a Window object just before the browser navigates to a new document, and gives a web application the opportunity to ask the user if he is really sure he wants to leave the page. The object passed to unload event handler functions is a BeforeUnloadEvent object. If you want to require the user to confirm that he really wants to leave the page, you do not need to, and should not, call the Window.confirm()
method. Instead, return a string from the event handler or set the returnValue
of this event object to a string. The string you return or set will be presented to the user in the confirmation dialog the user sees.
Blob — an opaque chunk of data, such as file contents
A Blob is an opaque type used to exchange data between APIs. Blobs may be very large and may represent binary data, but neither is required. Blobs are often stored in files, but this is an implementation detail. Blobs expose only their size and, optionally, a MIME type, and they define a single method for treating a region of a Blob as a Blob.
A number of APIs use Blobs: see FileReader for a way to read the content of a Blob and BlobBuilder for a way to create new Blob objects. See XMLHttpRequest for ways to download and upload Blobs. See Blobs for discussion of Blobs and the APIs that use them.
BlobBuilder — create new Blobs
A BlobBuilder object is used to create new Blob objects out of strings of text and bytes from ArrayBuffer objects and other Blobs. To build a Blob, create a BlobBuilder, call append()
one or more times, and then call getBlob()
.
BlobBuilder
()Create a new BlobBuilder by calling the BlobBuilder()
constructor with no arguments.
void append
(string text
, [string endings
])
Appends the specified text
, encoded using UTF-8, to the Blob that is being built.
void append
(ArrayBuffer data
)
Append the bytes of the ArrayBuffer data
to the Blob that is being built.
Blob getBlob
([string contentType
])
Return a Blob that represents all the data that has been appended to this BlobBuilder since it was created. Each call to this method returns a new Blob. If contentType
is specified, it will be the value of the type
property of the returned Blob. If unspecified, the returned Blob will have the empty string as its type
.
Button — an HTML <button>
Node, Element, FormControl
A Button object represents an HTML <button>
element. Most of the properties and methods of Buttons are described in FormControl and Element. When a Button has a type
property (see FormControl) “submit”, however, the other properties listed here specify form submission parameters that override similar properties on the Button’s form
(see FormControl).
The Canvas object represents an HTML canvas element. It has no behavior of its own, but it defines an API that supports scripted client-side drawing operations. You can specify the width
and height
directly on this object, and you can extract an image from the canvas with toDataURL()
, but the actual drawing API is implemented by a separate “context” object returned by the getContext()
method. See CanvasRenderingContext2D.
unsigned long height
unsigned long width
These properties mirror thewidth
andheight
attributes of the<canvas>
tag and specify the dimensions of the canvas coordinate space. The defaults are 300 forwidth
and 150 forheight
.If the size of the canvas element is not otherwise specified in a stylesheet or with the inlinestyle
attribute, thesewidth
andheight
properties also specify the on-screen dimensions of the canvas element.Setting either of these properties (even setting it to its current value) clears the canvas to transparent black and resets all of its graphics attributes to their default values.
object getContext
(string contextId
, [any args
...])
This method returns an object with which you can draw into the Canvas element. When you pass the string “2d”, it will return a CanvasRenderingContext2D object for 2D drawing. No additional args
are required in this case.
There is only one CanvasRenderingContext2D object per canvas element, so repeated calls to getContext("2d")
return the same object.
HTML5 standardizes the “2d” argument to this method and defines no other valid arguments. A separate standard, WebGL, is under development for 3D graphics. In browsers that support it, you can pass the string “webgl” to this method to obtain an object that allows 3D rendering. Note, however, that the CanvasRenderingContext2D object is the only drawing context documented in this book.
string toDataURL
([string type
], [any args
...])
toDataURL()
returns the contents of the canvas bitmap as a data://
URL that can easily be used with an
tag or transmitted across the network. For example:
The type
argument specifies the MIME type of the image format to use. If this argument is omitted, the default value is “image/png”. The PNG image format is the only one that implementations are required to support. For image types other than PNG, additional arguments may be passed to specify encoding details. If type
is “image/jpeg”, for example, the second argument should be a number between 0 and 1 specifying the image quality level. No other parameter arguments are standardized at the time of this writing.
To prevent cross-origin information leaks, toDataURL()
does not work on <canvas>
tags that are not “origin-clean.” A canvas is not origin-clean if it has ever had an image drawn in it (directly by drawImage()
or indirectly through a CanvasPattern) that has a different origin than the document that contains the canvas. Also, a canvas is not origin-clean if it has ever had text drawn to it using a web font from a different origin.
CanvasGradient — a color gradient for use in a canvas
A CanvasGradient object represents a color gradient that can be assigned to both the stroke
Style
and fillStyle
properties of a CanvasRenderingContext2D object. The createLinearGradient()
and createRadialGradient()
methods of CanvasRenderingContext2D both return CanvasGradient objects.
Once you have created a CanvasGradient object, use addColorStop()
to specify what colors should appear at what positions within the gradient. Between the positions you specify, colors are interpolated to create a smooth gradient or fade. If you specify no color stops, the gradient will be uniform transparent black.
void addColorStop
(double offset
, string color
)
addColorStop()
specifies fixed colors within a gradient. color
is a CSS color string. offset
is a floating-point value in the range 0.0 to 1.0 that represents a fraction between the start and end points of the gradient. An offset of 0 corresponds to the start point, and an offset of 1 corresponds to the end point.
If you specify two or more color stops, the gradient will smoothly interpolate colors between the stops. Before the first stop, the gradient will display the color of the first stop. After the last stop, the gradient will display the color of the last stop. If you specify only a single stop, the gradient will be one solid color. If you specify no color stops, the gradient will be uniform transparent black.
The CanvasRenderingContext2D object provides properties and methods for drawing two-dimensional graphics. The following sections provide an overview. See Graphics in a <canvas>, Canvas, CanvasGradient, CanvasPattern, ImageData, and TextMetrics for further details.
A powerful feature of the canvas is its ability to build shapes up from basic drawing operations, then either draw their outlines (stroke them) or paint their contents (fill them). The operations accumulated are collectively referred to as the current path. A canvas maintains a single current path.
In order to build a connected shape out of multiple segments, a joining point is needed between drawing operations. For this purpose, the canvas maintains a current position. The canvas drawing operations implicitly use this as their start point and update it to what is typically their end point. You can think of this like drawing with a pen on paper: when finishing a particular line or curve, the current position is where the pen rested after completing the operation.
You can create a sequence of disconnected shapes in the current path that will be rendered together with the same drawing parameters. To separate shapes, use the moveTo()
method; this moves the current position to a new location without adding a connecting line. When you do this, you create a new subpath, which is the canvas term used for a collection of operations that are connected.
The available path operations are lineTo()
for drawing straight lines, rect()
for drawing rectangles, arc()
and arcTo()
for drawing partial circles, and bezierCurveTo()
and quadraticCurveTo()
for drawing curves.
Once the path is complete, you can draw its outline with stroke()
, paint its contents with fill()
, or do both.
In addition to stroking and filling, you can also use the current path to specify the clipping region the canvas uses when rendering. Pixels inside this region are displayed; those outside are not. The clipping region is cumulative; calling clip()
intersects the current path with the current clipping region to yield a new region.
If the segments in any of the subpaths do not form a closed shape, fill()
and clip()
operations implicitly close them for you by adding a virtual (not visible with a stroke) line segment from the start to the end of the subpath. Optionally, you can call closePath()
to explicitly add this line segment.
To test whether a point is inside (or on the boundary of) the current path, use isPointInPath()
. When a path intersects itself or consists of multiple overlapping subpaths, the definition of “inside” is based on the nonzero winding rule. If you draw a circle inside another circle and both circles are drawn in the same direction, everything inside the larger circle is considered inside the path. If, on the other hand, one circle is drawn clockwise and the other counterclockwise, you have defined a donut shape and the interior of the smaller circle is outside of the path. This same definition of insideness is used by the fill()
and clip()
methods.
When filling or stroking paths, you can specify how the lines or filled area are rendered using the fillStyle
and strokeStyle
properties. Both accept CSS-style color strings, as well as CanvasGradient and CanvasPattern objects that describe gradients and patterns. To create a gradient, use the createLinearGradient()
or createRadialGradient()
methods. To create a pattern, use createPattern()
.
To specify an opaque color using CSS notation, use a string of the form “#RRGGBB”, where RR, GG, and BB are hexadecimal digits that specify the red, green, and blue components of the color as values between 00 and FF. For example, bright red is “#FF0000”. To specify a partially transparent color, use a string of the form “rgba(R,G,B,A)”. In this form, R, G, and B specify the red, green, and blue components of the color as decimal integers between 0 and 255, and A specifies the alpha (opacity) component as a floating-point value between 0.0 (fully transparent) and 1.0 (fully opaque). For example, half-transparent bright red is “rgba(255,0,0,0.5)”.
Canvas defines several properties that specify how lines are stroked. You can specify the width of the line with the lineWidth
property, how the end points of lines are drawn with the lineCap
property, and how lines are joined using the lineJoin
property.
You can outline and fill rectangles with strokeRect()
and fillRect()
. In addition, you can clear the area defined by a rectangle with clearRect()
.
In the Canvas API, images are specified using Image objects that represent HTML
elements or offscreen images created with the Image()
constructor. (See the Image reference page for details.) A <canvas>
element or <video>
element can also be used as an image source.
You can draw an image into a canvas with the drawImage()
method, which, in its most general form, allows an arbitrary rectangular region of the source image to be scaled and rendered into the canvas.
The fillText()
method draws text and the strokeText()
method draws outlined text. The font
property specifies the font to use; the value of this property should be a CSS font specification string. The textAlign
property specifies whether text is left-justified, centered, or right-justified on the X coordinate you pass, and the textBaseline
property specifies where the text is drawn in relation to the Y coordinate you pass.
By default, the coordinate space for a canvas has its origin at (0,0)
in the upper left corner of the canvas, with x
values increasing to the right and y
values increasing down. The width
and height
attributes of the <canvas>
tag specify the maximum X and Y coordinates, and a single unit in this coordinate space normally translates to a single on-screen pixel.
You can define your own coordinate space and the coordinates you pass to the canvas drawing methods will automatically be transformed. This is done with the translate()
, scale()
, and rotate()
methods, which affect the transformation matrix of the canvas. Because the coordinate space can be transformed like this, the coordinates you pass to methods such as lineTo()
cannot be measured in pixels and the Canvas API uses floating-point numbers instead of integers.
CanvasRenderingContext2D can automatically add a drop shadow to anything you draw. The color of the shadow is specified with shadowColor
, and its offset is changed using shadow
Offset
X
and shadowOffsetY
. In addition, the amount of feathering applied to the shadow’s edge can be set with shadowBlur
.
Usually, when you draw on a canvas, the newly drawn graphics appear on top of the previous content of the canvas, partially or fully obscuring the old content, depending on the opacity of the new graphics. The process of combining new pixels with old pixels is called “compositing” and you can alter the way the canvas composites pixels by specifying different values for the globalCompositeOperation
property. For example, you can set this property so that newly drawn graphics appear underneath the existing content.
The following table lists the allowed property values and their meanings. The word source in the table refers to the pixels being drawn onto the canvas, and the word destination refers to the existing pixels on the canvas. The word result
refers to the pixels that result from the combination of the source and destination. In the formulas, the letter S
is the source pixel, D
is the destination pixel, R
is the result pixel, αs is the alpha channel (the opacity) of the source pixel, and αd is the alpha channel of the destination:
Value | Formula | Meaning |
---|---|---|
"copy" | R = S | Draws the source pixel, ignoring the destination pixel. |
"destination-atop" | R=(1-αd)S + αsD | Draw the source pixel underneath the destination. If the source is transparent, the result is also transparent. |
"destination-in" | R = αsD | Multiply the destination pixel by the opacity of the source pixel, but ignore the color of the source. |
"destination-out" | R = (1-αs)D | The destination pixel is made transparent when the source is opaque and is left unchanged when the source is transparent. The color of the source pixel is ignored. |
"destination-over" | R = (1-αd)S + D | The source pixel appears behind the destination pixel, showing through based on the transparency of the destination. |
"lighter" | R = S + D | The color components of the two pixels are simply added together and clipped if the sum exceeds the maximum value. |
"source-atop" | R=αdS + (1-αs)D | Draw the source pixel on top of the destination but multiply it by the opacity of the destination. Don’t draw anything over a transparent destination. |
"source-in" | R = αdS | Draw the source pixel, but multiply it by the opacity of the destination. The color of the destination is ignored. If the destination is transparent, the result is transparent, too. |
"source-out" | R = (1-αd)S | The result is the source pixel where the destination is transparent and transparent pixels where the destination is opaque. The color of the destination is ignored. |
"source-over" | R = S + (1-αs)D | The source pixel is drawn on top of the destination pixel. If the source is translucent, the destination pixel contributes to the result. This is the default value of the |
"xor" | R = (1-αd)S + (1-αs)D | If the source is transparent, the result is the destination. If the destination is transparent, the result is the source. If source and destination are both transparent or both opaque, the result is transparent. |
The save()
and restore()
methods allow you to save and restore the state of a CanvasRenderingContext2D object. save()
pushes the current state onto a stack, and restore()
pops the most recently saved state off the top of the stack and sets the current drawing state based on those stored values.
All properties of the CanvasRenderingContext2D object (except for the canvas
property, which is a constant) are part of the saved state. The transformation matrix and clipping region are also part of the state, but the current path and current point are not.
The getImageData()
method allows you to query the raw pixels of a canvas, and putImageData()
allows you to set individual pixels. These can be useful if you want to implement image processing operations in JavaScript.
readonly Canvas canvas
any fillStyle
The current color, pattern, or gradient used for filling paths. This property can be set to a CSS color string or to a CanvasGradient or CanvasPattern object. The default fill style is solid black.
string font
The font to be used by text-drawing methods, specified as a string, using the same syntax as the CSSfont
attribute. The default is “10px sans-serif”. If the font string uses font size units like “em” or “ex” or uses relative keywords like “larger”, “smaller”, “bolder”, or “lighter”, these are interpreted relative to the computed style of the CSS font of the<canvas>
element.
double globalAlpha
Specifies additional transparency to be added to everything drawn on the canvas. The alpha value of all pixels drawn on the canvas is multiplied by the value of this property. The value must be a number between 0.0 (makes everything completely transparent) and 1.0 (the default: adds no additional transparency).
string globalCompositeOperation
This property specifies how source pixels being rendered onto the canvas are combined (or “composited”) with the destination pixels that already exist in the canvas. This property is typically only useful when you are working with partially transparent colors or have set theglobalAlpha
property. The default value is "source-over". Other commonly used values are “destination-over” and “copy”. See the table of legal values above. Note that at the time of this writing, browsers have differing implementations of certain compositing modes: some composite locally and some composite globally. See Compositing for details.
string lineCap
ThelineCap
property specifies how lines should be terminated. It matters only when drawing wide lines. Legal values for this property are listed in the following table. The default value is “butt”.
Value Meaning "butt"
This default value specifies that the line should have no cap. The end of the line is straight and is perpendicular to the direction of the line. The line is not extended beyond its endpoint.
"round"
This value specifies that lines should be capped with a semicircle whose diameter is equal to the width of the line and which extends beyond the end of the line by one half the width of the line.
"square"
This value specifies that lines should be capped with a rectangle. This value is like “butt”, but the line is extended by half of its width.
string lineJoin
When a path includes vertices where line segments and/or curves meet, thelineJoin
property specifies how those vertices are drawn. The effect of this property is apparent only when drawing with wide lines.The default value of the property is “miter”, which specifies that the outside edges of the two line segments are extended until they intersect. When two lines meet at an acute angle, mitered joins can become quite long. ThemiterLimit
property places an upper bound on the length of a miter. If a miter would exceed this limit, it is converted to a bevel.
double lineWidth
Specifies the line width for stroking (line drawing) operations. The default is 1. Lines are centered over the path, with half of the line width on each side.
double miterLimit
When lines are drawn with thelineJoin
property set to “miter” and two lines meet at an acute angle, the resulting miter can be quite long. When miters are too long, they become visually jarring. ThismiterLimit
property places an upper bound on the length of the miter. This property expresses a ratio of the miter length to half the line width. The default value is 10, which means that a miter should never be longer than 5 times the line width. If a miter formed by two lines would be longer than the maximum allowed bymiter
Limit
, those two lines will be joined with a bevel instead of a miter.
double shadowBlur
string shadowColor
double shadowOffsetX
double shadowOffsetY
any strokeStyle
string textAlign
Specifies the horizontal alignment of text and the meaning of the X coordinate passed tofillText()
andstrokeText()
. Legal values are “left”, “center”, “right”, “start”, and “end”. The meaning of “start” and “end” depend on thedir
(text direction) attribute of the<canvas>
tag. The default is “start”.
string textBaseline
void arc
(double x
, y
,radius
, startAngle
,endAngle
, [boolean anticlockwise
])
This method adds an arc to the current subpath of a canvas, using a center point and radius. The first three arguments to this method specify the center and radius of a circle. The next two arguments are angles that specify the start and end points of an arc along the circle. These angles are measured in radians. The three o’clock position along the positive X axis is an angle of 0, and angles increase in the clockwise direction. The final argument specifies whether the arc is traversed counterclockwise (true
) or clockwise (false
or omitted) along the circle’s circumference.
Invoking this method adds a straight line between the current point and the start point of the arc and then adds the arc itself to the current path.
void arcTo
(double x1
, y1
, x2
, y2
, radius
)
This method adds a straight line and an arc to the current subpath and describes that arc in a way that makes it particularly useful for adding rounded corners to polygons. The arguments x1
and y1
specify a point P1, and the arguments x2
and y2
specify a point P2. The arc that is added to the path is a portion of a circle with the specified radius
. The arc has one point tangent to the line from the current position to P1 and one point that is tangent to the line from P1 to P2. The arc begins and ends at these two tangent points and is drawn in the direction that connects those two points with the shortest arc. Before adding the arc to the path, this method adds a straight line from the current point to the start point of the arc. After calling this method, the current point is at the end point of the arc, which lies on the line between P1 and P2.
Given a context object c
, you can draw a 100x100 square with rounded corners (of varying radii) with code like this:
void beginPath
()
beginPath()
discards any currently defined path and begins a new one. There is no current point after a call to beginPath()
.
When the context for a canvas is first created, beginPath()
is implicitly called.
void bezierCurveTo
(double cp1x
, cp1y
,cp2x
, cp2y
, x
, y
)
bezierCurveTo()
adds a cubic Bezier curve to the current subpath of a canvas. The start point of the curve is the current point of the canvas, and the end point is (x,y)
. The two Bezier control points (cpX1, cpY1)
and (cpX2, cpY2)
define the shape of the curve. When this method returns, the current position is (x,y)
.
void clearRect
(double x
, y
, width
, height
)
clearRect()
fills the specified rectangle with transparent black. Unlike rect()
, it does not affect the current point or the current path.
void clip
()
This method computes the intersection of the inside of the current path with the current clipping region and uses that (smaller) region as the new clipping region. Note that there is no way to enlarge the clipping region. If you want a temporary clipping region, you should first call save()
so that you can later restore()
the original clipping region. The default clipping region for a canvas is the canvas rectangle itself.
Like the fill()
method, clip()
treats all subpaths as closed and uses the nonzero winding rule for distinguishing the inside of the path from the outside of the path.
void closePath
()
If the current subpath of the canvas is open, closePath()
closes it by adding a line connecting the current point to the first point of the subpath. It then begins a new subpath (as if by calling moveTo()
) at that same point.
fill()
and clip()
treat all subpaths as if they had been closed, so you only need to call closePath()
explicitly if you want to stroke()
a closed path.
ImageData createImageData
(ImageData imagedata
)
Returns a new ImageData object with the same dimensions as data
.
ImageData createImageData
(double w
, double h
)
Returns a new ImageData object with the specified width and height. All pixels within this new ImageData object are initialized to transparent black (all color components and alpha are 0).
The w
and h
arguments specify image dimensions in CSS pixels. Implementations are allowed to map single CSS pixels to more than one underlying device pixel. The width
and height
properties of the returned ImageData object specify the image dimensions in device pixels, and these values may not match the w
and h
arguments.
CanvasGradient createLinearGradient
(double x0
, y0
, x1
, y1
)
This method creates and returns a new CanvasGradient object that linearly interpolates colors between the start point (x0,y0)
and the end point (x1,y1)
. Note that this method does not specify any colors for the gradient. Use the addColorStop()
method of the returned object to do that. To stroke lines or fill areas using a gradient, assign a CanvasGradient object to the strokeStyle
or fillStyle
properties.
CanvasPattern createPattern
(Element image
, string repetition
)
This method creates and returns a CanvasPattern object that represents the pattern defined by a tiled image. The image
argument must be an
, <canvas>
, or <video>
element containing the image to be used as the pattern. The repetition
argument specifies how the image is tiled. The possible values are:
Value | Meaning |
---|---|
"repeat" | Tile the image in both directions. This is the default. |
"repeat-x" | Tile the image in the X dimension only. |
"repeat-y" | Tile the image in the Y dimension only. |
"no-repeat" | Do not tile the image; use it a single time only. |
To use a pattern for stroking lines or filling areas, use a CanvasPattern object as the value of the strokeStyle
or fillStyle
properties.
CanvasGradient createRadialGradient
(double x0
, y0
, r0
, x1
, y1
, r1
)
This method creates and returns a new CanvasGradient object that radially interpolates colors between the circumferences of the two specified circles. Note that this method does not specify any colors for the gradient. Use the addColorStop()
method of the returned object to do that. To stroke lines or fill areas using a gradient, assign a CanvasGradient object to the stroke
Style
or fillStyle
properties.
Radial gradients are rendered by using the color at offset 0 for the circumference of the first circle, the color at offset 1 for the second circle, and interpolated color values at circles between the two.
void drawImage
(Element image
, double dx
, dy
, [dw
, dh
])
Copy the specified image
(which must be an
, <canvas>
, or <video>
element) into the canvas with its upper left corner at (dx,dy)
. If dw
and dh
are specified, the image is scaled so that it is dw
pixels wide and dh
pixels high.
void drawImage
(Element image
, double sx
, sy
, sw
, sh
, dx
, dy
, dw
, dh
)
This version of the drawImage()
method copies a source rectangle of the specified image
into a destination rectangle of the canvas. image
must be an
, <canvas>
, or <video>
element. (sx,sy)
specifies the upper left corner of the source rectangle within that image and sw
and sh
specify the width and height of the source rectangle. Note that these arguments are in CSS pixels and are not subject to transformation. The remaining arguments specify the destination rectangle into which the image should be copied: see the five-argument version of drawImage()
for details. Note that these destination rectangle arguments are transformed by the current transformation matrix.
void fill
()
fill()
fills the current path with the color, gradient, or pattern specified by the fillStyle
property. Any subpaths that are not closed are filled as if the closePath()
method had been called on them. (Note, however, that this does not actually cause those subpaths to become closed.)
Filling a path does not clear the path. You can call stroke()
after calling fill()
without redefining the path.
When the path intersects itself or when subpaths overlap, fill()
canvas uses the nonzero winding rule to determine which points are inside the path and which are outside. This means, for example, that if your path defines a square inside of a circle and the square’s subpath winds in the opposite direction of the circle’s path, the interior of the square will be outside of the path and will not be filled.
void fillRect
(double x
, y
, width
, height
)
fillRect()
fills the specified rectangle with the color, gradient, or pattern specified by the fillStyle
property.
Unlike the rect()
method, fillRect()
has no effect on the current point or the current path.
void fillText
(string text
, double x
, y
, [double maxWidth
])
fillText()
draws text
using the current font
and fillStyle
properties. The x
and y
arguments specify where on the canvas the text should be drawn, but the interpretation of these arguments depends on the textAlign
and textBaseline
properties, respectively.
If textAlign
is left
or is start
(the default) for a canvas that uses left-to-right text (also the default) or end
for a canvas that uses right-to-left text, the text is drawn to the right of the specified X coordinate. If textAlign
is center
, the text is horizontally centered around the specified X coordinate. Otherwise (if textAlign
is “right”, is “end” for left-to-right text, or is “start” for right-to-left text), the text is drawn to the left of the specified X coordinate.
If textBaseline
is “alphabetic” (the default), “bottom”, or “ideographic”, most of the glyphs will appear above the specified Y coordinate. If textBaseline
is “center”, the text will be approximately vertically centered on the specified Y coordinate. And if textBaseline
is “top” or “hanging”, most of the glyphs will appear below the specified Y coordinate.
The optional maxwidth
argument specifies a maximum width for the text. If the text
would be wider than maxWidth
, the text will be drawn using a smaller or more condensed version of the font instead.
ImageData getImageData
(double sx
, sy
, sw
, sh
)
The arguments to this method are untransformed coordinates that specify a rectangular region of the canvas. The method copies the pixel data from that region of the canvas into a new ImageData object and returns that object. See ImageData for an explanation of how to access the red, green, blue, and alpha components of the individual pixels.
The RGB color components of the returned pixels are not premultiplied by the alpha value. If any portions of the requested rectangle lie outside the bounds of the canvas, the associated pixels in the ImageData are set to transparent black (all zeros). If the implementation uses more than one device pixel per CSS pixel, the width
and height
properties of the returned ImageData object will be different from the sw
and sh
arguments.
Like Canvas.toDataURL()
, this method is subject to a security check to prevent cross-origin information leakage. getImageData()
only returns an ImageData object if the underlying canvas is “origin-clean”; otherwise, it raises an exception. A canvas is not origin-clean if it has ever had an image drawn in it (directly by drawImage()
or indirectly through a CanvasPattern) that has a different origin than the document that contains the canvas. Also, a canvas is not origin-clean if it has ever had text drawn to it using a web font from a different origin.
boolean isPointInPath
(double x
, y
)
isPointInPath()
returns true
if the specified point falls within or on the edge of the current path and returns false
otherwise. The specified point is not transformed by the current transformation matrix. x
should be a value between 0 and canvas.width
and y
should be a value between 0 and canvas.height
.
The reason that isPointInPath()
tests untransformed points is that it is designed for “hit-testing”: determining whether a user’s mouse click (for example) is on top of the portion of the canvas described by the path. In order to do hit-testing, mouse coordinates must first be translated so that they are relative to the canvas rather than the window. If the canvas’s size on the screen is different than the size declared by its width
and height
attributes (if style.width
and style.height
have been set, for example), the mouse coordinates also have to be scaled to match the canvas coordinates. The following function is designed for use as an onclick handler of a <canvas>
and performs the necessary transformation to convert mouse coordinates to canvas coordinates:
void lineTo
(double x
, double y
)
lineTo()
adds a straight line to the current subpath. The line begins at the current point and ends at (x,y)
. When this method returns, the current position is (x,y)
.
TextMetrics measureText
(string text
)
measureText()
measures the width that the specified text
would occupy if drawn with the current font
and returns a TextMetrics
object containing the results of the measurement. At the time of this writing, the returned object has only a single width
property, and the text height and bounding box are not measured.
void moveTo
(double x
, double y
)
moveTo()
sets the current position to (x,y)
and begins a new subpath with this as its first point. If there was a previous subpath and it consisted of just one point, that empty subpath is removed from the path.
void putImageData
(ImageData imagedata
, double dx
, dy
, [sx
, sy
, sw
, sh
])
putImageData()
copies a rectangular block of pixels from an ImageData object onto the canvas. This is a low-level pixel copy operation: the globalCompositeOperation
and globalAlpha
attribute are ignored, as are the clipping region, transformation matrix, and shadow-drawing attributes.
The dx
and dy
arguments specify the destination point in the canvas. Pixels from data
will be copied to the canvas starting at that point. These arguments are not transformed by the current transformation matrix.
The last four arguments specify a source rectangle within the ImageData. If specified, only the pixels within that rectangle will be copied to the canvas. If these arguments are omitted, all pixels in the ImageData will be copied. If these arguments specify a rectangle that exceeds the bounds of the ImageData, the rectangle will be clipped to those bounds. Negative values for sx
and sy
are allowed.
One use for ImageData objects is as a “backing store” for a canvas—saving a copy of the canvas pixels in an ImageData (using getImageData()
) allows you to draw temporarily on the canvas and then restore it to its original state with putImageData()
.
void quadraticCurveTo
(double cpx
, cpy
, x
, y
)
This method adds a quadratic Bezier curve segment to the current subpath. The curve starts at the current point and ends at (x,y)
. The control point (cpX, cpY)
specifies the shape of the curve between these two points. (The mathematics of Bezier curves is beyond the scope of this book, however.) When this method returns, the current position is (x,y)
. Also see the bezierCurveTo()
method.
void rect
(double x
, y
, w
, h
)
This method adds a rectangle to the path. This rectangle is in a subpath of its own and is not connected to any other subpaths in the path. When this method returns, the current position is (x,y)
. A call to this method is equivalent to the following sequence of calls:
void restore
()
This method pops the stack of saved graphics states and restores the values of the CanvasRenderingContext2D properties, the clipping path, and the transformation matrix. See the save()
method for further information.
void rotate
(double angle
)
This method alters the current transformation matrix so that any subsequent drawing appears rotated within the canvas by the specified angle. It does not rotate the <canvas>
element itself. Note that the angle is specified in radians. To convert degrees to radians, multiply by Math.PI
and divide by 180.
void save
()
save()
pushes a copy of the current graphics state onto a stack of saved graphics states. This allows you to temporarily change the graphics state, and then restore the previous values with a call to restore()
.
The graphics state of a canvas includes all the properties of the CanvasRenderingContext2D object (except for the read-only canvas
property). It also includes the transformation matrix that is the result of calls to rotate()
, scale()
, and translate()
. Additionally, it includes the clipping path, which is specified with the clip()
method. Note, however, that the current path and current position are not part of the graphics state and are not saved by this method.
void scale
(double sx
, double sy
)
scale()
adds a scale transformation to the current transformation matrix of the canvas. Scaling is done with independent horizontal and vertical scaling factors. For example, passing the values 2.0 and 0.5 causes subsequently drawn paths to be twice as wide and half as high as they would otherwise have been. Specifying a negative value for sx
causes X coordinates to be flipped across the Y axis, and a negative value of sy
causes Y coordinates to be flipped across the X axis.
void setTransform
(double a
, b
, c
, d
, e
, f
)
This method allows you to set the current transformation matrix directly rather than through a series of calls to translate()
, scale()
, and rotate()
. After calling this method, the new transformation is:
void stroke
()
The stroke()
method draws the outline of the current path. The path defines the geometry of the line that is produced, but the visual appearance of that line depends on the stroke
Style
, lineWidth
, lineCap
, lineJoin
, and miterLimit
properties.
The term stroke refers to a pen or brush stroke. It means “draw the outline of.” Contrast this stroke()
method with fill()
, which fills the interior of a path rather than stroking the outline of the path.
void strokeRect
(double x
, y
, w
, h
)
This method draws the outline (but does not fill the interior) of a rectangle with the specified position and size. Line color and line width are specified by the strokeStyle
and lineWidth
properties. The appearance of the rectangle corners is specified by the lineJoin
property.
Unlike the rect()
method, strokeRect()
has no effect on the current path or the current point.
void strokeText
(string text
, double x
, y
, [maxWidth
])
strokeText()
works just like fillText()
, except that instead of filling the individual character glyphs with fillStyle
, it strokes the outline of each glyph using strokeStyle
. strokeText()
produces interesting graphical effects when used at large font sizes, but fillText()
is more commonly used for actually drawing text.
void transform
(double a
, b
, c
, d
, e
, f
)
The arguments to this method specify the six nontrivial elements of a 3x3 affine transformation matrix T
:
transform()
sets the current transformation matrix to the product of the transformation matrix and the T
:
Translations, scales, and rotations can be implemented in terms of this general-purpose transform()
method. For a translation, call transform(1,0,0,1,dx,dy)
. For a scale, call transform
(sx, 0, 0, sy, 0, 0)
. For a clockwise rotation around the origin by an angle x
, use:
For a shear by a factor of k
parallel to the X axis, call transform(1,0,k,1,0,0)
. For a shear parallel to the Y axis, call transform(1,k,0,1,0,0)
.
ClientRect — an element bounding box
A ClientRect object describes a rectangle, using Window or viewport coordinates. The getBoundingClientRect()
method of Element returns objects of this kind to describe the on-screen bounding box of an element. ClientRect objects are x static: they do not change when the element they describe changes.
CloseEvent — specifies whether a WebSocket closed cleanly
Event
When a WebSocket connection closes, a nonbubbling, noncancelable close event is fired on the WebSocket object and an associated CloseEvent object is passed to any registered event handlers.
readonly boolean wasClean
If the WebSocket connection closed in the controlled way specified by WebSocket protocol, with acknowledgment between client and server, the close is said to be clean, and this property will betrue
. If this property isfalse
, the WebSocket may have closed as the result of a network error of some sort.
Comment — an HTML or XML comment
Node
A Comment node represents a comment in an HTML or XML document. The content of the comment (i.e., the text between <!--
and -->
) is available through the data
property or through the nodeValue
property inherited from Node. You can create a comment object with Document
.
createComment()
.
void appendData
(string data
)
void deleteData
(unsigned long offset
, unsigned long count
)
void insertData
(unsigned long offset
, string data
)
void replaceData
(unsigned long offset
, unsigned long count
, string data
)
string substringData
(unsigned long offset
, unsigned long count
)
Comment nodes have most of the methods of a Text node, and those methods work as they do on Text nodes. They are listed here, but see Text for documentation.
Console — debugging output
Modern browsers (and older ones with debugger extensions, such as Firebug, installed) define a global property console
that refers to a Console object. The methods of this object define a API for simple debugging tasks, such as logging messages to a console window (the console may go by a name such as “Developer Tools” or “Web Inspector”).
There is no formal standard that defines the Console API, but the Firebug debugger extension for Firefox has established a de facto standard and browser vendors seem to be implementing the Firebug API, which is documented here. Support for the basic console.log()
function is nearly universal, but the other functions may not be as well supported in all browsers.
Note that in some older browsers, the console
property is only defined when the console window is open, and running scripts that use the Console API without the console open will cause errors.
See also ConsoleCommandLine.
void assert
(any expression
, string message
)
Display an error message
on the console if expression
is false
or a falsy value like null
, undefined
, 0
, or the empty string.
void count
([string title
])
Display the specified title
string along with a count of the number of times that this method has been called with that string.
void dir
(any object
)
Display the JavaScript object
on the console in a way that allows the developer to examine its properties or elements and interactively explore nested objects or arrays.
void group
(any message
...)
Display message
in the same way that log()
does, but display it as the title of a collapsible group of debug messages. All subsequent console output will be formatted as part of this group until a corresponding call to groupEnd()
occurs.
void groupCollapsed
(any message
...)
Begin a new group of messages, but start it in its collapsed state, so that subsequent debugging output is hidden by default.
void groupEnd
()
End the debugging output group most recently started with group()
or groupCollapsed()
.
void log
(string format
, any message
...)
This method displays its arguments in the console. In the simplest case, when format
does not contain any % characters, it simply converts its arguments to strings and displays them with spaces in between. When an object is passed to this method, the string that is displayed in the console will be clickable to view the contents of the object.
For more complex log messages, this method supports a simple subset of the C language printf()
formatting capabilities. The message
arguments will be interpolated into the format
argument in place of the character sequences “%s”, “%d”, “%i”, “%f”, and “%o”, and then the formatted string will be displayed in the console (followed by any unused message
arguments). Arguments that replace “%s” are formatted as strings. Those that replace “%d” or “%i” are formatted as integers. Those that replace “%f” are formatted as floating-point numbers, and those that replace “%o” are formatted as clickable objects.
void profile
([string title
])
Start the JavaScript profiler, and display title
at the start of its report.
ConsoleCommandLine — global utilities for the console window
Most web browsers support a JavaScript console (which may be known by a name like “Developer Tools” or “Web Inspector”) that allows you to enter individual lines of JavaScript code. In addition to the normal global variables and functions of client-side JavaScript, the console command line typically supports the useful properties and functions described here. See also the Console API.
void cd
(Window frame
)
When a document includes nested frames, the cd()
function allows you to switch global objects and execute subsequent commands in the scope of the specified frame
.
NodeList $$
(string selector
)
Return an array-like object of all elements matching the specified CSS selector
. This is a shortcut for document.querySelectorAll()
. In some consoles, it returns a true array rather than a NodeList.
void inspect
(any object
, [string tabname
])
Display the object
, possibly switching from the console to a different tab of the debugger. The second argument is an optional hint about how you would like the object displayed. Supported values may include “html”, “css”, “script”, and “dom”.
A CSSRule object represents a rule in a CSSStyleSheet: it represents style information to be applied to a specific set of document elements. selectorText
is the string representation of the element selector for this rule, and style
is a CSSStyleDeclaration object that represents the set of style attributes and values to apply to the selected elements.
The CSS Object Model specification actually defines a hierarchy of CSSRule subtypes to represent different kinds of rules that can appear in a CSS stylesheet. The properties listed here are properties of the generic CSSRule type and of its CSSStyleRule subtype. Style rules are the most common and most important types of rules in a stylesheet, and the ones you are most likely to script.
In IE8 and before, CSSRule objects support only the selectorText
and style
properties.
unsigned short STYLE_RULE
= 1
unsigned short IMPORT_RULE
= 3
unsigned short MEDIA_RULE
= 4
unsigned short FONT_FACE_RULE
= 5
unsigned short PAGE_RULE
= 6
unsigned short NAMESPACE_RULE
= 10
These are the possible values of thetype
property below and they specify what kind of rule it is. Iftype
is anything other than 1, the CSSRule object will have other properties that are not documented here.
CSSStyleDeclaration — a set of CSS attributes and their values
A CSSStyleDeclaration object represents a set of CSS style attributes and their values, and it allows those style values to be queried and set using JavaScript property names that are similar to CSS property names. The style
property of an HTMLElement is a read/write CSSStyleDeclaration object, as is the style
property of a CSSRule object. The return value of Window
.getComputedStyle()
, however, is a CSSStyleDeclaration object whose properties are read-only.
A CSSStyleDeclaration object makes CSS style attributes available through JavaScript properties. The names of these JavaScript properties correspond closely to the CSS attribute names, with minor changes required to avoid syntax errors in JavaScript. Multiword attributes that contain hyphens, such as “font-family”, are written without hyphens in JavaScript, with each word after the first capitalized: fontFamily
. Also, the “float” attribute conflicts with the reserved word float
, so it translates to the property cssFloat
. Note that you can use unmodified CSS attribute names if you use strings and square brackets to access the properties.
CSSStyleSheet — a CSS stylesheet
This interface represents a CSS stylesheet. It has properties and methods for disabling the stylesheet, and for querying, inserting, and removing CSSRule style rules. The CSSStyleSheet objects that apply to a document are members of the styleSheets[]
array of the Document object and may also be available through the sheet
property of the <style>
or <link>
element that defines or links to the stylesheet.
In IE8 and before, use the rules[]
array instead of cssRules[]
, and use addRule()
and remove
Rule()
instead of the DOM standard insertRule()
and deleteRule()
.
readonly CSSRule[] cssRules
boolean disabled
readonly string href
readonly string media
A list of media to which this stylesheet applies. You can query and set this property as a single string, or treat it as an array-like object of media types withappendMedium()
anddeleteMedium()
methods. (Formally, the value of this property is a MediaList object, but that type is not covered in this reference.)
readonly Node ownerNode
readonly CSSRule ownerRule
readonly CSSStyleSheet parentStyleSheet
readonly string title
readonly string type
void deleteRule
(unsigned long index
)
unsigned long insertRule
(string rule
, unsigned long index
)
This method inserts (or appends) a new CSSrule
(a single string that specifies selector and styles within curly braces) at the specifiedindex
of thecssRules
array of this stylesheet. In IE8 and before, useaddRule()
instead, and pass the selector string and the styles string (without curly braces) as two separate arguments, passing the index as the third argument.
DataTransfer — a transfer of data via drag-and-drop
When the user performs a drag-and-drop operation, a sequence of events is fired on the drag source or the drop target (or both, if they are both in a browser window). These events are accompanied by an event object whose dataTransfer
property (see Event) refers to a DataTransfer object. The DataTransfer object is the central object for any drag-and-drop operation: the drag source stores the data to be transferred in it, and the drop target extracts the transferred data from it. In addition, the DataTransfer object manages a negotiation between the drag source and drop target about whether the drag-and-drop should be a copy, move, or link operation.
The API described here was created by Microsoft for IE, and it has been at least partially implemented by other browsers. HTML5 standardizes the basic IE API. As this book goes to press, HTML5 has defined a new version of the API that defines the items
property as an array-like object of DataTransferItem objects. This is an appealing and rational API, but since no browsers yet implement it, it is not documented here. Instead, this page documents the features that (mostly) work in current browsers. See Drag and Drop Events for further discussion of this quirky API.
string dropEffect
This property specifies the type of data transfer this object represents. It must have one of the values “none”, “copy”, “move”, or “link”. Typically, the drop target will set this property from a dragenter or dragover event. The value of this property may also be affected by the modifier keys that the user holds down while performing the drag, but that is platform-dependent.
string effectAllowed
This property specifies what combination of copy, move, and link transfers are allowed for this drag-and-drop operation. It is typically set by the drag source in response to the dragstart event. Legal values are “none”, “copy”, “copyLink”, “copyMove”, “link”, “linkMove”, “move”, and “all”. (As a mnemonic, note that in the values that specify two operations, the operation names always appear in alphabetical order.)
readonly File[] files
readonly string[] types
This is an array-like object of strings that specify the MIME types of the data that has been stored in this DataTransfer object (withsetData()
if the drag source is within the browser or by some other mechanism if the drag source is outside of the browser). The array-like object that holds the types is supposed to have acontains()
method for testing whether a specific string is present. Some browsers just make this a true array, however, and in that case, you can use theindexOf()
method instead.
void addElement
(Element element
)
This method tells the browser to use element
when creating the visual effect that the user sees while dragging. This method is generally called by the drag source, and it may not be implemented or have any effect in all browsers.
void clearData
([string format
])
Removes any data in the specified format
that was previously set with setData()
.
string getData
(string format
)
Return the transferred data in the specified format
. If format
is equal (ignoring case) to “text”, use “text/plain” instead. And if it is equal (ignoring case) to “url”, use “text/uri-list” instead. This method is called by the drop target in response to the drop event at the end of a drag-and-drop operation.
void setData
(string format
, string data
)
Specify the data
to be transferred, and the MIME type format
of that data. The drag source calls this method in response to a dragstart event at the beginning of a drag-and-drop operation. It cannot be called from any other event handler. If the drag source can make its data available in more than one format, it can call this method multiple times to register values for each supported format.
void setDragImage
(Element image
, long x
, long y
)
This method specifies an image
(typically an
element) that should be displayed to the user as a visual representation of the value being dragged. The x
and y
coordinates give mouse pointer offsets within the image. This method can only be called by the drag source in response to the dragstart event.
DataView — read and write values from an ArrayBuffer
ArrayBufferView
A DataView is an ArrayBufferView that wraps an ArrayBuffer (or a region of an array buffer) and defines methods for reading and writing 1-, 2-, and 4-byte signed and unsigned integers and 4- and 8-byte floating-point numbers from or into the buffer. The methods support both big-endian and little-endian byte orders. See also TypedArray.
DataView
(ArrayBuffer buffer
, byteOffset
], [unsigned long byteLength
])This constructor creates a new DataView object that allows read and write access to the bytes in buffer
or a region of buffer
. With one argument, it creates a view of the entire buffer. With two arguments, it creates a view that extends from byte number byteOffset
to the end of the buffer. And with three arguments, it creates a view of the byteLength
bytes starting at byteOffset
.
Each of these method reads a numeric value from, or writes a numeric value into, the underlying ArrayBuffer. The method name specifies the type that is read or written. All methods that read or write more than one byte accept an optional final littleEndian
argument. If this argument is omitted, or is false
, big-endian byte ordering is used, with the most significant bytes being read or written first. If the argument is true
, however, little-endian byte ordering is used.
float getFloat32
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 4 bytes starting at byteOffset
as a floating-point number and return that number.
double getFloat64
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 8 bytes starting at byteOffset
as a floating-point number and return that number.
short getInt16
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 2 bytes starting at byteOffset
as a signed integer number and return that number.
long getInt32
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 4 bytes starting at byteOffset
as a signed integer number and return that number.
byte getInt8
(unsigned long byteOffset
)
Interpret the byte at byteOffset
as a signed integer number and return that number.
unsigned short getUint16
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 2 bytes starting at byteOffset
as an unsigned integer number and return that number.
unsigned long getUint32
(unsigned long byteOffset
, [boolean littleEndian
])
Interpret the 4 bytes starting at byteOffset
as an unsigned integer number and return that number.
unsigned byte getUint8
(unsigned long byteOffset
)
Interpret the byte at byteOffset
as an unsigned integer number and return that number.
void setFloat32
(unsigned long byteOffset
, float value
, [boolean littleEndian
])
Convert value
to a 4-byte floating-point representation and write those bytes at byteOffset
.
void setFloat64
(unsigned long byteOffset
, double value
, [boolean littleEndian
])
Convert value
to an 8-byte floating-point representation and write those bytes at byteOffset
.
void setInt16
(unsigned long byteOffset
, short value
, [boolean littleEndian
])
Convert value
to a 2-byte integer representation and write those bytes at byteOffset
.
void setInt32
(unsigned long byteOffset
, long value
, [boolean littleEndian
])
Convert value
to a 4-byte integer representation and write those bytes at byteOffset
.
void setInt8
(unsigned long byteOffset
, byte value
)
Convert value
to a 1-byte integer representation and write that byte at byteOffset
.
void setUint16
(unsigned long byteOffset
,unsigned short value
,[boolean little
Endian
])
Convert value
to a 2-byte unsigned integer representation and write those bytes at byteOffset
.
Document — an HTML or XML document
Node
A Document object is a Node that serves as the root of a document tree. The document
Element
property is the root Element of the document. A Document node may have other children (such as Comment and DocumentType nodes), but it has only one Element child that holds all the content of the document.
You most commonly obtain a Document object via the document
property of a Window. Document objects are also available through the contentDocument
property of IFrame elements or the ownerDocument
property of any Node.
Most of the properties of a Document object provide access to elements of the document or to other important objects associated with the document. A number of Document methods do the same thing: provide a way to look up elements within the document tree. Many other Document methods are “factory methods” that create elements and related objects.
Documents, like the Elements they contain, are event targets. They implement the methods defined by EventTarget, and they also support quite a few event handler properties.
You can create new Document objects by using the createDocument()
and create
HTML
Document()
methods of the DOMImplementation:
It is also possible to load an HTML or XML file from the network and parse it into a Document object. See the responseXML
property of the XMLHttpRequest object.
The reference entry for HTMLDocument, which appeared in previous versions of this book, has been merged into this page. Note that some of the properties, methods, and event handlers described here are HTML-specific and will not work for XML documents.
In addition to the properties listed here, you can also use the value of the name
attribute of <iframe>
, <form>
, and
elements as document properties. The value of these properties is the named Element or a NodeList of such elements. For named <iframe>
elements, however, the property refers to the Window object of the <iframe>
. See Selecting Elements by Name for details.
readonly Element activeElement
Element body
readonly string characterSet
string charset
readonly string compatMode
string cookie
This property allows you to read, create, modify, and delete the cookie or cookies that apply to the current document. A cookie is a small amount of named data stored by the web browser. It gives web browsers a “memory” so they can use data input on one page in another page or recall user preferences across web browsing sessions. Cookie data is automatically transmitted between web browser and web server when appropriate so server-side scripts can read and write cookie values. Client-side JavaScript code can also read and write cookies with this property. Note that this is a read/write property but the value you read from it is not, in general, the same as the value you write. See Cookies for details.
readonly string defaultCharset
readonly Window defaultView
string designMode
If this property is “on”, the entire document is editable. If it is “off”, the entire document is not editable. (But elements with theircontenteditable
property set may still be editable, of course.) See Editable Content.
string dir
readonly DocumentType doctype
readonly Element documentElement
string domain
The hostname of the server from which the document was loaded, ornull
if there is none. You can set this property to a suffix of itself in order to relax the same-origin policy and grant access to documents served from related domains. See Relaxing the same-origin policy for details.
readonly HTMLCollection embeds
readonly HTMLCollection forms
readonly Element head
readonly HTMLCollection images
An array-like object of all Image elements in the document.
readonly DOMImplementation implementation
readonly string lastModified
readonly HTMLCollection links
An array-like object of all hyperlinks in the document. This HTMLCollection contains all<a>
and<area>
elements that havehref
attributes, and does not include<link>
elements. See Link.
readonly Location location
readonly HTMLCollection plugins
readonly string readyState
readonly string referrer
The URL of the document that linked to this document, ornull
if this document was not accessed through a hyperlink or if the web server did not report the referring document. This property allows client-side JavaScript to access the HTTPreferer
header. Note the spelling difference, however: the HTTP header has three r’s, and the JavaScript property has four r’s.
readonly HTMLCollection scripts
readonly CSSStyleSheet[] styleSheets
A collection of objects representing all stylesheets embedded in or linked into a document. In HTML documents, this includes stylesheets defined with<link>
and<style>
tags.
string title
readonly string URL
The URL from which the document was loaded. This value is often the same as thelocation.href
property, but if a script changes the fragment identifier (thelocation.
hash
property), thelocation
property and theURL
property will no longer refer to the same URL. Don’t confuseDocument.URL
withWindow.URL
.
Node adoptNode
(Node node
)
This method removes node
from whatever document it is currently part of and changes its ownerDocument
property to this document, making it ready for insertion into this document. Contrast this with importNode()
, which copies a node from another document without removing it.
void close
()
Closes a document stream opened with the open()
method, forcing any buffered output to be displayed.
Element createElement
(string localName
)
Create and return a new, empty Element node with the specified tag name. In HTML documents, the tag name is converted to uppercase.
Element createElementNS
(string namespace
, string qualifiedName
)
Create and return a new, empty, Element node. The first argument specifies the namespace URI for the element, and the second argument specifies the namespace prefix, a colon, and the tag name of the element.
Event createEvent
(string eventInterface
)
Create and return an uninitialized synthetic Event object. The argument must specify the type of event, and the argument should be a string such as “Event”, “UIEvent”, “MouseEvent”, “MessageEvent”, or so on. After creating an Event object, you can initialize its read-only properties by calling an appropriate event-initialization method on it, such as initEvent()
, initUIEvent()
, initMouseEvent()
, or so on. Most of these event-specific initialization methods are not covered in this book, but see Event.initEvent()
for the simplest one. When you have created and initialized an synthetic event object, you can dispatch it using the dispatchEvent()
method of EventTarget. Synthetic events will always have an isTrusted
property of false
.
ProcessingInstruction createProcessingInstruction
(string target
, string data
)
Creates and returns a new ProcessingInstruction node with the specified target and data string.
Text createTextNode
(string data
)
Creates and returns a new Text node to represent the specified text.
Element elementFromPoint
(float x
, float y
)
Return the most deeply nested Element at window coordinates (x
, y
).
boolean execCommand
(string commandId
, [boolean showUI
, [string value
]])
Execute the editing command named by the commandId
argument in whatever editable element has the insertion cursor. HTML5 defines the following commands:
Some of these commands (such as “createLink”) require an argument value. If the second argument to execCommand()
is false
, the third argument gives the argument that the command is to use. Otherwise, the browser will prompt the user for the necessary value. See Editable Content for more on execCommand()
.
Element getElementById
(string elementId
)
This method searches the document for an Element node with an id
attribute whose value is elementId
and returns that Element. If no such Element is found, it returns null
. The value of the id
attribute is intended to be unique within a document, but if this method finds more than one Element with the specified elementId
, it returns the first. This is an important and commonly used method because it provides a simple way to obtain the Element object that represents a specific document element. Note that the name of this method ends with “Id”, not with “ID”.
NodeList getElementsByClassName
(string classNames
)
Returns an array-like object of elements that have a class
attribute that includes all of the specified classNames
. classNames
may be a single class or a space-separated list of classes. The returned NodeList object is live and is automatically updated as the document changes. The elements in the returned NodeList appear in the same order as they appear in the document. Note that this method is also defined on Element.
NodeList getElementsByName
(string elementName
)
This method returns a live, read-only, array-like object of Elements that have a name
attribute whose value is elementName
. If there are no matching elements, it returns a NodeList with length
0.
NodeList getElementsByTagName
(string qualifiedName
)
This method returns a read-only array-like object that contains all Element nodes from the document that have the specified tag name, in the order in which they appear in the document source. The NodeList is “live”—its contents are automatically updated as necessary when the document changes. For HTML elements, tag name comparison is case-insensitive. As a special case, the tag name “*” matches all elements in a document.
Note that the Element interface defines a method by the same name that searches only a subtree of the document.
NodeList getElementsByTagNameNS
(string namespace
, string localName
)
This method works like getElementsByTagName()
, but it specifies the desired tag name as a combination of namespace URI and local name within that namespace.
boolean hasFocus
()
This method returns true if this document’s Window has the keyboard focus (and, if that window is not a top-level window, all of its ancestors are focused).
Node importNode
(Node node
, boolean deep
)
This method is passed a node defined in another document and returns a copy of the node that is suitable for insertion into this document. If deep
is true
, all descendants of the node are also copied. The original node and its descendants are not modified in any way. The returned copy has its ownerDocument
property set to this document but has a parentNode
of null
because it has not yet been inserted into the document. Event-listener functions registered on the original node or tree are not copied. See also adoptNode()
.
Window open
(string url
, string name
, string features
, [boolean replace
])
When the open()
method of a document is invoked with three or more arguments, it acts just like the open()
method of the Window object. See Window.
Document open
([string type
], [string replace
])
With two or fewer arguments, this method erases the current document and begins a new one (using the existing Document object, which is the return value). After calling open()
, you can use the write()
and writeln()
methods to stream content to the document and close()
to end the document and force its new content to be displayed. See The document.write() Method for details.
The new document will be an HTML document if type
is omitted or is “text/html”. Otherwise, it will be a plain text document. If the replace
argument is true, the new document replaces the old one in the browsing history.
This method should not be called by a script or event handler that is part of the document being overwritten, because the script or handler will itself be overwritten.
boolean queryCommandEnabled
(string commandId
)
Returns true
if it is currently meaningful to pass commandId
to execCommand()
and false otherwise. The “undo” command, for example, is not enabled if there is nothing to undo. See Editable Content.
boolean queryCommandIndeterm
(string commandId
)
Returns true
if commandId
is in an indeterminate state for which queryCommandState()
cannot return a meaningful value. Commands defined by HTML5 are never indeterminate, but browser-specific commands might be. See Editable Content.
boolean queryCommandState
(string commandId
)
Return the state of the specified commandId
. Some editing commands, such as “bold” and “italic,” have a state true
if the cursor or selection is in italic and false
if it is not. Most commands are stateless, however, and this method always returns false
for those. See Editable Content.
boolean queryCommandSupported
(string commandId
)
Returns true
if the browser supports the specified command and false
otherwise. See Editable Content.
string queryCommandValue
(string commandId
)
Returns the state of the specified command as a string. See Editable Content.
Element querySelector
(string selectors
)
Returns the first element in this document that matches the specified CSS selectors
(this may be a single CSS selector or a comma-separated group of selectors).
NodeList querySelectorAll
(string selectors
)
Returns an array-like object containing all Elements in this Document that match the specified selectors
(this may be a single CSS selector or a comma-separated group of selectors). Unlike the NodeLists returned by getElementsByTagName()
and similar methods, the NodeList returned by this method is not live: it is just a static snapshot of the elements that matched when the method was called.
void write
(string text
...)
This method appends its arguments to the document. You can use this method while the document is loading to insert content at the location of the <script>
tag, or you can use it after calling the open()
method. See The document.write() Method for details.
Browsers do not fire many events directly at Document objects, but Element events do bubble up to the Document that contains them. Therefore, Document objects support all of the event handler properties listed in Element. Like Elements, Document objects implement the EventTarget methods.
Browsers do fire two document readiness events at the Document object. When the readyState
property changes, the browser fires a readystatechange event. You can register a handler for this event with the onreadystatechange
property. The browser also fires a DOMContentLoaded event (see Document Load Events) when the document tree is ready (but before external resources have finished loading). You must use an EventTarget method to register a handler for those events, however, since there is an onDOMContentLoaded
property.
The DocumentFragment interface represents a portion—or fragment—of a document. More specifically, it is a list of adjacent nodes and all descendants of each, but without any common parent node. DocumentFragment nodes are never part of a document tree, and the inherited parentNode
property is always null
. DocumentFragment nodes exhibit a special behavior that makes them quite useful, however: when a request is made to insert a DocumentFragment into a document tree, it is not the DocumentFragment node itself that is inserted but instead each child of the DocumentFragment. This makes DocumentFragment useful as a temporary placeholder for nodes that you wish to insert, all at once, into a document.
You can create a new, empty DocumentFragment with Document.createDocumentFragment()
.
You can search for elements in a DocumentFragment with querySelector()
and query
Selector
All()
, which work just like the same methods of the Document object.
DocumentType — the <!DOCTYPE> declaration of a document
Node
This infrequently used type represents the <!DOCTYPE>
declaration of a document. The doctype
property of a Document holds the DocumentType node for that document. DocumentType nodes are immutable and cannot be modified in any way.
DocumentType nodes are used to create new Document objects with DOMImplementation.
create
Document()
. You can create new DocumentType objects with DOMImplementation.createDocumentType()
.
Most client-side JavaScript APIs throw DOMException objects when they need to signal an error. The code
and name
properties of the object provide more details about the error. Note that a DOMException can be thrown when reading or writing a property of an object as well as when calling a method of an object.
DOMException is not a subclass of the core JavaScript Error type, but it functions like one, and some browsers include a message
property for compatibility with Error
.
unsigned short INDEX_SIZE_ERR
= 1
unsigned short HIERARCHY_REQUEST_ERR
= 3
unsigned short WRONG_DOCUMENT_ERR
= 4
unsigned short INVALID_CHARACTER_ERR
= 5
unsigned short NO_MODIFICATION_ALLOWED_ERR
= 7
unsigned short NOT_FOUND_ERR
= 8
unsigned short NOT_SUPPORTED_ERR
= 9
unsigned short INVALID_STATE_ERR
= 11
unsigned short SYNTAX_ERR
= 12
unsigned short INVALID_MODIFICATION_ERR
= 13
unsigned short NAMESPACE_ERR
= 14
unsigned short INVALID_ACCESS_ERR
= 15
unsigned short TYPE_MISMATCH_ERR
= 17
unsigned short SECURITY_ERR
= 18
unsigned short NETWORK_ERR
= 19
unsigned short ABORT_ERR
= 20
unsigned short URL_MISMATCH_ERR
= 21
unsigned short QUOTA_EXCEEDED_ERR
= 22
unsigned short TIMEOUT_ERR
= 23
unsigned short DATA_CLONE_ERR
= 25
These are the possible values of thecode
property. The constant names are verbose enough to indicate the approximate reason that the exception was thrown.
The DOMImplementation object defines methods that are not specific to any particular Document object but rather are “global” to an implementation of the DOM. You can obtain a reference to the DOMImplementation object through the implementation
property of any Document object.
Document createDocument
(string namespace
, string qualifiedName
, DocumentType doctype
)
This method creates and returns a new XML Document object. If qualifiedName
is specified, a root element with that name is created and added to the document as its documentElement
. If qualifiedName
includes a namespace prefix and a colon, namespace should be the URI that uniquely identifies the namespace. If the doctype
argument is non-null
, the ownerDocument
property of this DocumentType object is set to the newly created document and the DocumentType node is added to the new document.
DocumentType createDocumentType
(string qualifiedName
, publicId
,
systemId
)
This method creates and returns a new DocumentType node to represent a <!DOCTYPE>
declaration that you can pass to createDocument()
.
Document createHTMLDocument
(string title
)
This method creates a new HTMLDocument object with a skeletal document tree that includes the specified title. The documentElement
property of the returned object is an <html>
element, and this root element has <head>
and <body>
tags as its children. The <head>
element in turn has a <title>
child, which has the specified title
string as its child.
DOMSettableTokenList — a token list with a settable string value
DOMTokenList
A DOMSettableTokenList is a DOMTokenList that also has a value
property that can be set to specify the entire set of tokens at once.
The classList
property of Element is a DOMTokenList that represents the set of tokens in the className
property, which is a string. If you want to set all the classList
tokens at once, you can simply set the className
property to a new string. The sandbox
property of the IFrame element is a little different. This property and the HTML attribute that it is based on was defined by HTML5 and so there is no need for an old string representation and a new DOMTokenList representation. In this case, the property is simply defined as a DOMSettableTokenList
: you can read it and write it as if it were a string, or you can use its methods and use it as a set of tokens. The htmlFor
property of Output and the audio
property of Video are also DOMSettableTokenLists.
string value
The space-separated string representation of the set of tokens. You can read or write this property to treat the set as a single string value. You do not normally need to use this property explicitly, however: when you use a DOMSettableTokenList as a string, it is this string value that is returned. And if you assign a string to a DOMSettableTokenList, this property is implicitly set.
A DOMTokenList is a parsed representation of a space-separated string of tokens, such as the className
property of a Element. A DOMTokenList is, as its name implies, a list—it is an array-like object with a length
property and you can index it to retrieve the individual tokens. But more importantly, it defines methods contains()
, add()
, remove()
, and toggle()
methods that allow you to treat it as a set of tokens. If you use a DOMTokenList as if it was a string, it evaluates to a space-separated string of tokens.
The HTML5 classList
property of Element objects is a DOMTokenList, in browsers that support that property, and is the only DOMTokenList you are likely to use often. See also DOMSettableTokenList.
An Element object represents an element in an HTML or XML document. The tagName
property specifies the tag name or type of the element. Standard HTML attributes of the element are available through JavaScript properties of the Element object. Attributes, including XML attributes and nonstandard HTML attributes can also be accessed with the get
Attribute()
and setAttribute()
methods. Element content is available through properties inherited from Node. If you are only interested in the Element relatives of an Element, you can use the children
property or firstElementChild
, nextElementSibling
, and related properties.
There are a number of ways to obtain Element objects from documents. The document
Element
property of a Document refers to the root element for that document, such as the <html>
element of an HTML document. For HTML documents, the head
and body
properties are similar: they refer to the <head>
and <body>
elements of the document. To locate a specific named element by its unique id
attribute, use Document.getElementById()
. As described in Selecting Document Elements, you can also obtain Element objects with Document and Element methods such as getElementsByTagName()
, getElementsByClassName()
, and querySelectorAll()
. Finally, you can create new Element objects for insertion into a document with Document.createElement()
.
Web browsers fire many different kinds of events on document elements, and Element objects define many event handler properties. In addition, Element objects define the EventTarget methods (see EventTarget) for adding and removing event listeners.
The reference entry for HTMLElement, which appeared in previous versions of this book, has been merged with this section. Note that some of the properties, methods, and event handlers described here are HTML-specific and will not work with the elements of XML documents.
In addition to the properties listed here, the HTML attributes of HTML elements are accessible as JavaScript properties of the Element object. HTML tags and their legal attributes are listed at the end of this reference entry.
readonly Attr[] attributes
readonly unsigned long childElementCount
readonly HTMLCollection children
readonly DOMTokenList classList
The class attribute of an element is a space-separated list of class names. This property allows access to the individual elements of that list and defines methods for querying, adding, removing, and toggling class names. See DOMTokenList for details.
string className
readonly long clientHeight
readonly long clientWidth
If this element is the root element (seedocument.documentElement
), these properties return the dimensions of the Window. These are the inner or viewport dimensions that exclude scrollbars and other browser “chrome”. Otherwise, these properties return the dimensions of the element’s content plus padding.
readonly long clientLeft
readonly long clientTop
These properties return the number of pixels between the left or top edge of the element’s border and the left or top edge of its padding. Normally this is just the left and top border width, but these amounts may also include the width of a scrollbar if one is rendered on the left or top of the element.
CSSStyleDeclaration currentStyle
readonly object dataset
You can associate arbitrary values with any HTML element by assigning those values to attributes whose names begin with the special prefix “data-”. Thisdataset
property is the set of data attributes for an element and makes it easy to set and query them.The value of this property behaves like a regular JavaScript object. Each property of the object corresponds to one data attribute on the element. If the element has an attribute nameddata-x
, thedataset
object has a property namedx
, anddataset.x
has the same value asgetAttribute("data-x")
does.Querying and setting properties of thedataset
object queries and sets the corresponding data attributes of this element. You can use thedelete
operator to remove data attributes, and you can use afor/in
loop to enumerate the data attributes.
readonly Element firstElementChild
This property is like thefirstChild
property of Node, but it ignores Text and Comment nodes and only returns Elements.
string id
string innerHTML
A read/write string that specifies the HTML or XML markup that is contained within the element, not including the opening and closing tags of the element itself. Querying this property returns the content of the element as a string of HTML or XML text. Setting this property to a string of HTML or XML text replaces the content of the element with the parsed representation of that text.
readonly boolean isContentEditable
string lang
readonly Element lastElementChild
This property is like thelastChild
property of Node, but it ignores Text and Comment nodes and only returns Elements.
readonly string localName
The local, unprefixed name for this element. This differs from thetagName
attribute, which includes the namespaceprefix
if there is one (and is converted to uppercase for HTML elements).
readonly string namespaceURI
readonly Element nextElementSibling
This property is like thenextSibling
property of Node, but it ignores Text and Comment nodes and only returns Elements.
readonly long offsetHeight
readonly long offsetWidth
readonly long offsetLeft
readonly long offsetTop
readonly Element offsetParent
Specifies the container element that defines the coordinate system in whichoffsetLeft
andoffsetTop
are measured. For most elements,offsetParent
is the<body>
element that contains them. However, if an element has a dynamically positioned container, the dynamically positioned element is theoffsetParent
, and if the element is in a table, a<td>
,<th>
, or<table>
element may be theoffsetParent
. See More on Element Size, Position and Overflow.
string outerHTML
readonly string prefix
readonly Element previousElementSibling
This property is like thepreviousSibling
property of Node, but it ignores Text and Comment nodes and only returns Elements.
readonly long scrollHeight
readonly long scrollWidth
long scrollLeft
long scrollTop
The number of pixels that have scrolled off the left edge of the element or off the top edge of the element. These properties are useful only for elements with scrollbars, such as elements with the CSSoverflow
attribute set toauto
. When these properties are queried on the<html>
element (seeDocument.documentElement
), they specify the amount of scrolling for the document as a whole. Note that these properties do not specify the amount of scrolling in an<iframe>
tag. You can set these properties to scroll an element or the entire document. See More on Element Size, Position and Overflow.
readonly CSSStyleDeclaration style
The value of thestyle
attribute that specifies inline CSS styles for this element. Note that the value of this property is not a string but an object with read/write properties that correspond to CSS style attributes. See CSSStyleDeclaration for details.
readonly string tagName
The tag name of the element. For HTML documents, the tag name is returned in uppercase, regardless of its capitalization in the document source, so a<p>
element would have atagName
property of “P”. XML documents are case-sensitive, and the tag name is returned exactly as it is written in the document source. This property has the same value as the inheritednodeName
property of the Node interface.
string title
void blur
()
This method transfers keyboard focus to the body
element of the containing Document object.
void click
()
This method simulates a click on this element. If clicking on this element would normally make something happen (following a link, for example), this method makes that happen, too. Otherwise, calling this method just triggers a click event on the element.
string getAttribute
(string qualifiedName
)
getAttribute()
returns the value of a named attribute of an element or null
if no attribute with that name exists. Note that the HTMLElement object defines JavaScript properties that match each of the standard HTML attributes, so you need to use this method with HTML documents only if you are querying the value of nonstandard attributes. In HTML documents, attribute name comparisons are case-insensitive.
In XML documents, attribute values are not available directly as element properties and must be looked up by calling this method. For XML documents that use namespaces, include the namespace prefix and colon in the attribute name passed to this method or use get
AttributeNS()
instead.
string getAttributeNS
(string namespace
, string localName
)
This method works just like the getAttribute()
method, except that the attribute is specified by a combination of namespace URI and local name within that namespace.
ClientRect getBoundingClientRect
()
Returns a ClientRect object that describes the bounding box of this element.
ClientRect[] getClientRects
()
Returns an array-like object of ClientRects that describes one or more rectangles occupied by this element. (Inline elements that span more than one line usually require more than one rectangle to accurately describe their region of the window.)
NodeList getElementsByClassName
(string classNames
)
Returns an array-like object of descendant elements that have a class
attribute that includes all of the specified classNames
. classNames
may be a single class or a space-separated list of classes. The returned NodeList object is live and is automatically updated as the document changes. The elements in the returned NodeList appear in the same order as they appear in the document. Note that this method is also defined on Document.
NodeList getElementsByTagName
(string qualifiedName
)
This method traverses all descendants of this element and returns an live array-like NodeList of Element nodes representing all document elements with the specified tag name. The elements in the returned array appear in the same order in which they appear in the source document.
Note that Document objects also have a getElementsByTagName()
method that works just like this one but that traverses the entire document, rather than just the descendants of a single element.
NodeList getElementsByTagNameNS
(string namespace
, string localName
)
This method works like getElementsByTagName()
, except that the tag name of the desired elements is specified as a combination of a namespace URI and a local name defined within that namespace.
boolean hasAttribute
(string qualifiedName
)
This method returns true
if this element has an attribute with the specified name and false
otherwise. In HTML documents, attribute names are case-insensitive.
boolean hasAttributeNS
(string namespace
, string localName
)
This method works like hasAttribute()
, except that the attribute is specified by namespace URI and local name within that namespace.
void insertAdjacentHTML
(string position
, string text
)
This method inserts the specified HTML markup text
at the specified position
relative to this element. The position
argument must be one of these four strings:
Position | Meaning |
---|---|
beforebegin | Insert the text before the opening tag |
afterend | Insert the text after the closing tag |
afterbegin | Insert the text right after the opening tag |
beforeend | Insert the text right before the closing tag |
Element querySelector
(string selectors
)
Returns the first descendant of this element that matches the specified CSS selectors
(this may be a single CSS selector or a comma-separated group of selectors).
NodeList querySelectorAll
(string selectors
)
Returns an array-like object containing all descendants of this Element that match the specified selectors
(this may be a single CSS selector or a comma-separated group of selectors). Unlike the NodeList returned by getElementsByTagName()
, the NodeList returned by this method is not live: it is just a static snapshot of the elements that matched when the method was called.
void removeAttribute
(string qualifiedName
)
removeAttribute()
deletes a named attribute from this element. Attempts to remove nonexistent attributes are silently ignored. In HTML documents, attribute names are case-insensitive.
void removeAttributeNS
(string namespace
, string localName
)
removeAttributeNS()
works just like removeAttribute()
, except that the attribute to be removed is specified by namespace URI and local name.
void scrollIntoView
([boolean top
])
If an HTML element is not currently visible in the window, this method scrolls the document so that it becomes visible. The top
argument is an optional hint about whether the element should be positioned near the top or bottom of the window. If true or omitted, the browser will attempt to position the element near the top. If false
, the browser will attempt to position the element near the bottom. For elements that accept the keyboard focus, such as Input elements, the focus()
method implicitly performs this same scroll-into-view operation. See also the scrollTo()
method of Window.
void setAttribute
(string qualifiedName
, string value
)
This method sets the specified attribute to the specified value. If no attribute by that name already exists, a new one is created. In HTML documents, the attribute name is converted to lowercase before being set. Note that HTMLElement objects of an HTML document define JavaScript properties that correspond to all standard HTML attributes, and you can set attributes directly with those properties. Thus, you need to use this method only if you want to set a nonstandard attribute.
Element objects that represent HTML elements define quite a few event handler properties. Set any of the properties listed below to a function, and that function will be invoked when a specific type of event occurs on (or bubbles up to) the element. You can also use the methods defined by EventTarget to register event handlers, of course.
Most events bubble up the document hierarchy to the Document node, and then on from there to the Window object. So each of the event handler properties listed here are also defined on the Document and Window object. The Window object has quite a few event handlers of its own, however, and the properties marked with an asterisk in the table below have a different meaning on the Window object. For historical reasons, event handlers registered as HTML attributes of the <body>
element are registered on the Window object, and this means that the handler properties with asterisks have a different meaning on the <body>
element than they do on other elements. See Window.
Many of the events listed here are only triggered on certain types of HTML elements. But because most of those events bubble up the document tree, the event handler properties are defined generically for all elements. The HTML5 media events fired on <audio>
and <video>
tags do not bubble, so they are documented in MediaElement. Similarly, some HTML5 form-related events do not bubble and are covered under FormControl.
Event Handler | Invoked When... |
---|---|
onabort | resource loading canceled at user’s request |
onblur* | element loses input focus |
onchange | user changes form control content or state (fired for complete edits, not individual keystrokes) |
onclick | element activated by mouse click or other means |
oncontextmenu | context menu is about to be displayed, usually because of a right-click |
ondblclick | two rapid mouse clicks occur |
ondrag | drag continues (triggered on drag source) |
ondragend | drag ends (triggered on drag source) |
ondragenter | drag enters (triggered on drop target) |
ondragleave | drag leaves (triggered on drop target) |
ondragover | drag continues (triggered on drop target) |
ondragstart | user initiates drag-and-drop (triggered on drag source) |
ondrop | user completes drag-and-drop (triggered on drop target) |
onerror* | resource loading failed (usually because of a network error) |
onfocus* | element gains keyboard focus |
oninput | input occurs on a form element (triggered more frequently than onchange) |
onkeydown | the user presses a key |
onkeypress | a keypress generates a printable character |
onkeyup | the user releases a key |
onload* | resource loading (e.g., for |
onmousedown | the user presses a mouse button |
onmousemove | the user moves the mouse |
onmouseout | the mouse leaves an element |
onmouseover | the mouse enters an element |
onmouseup | the user releases a mouse button |
onmousewheel | the user rotates the mouse wheel |
onreset | a |
onscroll* | an element with scrollbars is scrolled |
onselect | the user selects text in a form element |
onsubmit | when a |
This reference section includes individual reference pages for the following HTML element types:
Element(s) | Reference Page | Element(s) | Reference Page |
---|---|---|---|
<audio> | Audio | <output> | Output |
<button>, <input type="button"> | Button | <progress> | Progress |
<canvas> | Canvas | <script> | Script |
<fieldset> | FieldSet | <select> | Select |
<form> | Form | <style> | Style |
<iframe> | IFrame | <td> | TableCell |
 | Image | <tr> | TableRow |
<input> | Input | <tbody>, <tfoot>, <thead> | TableSection |
<label> | Label | <table> | Table |
<a>, <area>, <link> | Link | <textarea> | TextArea |
<meter> | Meter | <video> | Video |
<option> | Option |
The HTML elements that do not have reference pages of their own are those whose only properties simply mirror the HTML attributes of the element. The following attributes are legal on any HTML element, and are therefore properties of all Element objects:
Attribute | Description |
---|---|
accessKey | keyboard shortcut |
class | CSS class: see the |
contentEditable | Whether element content is editable. |
contextMenu | The ID of a <menu> element to display as a context menu. Supported only by IE at the time of this writing. |
dir | Text direction: “ltr” or “rtl”. |
draggable | A boolean attribute set on elements that are drag sources for the Drag-and-Drop API. |
dropzone | An attribute set on elements that are drop targets for the Drag-and-Drop API. |
hidden | A boolean attribute set on elements that should not be displayed. |
id | A unique identifier for the element. |
lang | The primary language of the text in the element. |
spellcheck | Whether element text should have spelling checked. |
style | Inline CSS styles for the element. See the style property above. |
tabIndex | Specifies the focus order of the element. |
title | Tooltip text for the element. |
The following HTML elements define no attributes other than the global attributes above:
<abbr> | <code> | <footer> | <hr> | <rt> | <sup> | |
<address> | <datalist> | <h1> | <i> | <ruby> | <tbody> | |
<article> | <dd> | <h2> | <kbd> | <s> | <tfoot> | |
<aside> | <dfn> | <h3> | <legend> | <samp> | <thead> | |
 | <div> | <h4> | <mark> | <section> | <title> | |
<bdi> | <dl> | <h5> | <nav> | <small> | <tr> | |
<bdo> | <dt> | <h6> | <noscript> | | | |

 | | <head> | <p> | | <var> | |
<caption> | <figcaption> | <header> | <pre> | <sub> | <wbr> | |
<cite> | <figure> | <hgroup> | <rp> | <summary> |
The remaining HTML elements, and the attributes they support, are listed below. Note that this table only lists attributes other than the global attributes described above. Also note that this table includes elements that also have their own reference page:
When an uncaught exception occurs in a Worker thread, and the exception is not handled by the onerror
function in the WorkerGlobalScope, that exception causes a nonbubbling error event to be triggered on the Worker object. The event has an ErrorEvent object associated with it to provide details about the exception that occurred. Calling preventDefault()
on the ErrorEvent object (or returning false
from the event handler) will prevent the error from propagating further to containing threads and may also prevent it from being displayed in an error console.
When an event handler is invoked, it is passed an Event object whose properties give details about the event, such as the type of event and the element on which it occurred. The methods of this Event object can control the propagation of the event. All modern browsers implement a standard event model, except IE, which, in version 8 and before, defines its own incompatible model. This page documents the standard event object properties and methods and the IE alternatives to them, and also covers the jQuery event object, which emulates a standard event object for IE. Read more about events in Chapter 17 and more about jQuery events in Handling Events with jQuery.
In the standard event model, different kinds of events have different kinds of event objects associated with them: mouse events have a MouseEvent object with mouse-related properties, for example, and keyboard events have a KeyEvent with key-related properties. Both the MouseEvent and KeyEvent types share a common Event superclass. In the IE and jQuery event models, however, a single Event object type is used for all events that can occur on Element objects. Event properties that are specific to keyboard events won’t have a useful value when a mouse event occurs, but those properties will still be defined. For simplicity, this page collapses the event hierarchy and documents the properties for all events that can be delivered to Element objects (and that then bubble up to the Document and Window objects).
Originally, almost all client-side JavaScript events were triggered on document elements, and it is therefore natural to lump the properties of document-related event objects together like this. But HTML5 and related standards introduce a number of new event types that are triggered on objects that are not document elements. These event types often have Event types of their own, and those types are covered on their own reference pages. See BeforeUnloadEvent, CloseEvent, ErrorEvent, HashChangeEvent, MessageEvent, PageTransitionEvent, PopStateEvent, ProgressEvent, and StorageEvent.
Most of those event object types extend Event. Other new HTML5-related event types do not define an event object type of their own—the object associated with those events is just an ordinary Event object. This page documents that “ordinary” Event object plus the properties of some of its subtypes. The properties marked with an asterisk in the list below are the ones that are defined by the Event type itself. These are the properties that are inherited by event types like MessageEvent and are the properties that are defined for simple, ordinary events like the load event of the Window object and the playing event of a MediaElement object.
These constants define the values of the eventPhase
property. That property, and these constants, are not supported in the IE event model.
unsigned short CAPTURING_PHASE
= 1
The event is being dispatched to capturing event handlers registered on ancestors of its target.
unsigned short AT_TARGET
= 2
The event is being dispatched at its target.
unsigned short BUBBLING_PHASE
= 3
The event is bubbling and is being dispatched on ancestors of its target.
The properties listed here are defined by the standard event model for Event objects and also for the event objects associated with mouse and key events. Properties from the IE and jQuery event models are also listed. Properties with an asterisk are defined directly by Event and are universally available on any standard Event object, regardless of the event type.
readonly boolean altKey
readonly boolean bubbles
*
readonly unsigned short button
Which mouse button changed state during a mousedown, mouseup, or click event. A value of 0 indicates the left button, a value of 2 indicates the right button, and a value of 1 indicates the middle mouse button. Note that this property is defined when a button changes state; it is not used to report whether a button is held down during a mousemove event, for example. Also, this property is not a bitmap: it cannot tell you if more than one button is held down. Finally, some browsers only generate events for left button clicks.IE events define an incompatiblebutton
property. In that browser, this property is a bit mask: the 1 bit is set if the left button was pressed, the 2 bit is set if the right button was pressed, and the 4 bit is set if the middle button (of a three-button mouse) was pressed. jQuery does not emulate the standardbutton
property in IE, but see thewhich
property instead.
readonly boolean cancelable
*boolean cancelBubble
readonly integer charCode
For keypress events, this property is the Unicode encoding of the printable character that was generated. This property is 0 for nonprinting function keys and is not used for keydown and keyup events. UseString.fromCharCode()
to convert this value to a string. Most browsers setkeyCode
to the same value as this property for keypress events. In Firefox, however,keyCode
is undefined for keypress events and you must usecharCode
. This property is nonstandard and is not defined in IE events or emulated by jQuery.
readonly long clientX
readonly long clientY
The X and Y coordinates of the mouse pointer relative to the client area, or browser window. Note that these coordinates do not take document scrolling into account; if an event occurs at the very top of the window,clientY
is 0 regardless of how far down the document has been scrolled. These properties are defined for all types of mouse events. These properties are defined for IE events as well as standard events. See alsopageX
andpageY
.
readonly boolean ctrlKey
readonly EventTarget currentTarget
*The Element, Document, or Window that is currently handling this event. During capturing and bubbling, this is different fromtarget
. Not defined by IE events but emulated by jQuery events.
readonly DataTransfer dataTransfer
For drag-and-drop events, this property specifies the DataTransfer object that coordinates the entire drag-and-drop operation. Drag-and-drop events are a kind of mouse event; any event that has this property set will also haveclientX
,clientY
, and other mouse event properties. The drag-and-drop events are dragstart; drag and drag end on the drag source; and dragenter, dragover, dragleave, and drop on the drop target. See DataTransfer and Drag and Drop Events for details on drag-and-drop operations.
readonly boolean defaultPrevented
*readonly long detail
readonly unsigned short eventPhase
*readonly boolean isTrusted
*readonly Element fromElement
readonly integer keyCode
The virtual keycode of the key that was pressed. This property is used for all types of keyboard events. Keycodes may be browser-, OS-, and keyboard-hardware-dependent. Typically, when a key displays a printing character on it, the virtual keycode for that key is the same as the encoding of the character. Key codes for nonprinting function keys may vary more, but see Example 17-8 for a set of commonly used codes. This property has not been standardized but is defined by all browsers, including IE.
readonly boolean metaKey
readonly integer offsetX
, offsetY
readonly integer pageX
, pageY
readonly EventTarget relatedTarget
*Refers to an event target (usually a document element) that is related to thetarget
node of the event. For mouseover events, it is the element the mouse left when it moved over the target. For mouseout events, it is the element the mouse entered when leaving the target. This property is not defined by IE events but is emulated by jQuery events. See the IE propertiesfromElement
andtoElement
.
boolean returnValue
For IE events, set this property tofalse
to cancel the default action of the source element on which the event occurred. For standard events, use thepreventDefault()
method instead.
readonly long screenX, screenY
readonly boolean shiftKey
readonly EventTarget srcElement
readonly EventTarget target
*The target object for this event—i.e., the object on which the event was triggered. (All objects that can be event targets implement the methods of EventTarget.) This property is not defined for IE events, but it is emulated by jQuery events. SeesrcElement
.
readonly unsigned long timeStamp
*A number that specifies the date and time at which the event occurred or that can at least be used to determine the order in which two events occurred. Many browsers return a timestamp that you can pass to theDate()
constructor. In Firefox 4 and before, however, this property is some other kind of timestamp, such as the number of milliseconds since the computer was booted. IE events do not support it. jQuery sets this property to a timestamp in the format returned byDate.getTime()
.
Element toElement
readonly string type
*
readonly Window view
readonly integer wheelDelta
For mousewheel events, this property specifies the amount of scrolling that has occurred in the Y axis. Different browsers set different values on this property: see Mousewheel Events for details. This is a nonstandard property but is supported by all browsers, including IE8 and before.
readonly integer wheelDeltaX
readonly integer wheelDeltaY
For mousewheel events in browsers that support two-dimensional mouse wheels, these properties specify the amount of scrolling in the X and Y dimensions. See Mousewheel Events for an explanation of how to interpret these properties. IfwheelDeltaY
is defined, it will have the same value as thewheelDelta
property.
readonly integer which
All of these methods are defined by the Event class itself, so they are each available on any standard Event object.
void initEvent
(string type
, boolean bubbles
, boolean cancelable
)
This method initializes the type
, bubbles
, and cancelable
properties of an Event object. Create a new event object by passing the string “Event” to the createEvent()
method of Document. Then, after initializing it with this method, dispatch it on any EventTarget by passing it to the dispatchEvent()
method of that target. The other standard event properties (besides type
, bubbles
, and cancelable
) will be initialized by the dispatch. If you want to create, initialize, and dispatch a more complicated synthetic event, you’ll have to pass a different argument (such as “MouseEvent”) to createEvent()
and then initialize the event object with a type-specific initializing function such as initMouseEvent()
(not documented in this book).
void preventDefault
()
Tells the web browser not to perform the default action associated with this event, if there is one. If the event is not of a type that is cancelable, this method has no effect. This method is not defined on IE event objects, but is emulated by jQuery. In the IE event model, set the returnValue
property to false
instead.
void stopImmediatePropagation
()
Like stopPropagation()
, but in addition, prevent the invocation of any other handlers registered on the same document element. This method is a new addition to the standard event model and may not be implemented in all browsers. It is not supported in the IE event model but is emulated by jQuery.
void stopPropagation
()
Stops the event from propagating any further through the capturing, target, or bubbling phases of event propagation. After this method is called, any other event handlers for the same event on the same node are called, but the event is not dispatched to any other nodes. This method is not supported in the IE event model, but it is emulated by jQuery. In IE, set cancelBubble
to true instead of calling stopPropagation()
.
The properties listed here are proposed by the current draft of the DOM Level 3 Events specification. They address key areas of incompatibility among today’s browsers but are not yet (at the time of this writing) implemented by any browsers. If implemented interoperably they will make it much easier to write portable code to handle text input events, key events, and mouse events.
readonly unsigned short buttons
readonly string char
readonly string data
readonly unsigned long deltaMode
For wheel events, this property specifies the appropriate interpretation of thedeltaX
,deltaY
, anddeltaZ
properties. The value of this property will be one of these constants:DOM_DELTA_PIXEL
,DOM_DELTA_LINE
,DOM_DELTA_PAGE
. The value of this property is determined in a platform-dependent way. It may depend on system preferences or on keyboard modifiers held down during the wheel event.
readonly long deltaX, deltaY, deltaZ
readonly unsigned long inputMethod
For textinput events, this property specifies how the text was input. The value will be one of these constants:DOM_INPUT_METHOD_UNKNOWN
,DOM_INPUT_METHOD_KEYBOARD
,DOM_INPUT_METHOD_PASTE
,DOM_INPUT_METHOD_DROP
,DOM_INPUT_METHOD_IME
,DOM_INPUT_METHOD_OPTION
,DOM_INPUT_METHOD_HANDWRITING
,DOM_INPUT_METHOD_VOICE
,DOM_INPUT_METHOD_MULTIMODAL
,DOM_INPUT_METHOD_SCRIPT
.
readonly string key
readonly string locale
For keyboard events and textinput events, this property specifies a language code (such as “en-GB”) that identifies the locale for which the keyboard was configured, if that information is known.
readonly unsigned long location
readonly boolean repeat
An EventSource represents a long-lived HTTP connection through which a Web server can “push” textual messages. To use these “Server Sent Events”, pass the server URL to the EventSource()
constructor and then register a message event handler on the resulting Event
Source
object.
Server Sent Events are new, and at the time of this writing, are not supported in all browsers.
EventSource
(string url
)Creates a new EventSource
object connected to the web server at the specified url
. url
is interpreted relative to the URL of the containing document.
These constants define the possible values of the readyState property.
unsigned short CONNECTING
= 0
unsigned short OPEN
= 1
The connection is open and events are being dispatched.
unsigned short CLOSED
= 2
The connection was closed, either becauseclose()
was called or a fatal error occurred and it is not possible to reconnect.
Network communication is asynchronous, so EventSource triggers events when the connection opens, when an error occurs, and when messages arrive from the server. You can register event handlers on the properties listed here, or you can use the methods of EventTarget instead. EventSource events are all dispatched on the EventSource object itself. They do not bubble and have no default action that can be canceled.
onerror
Triggered when an error occurs. The associated event object is a simple Event.
onmessage
Triggered when a message arrives from the server. The associated event object is an MessageEvent, and the text of the server’s message is available through thedata
property of that object.
onopen
Triggered when the connection opens. The associated event object is a simple Event.
Objects that have events fired on them or objects to which events bubble need to have a way to define handlers for those events. These objects typically define event handler registration properties whose names begin with “on”, and they also typically define the methods described here. Event handler registration is a surprisingly complex topic. See Registering Event Handlers for details, and note, in particular, that IE8 and before use different methods, described in a special section following, than all other browsers do.
void addEventListener
(string type
, function listener
, [boolean useCapture
])
This method registers the specified listener
function as an event handler for events of the specified type
. type
is an event name string and does not include an “on” prefix. The use
Capture
argument should be true
if this is a capturing event handler (see addEventListener()) being registered on a document ancestor of the true event target. Note that some browsers still require you to pass a third argument to this function, and you must pass false
to register an ordinary noncapturing handler.
boolean dispatchEvent
(Event event
)
This method dispatches a synthetic event
to this event target. Create a new Event object with document.createEvent(Events)
, passing the event name (such as “event” for simple events). Next, call the event initialization method for the Event object you created: for a simple event, this will be initEvent()
(see Event). Next, pass the initialized event to this method to dispatch it. In modern browsers, every Event object has an isTrusted
property. That property will be false
for any synthetic event dispatched by JavaScript.
Every kind of event object defines a type-specific initialization method. Those methods are infrequently used, have long and cumbersome argument lists, and are not documented in this book. If you need to create, initialize, and dispatch synthetic events of some type more complex than a basic Event, you’ll have to look up the initialization method online.
IE8 and before do not support addEventListener()
and removeEventListener()
. Instead, they implement these two methods, which are quite similar. (attachEvent() lists a few important differences.)
The FieldSet object represents a <fieldset>
in an HTML <form>
. FieldSets implement most, but not all, of the properties and methods of FormControl.
File — a file in the local filesystem
Blob
A File is a Blob that has a name and possibly also a modification date. It represents a file in the local file system. Obtain a user-selected file from the files
array of an <input type=file>
element, or from the files
array of the DataTransfer object associated with the Event object that accompanies a drop event.
You can also obtain File objects that represent files in a private, sandboxed filesystem, as described in The Filesystem API. The filesystem API is not stable at the time of this writing, however, and it is not documented in this reference section.
You can upload the contents of a file to a server with a FormData object or by passing the File to XMLHttpRequest.send()
, but there is not much else you can do with the File object itself. Use FileReader to read the contents of a File (or of any Blob).
FileError — error while reading a file
A FileError object represents an error that occurred when reading a file with FileReader or FileReaderSync. If the synchronous API is used, the FileError object is thrown. If the asynchronous API is used, the FileError object is the value of the error
property of the FileReader object when the error event is dispatched.
Note that the FileWriter API (which is described in The Filesystem API, but is not stable enough to document in this reference section) adds new error code constants to this object.
The FileError error codes are the following:
unsigned short NOT_FOUND_ERR
= 1
The file does not exist. (Perhaps it was deleted after the user selected it, but before your program attempted to read it.)
unsigned short SECURITY_ERR
= 2
Unspecified security issues prevent the browser from allowing your code to read the file.
unsigned short ABORT_ERR
= 3
The attempt to read the file was aborted.
unsigned short NOT_READABLE_ERR
= 4
The file is not readable, perhaps because its permissions have changed or because another process has locked it.
unsigned short ENCODING_ERR
= 5
A call toreadAsDataURL()
failed because the file was too long to encode in adata://
URL.
FileReader — asynchronously read a File or Blob
EventTarget
A FileReader defines an asynchronous API for reading the content of a File or any Blob. To read a file, follow these steps:
FileReader()
constructor. onload
handler is triggered, the file contents are available as the result
property. Or, if the onerror
handler is triggered, the error
property refers to a FileError object that provides more information.See FileReaderSync for a synchronous API that you can use in worker threads.
FileReader
()Create a new FileReader object with the FileReader()
constructor, which expects no arguments.
These constants are the values of the readyState
property:
unsigned short EMPTY
= 0
No read method has been called yet.
unsigned short LOADING
= 1
A read is in progress.
unsigned short DONE
= 2
A read has completed successfully or with an error.
readonly FileError error
readonly unsigned short readyState
readonly any result
If the read completed successfully, this property will hold the File or Blob contents as a string or ArrayBuffer (depending on which read method was called). WhenreadyState
is LOADING or when a progress event is fired, this property may contain partial contents of the File or Blob. If no read method has been called or if an error has occurred, this property will benull
.
void abort
()
This method aborts a read. It sets readyState
to DONE
, sets result
to null
, and sets error
to a FileError
object with a code
of FileError.ABORT_ERR
. Then it fires an abort event and a loadend event.
void readAsArrayBuffer
(Blob blob
)
Asynchronously read the bytes of blob
and make them available as an ArrayBuffer on the result
property.
void readAsBinaryString
(Blob blob
)
Asynchronously read the bytes of blob
, encode them as a JavaScript binary string, and set the result
property to the resulting string. Each “character” in a JavaScript binary string has a character code between 0 and 255. Use String.charCodeAt() to extract these byte values. Note that binary strings are an inefficient representation of binary data: when possible you should use ArrayBuffers instead.
void readAsDataURL
(Blob blob
)
Asynchronously read the bytes of blob
, encode them (along with the type of the Blob) into a data://
URL, and set the result
property to the resulting string.
void readAsText
(Blob blob
, [string encoding
])
Asynchronously read the bytes of blob
and decode them using the specified encoding
into a string of Unicode text and then set the result
property to that decoded string. If encoding is not specified, UTF-8 will be used (UTF-16 encoded text is also automatically detected and decoded if it begins with a Byte Order Mark).
Like all asynchronous APIs, FileReader is event based. You can use the handler properties listed here to register event handlers, or you can use the EventTarget methods implemented by FileReader.
FileReader events are triggered on the FileReader object itself. They do not bubble and have no default action to cancel. FileReader event handlers are always passed a ProgressEvent object. A successful read begins with a loadstart event, followed by zero or more progress events, a load event, and a loadend event. A unsuccessful read begins with a loadstart event, followed by zero or more progress events, an error or abort event, and a loadend event.
onabort
Triggered if the read is aborted with theabort()
method.
onerror
Triggered if an error of some sort occurs. Theerror
property of the FileReader will refer to a FileError object that has an error code.
onload
Triggered when the File or Blob has been successfully read. Theresult
property of the FileReader holds the File or Blob content, in a representation that depends on the read method that was called.
onloadend
Every call to a FileReader read method eventually produces a load event, an error event, or an abort event. The FileReader also triggers a loadend event after each of these events for the benefit of scripts that want to listen for only one event instead of listening for all three.
onloadstart
Triggered after a read method is invoked but before any data has been read.
onprogress
FileReaderSync is a synchronous version of the FileReader API, available only to Worker threads. The synchronous API is easier to use than the asynchronous one: simply create a FileReaderSync()
object and then call one of its read methods, which will either return the contents of the File or Blob or throw a FileError object instead.
FileReaderSync
()Create a new FileReaderSync object with the FileReaderSync()
constructor, which expects no arguments.
These methods throw a FileError object if the read fails for any reason.
string readAsBinaryString
(Blob blob
)
Read the bytes of blob
, encode them as a JavaScript binary string (see String.fromCharCode()), and return that binary string.
Form — a <form> in an HTML document
Node, Element
The Form object represents a <form>
element in an HTML document. The elements
property is an HTMLCollection that provides convenient access to all elements of the form. The submit()
and reset()
methods allow a form to be submitted or reset under program control.
Each form in a document is represented as an element of the document.forms[]
array. The elements of a form (buttons, input fields, checkboxes, and so on) are collected in the array-like object Form.elements
. Named form controls can be referenced directly by name: the control name is used as a property name on the Form object. Thus, to refer to an Input element with a name
attribute of “phone” within a form f
, you might use the JavaScript expression f.phone
.
See HTML Forms for more on HTML forms. See FormControl, FieldSet, Input, Label, Select, and TextArea for more on the form controls that can appear in a form.
This page documents HTML5 form features which, at the time of this writing, were not yet widely implemented.
Most of the properties listed here simply mirror the HTML attributes of the same name.
string acceptCharset
string action
string autocomplete
readonly HTMLFormControlsCollection elements
string enctype
Specifies the way the values of the form controls are encoded for submission. The legal values of this property are:
- “application/x-www-form-urlencoded” (the default)
- “multipart/form-data”
- “text/plain”
readonly long length
string method
string name
boolean noValidate
string target
boolean checkValidity
()
In browsers that support form validation, this method checks the validity of each form control. It returns true
if they are all valid. If any controls are not valid, it fires an invalid event on that control and then returns false
.
void dispatchFormChange
()
This method triggers a formchange event on each control in this form. The form usually does this automatically when user input triggers a change event, so you do not normally need to call this method.
Most HTML form controls are <input>
elements, but forms can also contain <button>
, <select>
, and <textarea>
controls. This page documents the features that those element types have in common. See HTML Forms for an introduction to HTML forms, and see Form, Input , Select, and TextArea for more on forms and form controls.
The <fieldset>
and <output>
elements implement most, but not all, of the properties described here. This reference treats FieldSet and Output objects as FormControls even though they do not implement every property.
This page documents certain HTML5 form features (particularly form validation) which, at the time of this writing, were not yet widely implemented.
boolean autofocus
boolean disabled
readonly Form form
readonly NodeList labels
An array-like object of Label elements associated with this control. (FieldSet controls do not implement this property.)
string name
string type
For<input>
elements, the type property has the value of thetype
attribute, or the value “text” if notype
attribute is specified on the<input>
tag. For<button>
,<select>
, andtextarea
elements, the type property is “button”, “select-one” (or “select-multiple”, if themultiple
attribute is set), and “textarea”. For<fieldset>
elements, thetype
is “fieldset”, and for<output>
elements the type is “output”.
readonly string validationMessage
If the control is valid or is not subject to validation, this property will be the empty string. Otherwise, this property contains a localized string that explains why the user’s input is invalid.
readonly FormValidity validity
string value
Every form control has a stringvalue
that is used when the form is submitted. For text input controls, the value is the user’s input. For buttons, the value is just the value of the HTMLvalue
attribute. For output elements, this property is like thetextContent
property inherited from Node. FieldSet elements do not implement this property.
readonly boolean willValidate
Form controls define the following event handler properties. You can also register event handlers using the EventTarget methods implemented by all Elements:
Event Handler | Invoked when |
---|---|
onformchange | When a change event is fired on any control in the form, the form broadcasts a nonbubbling formchange event to all of its controls. Controls can use this handler property to detect changes to their sibling controls. |
onforminput | When an input event is fired on any control in the form, the form broadcasts a nonbubbling forminput event to all of its controls. Controls can use this handler property to detect changes to their sibling controls. |
oninvalid | If a form control does not validate, an invalid event will be fired on it. This event does not bubble, but if canceled, the browser will not display an error message for the control. |
boolean checkValidity
()
Returns true if the control is valid (or if it is not subject to validation). Otherwise, it fires an invalid event at the control and returns false
.
void setCustomValidity
(string error
)
If error
is a nonempty string, this method marks the control as invalid and uses error
as a localized message when reporting the element’s invalidity to the user. If error
is the empty string, any previous error
string is removed and the control is considered valid.
FormData — an HTTP multipart/form-data request body
The FormData type is a feature of XMLHttpRequest Level 2 (XHR2) that makes it easy to perform HTTP PUT requests with multipart/form-data encoding using an XMLHttpRequest. Multipart encoding is necessary, for example, if you want to upload multiple File objects in a single request.
Create a FormData object with the constructor, and then add name/value pairs to it with the append()
method. Once you have added all of the parts of your request body, you can pass the FormData to the send()
method of an XMLHttpRequest.
FormValidity — the validity of a form control
The validity
property of a FormControl refers to a FormValidity
object that is a live representation of the validity state of that control. If the valid
property is false
, the control is not valid, and at least one of the other properties will be true
to indicate the nature of the validity error (or errors).
Form validation is an HTML5 feature that, at the time of this writing, is not yet widely implemented.
readonly boolean customError
readonly boolean patternMismatch
readonly boolean rangeOverflow
readonly boolean rangeUnderflow
readonly boolean stepMismatch
readonly boolean tooLong
readonly boolean typeMismatch
readonly boolean valid
If this property istrue
, the form control is valid, and all the other properties arefalse
. If this property isfalse
, the form control is not valid, and at least one of the other properties istrue
.
readonly boolean valueMissing
Geocoordinates — a geographical position
readonly double accuracy
readonly double altitude
readonly double altitudeAccuracy
readonly double heading
readonly double latitude
readonly double longitude
readonly double speed
The user’s speed in meters per second, ornull
if speed information is not available. This property will never be a negative number. See alsoheading
.
The Geolocation object defines methods for determining the user’s precise geographical location. In browsers that support it, the Geolocation object is available through the Navigator object as navigator.geolocation
. The methods described here depend on a few other types: locations are reported in the form of a Geoposition object and errors are reported as GeolocationError objects.
void clearWatch
(long watchId
)
Stops watching the user’s location. The watchId
argument must be the value returned by the corresponding call to watchPosition()
.
void getCurrentPosition
(function success
, [function error
], [object options
])
Asynchronously determines the user’s location using any options
(see the list of option properties below) that were specified. This method returns immediately, and when the user’s location becomes available, it passes a Geoposition object to the specified success
callback. Or, if an error occurs (perhaps because the user did not grant permission to share her location), it passes a GeolocationError object to the error
callback if one was specified.
long watchPosition
(function success
, [function error
], [object options
])
This method is like getCurrentPosition()
, but after determining the user’s current location, it continues to monitor the user’s location and invokes success
callback every time the position is found to have changed significantly. The return value is a number that you can pass to clearWatch()
to stop tracking the user’s location.
The options
argument to getCurrentPosition()
and watchPosition()
is a regular JavaScript object with zero or more of the following properties:
boolean enableHighAccuracy
This option is a hint that a high-accuracy position is desired, even if it would take longer to determine or would use more battery power, for example. The default isfalse
. In devices that can determine position via WiFi signals or by GPS, setting this option totrue
will typically mean “use the GPS”.
long maximumAge
This option specifies the largest acceptable age (in milliseconds) of the first Geoposition object passed to thesuccessCallback
. The default is 0, which means that each call togetCurrentPosition()
orwatchPosition()
will have to request a new position fix. If you set this option to 60000, for example, the implementation is allowed to return any Geoposition determined in the last minute.
long timeout
This option specifies how long, in milliseconds, the requester is willing to wait for a position fix. The default value isInfinity
. If more thantimeout
milliseconds elapse, theerrorCallback
will be invoked. Note that time spent asking the user for permission to share her location does not count against thistimeout
value.
GeolocationError — an error while querying the user’s location
If an attempt to determine the user’s geographical position fails, your error callback function will be invoked with a GeolocationError object that describes what went wrong.
These constants are the possible values of the code
property:
unsigned short PERMISSION_DENIED
= 1
The user did not grant permission to share her or his location.
unsigned short POSITION_UNAVAILABLE
= 2
The location could not be determined for an unspecified reason. This could be caused by a network error, for example.
unsigned short TIMEOUT
= 3
The location could not be determined within the time allotted (see thetimeout
option described in Geolocation).
Geoposition — a timestamped position report
A Geoposition object represents the user’s geographical position at a specific time. Objects of this type have only two properties: a timestamp and a reference to a Geocoordinates object that holds the actual position properties.
readonly Geocoordinates coords
readonly unsigned long timestamp
The time at which those coordinates were valid, in milliseconds since the epoch. You can use this value to create a Date object if desired.
Browsers fire a hashchange event when the fragment identifier (the portion of a URL beginning with the hash mark #) of the document URL changes. This can happen because of a scripted change to the hash
property of the Location object, or because the user used the browser’s Back or Forward buttons to navigate through the browser’s history. In either case, a hashchange event is triggered. The associated event object is a HashChangeEvent. See History Management for more on history management with location.hash
and the hashchange event.
The History object represents the browsing history of a window. For privacy reasons, however, it does not allow scripted access to the actual URLs that have been visited. The methods of the History object allow scripts to move the window backward and forward through the browsing history and to add new entries to the browsing history.
void back
()
back()
causes the window or frame to which the History object belongs to revisit the URL (if any) that was visited immediately before the current one. Calling this method has the same effect as clicking on the browser’s Back button. It is also equivalent to:
void forward
()
forward()
causes the window or frame to which the History object belongs to revisit the URL (if any) that was visited immediately after the current one. Calling this method has the same effect as clicking on the browser’s Forward button. It is also equivalent to:
void go
([long delta
])
The History.go()
method takes an integer argument and causes the browser to visit the URL that is the specified number of positions away in the browsing history list maintained by the History object. Positive arguments move the browser forward through the list, and negative arguments move it backward. Thus, calling history.go(-1)
is equivalent to calling history.
back()
and produces the same effect as clicking on the Back button. With an argument of 0 or no argument at all, this method reloads the currently displayed document.
void pushState
(any data
, string title
, [string url
])
This method adds a new entry to the window’s browsing history, storing a structured clone (see Structured Clones) of data
as well as the specified title
and url
. If the user later uses the browser’s history navigation mechanism to return to this saved state, a popstate event will be triggered on the window, and the PopStateEvent object will hold another clone of data
in its state
property.
The title
argument provides a name for this state, and browsers may display it in their history UI. (At the time of this writing, browsers ignore this argument). If specified, the url
argument is displayed in the location bar and gives this state a permanent state that can be bookmarked or shared with others. url
is resolved relative to the current document location. If url
is an absolute URL, it must have the same origin as the current document. One common technique is to use URLs that are just fragment identifiers beginning with #.
An HTMLCollection is a read-only array-like object of Element objects that also defines properties corresponding to the name
and id
values of the collected elements. The Document object defines HTMLCollection properties such as forms
and image
.
HTMLCollection objects define item()
and namedItem()
methods, for retrieving elements by position or name, but it is never necessary to use them: you can simply treat the HTMLCollection as a JavaScript object and access its properties and array elements. For example:
HTMLFormControlsCollection is a specialized HTMLCollection used by Form elements to represent collections of form controls. Like HTMLCollection, you can index it numerically, like an array, or treat it like an object and index it with the names or IDs of form controls. HTML forms often have multiple controls (usually radio buttons or checkboxes) that have the same value for their name
attribute, and an HTMLFormControlsCollection handles this differently than an ordinary HTMLCollection would.
When you read a property of an HTMLFormControlsCollection, and the form contains more than one element that has that property as its name, the HTMLFormControlsCollection returns an array-like object of all form controls that share the name. In addition, the returned array-like object has a value
property that returns the value
attribute of the first checked radio button with that name. You can even set this value
property to check the radio button with the corresponding value.
HTMLOptionsCollection is a specialized HTMLCollection that represents the Option elements within a Select element. It overrides the namedItem()
method to handle multiple Option elements with the same name, and it defines methods for adding and removing elements. For historical reasons, HTMLOptionsCollection defines a writable length
property that you can set to truncate or extend the collection.
unsigned long length
This property returns the number of elements in the collection. Unlike thelength
property of a regular HTMLCollection, however, this one is not read-only. If you set it to a value smaller than its current value, the collection of Option elements is truncated, and those that are no longer in the collection are removed from the containing Select element. If you setlength
to a value larger than its current value, empty<option/>
elements are created and added to the Select element and to the collection.
long selectedIndex
void add
(Element option
, [any before
])
Insert the option
(which must be an <option>
or <optgroup>
element) into this collection (and into the Select element) at the position specified by before
. If before
is null, insert it at the end. If before
is an integer index, insert it before the item that is currently at that index. If before
is another Element, insert the option
before that element.
Element item
(unsigned long index
)
HTMLOptionsCollection inherits this method from HTMLCollection. It returns the element at the specified index
or null
if index
is out of bounds. You can also index the collection directly with square brackets instead of calling this method explicitly.
object namedItem
(string name
)
This method returns all Option elements in the collection that have the specified name or ID. If no elements match, it returns null
. If one Option element matches, it returns that element. If more than one element matches, it returns a NodeList of those elements. Note that you can index an HTMLOptionsCollection directly, using name
as a property name instead of calling this method explicitly.
IFrame — an HTML <iframe>
Node, Element
An IFrame object represents an <iframe>
element in an HTML document. If you look up an <iframe>
using getElementById()
or a similar query function, you’ll get an IFrame object. If, however, you access the <iframe>
through the frames
property of the Window object, or by using the name of the <iframe>
as a property of the containing window, the object you obtain is the Window object that the <iframe>
represents.
readonly Document contentDocument
The document contained in this<iframe>
element. If the document displayed in the<iframe>
is from a different origin, the same-origin policy (The Same-Origin Policy) will prevent access to this document.
readonly Window contentWindow
string height
string name
readonly DOMSettableTokenList sandbox
This property mirrors the HTML5sandbox
attribute and allows it to be queried and set as a string or as a set of individual tokens.Thesandbox
attribute specifies that the browser should impose additional security restrictions on untrusted content displayed in an<iframe>
. If thesandbox
attribute is present but empty, the<iframe>
content will be treated as if it was from a distinct origin, will not be allowed to run scripts, will not be allowed to display forms, and will not be allowed to change the location of its containing window. Thesandbox
attribute can also be set to a space-separated list of tokens, each of which lifts one of those additional security restrictions. The valid tokens are “allow-same-origin”, “allow-scripts”, “allow-forms”, and “allow-top-navigation”.Thesandbox
attribute is not yet widely implemented at the time of this writing. See an HTML reference for further details.
boolean seamless
This property mirrors the HTMLseamless
attribute. Iftrue
, the browser should render the content of the<iframe>
so that it appears to be part of the containing document. This means, in part, that the browser must apply the CSS styles of the containing document to the content of the<iframe>
.Theseamless
attribute was introduced as part of HTML5 and is not yet widely implemented at the time of this writing.
string src
string srcdoc
string width
Image — an in an HTML document
Node, Element
An Image object represents an image embedded in an HTML document with an
tag. The images that appear in a document are collected in the document.images[]
array.
The src
property of the Image object is the most interesting one. When you set this property, the browser loads and displays the image specified by the new value. This allows visual effects such as image rollovers and animations. See Scripting Images for examples.
You can create offscreen Image objects by simply creating new
elements with document
.createElement()
or with the Image()
constructor. Note that this constructor does not have an argument to specify the image to be loaded: to load an image, simply set the src
property of your Image object. To actually display the image, insert the Image object into the document.
Image
([unsigned long width
, unsigned long height
])You can create a new Image as you would create any HTML element with document.
create
Element()
. For historical reasons, however, client-side JavaScript also defines the Image()
constructor to do the same thing. If the width
or height
arguments are specified, they set the width
and height
attributes of the
tag.
In addition to the properties listed here, Image elements also expose the following HTML attributes as JavaScript properties: alt
, usemap
, ismap
.
readonly boolean complete
true
if no imagesrc
was specified or if the image has been completely downloaded.false
otherwise.
unsigned long height
readonly unsigned long naturalHeight
readonly unsigned long naturalWidth
string src
The URL of the image. Setting this property causes the specified image to load. If the Image object has been inserted into the document, the new image will be displayed.
unsigned long width
The width, in CSS pixels, at which the image is actually displayed on the screen. You can set this to change the on-screen size of the image.
ImageData — an array of pixel data from a <canvas>
An ImageData object holds the red, green, blue, and alpha (transparency) components of a rectangular region of pixels. Obtain an ImageData object with the createImageData()
or getImageData()
methods of the CanvasRenderingContext2D object of a <canvas>
tag.
The width
and height
properties specify the dimensions of the rectangle of pixels. The data
property is an array that holds the pixel data. Pixels appear in the data[]
array in left-to-right and top-to-bottom order. Each pixel consists of four byte values that represent the R, G, B, and A components, in that order. Thus, the color components for a pixel at (x,y)
within an ImageData object image
can be accessed like this:
The data[]
array is not a true JavaScript array, but an optimized array-like object whose elements are integers between 0 and 255. The elements are read/write, but the length of the array is fixed. For any ImageData object i
, i.data.length
will always equal i.width * i.height * 4
.
An Input object represents an HTML form <input>
element. Its appearance and behavior depends on its type
attribute: an Input element might represent a simple text input field, a checkbox, a radio box, a button, or a file selection element, for example. Because an <input>
element can represent so many kinds of form controls, the Input element is one of the most complicated. See HTML Forms for an overview of HTML forms and form elements. Note that some of the important properties of the Input element (such as type
, value
, name
, and form
) are documented in FormControl.
In addition to the properties listed here, Input elements also implement all of the properties defined by Element and FormControl. The properties marked with an asterisk in this list are newly defined by HTML5 and are not yet, at the time of this writing, widely implemented.
string accept
string autocomplete
True if the browser can prefill this Input element with a value from a previous session. Mirrors thatautocomplete
attribute. See also theautocomplete
property of Form.
boolean checked
For checkable input elements, this property specifies whether the element is “checked” or not. Setting this property changes the visual appearance of the input element.
boolean defaultChecked
string defaultValue
For elements with a textual value, this property holds the initial value displayed by the element. When the form is reset, the element is restored to this value. Mirrors thevalue
attribute.
readonly File[] files
For elements whosetype
is “file”, this property is an array-like object of the File object or objects that the user selected.
string formAction
*
string formEnctype
*
string formMethod
*
boolean formNoValidate
*
string formTarget
*
boolean indeterminate
readonly Element list
*
string max
*
long maxLength
string min
*
boolean multiple
*
string pattern
*
The text of a regular expression that the input must match in order to be considered valid. This property uses JavaScript regular expression syntax (without the leading and trailing slashes), but note that the property is a string, not a RegExp object. Also note that in order be considered valid, the entire string of input must match the pattern, not just a substring. (This is as if the pattern begins with ^ and ends with $.) This property mirrors thepattern
attribute.
string placeholder
boolean readOnly
boolean required
*
readonly Option selectedOption
*
unsigned long selectionEnd
unsigned long selectionStart
unsigned long size
string step
*
Date valueAsDate
*
double valueAsNumber
*
In addition to the methods listed here, Input elements also implement all of the methods defined by Element and FormControl. The methods marked with an asterisk in this list are newly defined by HTML5 and are not yet, at the time of this writing, widely implemented.
void select
()
This method selects all the text displayed by this Input element. In most browsers, this means that the text is highlighted and that new text entered by the user replaces the highlighted text instead of being appended to it.
void setSelectionRange
(unsigned long start
, unsigned long end
)
This method selects text displayed in this Input element, starting with the character at position start
and continuing up to (but not including) the character at end
.
jQuery — the jQuery library
jQuery 1.4
This is a quick reference for the jQuery library. See Chapter 19 for complete details on the library and for examples of its use. This reference page is organized and formatted somewhat differently than the other pages in this reference section. It uses the following conventions in the method signatures. Arguments named sel
are jQuery selectors. Arguments named idx
are integer indexes. Arguments named elt
or elts
are document elements or array-like objects of document elements. Arguments named f
are callback functions and nested parentheses are used to indicate the arguments that jQuery will pass to the function you supply. Square brackets indicate optional arguments. If an optional argument is followed by an equals sign and a value, that value will be used when the argument is omitted. The return value of a function or a method follows the close parenthesis and a colon. Methods with no return value specified return the jQuery object on which they are invoked.
The jQuery
function is a namespace for a variety of utility functions, but it is also the factory function for creating jQuery objects. jQuery()
can be invoked in all of the ways shown below, but it always returns a jQuery object that represents a collection of document elements (or the Document object itself). The symbol $
is an alias for jQuery
, and you can use $()
instead of jQuery()
in each of the forms following:
jQuery(sel
[, context
=document])
Returns a new jQuery object that represents the document elements that are descendants ofcontext
and match the selector stringsel
.
jQuery(elts
)
Returns a new jQuery object that represents the specified elements.elts
may be a single document element or an array or array-like object (such as a NodeList or another jQuery object) of document elements.
jQuery(html
, [props
])
Parseshtml
as a string of HTML-formatted text and returns a new jQuery object that contains the one or more top-level elements in the string. Ifhtml
describes a single HTML tag,props
may be an object that specifies HTML attributes and event handlers for the newly created element.
jQuery(f
)
Registersf
as a function to be invoked when the document has loaded and is ready to be manipulated. If the document is already ready,f
is invoked immediately as a method of the document object. Returns a jQuery object that contains only the document object.
The jQuery selector grammar is very similar to the CSS3 selector grammar, and it is explained in detail in jQuery Selectors. The following is a summary:
* tagname .classname #id
A B B as a descendant of A
A > B B as a child of A
A + B B as a sibling following A
A ~ B B as a sibling of A
[attr] has attribute
[attr=val] has attribute with value val
[attr!=val] does not have attribute with value val
[attr^=val] attribute begins with val
[attr$=val] attribute ends with val
[attr*=val] attribute includes val
[attr~=val] attribute includes val as a word
[attr|=val] attribute begins with val and optional hyphen
:button :header :password :submit
:checkbox :image :radio :text
:file :input :reset
:animated :disabled :hidden :visible
:checked :enabled :selected
:eq(n) :first :last :nth(n)
:even :gt(n) :lt(n) :odd
:first-child :nth-child(n)
:last-child :nth-child(even)
:only-child :nth-child(odd)
:nth-child(xn+y)
:contains(text) :not(selector)
:empty :parent
:has(selector)
These are the basic methods and properties of jQuery objects. They don’t alter the selection or the selected elements in any way, but they allow you to query and iterate over the set of selected elements. See Queries and Query Results for details.
context
each(f
(idx
,elt
))
Invokef
once as a method of each selected element. Stops iterating if the function returnsfalse
. Returns the jQuery object on which it was invoked.
get(idx
):elt
get():array
Return the selected element at the specified index in the jQuery object. You can also use regular square-bracket array indexing. With no arguments,get()
is a synonym forto
Array()
.
index():int
index(sel
):int
index(elt
):int
With no argument, return the index of the first selected element among its siblings. With a selector argument, return the index of the first selected element within the set of elements that match the selectorsel
, or -1 if it is not found. With an element argument, return the index ofelt
in the selected elements, or -1 if it is not found.
is(sel
):boolean
Returntrue
if at least one of the selected elements also matchessel
.
length
The number of selected elements.
map(f
(idx
,elt
)):jQuery
Invokef
once as a method of each selected element and return a new jQuery object that holds the returned values, withnull
andundefined
values omitted and array values flattened.
selector
The selector string originally passed to$()
.
size():int
Return the value of thelength
property.
toArray():array
Return a true array of the selected elements.
The methods described in this section alter the set of selected elements, by filtering them, adding new elements, or using the selected elements as starting points for new selections. In jQuery 1.4 and later, jQuery selections are always sorted in document order and do not contain duplicates. See Selection Methods.
add(sel
, [context
])
add(elts
)
add(html
)
The arguments toadd()
are passed to$()
, and the resulting selection is merged with the current selection.
andSelf()
Add the previously selected set of elements (from the stack) to the selection.
children([sel
])
Select children of the selected elements. With no argument, select all children. With a selector, select only matching children.
closest(sel
, [context
])
Select the closest ancestor of each selected element that matchessel
and is a descendant ofcontext
. Ifcontext
is omitted, thecontext
property of the jQuery object is used.
contents()
Select all children of each selected element, including text nodes and comments.
end()
Pop the internal stack restoring the selection to the state it was in before the last selection-altering method.
eq(idx
)
Select only the selected element with the specified index. In jQuery 1.4, negative indexes count from the end.
filter(sel
)
filter(elts
)
filter(f
(idx
):boolean)
Filter the selection so it only includes elements that also match the selectorsel
, that are included in the array-like objectelts
, or for which the predicatef
returnstrue
when invoked as a method of the element.
find(sel
)
Select all descendants of any selected element that matchsel
.
first()
Select only the first selected element.
has(sel
)
has(elt
)
Filter the selection to include only those selected elements that have a descendant that matchessel
or that are ancestors ofelt
.
last()
Select only the last selected element.
next([sel
])
Select the next sibling of each selected element. Ifsel
is specified, exclude those that do not match.
nextAll([sel
])
Select all of the siblings following each selected element. Ifsel
is specified, exclude those that do not match.
nextUntil(sel
)
Select the siblings following each selected element up to (but not including) the first sibling that matchessel
.
not(sel
)
not(elts
)
not(f
(idx
):boolean)
This is the opposite offilter()
. It filters the selection to exclude elements that matchsel
, that are included inelts
, or for whichf
returnstrue
.elts
may be a single element or an array-like object of elements.f
is invoked as a method of each selected element.
offsetParent()
Select the nearest positioned ancestor of each selected element.
parent([sel
])
Select the parent of each selected element. Ifsel
is specified, exclude any that do not match.
parents([sel
])
Select the ancestors of each selected element. Ifsel
is specified, exclude any that do not match.
parentsUntil(sel
)
Select the ancestors of each selected element up to (but not including) the first one that matchessel
.
prev([sel
])
Select the previous sibling of each selected element. Ifsel
is specified, exclude those that do not match.
prevAll([sel
])
Select all of the siblings before each selected element. Ifsel
is specified, exclude those that do not match.
prevUntil(sel
)
Select the siblings preceding each selected element up to (but not including) the first sibling that matchessel
.
pushStack(elts
)
Push the current state of the selection so that it can be restored withend()
, and then select the elements in theelts
array (or array-like object).
siblings([sel
])
Select the siblings of each selected element, excluding the element itself. Ifsel
is specified, exclude any siblings that do not match.
slice(startidx
, [endidx
])
Filter the selection to include only elements with an index greater than or equal tostartidx
and less than (but not equal to)endidx
. Negative indexes count backward from the end of the selection. Ifendidx
is omitted, thelength
property is used.
The methods described here query and set the HTML attributes and CSS style properties of elements. Setter callback functions with an argument named current
are passed the current value of whatever it is they are computing a new value for. See jQuery Getters and Setters.
addClass(names
)
addClass(f
(idx
,current
):names)
Add the specified CSS class name or names to theclass
attribute of each selected element. Or invokef
as a method of each element to compute the class name or names to add.
attr(name
):value
attr(name
, value
)
attr(name
, f
(idx
,current
):value)
attr(obj
)
With one string argument, return the value of the named attribute for the first selected element. With two arguments, set the named attribute of all selected elements to the specifiedvalue
or invokef
as a method of each element to compute a value. With a single object argument, use property names as attribute names and property values as attribute values or attribute computing functions.
css(name
):value
css(name
, value
)
css(name
, f
(idx
,current
):value)
css(obj
)
Likeattr()
, but query or set CSS style attributes instead of HTML attributes.
data():obj
data(key
):value
data(key
, value
)
data(obj
)
With no arguments, return the data object for the first selected element. With one string argument, return the value of the named property of that data object. With two arguments, set the named property of the data object of all selected elements to the specifiedvalue
. With one object argument, replace the data object of all selected elements.
hasClass(name
):boolean
Returnstrue
if any of the selected elements includesname
in itsclass
attribute.
height():int
height(h
)
height(f
(idx
,current
):int)
Return the height (not including padding, border, or margin) of the first selected element, or set the height of all selected elements toh
or to the value computed by invokingf
as a method of each element.
innerHeight():int
Return the height plus padding of the first selected element.
innerWidth():int
Return the width plus padding of the first selected element.
offset():coords
offset(coords
)
offset(f
(idx
,current
):coords)
Return the X and Y position (in document coordinates) of the first selected element, or set the position of all selected elements tocoords
or to the value computed by invokingf
as a method of each element. Coordinates are specified as objects withtop
andleft
properties.
offsetParent():jQuery
Select the nearest positioned ancestor of each selected element and return them in a new jQuery object.
outerHeight([margins
=false]):int
Return the height plus the padding and border, and, ifmargins
istrue
, the margins of the first selected element.
outerWidth([margins
=false]):int
Return the width plus the padding and border, and, ifmargins
istrue
, the margins of the first selected element.
position():coords
Return the position of the first selected element relative to its nearest positioned ancestor. The return value is an object withtop
andleft
properties.
removeAttr(name
)
Remove the named attribute from all selected elements.
removeClass(names
)
removeClass(f
(idx
,current
):names)
Remove the specified name or names from theclass
attribute of all selected elements. If a function is passed instead of a string, invoke it as a method of each element to compute the name or names to be removed.
removeData([key
])
Removed the named property from the data object of each selected element. If no property name is specified, remove the entire data object instead.
scrollLeft():int
scrollLeft(int
)
Return the horizontal scrollbar position of the first selected element or set it for all selected elements.
scrollTop():int
scrollTop(int
)
Return the vertical scrollbar position of the first selected element or set it for all selected elements.
toggleClass(names
, [add
])
toggleClass(f
(idx
,current
):names, [add
])
Toggle the specified class name or names in theclass
property of each selected element. Iff
is specified, invoke it as a method of each selected element to compute the name or names to be toggled. Ifadd
istrue
orfalse
, add or remove the class names rather than toggling them.
val():value
val(value
)
val(f
(idx
,current
)):value
Return the form value or selection state of the first selected element, or set the value or selection state of all selected elements tovalue
or to the value computed by invokingf
as a method of each element.
width():int
width(w
)
width(f
(idx
,current
):int)
Return the width (not including padding, border, or margin) of the first selected element, or set the width of all selected elements tow
or to the value computed by invokingf
as a method of each element.
The methods described here insert, delete, and replace document content. In the method signatures below, the content
argument may be a jQuery object, a string of HTML, or an individual document element, and the target
argument may be a jQuery object, an individual document element, or a selector string. See Getting and Setting Element Content and Altering Document Structure for further details.
after(content
)
after(f
(idx
):content)
Insertcontent
after each selected element, or invokef
as a method of, and insert its return value after, each selected element.
append(content
)
append(f
(idx
,html
):content)
Appendcontent
to each selected element, or invokef
as a method of, and append its return value to, each selected element.
appendTo(target
):jQuery
Append the selected elements to the end of each specifiedtarget
element, cloning them as necessary if there is more than one target.
before(content
)
before(f
(idx
):content)
Likeafter()
, but make insertions before the selected elements instead of after them.
clone([data
=false]):jQuery
Make a deep copy of each of the selected elements and return a new jQuery object representing the cloned elements. Ifdata
istrue
, also clone the data (including event handlers) associated with the selected elements.
detach([sel
])
empty()
Delete the content of all selected elements.
html():string
html(htmlText
)
html(f
(idx
,current
):htmlText)
With no arguments, return the content of the first selected element as an HTML-formatted string. With one argument, set the content of all selected elements to the specifiedhtmlText
or to the value returned by invokingf
as a method of those elements.
insertAfter(target
):jQuery
Insert the selected elements after eachtarget
element, cloning them as necessary if there is more than one target.
insertBefore(target
):jQuery
Insert the selected elements before eachtarget
element, cloning them as necessary if there is more than one target.
prepend(content
)
prepend(f
(idx
,html
):content)
Likeappend()
, but insert content at the beginning of each selected element instead of at the end.
prependTo(target
):jQuery
LikeappendTo()
, except that the selected elements are inserted at the beginning of the target elements instead of at the end.
remove([sel
])
Remove all selected elements or all selected elements that also matchsel
, from the document, removing any data (including event handlers) associated with them. Note that the removed elements are no longer part of the document, but are still members of the returned jQuery object.
replaceAll(target
)
Insert the selected elements into the document so that they replace eachtarget
element, cloning the selected elements as needed if there is more than one target.
replaceWith(content
)
replaceWith(f
(idx
,html
):content)
Replace each selected element withcontent
, or invokef
as a method of each selected element, passing the element index and current HTML content, and then replace that element with the return value.
text():string
text(plainText
)
text(f
(idx
,current
):plainText)
With no arguments, return the content of the first selected element as a plain-text string. With one argument, set the content of all selected elements to the specifiedplainText
or to the value returned by invokingf
as a method of those elements.
unwrap()
Remove the parent of each selected element, replacing it with the selected element and its siblings.
wrap(wrapper
)
wrap(f
(idx
):wrapper)
Wrapwrapper
around each selected element, cloning as needed if there is more than one selected element. If a function is passed, invoke it as a method of each selected element to compute the wrapper. Thewrapper
may be an element, a jQuery object, a selector, or a string of HTML, but it must have a single innermost element.
wrapAll(wrapper
)
Wrapwrapper
around the selected elements as a group by insertingwrapper
at the location of the first selected element and then copying all selected elements into the innermost element ofwrapper
.
wrapInner(wrapper
)
wrapInner(f
(idx
):wrapper)
Likewrap()
, but insertswrapper
(or the return value off
) around the content of each selected element rather than around the elements themselves.
The methods in this section are for registering event handlers and triggering events. See Handling Events with jQuery.
()
(f
(event
))
Registerf
as a handler for event-type, or trigger an event of event-type. jQuery defines the following convenience methods that follow this pattern:ajaxComplete() blur() focusin() mousedown() mouseup()
ajaxError() change() focusout() mouseenter() resize()
ajaxSend() click() keydown() mouseleave() scroll()
ajaxStart() dblclick() keypress() mousemove() select()
ajaxStop() error() keyup() mouseout() submit()
ajaxSuccess() focus() load() mouseover() unload()
bind(type
, [data
], f
(event
))
bind(events
)
Registerf
as a handler for events of the specifiedtype
on each of the selected elements. Ifdata
is specified, add it to the event object before invokingf
.type
may specify multiple event types and may include namespaces.If a single object is passed, treat it as a mapping of event types to handler functions, and register handlers for all the specified events on each selected element.
delegate(sel
, type
, [data
], f
(event
))
Registerf
as a live event handler.f
will be triggered when events of typetype
occur on an element matchingsel
and bubble up to any of the selected elements. Ifdata
is specified, it will be added to the event object beforef
is invoked.
die(type
, [f
(event
)])
Deregister live event handlers registered withlive()
for events of typetype
on elements that match the selector string of the current selection. If a specific event handler functionf
is specified, only deregister that one.
hover(f
(event
))
hover(enter
(event
), leave
(event
))
Register event handlers for “mouseenter” and “mouseleave” events on all selected elements. If only one function is specified, it is used as the handler for both events.
live(type
, [data
], f
(event
))
Registerf
as a live event handler for events of typetype
. Ifdata
is specified, add it to the event object before invokingf
. This method does not use the set of selected elements, but it does use the selector string and context object of the jQuery object.f
will be triggered whentype
events bubble up to the context object (usually the document) and the event’s target element matches the selector. Seedelegate()
.
one(type
, [data
], f
(event
))
one(events
)
Likebind()
, except that the registered event handlers are automatically deregistered after they are invoked once.
ready(f
())
Registerf
to be invoked when the document becomes ready, or invoke it immediately if the document is ready. This method does not use the selected elements and is a synonym for$(
.f
)
toggle(f1
(event
), f2
(event
),...)
Register an “click” event handler on all selected elements that alternates (or toggles) among the specified handler functions.
trigger(type
, [params
])
trigger(event
)
Trigger atype
event on all selected elements, passingparams
as extra parameters to event handlers.params
may be omitted, or may be a single value or an array of values. If you pass anevent
object, itstype
property specifies the event type, and any other properties are copied into the event object that is passed to the handlers.
triggerHandler(type
, [params
])
Liketrigger()
, but do not allow the triggered event to bubble or to trigger the browser’s default action.
unbind([type
],[f
(event
)])
With no arguments, deregister all jQuery event handlers on all selected elements. With one argument, deregister all event handlers for thetype
events on all selected elements. With two arguments, deregisterf
as a handler fortype
events on all selected elements.type
may name multiple event types and may include namespaces.
undelegate()
undelegate(sel
, type
, [f
(event
)])
With no arguments, deregister all live event handlers delegated from the selected elements. With two arguments, deregister live event handlers fortype
events on elements matchingsel
that are delegated from the selected elements. With three arguments, only deregister the single handlerf
.
The methods described here produce visual effects and custom animations. Most return the jQuery object on which they are called. See Animated Effects.
complete duration easing queue specialEasing step
jQuery.fx.off
Set this property totrue
to disable all effects and animations.
animate(props
, opts
)
Animate the CSS properties specified by theprops
object on each selected element, using the options specified byopts
. See Custom Animations for details of both objects.
animate(props
, [duration
], [easing
], [f
()])
Animate the CSS properties specified byprops
on each selected element, using the specifiedduration
andeasing
function. Invokef
as a method of each selected element when done.
clearQueue([qname
="fx"])
Clear the effects queue or the named queue for each selected element.
delay(duration
, [qname
="fx"])
Add a delay of the specified duration to the effects queue or the named queue.
dequeue([qname
="fx"])
Remove and invoke the next function on the effects queue or the named queue. It is not normally necessary to dequeue the effects queue.
fadeIn([duration
=400],[f
()])
fadeOut([duration
=400],[f
()])
Fade the selected elements in or out by animating their opacity forduration
ms. When complete, invokef
, if specified, as a method of each selected element.
fadeTo(duration
, opacity
, [f
()])
Animate the CSS opacity of the selected elements to opacity over the specifiedduration
. When complete, invokef
, if specified, as a method of each selected element.
hide()
hide(duration
, [f
()])
With no arguments, hide each selected element immediately. Otherwise, animate the size and opacity of each selected element so that they are hidden afterduration
ms. When complete, invokef
, if specified, as a method of each selected element.
slideDown([duration
=400],[f
()])
slideUp([duration
=400],[f
()])
slideToggle([duration
=400],[f
()])
Show, hide, or toggle the visibility of each selected element by animating its height for the specifiedduration
. When complete, invokef
, if specified, as a method of each selected element.
show()
show(duration
, [f
()])
With no arguments, show each selected element immediately. Otherwise, animate the size and opacity of each selected element so that they are fully visible afterduration
ms. When complete, invokef
, if specified, as a method of each selected element.
stop([clear
=false], [jump
=false])
Stop the current animation (if one is running) on all selected elements. Ifclear
istrue
, also clear the effects queue for each element. Ifjump
istrue
, jump the animation to its final value before stopping it.
toggle([show
])
toggle(duration
, [f
()])
Ifshow
istrue
,show()
the selected elements immediately. Ifshow
isfalse
,hide()
the selected elements immediately. Ifshow
is omitted, toggle the visibility of the elements.Ifduration
is specified, toggle the visibility of the selected elements with a size and opacity animation of the specified length. When complete, invokef
, if specified, as a method of each selected element.
queue([qname
="fx"]):array
queue([qname
="fx"], f
(next))
queue([qname
="fx"], newq
)
With no arguments or just a queue name, return the named queue of the first selected element. With a function argument, addf
to the named queue of all selected elements. With an array argument, replace the named queue of all selected elements with thenewq
array of functions.
Most of the jQuery Ajax-related functionality takes the form of utility functions rather than methods. These are some of the most complicated functions in the jQuery library. See Ajax with jQuery for complete details.
success error notmodified timeout parsererror
text html xml script json jsonp
ajaxStart ajaxSend ajaxSuccess ajaxError ajaxComplete ajaxStop
async context global processData type
beforeSend data ifModified scriptCharset url
cache dataFilter jsonp success username
complete dataType jsonpCallback timeout xhr
contentType error password traditional
jQuery.ajax(options
):XMLHttpRequest
This is the complicated but fully general Ajax function on which all of jQuery’s Ajax utilities are based. It expects a single object argument whose properties specify all details of the Ajax request and the handling of the server’s response. The most common options are described in Common Options and callback options are covered in Callbacks.
jQuery.ajaxSetup(options
)
This function sets default values for jQuery’s Ajax options. Pass the same kind of options object you would pass tojQuery.ajax()
. The values you specify will be used by any subsequent Ajax request that does not specify the value itself. This function has no return value.
jQuery.getJSON(url
, [data
], [f
(object
,status
)]):XMLHttpRequest
Asynchronously request the specifiedurl
, adding anydata
that is specified. When the response is received, parse it as JSON, and pass the resulting object to the callback functionf
. Return the XMLHttpRequest object, if any, used for the request.
jQuery.getScript(url
, [f
(text
,status
)]):XMLHttpRequest
Asynchronously request the specifiedurl
. When the response arrives, execute it as a script, and then pass the response text tof
. Return the XMLHttpRequest object, if any, used for the request. Cross-domain is allowed, but do not pass the script text tof
, and do not return an XMLHttpRequest object.
jQuery.get(url
, [data
], [f
(data
,status
,xhr
)], [type
]):XMLHttpRequest
Make an asynchronous HTTP GET request forurl
, addingdata
, if any, to the query parameter portion of that URL. When the response arrives, interpret it as data of the specifiedtype
, or according to theContent-Type
header of the response, and execute it or parse it if necessary. Finally, pass the (possibly parsed) response data to the callbackf
along with the jQuery status code and the XMLHttpRequest object used for the request. That XMLHttpRequest object, if any, is also the return value ofjQuery.get()
.
jQuery.post(url
, [data
], [f
(data
,status
,xhr
)], [type
]):XMLHttpRequest
LikejQuery.get()
, but make an HTTP POST request instead of a GET request.
jQuery.param(o
, [old
=false]):string
Serialize the names and values of the properties ofo
inwww-form-urlencoded
form, suitable for adding to a URL or passing as the body of an HTTP POST request. Most jQuery Ajax functions will do this automatically for you if you pass an object as thedata
parameter. Passtrue
as the second argument if you want jQuery 1.3–style shallow serialization.
jQuery.parseJSON(text
):object
Parse JSON-formattedtext
and return the resulting object. jQuery’s Ajax functions use this function internally when you request JSON-encoded data.
load(url
, [data
], [f
(text
,status
,xhr
)])
Asynchronously request theurl
, adding anydata
that is specified. When the response arrives, interpret it as a string of HTML and insert it into each selected element, replacing any existing content. Finally, invokef
as a method of each selected element, passing the response text, the jQuery status code, and the XMLHttpRequest object used for the request.Ifurl
includes a space, any text after the space is used as a selector, and only the portions of the response document that match that selector are inserted into the selected elements.Unlike most jQuery Ajax utilities,load()
is a method, not a function. Like most jQuery methods, it returns the jQuery object on which it was invoked.
serialize():string
Serialize the names and values of the selected forms and form elements, returning a string inwww-form-urlencoded
format.
These are miscellaneous jQuery functions and properties (not methods). See Utility Functions for more details.
jQuery.boxModel
A deprecated synonym forjQuery.support.boxModel
.
jQuery.browser
This property refers to an object that identifies the browser vendor and version. The object has the propertymsie
for Internet Explorer,mozilla
for Firefox,webkit
for Safari and Chrome, andopera
for Opera. Theversion
property is the browser version number.
jQuery.contains(a
,b
):boolean
Returns true if document elementa
contains elementb
.
jQuery.data(elt
):data
jQuery.data(elt
, key
):value
jQuery.data(elt
, data
)
jQuery.data(elt
, key
, value
)
A low-level version of thedata()
method. With one element argument, return the data object for that element. With an element and a string, return the named value from that element’s data object. With an element and an object, set the data object for the element. With an element, string, and value, set the named value in the element’s data object.
jQuery.dequeue(elt
, [qname
="fx"])
Remove and invoke the first function in the named queue of the specified element. Same as$(elt).dequeue(qname)
.
jQuery.each(o
, f
(name
,value
)):o
jQuery.each(a
, f
(index
,value
)):a
Invokef
once for each property of o, passing the name and value of the property and invokingf
as a method of the value. If the first argument is an array, or array-like object, invokef
as a method of each element in the array, passing the array index and element value as arguments. Iteration stops iff
returnsfalse
. This function returns its first argument.
jQuery.error(msg
)
Throw an exception containingmsg
. You can call this function from plug-ins or override (e.g.jQuery.error = alert
) it when debugging.
jQuery.extend(obj
):object
jQuery.extend([deep
=false], target
, obj
...):object
With one argument, copy the properties ofobj
into the globaljQuery
namespace. With two or more arguments, copy the properties of the second and subsequent objects, in order, into thetarget
object. If the optionaldeep
argument istrue
, a deep copy is done and properties are copied recursively. The return value is the object that was extended.
jQuery.globalEval(code
):void
Execute the specified JavaScriptcode
as if it were a top-level<script>
. No return value.
jQuery.grep(a
, f
(elt
,idx
):boolean, [invert
=false]):array
Return a new array that contains only the elements ofa
for whichf
returnstrue
. Or, ifinvert
istrue
, return only those elements for whichf
returnsfalse
.
jQuery.inArray(v
, a
):integer
Search the array or array-like objecta
for an elementv
, and return the index at which it is found or -1.
jQuery.isArray(x
):boolean
Returntrue
only ifx
is a true JavaScript array.
jQuery.isEmptyObject(x
):boolean
Returntrue
only ifx
has no enumerable properties.
jQuery.isFunction(x
):boolean
Returntrue
only ifx
is a JavaScript function.
jQuery.isPlainObject(x
):boolean
Returntrue
only ifx
is a plain JavaScript object, such as one created by an object literal.
jQuery.isXMLDoc(x
):true
Return true only ifx
is an XML document or an element of an XML document.
jQuery.makeArray(a
):array
Return a new JavaScript array that contains the same elements as the array-like objecta
.
jQuery.map(a
, f
(elt
, idx
)):array
Return a new array that contains the values returned byf
when invoked for each element in the array (or array-like object)a
. Return values ofnull
are ignored and returned arrays are flattened.
jQuery.merge(a
,b
):array
Append the elements of the arrayb
toa
, and returna
. The arguments may be array-like objects or true arrays.
jQuery.noConflict([radical
=false])
Restore the symbol$
to its value before the jQuery library was loaded and returnjQuery
. Ifradical
istrue
, also restore the value of thejQuery
symbol.
jQuery.proxy(f
, o
):function
jQuery.proxy(o
, name
):function
Return a function that invokesf
as a method ofo
, or a function that invokeso
[name
] as a method ofo
.
jQuery.queue(elt
, [qname
="fx"], [f
])
Query or set the named queue ofelt
, or add a new functionf
to that queue. Same as$(elt).queue(qname, f)
.
jQuery.removeData(elt
, [name
]):void
Remove the named property from the data object ofelt
or remove the data object itself.
jQuery.support
An object containing a number of properties describing the features and bugs of the current browser. Most are of interest only to plug-in writers.jQuery.support.boxModel
is false in IE browsers running in quirks mode.
jQuery.trim(s
):string
Label — a <label> for a form control
Node, Element
readonly Element control
The FormControl that this Label is associated with. IfhtmlFor
is specified, this property is the control specified by that property. Otherwise, this property is the first FormControl child of the<label>
.
readonly Form form
string htmlFor
This property mirrors the HTMLfor
attribute. Sincefor
is a reserved word in JavaScript, the name of this property is prefixed with “html” to create a legal identifier. If set, this property should specify the ID of the FormControl that this label is associated with. (It is usually simpler, however, to simply make that FormControl be a descendant of this Label.)
Link — an HTML hyperlink
Node, Element
HTML links are created with <a>
, <area>
, and <link>
elements. <a>
tags are used in the body of a document to create hyperlinks. <area>
tags are a rarely used feature for creating “image maps.” <link>
tags are used in the <head>
of a document to refer to external resources such as stylesheets and icons. The <a>
and <area>
elements have the same representation in JavaScript. <link>
elements have a somewhat different JavaScript representation, but, for convenience, these two types of links are documented together on this page.
When a Link object that represents an <a>
element is used as a string, it returns the value of its href
property.
In addition to the properties listed here, a Link object also has properties that reflect the underlying HTML attributes: hreflang
, media
, ping
, rel
, sizes
, target
, and type
. Note that the URL decomposition properties (such as host
and pathname
) that return portions of the link’s href
are only defined for <a>
and <area>
elements, not for <link>
elements, and that the sheet
, disabled
, and relList
properties are only defined for <link>
elements that refer to stylesheets.
boolean disabled
string hash
string host
string hostname
string href
string pathname
string port
string protocol
readonly DOMTokenList relList
string search
readonly CSSStyleSheet sheet
string text
string title
All HTML elements allow atitle
attribute, and it usually specifies tooltip text for that element. Setting this attribute or property on a<link>
element that hasrel
set to “alternate stylesheet” provides a name by which the user can enable or disable the stylesheet, and if the browser supports alternate stylesheets, the title you specify may appear within the browser UI in some fashion.
Location — represents and controls browser location
The location
property of the Window and Document objects refers to a Location object that represents the web address (the “location”) of the current document. The href
property contains the complete URL of that document, and the other properties of the Location object each describe a portion of that URL. These properties are much like the URL properties of the Link object. When a Location object is used as a string, the value of the href
property is returned. This means that you can use the expression location
in place of location.href
.
In addition to representing the current browser location, the Location object also controls that location. If you assign a string containing a URL to the Location object or to its href
property, the web browser loads and displays that URL. You can also make the browser load a new document by setting other Location properties to alter portions of the current URL. For example, if you set the search
property, the browser reloads the current URL with a new query string appended. If you set the hash
property, the browser does not load a new document, but it does create a new history entry. And if the hash
property identifies an element of the document, the browser scrolls the document to make that element visible.
The properties of a Location object refer to the various portions of the current document’s URL. In each of the following property descriptions, the example given is a portion of this (fictitious) URL:
string hash
The anchor portion of the URL, including the leading hash (#) mark—for example, “#results”. This portion of the document URL specifies the name of an anchor within the document.
string host
string hostname
string href
The complete text of the document’s URL, unlike other Location properties that specify only portions of the URL. Setting this property to a new URL causes the browser to read and display the contents of the new URL. Assigning a value directly to a Location object sets this property, and using a Location object as a string uses the value of this property.
string pathname
string port
string protocol
string search
MediaElement is the common superclass of the <audio>
and <video>
elements. Those two elements define almost exactly the same API, which is described here, but see Audio and Video for audio- and video-specific details. And see Scripting Audio and Video for an introduction to these media elements.
The NETWORK
constants are the possible values of the networkState
, and the HAVE
constants are the possible values of the readyState
property.
unsigned short NETWORK_EMPTY
= 0
The element has not started using the network. This would be the state before thesrc
attribute was set.
unsigned short NETWORK_IDLE
= 1
The element is not currently loading data from the network. It might have loaded the complete resource, or it might have buffered all the data it currently needs. Or it might havepreload
set to “none” and not yet have been asked to load or play the media.
unsigned short NETWORK_LOADING
= 2
The element is currently using the network to load media data.
unsigned short NETWORK_NO_SOURCE
= 3
The element is not using the network because it was not able to find a media source that it is able to play.
unsigned short HAVE_NOTHING
= 0
No media data or metadata has been loaded.
unsigned short HAVE_METADATA
= 1
The media metadata has been loaded, but no data for the current playback position has been loaded. This means that you can query theduration
of the media or the dimensions of a video and you can seek by settingcurrentTime
, but the browser cannot currently play the media atcurrentTime
.
unsigned short HAVE_CURRENT_DATA
= 2
Media data forcurrentTime
has been loaded, but not enough data has been loaded to allow the media to play. For video, this typically means that the current frame has loaded, but the next one has not. This state occurs at the end of a sound or movie.
unsigned short HAVE_FUTURE_DATA
= 3
Enough media data has been loaded to begin playing, but it is likely not enough to play to the end of the media without pausing to download more data.
unsigned short HAVE_ENOUGH_DATA
= 4
Enough media data has been loaded that the browser is likely to be able to play to the end without pausing.
boolean autoplay
readonly TimeRanges buffered
boolean controls
readonly string currentSrc
double currentTime
double defaultPlaybackRate
readonly double duration
readonly boolean ended
readonly MediaError error
readonly double initialTime
boolean loop
boolean muted
readonly unsigned short networkState
readonly boolean paused
double playbackRate
readonly TimeRanges played
string preload
This property mirrors the HTML attribute of the same name, and you can use it to specify how much media data the browser should fetch before the user requests that the media be played. The value “none” means that no data should be preloaded. The value “metadata” means that the browser should fetch the media metadata (such as duration) but not the actual data itself. The value “auto” (or just the empty string if thepreload
attribute is specified with no value) means that the browser is allowed to download the entire media resource, just in case the user decides to play it.
readonly unsigned short readyState
readonly TimeRanges seekable
readonly boolean seeking
string src
readonly Date startOffsetTime
The real-world date and time of the playback position 0, if the media metadata includes that information. (A video file might include the time at which it was recorded, for example.)
double volume
<audio>
and <video>
tags define the following event handlers, which can be set as HTML attributes or as JavaScript properties. At the time of this writing, some browsers do not support these properties and require you to register your event handlers using addEventListener()
(see EventTarget). Media events do not bubble and have no default action to cancel. The associated event object is a an ordinary Event.
Event Handler | Invoked When... |
---|---|
onabort | The element has stopped loading data, typically at the user’s request. |
oncanplay | Enough media data has loaded that playback can begin, but additional buffering is likely to be required. |
oncanplaythrough | Enough media data has loaded that the media can probably be played all the way through without pausing to buffer more data. |
ondurationchange | The |
onemptied | An error or abort has caused the |
onended | Playback has stopped because the end of the media has been reached. |
onerror | A network or other error prevented media data from being loaded. |
onloadeddata | Data for the current playback position has loaded for the first time. |
onloadedmetadata | The media metadata has been loaded, and the duration and dimensions of the media are ready. |
onloadstart | The element begins requesting media data. |
onpause | The |
onplay | The |
onplaying | The media has begun to play. |
onprogress | Network activity is continuing to load media data. Typically fired between 2 and 8 times per second. Note that the object associated with this event is a simple Event object, not the ProgressEvent object used by other APIs that fire events named “progress”. |
onratechange | The |
onseeked | The |
onseeking | The script or user has requested that playback skip to an unbuffered portion of the media and playback has stopped while data loads. The |
onstalled | The element is trying to load data, but no data is arriving. |
onsuspend | The element has buffered enough data and has temporarily stopped downloading. |
ontimeupdate | The |
onvolumechange | The |
onwaiting | Playback cannot begin, or playback has stopped, because there is not enough data buffered. A playing event will follow when enough data is ready. |
string canPlayType
(string type
)
This method asks the media element whether it can play media of the specified MIME type
. If the player is certain it cannot play the type, it returns the empty string. If it is confident (but not certain) that it can play the type, it returns the string “probably”. Media elements will generally not return “probably” unless type
includes a codecs=
parameter that lists specific media codecs. If the media element is not certain whether it will be able to play media of the specified type
, this method will return “maybe”.
void load
()
This method resets the media element and makes it select a media source and start loading its data. This happens automatically when the element is first inserted into the document or whenever you set the src
attribute. If you add, remove, or modify the <source>
descendants of the media element, however, you should call load()
explicitly.
MediaError — an <audio> or <video> error
When an error occurs on an <audio>
or <video>
tag, an error event is triggered and the error
property is set to a MediaError object. The code
property specifies what kind of error occurred. The following constants define the values of that property.
unsigned short MEDIA_ERR_ABORTED
= 1
unsigned short MEDIA_ERR_NETWORK
= 2
The media is of the right type, but a network error prevented it from being loaded.
unsigned short MEDIA_ERR_DECODE
= 3
The media is of the right type, but an encoding error prevented it from being decoded and played.
unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED
= 4
The media specified by thesrc
attribute is not a type that the browser can play.
MessageChannel — a pair of connected MessagePorts
A MessageChannel is simply a pair of connected MessagePort objects. Calling post
Message()
on either one triggers a message event on the other. If you want to establish a private communication channel with a Window or Worker thread, create a MessageChannel and then pass one member of the MessagePort pair to the Window or Worker (using the ports
argument of postMessage()
).
MessageChannel and MessagePort types are an advanced feature of HTML5 and, at the time of this writing, some browsers support cross-origin messaging (Cross-Origin Messaging) and worker threads (Web Workers) without supporting private communication channels with MessagePort.
MessageEvent — a message from another execution context
Event
Various APIs use message events for asynchronous communication between unrelated execution contexts. The Window, Worker, WebSocket, EventSource, and MessagePort objects all define onmessage
properties for handling message events. The message associated with a message event is any JavaScript value that can be cloned as described in Structured Clones. The message is wrapped in a MessageEvent object and available on the data
property. The various APIs that rely on message events also define a few additional properties in the MessageEvent object. Message events do not bubble and have no default action to cancel.
readonly any data
This property holds the message that is being delivered.data
can be of any type that can be cloned with the structured clone algorithm (Structured Clones): this includes core JavaScript values including objects and arrays but not functions. Client-side values such as Document and Element nodes are not allowed, although Blobs and ArrayBuffers are.
readonly string lastEventId
For message events on an EventSource (Comet with Server-Sent Events), this field contains thelastEventId
string, if any, that was sent by the server.
readonly string origin
For message events on an EventSource (Comet with Server-Sent Events) or on a Window (Cross-Origin Messaging), this property contains the origin URL of the message sender.
readonly MessagePort[] ports
For message events on a Window (Cross-Origin Messaging), Worker (Web Workers), or MessagePort, this property contains an array of MessagePort objects, if any were passed in the corresponding call topostMessage()
.
readonly Window source
For message events on a Window (Cross-Origin Messaging), this property refers to the Window from which the message was sent.
MessagePort — pass asynchronous messages
EventTarget
A MessagePort is used for asynchronous, event-based message passing, typically between JavaScript execution contexts, such as windows or worker threads. MessagePorts must be used in connected pairs: see MessageChannel. Calling postMessage()
on a MessagePort triggers a message event on the MessagePort to which it is connected. The cross-origin messaging API (Cross-Origin Messaging) and Web Workers (Web Workers) also communicate using a postMessage()
method and message events. Those APIs effectively use an implicit MessagePort object. Explicit use of MessageChannel and MessagePort enables the creation of additional private communication channels and can be used, for example, to allow direct communication between two sibling Worker threads.
MessageChannel and MessagePort types are an advanced feature of HTML5 and, at the time of this writing, some browsers support cross-origin messaging (Cross-Origin Messaging) and worker threads (Web Workers) without supporting private communication channels with MessagePort.
void close
()
This method disconnects this MessagePort from the port to which it was connected (if any). Subsequent calls to postMessage()
will have no effect, and no message events will be delivered in the future.
void postMessage
(any message
, [MessagePort[] ports
])
Send a clone of the specified message
through the port and deliver it in the form of a message event on the port to which this one is connected. If ports
is specified, deliver those as part of the message event as well. message
can be any value that is compatible with the structured clone algorithm (Structured Clones).
void start
()
This method causes the MessagePort to start firing message
events. Before this method is called, any data sent through the port is buffered. Delaying messages this way allows a script to register all of its event handlers before any messages are sent. Note, however, that you only need to call this method if you use the EventTarget method addEventListener()
. If you simply set the onmessage
property, start()
will be called implicitly.
Meter — a graphical meter or gauge
Node, Element
A Meter object represents an HTML <meter>
element that displays a graphical representation of a value within a range of possible values, where the range may optionally be annotated to indicate regions that are considered low, optimum, and high.
Most of the properties of this object simply mirror the HTML attributes with the same name. The JavaScript properties are numbers, however, while the HTML attributes are strings.
<meter>
is an HTML5 element that, at the time of this writing, is not yet widely supported.
Navigator — information about the web browser
The Navigator object contains properties that describe the web browser your code is running in. You can use its properties to perform platform-specific customization. The name of this object is a reference to the Netscape Navigator browser, but all browsers support it. There is only a single instance of the Navigator object, which you can reference through the navigator
property of any Window object.
Historically, the Navigator object has been used for “client sniffing,” to run different code depending on what browser was in use. Example 14-3 shows a simple way to do this, and the accompanying text in Browser and Screen Information describes the pitfalls of relying on the Navigator object. A better approach to cross-browser compatibility is described in Feature Testing.
readonly string appName
readonly string appVersion
readonly Geolocation geolocation
A reference to the Geolocation object for this browser. The methods of that object allow a script to request the current geographical location of the user.
readonly boolean onLine
This property isfalse
if the browser will not attempt to download anything from the network. This might be because the browser is certain that the computer is not connected to the network or because the user has configured the browser to perform no networking. If the browser will attempt downloads (because the computer might be online), this property istrue
. The browser fires online and offline events at the Window object when the state of this property changes.
readonly string platform
readonly string userAgent
Mozilla/5.0 (X11; U; Linux i686; en-US)
AppleWebKit/534.16 (KHTML, like Gecko)
Chrome/10.0.648.45
Safari/534.16
void registerContentHandler
(string mimeType
, string url
, string title
)
This method requests the registration of the specified url
as a handler for displaying content of the specified mimeType
. title
is a human-readable site title that the browser may display to the user. The url
argument must contain the string “%s”. When this content handler is to be used to handle a web page of the specified mimeType
, the URL of that web page will be encoded and inserted into the url
in place of the “%s”. Then, the browser will visit the resulting URL. This is a new feature of HTML5 and may not be implemented in all browsers.
void registerProtocolHandler
(string scheme
, string url
, string title
)
This method is like registerContentHandler()
, but it registers a website to use as a handler for the URL protocol scheme
. scheme
should be a string like “mailto” or “sms” without a colon. This is a new feature of HTML5 and may not be implemented in all browsers.
void yieldForStorageUpdates
()
Scripts that use Document.cookie
or Window.localStorage
or Window.sessionStorage
(see Storage and Chapter 20) are not supposed to be able to observe storage changes made by concurrently running (same-origin) scripts in other windows. Browsers can (though at the time of this writing, not all browsers do) prevent concurrent updates with a locking mechanism like those used for databases. In browsers that support it, this method explicitly releases the lock, potentially unblocking concurrent scripts in other windows. Stored values retrieved after calling this method may be different than those retrieved before calling it.
Node
All objects in a document tree (including the Document object itself) implement the Node interface, which provides the fundamental properties and methods for traversing and manipulating the tree. The parentNode
property and childNodes[]
array allow you to move up and down the document tree. You can enumerate the children of a given node by looping through the elements of childNodes[]
or by using the firstChild
and nextSibling
properties (or the lastChild
and previousSibling
properties, to loop backward). The appendChild()
, insertBefore()
, removeChild()
, and replaceChild()
methods allow you to modify the document tree by altering the children of a node.
Every object in a document tree implements both the Node interface and a more specialized subinterface, such as Element or Text. The nodeType
property specifies which subinterface a node implements. You can use this property to test the type of a node before using properties or methods of the more specialized interface. For example:
unsigned short ELEMENT_NODE
= 1
unsigned short TEXT_NODE
= 3
unsigned short PROCESSING_INSTRUCTION_NODE
= 7
unsigned short COMMENT_NODE
= 8
unsigned short DOCUMENT_NODE
= 9
unsigned short DOCUMENT_TYPE_NODE
= 10
unsigned short DOCUMENT_FRAGMENT_NODE
= 11
These constants are possible values of thenodeType
property. Note that these are static properties of theNode()
constructor function; they are not properties of individual Node objects. Also note that they are not defined in IE8 and before. For compatibility, you can hardcode values or define your own constants.
unsigned short DOCUMENT_POSITION_DISCONNECTED
= 0x01
unsigned short DOCUMENT_POSITION_PRECEDING
= 0x02
unsigned short DOCUMENT_POSITION_FOLLOWING
= 0x04
unsigned short DOCUMENT_POSITION_CONTAINS
= 0x08
unsigned short DOCUMENT_POSITION_CONTAINED_BY
= 0x10
readonly string baseURI
readonly NodeList childNodes
This property is an array-like object that contains the child nodes of the current node. This property should never benull
: for nodes with no children,childNodes
is an array withlength
zero. Note that the NodeList object is live: any changes to this element’s list of children are immediately visible through the NodeList.
readonly Node firstChild
readonly Node lastChild
readonly Node nextSibling
readonly string nodeName
readonly unsigned short nodeType
The type of the node—i.e., which subinterface the node implements. The legal values are defined by the previously listed constants. Since these constants are not supported by Internet Explorer, however, you may prefer to use hardcoded values instead of the constants. In HTML documents, the common values for this property are 1 for Element nodes, 3 for Text nodes, 8 for Comment nodes, and 9 for the single top-level Document node.
string nodeValue
readonly Document ownerDocument
The Document object with which this node is associated. For Document nodes, this property isnull
. Note that nodes have owners even if they have not been inserted into a document.
readonly Node parentNode
The parent (or container) node of this node, ornull
if there is no parent. Note that the Document and DocumentFragment nodes never have parent nodes. Also, nodes that have been removed from the document, or that are newly created and have not yet been inserted into the document tree, have aparentNode
ofnull
.
readonly Node previousSibling
string textContent
For Text and Comment nodes, this property is just a synonym for thedata
property. For Element and DocumentFragment nodes, querying this property returns the concatenated text content of all Text node descendants. Setting this property on a Element or DocumentFragment replaces all descendants of that element or fragment with a single new Text node that holds the specified value.
Node appendChild
(Node newChild
)
This method adds the node newChild
to the document, inserting it as the last child of this node. If newChild
is already in the document tree, it is removed from the tree and then reinserted at its new location. If newChild
is a DocumentFragment node, it is not inserted itself; instead, all its children are appended, in order, to the end of this node’s childNodes[]
array. Note that a node from (or created by) one document cannot be inserted into a different document. That is, the ownerDocument
property of newChild
must be the same as the ownerDocument
property of this node. (See Document.adoptNode()
). This method returns the Node that was passed to it.
Node cloneNode
(boolean deep
)
The cloneNode()
method makes and returns a copy of the node on which it is called. If passed the argument true
, it recursively clones all descendants of the node as well. Otherwise, it clones only the node and none of its children. The returned node is not part of the document tree, and its parentNode
property is null
. When an Element node is cloned, all of its attributes are also cloned. Note, however, that event-listener functions registered on a node are not cloned.
unsigned short compareDocumentPosition
(Node other
)
This method compares the document position of this node to the document position of the other
node and returns a number whose set bits describe the relationship between the nodes. If the two nodes are the same, no bits are set and this method returns 0. Otherwise, one or more bits will be set in the return value. The DOCUMENT_POSITION_
constants listed above give symbolic names for each of the bits, which have the following meanings:
DOCUMENT_POSITION_ | Value | Meaning |
---|---|---|
DISCONNECTED | 0x01 | The two nodes are not in the same document, so their position cannot be compared. |
PRECEDING | 0x02 | The |
FOLLOWING | 0x04 | The |
CONTAINS | 0x08 | The |
CONTAINED_BY | 0x10 | The |
Node insertBefore
(Node newChild
, Node refChild
)
This method inserts the node newChild
into the document tree as a child of this node and then returns the inserted node. The new node is positioned within this node’s childNodes[]
array so that it comes immediately before the refChild
node. If refChild
is null
, newChild
is inserted at the end of childNodes[]
, just as with the appendChild()
method. Note that it is illegal to call this method with a refChild
that is not a child of this node.
If newChild
is already in the document tree, it is removed from the tree and then reinserted at its new position. If newChild
is a DocumentFragment node, it is not inserted itself; instead, each of its children is inserted, in order, at the specified location.
boolean isDefaultNamespace
(string namespace
)
Returns true
if the specified namespace
URL is the same as the default namespace URL returned by lookupNamespaceURI(null)
and false
otherwise.
boolean isEqualNode
(Node other
)
Returns true
if this node and other
are identical, with equal type, tagname, attributes, and (recursively) children. Returns false
if the two nodes are not equal.
boolean isSameNode
(Node other
)
Returns true
if this node and other
are the same node and false
otherwise. You can also simply use the ==
operator.
string lookupNamespaceURI
(string prefix
)
This method returns the namespace URL associated with the specified namespace prefix
, or null
if there isn’t one. If prefix
is null
, it returns the URL of the default namespace.
string lookupPrefix
(string namespace
)
This method returns the namespace prefix associated with the specified namespace
URL, or null
if there is none.
void normalize
()
This method normalizes the text node descendants of this node, merging adjacent nodes and removing empty nodes. Documents do not normally have empty or adjacent text nodes, but this can occur when a script adds or removes nodes.
Node removeChild
(Node oldChild
)
This method removes oldChild
from the childNodes[]
array of this node. It is an error to call this method with a node that is not a child. removeChild()
returns the oldChild
node after removing it. oldChild
continues to be a valid node and can be reinserted into the document later.
Node replaceChild
(Node newChild
, Node oldChild
)
This method replaces oldChild
with newChild
and returns oldChild
. oldChild
must be a child of this node. If newChild
is already part of the document, it is first removed from the document before being reinserted at its new position. If newChild
is a DocumentFragment, it is not inserted itself; instead, each of its children is inserted, in order, at the position formerly occupied by oldChild
.
NodeList — a read-only array-like object of Nodes
A NodeList is a read-only array-like object whose elements are Node objects (usually Elements). The length
property specifies how many nodes are in the list, and you can retrieve those nodes from indexes 0 through length
-1. You can also pass the desired index to the item()
method instead of indexing the NodeList directly. The elements of a NodeList are always valid Node objects: NodeLists never contain null
elements.
NodeLists are commonly used: the childNodes
property of Node, and the return values of Document.getElementsByTagName()
, Element.getElementsByTagName()
, and HTMLDocument.get
Elements
ByName()
are all NodeLists, for example. Because NodeList is an array-like object, however, we often refer to those values informally as arrays, using language like “the child
Nodes[]
array.”
Note that NodeList objects are usually live: they are not static snapshots but immediately reflect changes to the document tree. For example, if you have a NodeList that represents the children of a specific node and you then delete one of those children, the child is removed from your NodeList. Be careful when you are looping through the elements of a NodeList: the body of your loop can make changes to the document tree (such as deleting nodes) that can affect the contents of the NodeList!
The Option object describes a single option displayed within a Select object. The properties of this object specify whether it is selected by default, whether it is currently selected, the position it has in the options[]
array of its containing Select object, the text it displays, and the value it passes to the server if it is selected when the containing form is submitted.
For historical reasons, the Option element defines a constructor that you can use to create and initialize new Option elements. (You can also use the normal Document.create
Element()
method, of course.) Once a new Option object is created, it can be appended to the options
collection of a Select object. See HTMLOptionsCollection for details.
Option
([string text
, string value
, boolean defaultSelected
, boolean selected
])The Option()
constructor creates an <option>
element. The four optional argument specify the textContent
(see Node) of the element and the initial values of the value
, default
Selected
and selected
properties.
boolean defaultSelected
boolean disabled
readonly Form form
readonly long index
The index of this Option element within its containing Select element. (See also HTMLOptionsCollection).
string label
The value of the HTMLlabel
attribute if there is one, or otherwise thetextContent
(see Node) of this Option.
boolean selected
string text
ThetextContent
(see Node) of this Option element, with leading and trailing whitespace removed and runs of two or more spaces replaced with a single space character.
string value
Output — an HTML form <output> element
Node, Element, FormControl
The Output object represents an HTML form <output>
element. In browsers that support them, Output objects implement most of the properties of FormControl.
string defaultValue
This property is the initial value of the Output element’stextContent
(see Node). When the form is reset, itsvalue
is restored to this value. If this property is set and the Output element is currently displaying its previousdefaultValue
, the new default value will be displayed. Otherwise, the currently displayed value will not be changed.
readonly DOMSettableTokenList htmlFor
The HTMLfor
attribute of an<output>
element is a space-separated list of the IDs of elements whose values contributed to the computed content displayed by the<output>
element.for
is a reserved word in JavaScript, so this corresponding JavaScript property is namedhtmlFor
instead. You can get and set this property as if it was an ordinary string value, or you can use the methods of DOMTokenList to query and set individual element IDs from the list.
PageTransitionEvent — event object for pageshow and pagehide events
Event
Browsers fire a pageshow event after the load event when a document first loads, and then fire another pageshow event each time the page is restored from the in-memory history cache. A PageTransitionEvent object is associated with each pageshow event, and its persisted
property is true
if the page is being restored rather than loaded or reloaded.
Pagehide events also have an associated PageTransitionEvent object, but the persisted
property is always true
for pagehide events.
Pageshow and pagehide events are triggered on the Window object. They do not bubble and have no default action to cancel.
PopStateEvent — history transition event
Event
Web applications that manage their own history (see History Management) use the pushState()
method of History to create a new entry in the browsing history and associate a state value or object with it. When the user uses the browser’s Back or Forward buttons to navigate between those saved states, the browser triggers a popstate event on the Window object and passes a copy of the saved application state in the associated PopStateEvent object.
readonly any state
This property holds a copy of the state value or object that was passed to theHistory.
pushState()
orHistory.replaceState()
method. Thestate
can be any value that can be cloned with the structured clone algorithm (see Structured Clones).
This infrequently used interface represents a processing instruction (or PI) in an XML document. Programmers working with HTML documents will never encounter a ProcessingInstruction node.
Progress — a progress bar
Node, Element
A Progress object represents an HTML <progress>
element and displays a graphical representation of progress toward the completion of some kind of task.
When the amount of work or time required to complete the task is not know, the Progress element is said to be in an indeterminate state. In this state, it simply displays some kind of “working” animation to indicate that something is happening. When the total amount of work (or time or bytes) and the amount accomplished are known, the Progress element is a determinate state and can display progress with some kind of completion percentage graphic.
<progress>
is an HTML5 element that, at the time of this writing, is not yet widely supported.
readonly Form form
readonly NodeList labels
double max
readonly double position
If this is a determinate Progress element, this property is the computed valuevalue/max
. Otherwise this property will be -1.
double value
A value between 0 andmax
indicating how much progress has been made. This property mirrors thevalue
attribute. If the attribute exists, the Progress element is a determinate element. If it does not exist, the Progress element is indeterminate. To switch from determinate to indeterminate mode (because of a stalled event from a MediaElement, for example), you can use theremoveAttribute()
method of Element.
The ApplicationCache, FileReader, and (level 2) XMLHttpRequest object all fire Progress events to inform interested applications of the progress of a data transfer process such as a network download or upload or a file read. Events of this sort are known generically as Progress events, but only one such event actually has the name “progress.” Other Progress events fired by FileReader and XMLHttpRequest are loadstart, load, loadend, error and abort. XMLHttpRequest also fires a timeout Progress event. ApplicationCache fires a number of events, but only the one named “progress” is a Progress event of the type described here.
Progress events are triggered in a sequence that begins with a loadstart event and always ends with a loadend event. The event immediately before loadend will be load, error, or abort, depending on whether the data transfer operation succeeded and if not, how it failed. Zero or more progress events (with the actual event name “progress”) are triggered between the initial loadstart and the final two events. (The ApplicationCache object fires a different sequence of events, but the progress event it fires as part of its cache update process is a Progress event.)
Event handlers for Progress events are passed a ProgressEvent object that specifies how many bytes of data have been transferred. This ProgressEvent object is unrelated to the HTML <progress>
element described in Progress, but the ProgressEvent object passed to the onprogress
event handler of an XMLHttpRequest (for example) could be used to update the state of a <progress>
element to display a visual download completion percentage value to the user.
readonly boolean lengthComputable
true
if thetotal
number of bytes to transfer is known andfalse
otherwise. If this property istrue
, the data transfer completion percentage for a ProgressEvente
can be computed as:var percentComplete = Math.floor(100*e.loaded/e.total);
readonly unsigned long loaded
readonly unsigned long total
The screen
property of a Window refers to a Screen object. The properties of this global object contain information about the computer monitor on which the browser is displayed. JavaScript programs can use this information to optimize their output for the user’s display capabilities. For example, a program can choose between large and small images based on the display size.
readonly unsigned long availHeight
readonly unsigned long availWidth
Specifies the available width, in pixels, of the screen on which the web browser is displayed. This available width does not include horizontal space allocated to permanent desktop features.
readonly unsigned long colorDepth
readonly unsigned long pixelDepth
readonly unsigned long height
readonly unsigned long width
Specifies the total width, in pixels, of the screen on which the web browser is displayed. See alsoavailWidth
.
Script — an HTML <script> element
Node, Element
A Script object represents an HTML <script>
element. Most of its properties simply mirror the HTML attributes with the same name, but text
works like the textContent
property inherited from Node.
Note that a <script>
will not run more than once. You cannot change the src
or text
property of an existing <script>
element to make it run a new script. You can set these properties on a newly created <script>
element to execute a script, however. Note, though, that a <script>
tag must be inserted into a Document in order to run. The script will be executed when src
or type
is set or when it is inserted into the document, whichever comes last.
boolean async
true
if the<script>
element has anasync
attribute andfalse
otherwise. See Synchronous, Asynchronous, and Deferred Scripts.
string charset
The character encoding of the script specified bysrc
URL. This property is not normally specified, and the default is to interpret the script using the same encoding as the containing document.
boolean defer
true
if the<script>
element has adefer
attribute andfalse
otherwise. See Synchronous, Asynchronous, and Deferred Scripts.
string src
string text
string type
The MIME type of the scripting language. The default is “text/javascript”, and you do not need to set this property (or the HTML attribute) for ordinary JavaScript scripts. If you set this property to a custom MIME type of your own, you can embed arbitrary textual data within the<script>
element for use by other scripts.
Select — a graphical selection list
Node, Element, FormControl
The Select element represents an HTML <select>
tag, which displays a graphical list of choices to the user. If the HTML multiple
attribute is present, the user may select any number of options from the list. If that attribute is not present, the user may select only one option, and options have a radio button behavior—selecting one deselects whichever was previously selected.
The options in a Select element can be displayed in two distinct ways. If the size
attribute has a value greater than 1, or if the multiple
attribute is present, they are displayed in a list box that is size
lines high in the browser window. If size
is smaller than the number of options, the listbox includes a scrollbar. On the other hand, if size
is 1 and multiple
is not specified, the currently selected option is displayed on a single line, and the list of other options is made available through a drop-down menu. The first presentation style displays the options clearly but requires more space in the browser window. The second style requires minimal space but does not display alternative options as explicitly. size
defaults to 4 when the multiple
attribute is set, and 1 otherwise.
The options[]
property of the Select element is the most interesting. This is an array-like object of <option>
elements (see Option) that describe the choices presented by the Select element. For historical reasons, this array-like object has some unusual behaviors for adding and removing new <option>
elements. See HTMLOptionsCollection for details.
For a Select element without the multiple
attribute specified, you can determine which option is selected with the selectedIndex
property. When multiple selections are allowed, however, this property tells you the index of only the first selected option. To determine the full set of selected options, you must iterate through the options[]
array and check the selected
property of each Option object.
In addition to the properties listed here, Select elements also define the properties of Element and FormControl and mirror HTML attributes with the following JavaScript properties: multiple
, required
, and size
.
unsigned long length
The number of elements in theoptions
collection. Select objects are themselves array-like objects, and for a Select objects
and a numbern
,s[n]
is the same ass.options[n]
.
readonly HTMLOptionsCollection options
An array-like object of Option elements contained by this Select element. See HTMLOptionsCollection for a description of the historical behavior of this collection.
long selectedIndex
The position of the selected option in theoptions
array. If no options are selected, this property is −1. If multiple options are selected, this property holds the index of the first selected option.Setting the value of this property selects the specified option and deselects all other options, even if the Select object has themultiple
attribute specified. When you’re doing listbox selection (whensize
> 1), you can deselect all options by settingselectedIndex
to −1. Note that changing the selection in this way does not trigger theonchange()
event handler.
readonly HTMLCollection selectedOptions
The methods listed here all delegate to the same-named methods of the options
property; see HTMLOptionsCollection for details. In addition to these methods, Select elements also implement the methods of Element and FormControl.
void add
(Element element
, [any before
])
This method works just like options.add()
to add a new Option element.
any item
(unsigned long index
)
This method works just like options.item()
to return an Option element. It is also invoked when the user indexes the Select object directly.
void remove
(long index
)
This method works just like options.remove()
to remove an Option element. See HTMLOptionsCollection.
The localStorage
and sessionStorage
properties of Window are both Session objects that represent persistent client-side associative arrays that map string keys to values. In theory, a Session object can store any value that can be cloned with the structured clone algorithm (see Structured Clones). At the time of this writing, however, browsers only support string values.
The methods of a Storage object allow you to add new key/value pairs, remove key/value pairs, and query the value associated with a specified key. You don’t have to call these methods explicitly, however: you can use array indexing and the delete
operator in their place, and treat localStorage
and sessionStorage
as if they were ordinary JavaScript objects.
If you change the contents of a Storage object, any other Windows that have access to the same storage area (because they’re displaying a document from the same origin) will be notified of the change with a StorageEvent.
any getItem
(string key
)
Returns the value associated with key
. (In implementations current at the time of this writing, the return value will always be a string.) This method is invoked implicitly when you index the Storage object to retrieve a property named key
.
string key
(unsigned long n
)
Returns the n
th key in this Storage object or null
if n
is greater than or equal to length
. Note that the order of the keys may change if you add or remove key/value pairs.
void removeItem
(string key
)
Removes key
, and its associated value, from this Storage object. This method is invoked implicitly if you use the delete
operator to delete the property named key
.
void setItem
(string key
, any value
)
Add the specified key
and value
to this Storage object, replacing any value that is already associated with key
. This method is invoked implicitly if you assign a value
to the property named key
of the Storage object. That is, you can use ordinary JavaScript property access and assignment syntax instead of explicitly calling setItem()
.
StorageEvent
Event
The localStorage
and sessionStorage
properties of a Window object refer to Storage objects that represent client-side storage areas (see localStorage and sessionStorage). If more than one window, tab, or frame is displaying documents from the same origin, multiple windows have access to the same storage areas. If a script in one window changes the contents of a storage area, a storage event is triggered on all other Window objects that share access to that storage area. (Note that the event is not triggered in the window that made the change.) Storage events are triggered on the Window object and do not bubble. They do not have any default action that can be canceled. The object associated with a storage event is a StorageEvent object, and its properties describe the change that occurred to the storage area.
readonly string key
This property is the key that was set or deleted. If the entire storage area was cleared withStorage.clear()
, this property (as well asnewValue
andoldValue
) will benull
.
readonly any newValue
The new value of the specifiedkey
. This will benull
if the key was removed. At the time of this writing, browser implementations only allow string values to be stored.
readonly any oldValue
The old value of the key that was changed, ornull
if this key was newly added to the storage area. At the time of this writing browser implementations only allow string values to be stored.
readonly Storage storageArea
This property will be equal to thelocalStorage
orsessionStorage
property of the Window that receives this event and indicates which storage area was changed.
readonly string url
Style — an HTML <style> element
Node, Element
Table — an HTML <table>
Node, Element
The Table object represents an HTML <table>
element and defines a number of convenience properties and methods for querying and modifying various sections of the table. These methods and properties make it easier to work with tables, but their functionality can also be duplicated with core DOM methods.
HTML tables are composed of sections, rows, and cells. See TableCell, TableRow, and TableSection.
In addition to the properties listed here, Table elements also have a summary
property that mirrors the HTML attribute of the same name.
Element caption
readonly HTMLCollection rows
An array-like object of TableRow objects that represent all the rows in the table. This includes all rows defined within<thead>
,<tfoot>
, and<tbody>
tags.
readonly HTMLCollection tBodies
TableSection tFoot
TableSection tHead
Element createCaption
()
This method returns an Element object representing the <caption>
of this table. If the table already has a caption, this method simply returns it. If the table does not have an existing <caption>
, this method creates a new (empty) caption and inserts it into the table before returning it.
TableSection createTBody
()
This method creates a new <tbody>
element, inserts it into the table, and returns it. The new element is inserted after the last <tbody>
in the table, or at the end of the table.
TableSection createTFoot
()
This method returns a TableSection representing the first <tfoot>
element for this table. If the table already has a footer, this method simply returns it. If the table does not have an existing footer, this method creates a new (empty) <tfoot>
element and inserts it into the table before returning it.
TableSection createTHead
()
This method returns a TableSection representing the first <thead>
element for this table. If the table already has a header, this method simply returns it. If the table does not have an existing header, this method creates a new (empty) <thead>
element and inserts it into the table before returning it.
void deleteRow
(long index
)
This method deletes the row at the specified position from the table. Rows are numbered in the order in which they appear in the document source. Rows in <thead>
and <tfoot>
sections are numbered along with all other rows in the table.
TableRow insertRow
([long index
])
This method creates a new <tr>
element, inserts it into the table at the specified index
, and returns it.
The new row is inserted in the same section and immediately before the existing row at the position specified by index
. If index
is equal to the number of rows in the table (or to -1), the new row is appended to the last section of the table. If the table is initially empty, the new row is inserted into a new <tbody>
section that is itself inserted into the table.
You can use the convenience method TableRow.insertCell()
to add content to the newly created row. See also the insertRow()
method of TableSection.
TableRow — a <tr> element in an HTML table
Node, Element
A TableRow object represents a row (a <tr>
element) in an HTML table and defines properties and methods for working with the TableCell elements of the row.
Element insertCell
([long index
])
This method creates a new <td>
element, inserts it into the row at the specified position, and then returns it. The new cell is inserted immediately before the cell that is currently at the position specified by index
. If index
is omitted, is -1, or is equal to the number of cells in the row, the new cell is appended to the end of the row.
Note that this convenience method inserts <td>
data cells only. If you need to add a header cell into a row, you must create and insert the <th>
element using Document.create
Element()
and Node.insertBefore()
or related methods.
TableSection — a header, footer, or body section of a table
Node, Element
A TableSection object represents a <tbody>
, <thead>
, or <tfoot>
element in an HTML table. The tHead
and tFoot
properties of a Table are TableSection objects, and the tBodies
property is an HTMLCollection of TableSection objects.
A TableSection contains TableRow objects and is contained in a Table object.
void deleteRow
(long index
)
This method deletes the row at the specified position within this section.
TableRow insertRow
([long index
])
This method creates a new <tr>
element, inserts it into this table section at the specified position, and returns it. If index
is -1 or is omitted or equals the number of rows currently in the section, the new row is appended to the end of the section. Otherwise, the new row is inserted immediately before the row that is currently at the position specified by index
. Note that for this method, index
specifies a row position within a single table section, not within the entire table.
Text — a run of text in a document
Node
A Text node represents a run of plain text in a document and typically appear in the document tree as children of Element. The textual content of a Text node is available through the data
property or through the nodeValue
and textContent properties inherited from Node. You can create a new Text node with Document.createTextNode()
. Text nodes never have children.
string data
readonly unsigned long length
readonly string wholeText
The text content of this node and any adjacent text nodes before or after this one. If you’ve called thenormalize()
method of the parent Node, this property will be the same asdata
.
Unless you are writing a web-based text editor application, these methods are not commonly used.
void deleteData
(unsigned long offset
, unsigned long count
)
This method deletes characters from this Text node, starting with the character at the position offset
and continuing for count
characters. If offset
plus count
is greater than the number of characters in the Text node, all characters from offset
to the end of the string are deleted.
void insertData
(unsigned long offset
, string text
)
This method inserts the specified text
into the Text node at the specified offset
.
void replaceData
(unsigned long offset
, unsigned long count
, string text
)
This method replaces count
characters starting at position offset
with the contents of the string text
. If the sum of offset
and count
is greater than the length of the Text node, all characters from offset
on are replaced.
Text replaceWholeText
(string text
)
This method creates a new Text node that contains the specified text
. It then replaces this node and any adjacent Text nodes with the single new node and returns the new node. See the wholeText
property above and the normalize()
method of Node.
Text splitText
(unsigned long offset
)
This method splits a Text node in two at the specified offset
. The original Text node is modified so that it contains all text content up to, but not including, the character at position offset
. A new Text node is created to contain all the characters from (and including) the position offset
to the end of the string. This new Text node is the return value of the method. Additionally, if the original Text node has a parentNode
, the new node is inserted into this parent node immediately after the original node.
string substringData
(unsigned long offset
, unsigned long count
)
This method extracts and returns the substring that starts at position offset
and continues for count
characters from the text of a Text node. If a Text node contains a very large amount of text, using this method may be more efficient than using String.substring()
.
TextArea — a multiline text input area
Node, Element, FormControl
A TextArea object represents an HTML <textarea>
element that creates a multiline text input field, often within an HTML form. The initial content of the text area is specified as plain text between the <textarea>
and </textarea>
tags. You can query and set the displayed text with the value
property.
TextArea is a form control element like Input and Select. Like those objects, it defines form
, name
, type
, and value
properties and the other properties and methods documented in FormControl.
In addition to the properties listed here, TextArea elements also define the properties of Element and FormControl and mirror HTML attributes with the following JavaScript properties: cols
, maxLength
, rows
, placeholder
, readOnly
, required
, and wrap
.
string defaultValue
The initial plain-text content of the<textarea>
element. When the form is reset, the text area is restored to this value. This property is the same as thetextContent
property inherited from Node.
unsigned long selectionEnd
unsigned long selectionStart
readonly unsigned long textLength
In addition to the methods listed here, TextArea elements also implement the methods of Element and FormControl.
TextMetrics — measurements of a string of text
TimeRanges — a set of media time ranges
The buffered
, played
, and seekable
properties of a MediaElement represent the portions of a media timeline that have data buffered, that have been played, and that playback can be started at. Each of these portions of the timeline may include multiple disjoint time ranges (this happens to the played
property when the user skips to the middle of a video file, for example). A TimeRanges object represents zero or more disjoint time ranges. The length
property specifies the number of ranges, and the start()
and end()
methods return the bounds of each range.
The TimeRanges
objects returned by MediaElements are always normalized
, which means that the ranges they contain are in order, nonempty and do not touch or overlap.
TypedArray — fixed-size binary arrays
ArrayBufferView
A TypedArray is an ArrayBufferView that interprets the bytes of an underlying ArrayBuffer as an array of numbers and allows read and write access to the elements of that array. This page does not document a single type named TypedArray. Instead, it covers eight different kinds of typed arrays. These eight types are all subtypes of ArrayBufferView, and they differ from each other only in the number of bytes per array element and the way those bytes are interpreted. The eight actual types are:
Int8Array
Int16Array
Int32Array
Uint8Array
Uint16Array
Uint32Array
Float32Array
Float64Array
As their name implies, these are array-like objects, and you can get and set element values using normal square-bracket array notation. Note, however, that objects of these types always have a fixed length.
As noted in the descriptions above, the TypedArray classes use the default byte ordering of the underlying platform. See DataView for an ArrayBuffer view that allows explicit control over byte order.
TypedArray
(unsigned long length
)TypedArray
(TypedArray
array
)TypedArray
(type[] array
)TypedArray
(ArrayBuffer buffer
,[unsigned long byteOffset
],[unsigned long length
])Each of the eight kinds of TypedArray has a constructor that can be invoked in the four ways shown above. The constructors work as follows:
long BYTES_PER_ELEMENT
The number of bytes that each element of this array occupies in the underlying ArrayBuffer. This constant will have the value 1, 2, 4, or 8, depending on what kind of TypedArray is in use.
readonly unsigned long length
The number of elements in the array. TypedArrays have fixed size, and the value of this property never changes. Note that this property is not, in general, the same as thebyteLength
property inherited from ArrayBufferView.
void set
(TypedArray
array
, [unsigned long offset
])
Copy elements of array
into this typed array, starting at index offset
.
void set
(number[] array
, [unsigned long offset
])
This version of set()
is like the one above, but it uses a true JavaScript array rather than a typed array.
TypedArray
subarray
(long start
, long end
)
Return a new TypedArray that uses the same underlying ArrayBuffer as this one does. The first element of the returned array is element start
of this array. And the last element of the returned array is element end
–1 of this array. Negative values of start
and end
are interpreted as offsets from the end of this array rather than the beginning.
URL — Blob URL methods
The URL
property of the Window object refers to this URL object. In the future, this object may become a constructor for a URL parsing and manipulation utility class. At the time of this writing, however, it simply serves as a namespace for the two Blob URL functions described below. See Blobs and Blob URLs for more on Blobs and Blob URLs.
The URL object is new at the time of this writing and the API is not yet stable. You may need to use it with a vendor-specific prefix: webkitURL
, for example.
Video — an HTML <video> element
Node, Element, MediaElement
A Video object represents an HTML <video>
element. <video>
and <audio>
elements are very similar and their common properties and methods are documented in MediaElement. This page documents a handful of additional properties that are specific to Video objects.
DOMSettableTokenList audio
This property specifies audio options for the video. The options are specified as a space-separated list of tokens on the HTMLaudio
attribute, and the set is mirrored in JavaScript as a DOMSettableTokenList. At the time of this writing, however, the HTML5 standard defines only one legal token (“muted”), and you can treat this property as a string.
unsigned long height
string poster
readonly unsigned long videoHeight
readonly unsigned long videoWidth
unsigned long width
The desired onscreen width of the<video>
element, in CSS pixels. Mirrors the HTMLwidth
attribute.
A WebSocket represents a long-lived, bidirectional, socket-like network connection to a server that supports the WebSocket protocol. This is a fundamentally different networking model than the request/response model of HTTP. Create a new connection with the WebSocket()
constructor. Use send()
to send textual messages to the server, and register a handler for message events to receive messages from the server. See Web Sockets for further details.
WebSockets are a new Web API and, at the time of this writing, are not supported by all browsers.
WebSocket
(string url
, [string[] protocols
])The WebSocket()
constructor creates a new WebSocket object and begins the (asynchronous) process of establishing a connection to a WebSocket server. The url
argument specifies the server to connect to and must be an absolute URL that uses the ws://
or wss://
URL scheme. The protocols
argument is an array of subprotocol names. If the argument is specified, it is the client’s way of telling the server which communication protocols or which protocol versions it is able to “speak.” The server must choose one and inform the client as part of the connection process. protocols
may also be specified as a single string instead of an array: in this case, it is treated as an array of length 1.
These constants are the values of the readyState
property.
unsigned short CONNECTING
= 0
The connection process is underway.
unsigned short OPEN
= 1
The WebSocket is connected to the server; messages can be sent and received.
unsigned short CLOSING
= 2
The connection is closing.
unsigned short CLOSED
= 3
The connection has closed.
readonly unsigned long bufferedAmount
readonly string protocol
If an array of subprotocols was passed to theWebSocket()
constructor, this property holds the one chosen by the server. Note that when the WebSocket is first created, the connection is not established and the server’s choice is not known. So this property starts as the empty string. If you passed protocols to the constructor, this property will change to reflect the server’s choice of subprotocol when the open event is triggered.
readonly unsigned short readyState
The current state of the WebSocket connection. This property holds one of the constant values listed above.
readonly string url
void close
()
If the connection is not already closed or closing, this method begins the process of closing it, setting readyState
to CLOSING
. Message events may continue to be fired even after close()
is called, until readyState
changes to CLOSED
and the close event is fired.
void send
(string data
)
This method sends the specified data
to the server at the other end of the WebSocket connection. This method throws an exception if called before the open event has been triggered, while readyState
is still CONNECTING
. The WebSocket protocol supports binary data, but at the time of this writing, the WebSocket API only allows strings to be sent and received.
Network communication is inherently asynchronous, and like XMLHttpRequest, the WebSocket API is event-based. WebSocket defines four event handler registration properties, and also implements EventTarget, so you can also register event handlers using the EventTarget methods. The events described below are all fired at the WebSocket object. None of them bubble, and none have a default action to cancel. Note, however, that they do have different event objects associated with them.
onclose
A close event is triggered when the WebSocket connection closes (andreadyState
changes to CLOSED). The associated event object is a CloseEvent, which specifies whether the connection closed cleanly or not.
onerror
An error event is triggered when a network or WebSocket protocol error occurs. The associated event object is a simple Event.
onmessage
When the server sends data through the WebSocket, the WebSocket fires a message event, with an associated MessageEvent object whosedata
property refers to the received message.
onopen
TheWebSocket()
constructor returns before the connection to the specifiedurl
is established. When the connection handshake completes and the WebSocket is ready to send and receive data, an open event is fired. The associated event object is a simple Event.
Window — a web browser window, tab, or frame
EventTarget
The Window object represents a browser window, tab, or frame. It is documented in detail in Chapter 14. In client-side JavaScript, the Window serves as the “global object,” and all expressions are evaluated in the context of the current Window object. This means that no special syntax is required to refer to the current window, and you can use the properties of that window object as if they were global variables. For example, you can write document
rather than
. Similarly, you can use the methods of the current window object as if they were functions: e.g., window
.documentalert()
instead of
. window
.alert()
Some of the properties and methods of this object actually query or manipulate the browser window in some way. Others are defined here simply because this is the global object. In addition to the properties and methods listed here, the Window object also implements all the global properties and functions defined by core JavaScript. See Global in Part III for details.
Web browsers fire many kinds of events at windows. This means that the Window object defines quite a few event handlers, and that Window objects implement the methods defined by EventTarget.
The Window object has window
and self
properties that refer to the window object itself. You can use these to make the current window reference explicit rather than implicit.
A Window can contain other Window objects, typically in the form of <iframe>
tags. Each Window is an array-like object of nested Window objects. Rather than indexing a Window object directly, however, you typically use its self-referential frames
property as if it were the array-like object. The parent
and top
properties of a Window refer to the directly containing window and top-level ancestor window.
New top-level browser windows are created with the Window.open()
method. When you call this method, save the return value of the open()
call in a variable and use that variable to reference the new window. The opener
property of the new window is a reference back to the window that opened it.
In addition to the properties listed here, document content displayed within the window causes new properties to come into existence. As explained in Document Elements As Window Properties, you can refer to an element within the document by using the value of the element’s id
attribute as a property of the window (and since the window is the global object, its properties are global variables).
readonly ApplicationCache applicationCache
A reference to the ApplicationCache object. Cached and offline web apps can use this object to manage their cache updates.
readonly any dialogArguments
In Window objects created by theshowModalDialog()
, this property is thearguments
value that was passed toshowModalDialog()
. In regular Window objects, this property does not exist. See Dialog Boxes for more information.
readonly Document document
readonly Event
event
[IE only]In Internet Explorer, this property refers to the Event object that describes the most recent event. In IE8 and before, the event object is not always passed to the event handler and must sometimes be accessed through this property. See Chapter 17 for further details.
readonly Element frameElement
If this Window is within an<iframe>
, this property refers to that IFrame element. For top-level windows, this property isnull
.
readonly Window frames
readonly History history
readonly long innerHeight
readonly long innerWidth
The height and width, in pixels, of the document display area of this window. These properties are not supported in IE8 and before. See Example 15-9 for an example.
readonly unsigned long length
readonly Storage localStorage
This property refers to a Storage object that provides client-side storage for name/value pairs. Data stored throughlocalStorage
is visible to and shared with any documents with the same origin, and persists until deleted by the user or by a script. See alsosessionStorage
and localStorage and sessionStorage.
readonly Location location
The Location object for this window. This object specifies the URL of the currently loaded document. Setting this property to a new URL string causes the browser to load and display the contents of that URL. See Location.
string name
The name of the window. The name is optionally specified when the window is created with theopen()
method or with thename
attribute of a<frame>
tag. The name of a window can be used as the value of atarget
attribute of an<a>
or<form>
tag. Using thetarget
attribute in this way specifies that the hyperlinked document or the results of form submission should be displayed in the named window or frame.
readonly Navigator navigator
A reference to the Navigator object, which provides version and configuration information about the web browser. See Navigator.
readonly Window opener
A read/write reference to the Window object that contained the script that calledopen()
to open this browser window, ornull
for windows that were not created in that way. This property is valid only for Window objects that represent top-level windows, not those that represent frames. Theopener
property is useful so that a newly created window can refer to properties and functions defined in the window that created it.
readonly long outerHeight
readonly long outerWidth
readonly long pageXOffset
readonly long pageYOffset
The number of pixels that the current document has been scrolled to the right (pageX
Offset
) and down (pageYOffset
). These properties are not supported in IE8 and before. See Example 15-8 for an example and compatibility code that works in IE.
readonly Window parent
string returnValue
readonly Screen screen
The Screen object that specifies information about the screen: the number of available pixels and the number of available colors. See Screen for details.
readonly long screenX
readonly long screenY
readonly Window self
readonly Storage sessionStorage
This property refers to a Storage object that provides client-side storage for name/value pairs. Data stored throughsessionStorage
is visible only to same-origin documents within the same top-level window or tab, and persists only for the duration of the browsing session. See alsolocalStorage
and localStorage and sessionStorage.
readonly Window top
readonly object URL
At the time of this writing, this property is simply a reference to a placeholder object that defines the functions documented at URL. In the future, this property may become aURL()
constructor and define an API for parsing URLs and their query strings.
readonly Window window
As the global object for client-side JavaScript, the Window object must define all the global constructors for the client-side environment. Although they are not listed here, all of the global constructors documented in this reference section are properties of the Window object. The fact that client-side JavaScript defines Image()
and XMLHttpRequest()
constructors, for example, means that every Window object has properties named Image
and XMLHttpRequest
.
The Window object defines the following methods and also inherits all the global functions defined by core JavaScript (see Global in Part III).
void alert
(string message
)
The alert()
method displays the specified plain-text message
to the user in a dialog box. The dialog box contains an OK button the user can click to dismiss it. The dialog box is typically modal (at least for the current tab), and the call to alert()
blocks until the dialog is dismissed.
string atob
(string atob
)
This utility function accepts a base64-encoded string and decodes it into a JavaScript binary string in which each character represents a single byte. Use the charCodeAt()
method of the returned string to extract byte values. See also btoa()
.
void blur
()
The blur()
method removes keyboard focus from the top-level browser window specified by the Window object. It is unspecified which window gains keyboard focus as a result. In some browsers and/or platforms, this method may have no effect.
string btoa
(string btoa
)
This utility function accepts a JavaScript binary string (in which each character represents a single byte) as an argument and returns the base64 encoding of it. Use String.fromCharCode()
to create a binary string from an arbitrary sequence of byte values. See also atob()
.
void clearInterval
(long handle
)
clearInterval()
stops the repeated execution of code that was started by a call to set
Interval()
. intervalId
must be the value that was returned by a call to setInterval()
.
void clearTimeout
(long handle
)
clearTimeout()
cancels the execution of code that has been deferred with the setTimeout()
method. The timeoutId
argument is a value returned by the call to setTimeout()
and identifies which deferred code to cancel.
void close
()
The close()
method closes the top-level browser window on which it is invoked. Scripts are generally only allowed to close windows that they opened.
boolean confirm
(string message
)
This method displays the specified question
as plain text in a modal dialog box. The dialog box contains OK and Cancel buttons that the user can use to answer the question. If the user clicks the OK button, confirm()
returns true
. If the user clicks Cancel, confirm()
returns false
.
void focus
()
This method gives keyboard focus to the browser window. On most platforms, a top-level window is brought forward to the top of the window stack so that it becomes visible when it is given focus.
CSSStyleDeclaration getComputedStyle
(Element elt
, [string pseudoElt
])
An element in a document can obtain style information from an inline style
attribute and from any number of stylesheets in the stylesheet “cascade.” Before the element can actually be displayed in a window, its style information must be extracted from the cascade, and styles specified with relative units (such as percentages or “ems”) must be “computed” to convert to pixels. These computed values are sometimes also called “used” values.
This method returns a read-only CSSStyleDeclaration object that represents the CSS style values actually used to display the element. All dimensions will be in pixels.
The second argument to this method is usually omitted or null
, but you can also pass the CSS pseudoelement “::before” or “::after” to determine the styles used for CSS-generated content.
Contrast getComputedStyle()
with the style
property of an HTMLElement, which gives you access only to the inline styles of an element, in whatever units they were specified, and tells you nothing about stylesheet styles that apply to the element.
This method is not implemented in IE8 and before, but similar functionality is available through the nonstandard currentStyle
property of each HTMLElement object.
Window open
([string url
], [string target
], [string features
], [string replace
])
The open()
method loads and displays the specified url
in a new or existing browser window or tab. The url
argument specifies the URL of the document to load. If not specified, “about:blank” is used.
The target
argument specifies the name of the window into which the url
should be loaded. If not specified, “_blank” is used. If target
is “_blank”, or if there is no existing window with the specified name, a new window is created to display the contents of url
. Otherwise, the url
is loaded into the existing window with the specified name.
The features
argument used to specify the window position, size, and features (such as menubar, toolbar, etc.). In modern browsers that support tabs, it is often ignored, and it is not documented here.
When you use Window.open()
to load a new document into an existing window, the replace
argument specifies whether the new document has its own entry in the window’s browsing history or whether it replaces the history entry of the current document. If replace
is true
, the new document replaces the old. If this argument is false
or is not specified, the new document has its own entry in the Window’s browsing history. This argument provides functionality much like that of the Location.replace()
method.
void postMessage
(any message
, string targetOrigin
, [MessagePort[] ports
])
Send a copy of the specified message
and the optionally specified ports
to this window, but only if the document displayed in this window has the specified targetOrigin
.
message
can be any object that can be cloned with the structured clone algorithm (see Structured Clones). targetOrigin
should be an absolute URL that specifies the scheme, host, and port of the desired origin. Or targetOrigin
can be “*” if any origin is acceptable or “/” to use the script’s own origin.
Calling this method on a window causes a message event on that window. See MessageEvent and Cross-Origin Messaging.
void print
()
Calling print()
causes the browser to behave as if the user had selected the browser’s Print button or menu item. Usually, this brings up a dialog box that enables the user to cancel or customize the print request.
string prompt
(string message
, [string default
])
The prompt()
method displays the specified message
in a modal dialog box that also contains a text input field and OK and Cancel buttons and blocks until the user clicks one of the buttons.
If the user clicks the Cancel button, prompt()
returns null
. If the user clicks the OK button, prompt()
returns the text currently displayed in the input field.
The default
argument specifies the initial value of the text input field
void scrollBy
(long x
, long y
)
scrollBy()
scrolls the document displayed in window
by the relative amounts specified by dx
and dy
.
void scrollTo
(long x
, long y
)
scrollTo()
scrolls the document displayed within window
so the point in the document specified by the x
and y
coordinates is displayed in the upper left corner, if possible.
long setInterval
(function f
, unsigned long interval
, any args
...)
setInterval()
registers the function f
to be invoked after interval
milliseconds and then to be repeatedly invoked at that specified interval
. f
will be invoked with the Window as its this
value, and will be passed any additional args
that were passed to setInterval()
.
setInterval()
returns a number that can later be passed to Window.clearInterval()
to cancel the execution of code
.
For historical reasons, f
may be a string of JavaScript code instead of a function. If so, the string will be evaluated (as if it were a <script>
) every interval
milliseconds.
Use setTimeout()
when you want to defer the execution of code but do not want it to be repeatedly executed.
long setTimeout
(function f
, unsigned long timeout
, any args
...)
setTimeout()
is like setInterval()
, except that it invokes the specified function only once: it registers f
to be invoked after timeout
milliseconds have been elapsed and returns a number that can later be passed to clearTimeout()
to cancel the pending invocation. When the specified time has passed, f
will be invoked as a method of the Window and will be passed any specified args
. If f
is a string rather than a function, it will be executed after timeout
milliseconds as if it were a <script>
.
any showModalDialog
(string url
, [any arguments
])
This method creates a new Window object, sets its dialogArguments
property to arguments
, loads url
into the window, and blocks until the window is closed. Once closed, it returns the returnValue
property of the window. See Dialog Boxes and Example 14-4 for a discussion and example.
Most events that occur on HTML elements bubble up the document tree, to the Document object and then on to the Window object. For this reason, you can use all of the event handler properties listed in Element on Window objects. And in addition, you can use the event handler properties listed below. For historical reasons, each of the event handler properties listed here can also be defined (as an HTML attribute or as a JavaScript property) on the <body>
element.
Event Handler | Invoked... |
---|---|
onafterprint | After the window’s contents are printed |
onbeforeprint | Before the window’s contents are printed |
onbefore unload | Before navigating away from the current page. If the return value is a string, or if the handler sets the |
onblur | When the window loses keyboard focus |
onerror | When a JavaScript error occurs. This is not an ordinary event handler. See Error Handling. |
onfocus | When the window gains keyboard focus |
onhashchange | When the fragment identifier (see |
onload | When the document and its external resources are fully loaded |
onmessage | When a script in another window sends a message by calling the |
onoffline | When the browser loses its connection to the Internet |
ononline | When the browser regains a connection to the Internet |
onpagehide | When the page is about to be cached and replaced by another page |
onpageshow | When a page is first loaded, a pageshow event is fired right after the load event, and the event object has a |
onpopstate | When the browser loads a new page or restores a state saved with |
onresize | When the user changes the size of the browser window |
onscroll | When the user scrolls the browser window |
onstorage | Content of |
onunload | The browser navigates away from a page. Note that if you register an |
Worker — a worker thread
EventTarget
A Worker represents a background thread. Create a new Worker with the Worker()
constructor, passing the URL of a file of JavaScript code for it to run. The JavaScript code in that file can use synchronous APIs or perform compute-intensive tasks without freezing up the main UI thread. Workers run their code in a completely separate execution context (see WorkerGlobalScope), and the only way to exchange data with a worker is via asynchronous events. Call postMessage()
to send data to the Worker, and handle message events to receive data from the worker.
See Web Workers for an introduction to worker threads.
Worker
(string scriptURL
)Constructs a new Worker object and causes it to run the JavaScript code in scriptURL
.
void postMessage
(any message
, [MessagePort[] ports
])
Send message
to the worker, which will receive it as a MessageEvent object sent to its on
message
handler. message
can be a JavaScript primitive value or object or array, but not a function. Client-side types ArrayBuffer, File, Blob, and ImageData are allowed, but Nodes, such as Document and Element, are not allowed (see Structured Clones for details).
The optional ports
argument is an advanced feature that allows you to pass one or more direct communication channels to the Worker. If you create two Worker objects, for example, you can allow them to communicate directly with each other by passing them each one end of a MessageChannel.
Because workers run code in a completely separate execution environment than the one that created them, the only way they can communicate with their parent thread is by events. You can register event handlers on these properties or use the EventTarget methods.
onerror
When an exception is thrown in the script being run by a Worker, and that error is not handled by theonerror
handler of the WorkerGlobalScope, the error triggers an error event on the Worker object. The event object associated with this event is a ErrorEvent. The error event does not bubble. If this worker is owned by another worker, canceling an error event prevents it from being propagated up to the parent worker. If this Worker object is already in the main thread, canceling the event may prevent it from being displayed in the JavaScript console.
onmessage
When the script that the worker is running calls its globalpostMessage()
function (see WorkerGlobalScope), a message event is triggered on the Worker object. The object passed to the event handler is a MessageEvent, and itsdata
property contains a clone of the value that the worker script passed topostMessage()
.
WorkerGlobalScope
EventTarget, Global
A Worker thread runs in a completely different execution environment than the parent thread that spawned it. The global object for a worker is a WorkerGlobalScope object, so this page describes the execution environment “inside” a Worker. Since WorkerGlobalScope is a global object, it inherits the Global object of core JavaScript.
In addition to the properties listed here, WorkerGlobalScope also defines all of the core JavaScript global properties, such as Math and JSON.
readonly WorkerLocation location
This property is like thewindow.location
Location object: it allows a worker to inspect the URL it was loaded from and includes properties that return individual portions of the URL.
readonly WorkerNavigator navigator
This property is like thewindow.navigator
Navigator object: it defines properties that allow a worker to determine what browser it is running in and whether it is currently online or not.
readonly WorkerGlobalScope self
This self-referential property refers to the WorkerGlobalScope global object itself. It is like thewindow
property of the Window object in the main thread.
In addition to the properties listed here, WorkerGlobalScope also defines all of the core JavaScript global functions, such as isNaN() and eval().
void close
()
This method puts the worker into a special “closing” state. Once in this state, it will not fire any timers or trigger any events. The script continues running until it returns to the worker’s event loop, at which point the worker stops.
void importScripts
(string urls
...)
For each of the specified urls
, this method resolves the URL relative to the worker’s location
, then loads the content of the URL, and then executes that content as JavaScript code. Note that this is a synchronous method. It loads and executes each file in turn and does not return until all scripts have executed. (If any script throws an exception, however, that exception will propagate and prevent any subsequent URLs from being loaded and executed.)
void postMessage
(any message
, [MessagePort[] ports
])
Sends a message
(and optionally an array of ports
) to the thread that spawned this worker. Calling this method causes a message event to be triggered on the Worker object in the parent thread, and the associated MessageEvent object will include a clone of message
as its data
property. Note that in a worker, postMessage()
is a global function.
WorkerGlobalScope includes all of the core JavaScript constructors, such as Array()
, Date()
, and RegExp()
. It also defines key client-side constructors for XMLHttpRequest, FileReaderSync, and even the Worker object itself.
You can register event handlers for workers by setting these global event handler properties, or you can use the EventTarget methods implemented by WorkerGlobalScope.
onerror
This is not a normal event handler: it is like theonerror
property of Window rather than theonerror
property of Worker. When an unhandled exception occurs in the worker, this function, if defined, will be invoked with three string arguments that specify an error message, a script URL, and a line number. If the function returnsfalse
, the error is considered handled and does not propagate. Otherwise, if this property is not set, or if the error handler does not returnfalse
, the error propagates and causes an error event on the Worker object in the parent thread.
onmessage
When the parent thread calls thepostMessage()
method of the Worker object that represents this worker, it causes a message event to be triggered on this WorkerGlobalScope. This event handler function will be passed a MessageEvent object, and thedata
property of that object will hold a clone of themessage
argument sent by the parent thread.
WorkerLocation — the URL of a worker’s main script
The WorkerLocation object referenced by the location
property of a WorkerGlobalScope is like the Location object referenced by the location
property of a Window: it represents the URL of the worker’s main script and defines properties that represent portions of that URL.
Workers differ from Windows in that they cannot be navigated or reloaded, so the properties of a WorkerLocation object are read-only, and the object does not implement the methods of the Location object.
The WorkerLocation object does not automatically convert to a string the way a regular location object does. In a worker, you cannot simply write location
when you mean location.
href
.
WorkerNavigator — browser information for workers
The navigator
property of a WorkerGlobalScope refers to a WorkerNavigator object that is a simplified version of the Navigator object of a Window.
XMLHttpRequest — An HTTP request and response
EventTarget
The XMLHttpRequest object allows client-side JavaScript to issue HTTP requests and receive responses (which need not be XML) from web servers. XMLHttpRequest is the subject of Chapter 18, and that chapter contains many examples of its use.
Create an XMLHttpRequest object with the XMLHttpRequest()
constructor (see the sidebar in Using XMLHttpRequest for information on how to create an XMLHttpRequest object in IE6) and then use it like this:
open()
to specify the URL and method (usually “GET” or “POST”) for the request. onreadystatechange
property to the function that will be notified of the progress of the request.setRequestHeader()
, if needed, to specify additional request parameters. send()
to send the request to the web server. If it is a POST request, you can also pass a request body to this method. Your onreadystatechange
event handler function will be invoked as the request proceeds. When readyState
is 4, the response is complete. status
code to ensure that the request was successful. If so, use getResponseHeader()
or getResponseHeaders()
to retrieve values from the response header, and use the responseText
or responseXML
properties to obtain the response body. XMLHttpRequest defines a relatively high-level interface to the HTTP protocol. It takes care of details such as handling redirects, managing cookies, and negotiating cross-origin connections with CORS headers.
The XMLHttpRequest features described above are well supported by all modern browsers. At the time of this writing, an XMLHttpRequest Level 2 standard is under development and browsers are beginning to implement it. The properties, methods, and event handlers listed below include XMLHttpRequest Level 2 features, which may not yet be implemented by all browsers. These newer features are marked “XHR2.”
These constants define the values of the readyState
property. Prior to XHR2, these constants are not widely defined, and most code uses integer literals rather than these symbolic values.
unsigned short UNSENT
= 0
This is the initial state. The XMLHttpRequest object has just been created or has been reset with theabort()
method.
unsigned short OPENED
= 1
Theopen()
method has been called, butsend()
has not. The request has not yet been sent.
unsigned short HEADERS_RECEIVED
= 2
Thesend()
method has been called, and the response headers have been received, but the response body has not yet been received.
unsigned short LOADING
= 3
The response body is being received but is not complete.
unsigned short DONE
= 4
The HTTP response has been fully received or has stopped because of an error.
readonly unsigned short readyState
The state of the HTTP request and the server’s response. The value of this property begins at 0 when an XMLHttpRequest is first created and increases to 4 when the complete HTTP response has been received. The constants listed above define the possible values.The value ofreadyState
never decreases, unlessabort()
oropen()
is called on a request that is already in progress.
readonly any response
In XHR2, this property holds the server’s response. Its type depends on theresponseType
property. IfresponseType
is the empty string or “text”, property will hold the response body as a string. IfresponseType
is “document”, this property will be a parsed representation of the response body as an XML or HTTP Document. IfresponseType
is “arraybuffer”, this property will be an ArrayBuffer that represents the bytes of the response body. And ifresponseType
is “blob”, this property will be a Blob that represents the bytes of the response body.
readonly string responseText
IfreadyState
is less than 3, this property is the empty string. WhenreadyState
is 3, this property returns whatever portion of the response has been received so far. IfreadyState
is 4, this property holds the complete body of the response.If the response includes headers that specify a character encoding for the body, that encoding is used. Otherwise, the Unicode UTF-8 encoding is assumed.
string responseType
In XHR2, this property specifies the desired response type and determines the type of theresponse
property. The legal values are “text”, “document”, “arraybuffer”, and “blob”. The default is the empty string, which is a synonym for “text”. If you set this property, theresponseText
andresponseXML
properties will raise exceptions and you must use the XHR2response
property to get the server’s response.
readonly Document responseXML
The response to the request, parsed as an XML or HTML Document object, or null if the response body is not ready or is not a valid XML or HTML document.
readonly unsigned short status
readonly string statusText
unsigned long timeout
readonly XMLHttpRequestUpload upload
This XHR2 property refers to an XMLHttpRequestUpload object that defines a set of event handler registration properties for monitoring the progress of the HTTP request body upload.
boolean withCredentials
void abort
()
This method resets the XMLHttpRequest object to a readyState
of 0 and aborts any pending network activity. You might call this method, for example, if a request has taken too long, and the response is no longer necessary.
string getAllResponseHeaders
()
This method returns the HTTP response headers (with cookie and CORS headers filtered out) sent by the server, or null if the headers have not been received yet. The headers are returned as a single string, with one header per line.
string getResponseHeader
(string header
)
Returns the value of a named HTTP response header
, or null
if headers have not been received yet or if the response does not include the specified header
. Cookie and CORS-related headers are filtered out and cannot be queried. If the response includes more than one header with the specified name, the returned string will include the value of all of those headers, concatenated and separated by a comma and a space.
void open
(string method
, string url
, [boolean async
, string user
, string pass
])
This method resets the XMLHttpRequest object and stores its arguments for later use by the send()
.
method
is the HTTP method to be used for the request. Reliably implemented values include GET, POST, and HEAD. Implementations may also support the CONNECT, DELETE, OPTIONS, PUT, TRACE, and TRACK methods.
url
is the URL being requested. Relative URLs are resolved in the normal way, using the URL of the document that contains the script. The same-origin security policy (see The Same-Origin Policy) requires that this URL have the same hostname and port as the document that contains the script making the request. XHR2 allows cross-origin requests to servers that support CORS.
If the async
argument is specified and is false
, the request is performed synchronously and the send()
method will block until the response is complete. This is not recommended except when XMLHttpRequest is used in a Worker.
The optional user
and pass
arguments specify a username and password to use with the HTTP request.
void overrideMimeType
(string mime
)
This method specifies that the server’s response should be interpreted according to the specified mime
type (and charset parameter, if that is included) instead of using the Content-Type
header of the response.
void send
(any body
)
This method causes an HTTP request to be issued. If there has been no previous call to open()
, or, more generally, if readyState
is not 1, send()
throws an exception. Otherwise, it issues an HTTP request that consists of:
open()
. setRequestHeader()
. body
argument passed to this method. The body
may be a string or a Document object that specifies the request body, or may be omitted or null
if the request has no body (such as GET requests that never have a body). In XHR2, the body may also be an ArrayBuffer, a Blob, or a FormData object. If the async
argument to the previous call to open()
was false
, this method blocks and does not return until readyState
is 4 and the server’s response has been fully received. Otherwise, send()
returns immediately, and the server’s response is processed asynchronously with notifications provided through event handlers.
void setRequestHeader
(string name
, string value
)
setRequestHeader()
specifies an HTTP request header name
and value
that should be included in the request issued by a subsequent call to send()
. This method may be called only when readyState
is 1—i.e., after a call to open()
, but before a call to send()
.
If a header with the specified name
has already been specified, the new value for that header is the previously specified value, plus a comma, a space, and the value
specified in this call.
If the call to open()
specifies authorization credentials, XMLHttpRequest automatically sends an appropriate Authorization
request header. You can also append to this header yourself with setRequestHeader()
, however.
XMLHttpRequest automatically sets “Content-Length”, “Date”, “Referer”, and “User-Agent” and does not allow you to spoof them. There are a number of other headers, including cookie-related headers, that you cannot set with this method. The complete list is in Using XMLHttpRequest.
The original XMLHttpRequest object defined only a single event handler property: onready
state
change
. XHR2 expands the list with a set of progress event handlers that are much easier to use. You can register handlers by setting these properties or by using the methods of EventTarget. XMLHttpRequest events are always dispatched on the XMLHttpRequest object itself. They do not bubble and have no default action to cancel. readystatechange events have an associated Event object, and all of the other event types have an associated ProgressEvent object.
See the upload
property and XMLHttpRequestUpload for a list of events you can use to monitor the progress of HTTP uploads.
onabort
Triggered when a request is aborted.
onerror
Triggered if the request fails with an error. Note that HTTP status codes such as 404 do not constitute an error since the response still completes successfully. A DNS failure while trying to resolve the URL or an infinite loop of redirects would both cause this event to occur, however.
onload
Triggered when the request completes successfully.
onloadend
Triggered when the request has succeeded or failed after the load, abort, error, or timeout event.
onloadstart
Triggered when the request starts.
onprogress
Triggered repeatedly (approximately every 50ms) while the response body is downloading.
onreadystatechange
Triggered when thereadyState
property changes, most importantly when the response is complete.
ontimeout
Triggered if the time specified by thetimeout
property has elapsed and the response is not complete.
XMLHttpRequestUpload
EventTarget
An XMLHttpRequestUpload object defines a set of event handler registration properties for monitoring the progress of an HTTP request body upload. In browsers that implement the XMLHttpRequest Level 2 specification, each XMLHttpRequest object has an upload
property that refers to an object of this type. To monitor the progress of the request upload, simply set these properties to appropriate event handler functions or call the EventTarget methods. Note that the upload progress event handlers defined here are exactly the same as the download progress event handlers defined on XMLHttpRequest itself, except that there is no onready
statechange
property on this object.
onabort
onerror
Triggered if the upload fails with a network error.
onload
Triggered when the upload succeeds
onloadend
Triggered when the upload finishes, whether successfully or not. A loadend event will always follow a load, abort, error, or timeout event.
onloadstart
Triggered when the upload starts.
onprogress
Triggered repeatedly (approximately every 50ms) while the upload is occurring.
ontimeout
Triggered if the upload is aborted because the XMLHttpRequesttimeout
expired.
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
&& (logical AND) operator, Boolean Values, Operator Overview, Logical AND (&&), Property Access Errorsshort-circuiting behavior of, Property Access Errors&= (bitwise AND and assignment) operator, Operator Overview, Assignment with Operationbitwise AND operator, Operator Overview, Bitwise Operators
substituting compareTo () method, Comparison Methods<< (bitwise left shift) operator, Operator Overview, Bitwise Operators<<= (bitwise left shift and assignment) operator, Operator Overview, Assignment with Operationsubstituting compareTo() method, Comparison Methodssubstituting compareTo() method, Comparison Methodssubstituting compareTo() method, Comparison Methods>> (bitwise right shift with sign extension) operator, Operator Overview, Bitwise Operators>>= (bitwise right shift with sign extension and assignment) operator, Operator Overview, Assignment with Operation>>> (bitwise right shift with zero fill) operator, Operator Overview, Bitwise Operators>>>= (bitwise right shift with zero fill and assignment) operator, Operator Overview, Assignment with Operation
*= (multiplication and assignment) operator, Operator Overview, Assignment with Operationmatching zero or more occurrences in regular expressions, Repetitionmultiplication operator, Arithmetic in JavaScript, Operator Overviewwildcard character in E4X, E4X: ECMAScript for XML
@if, @else, and @end keywords in conditional comments, Conditional Comments in Internet Explorerin attribute names, E4X: ECMAScript for XML
breaking multiline string literals, String Literalsescape sequences in string literals, Escape Sequences in String Literalsescaping special characters in regular expressions, Literal Characters
beginning-of-string matching in regular expressions, Specifying Match Positionbitwise XOR operator, Operator Overview, Bitwise Operatorsnegating character classes in regular expressions, Character Classes^= (bitwise XOR and assignment) operator, Operator Overview, Assignment with Operation
around function body, omitting in shorthand functions, Shorthand Functionsenclosing object initializer expressions, Object and Array Initializersenclosing statement blocks, Compound and Empty Statementsescape characters in XML literal syntax of E4X, E4X: ECMAScript for XMLin function definitions, Defining Functionsinitializer expressions in, Core JavaScript
$$() method, ConsoleCommandLine, NodeList $$(string selector)$() function, Client-Side JavaScript, Document Elements As Window Properties, jQuery Basics, The jQuery() Function, Queries and Query Results, Queries and Query Resultslooking up elements by ID, Document Elements As Window Propertiesusing instead of querySelectorAll(), Queries and Query Results$() method, ConsoleCommandLine, Element $(string id)$0 and $1 properties, ConsoleCommandLine, Properties$1, $2 … $n variables in regular expressions, String Methods for Pattern Matchingend-of-string matching in regular expressions, Defining Regular Expressions, Specifying Match Position
. . (descendant) operator, E4X: ECMAScript for XMLdot operator, Core JavaScript, Querying and Setting Properties, Method Invocation, Subsets for Securityproperty access in method invocations, Method Invocationproperty access with, secure subsets and, Subsets for Securityquerying and setting properties, Querying and Setting Propertiesmatching any character except newlines in regular expressions, Character Classesin property access expressions, Property Access Expressions
== (equality) operator, Arithmetic in JavaScript, Object to Primitive Conversions, Operator Overview, Equality and Inequality Operators, Comparison MethodsNaN values and, Arithmetic in JavaScriptobject-to-primitive conversions, Object to Primitive Conversionssubstituting compareTo() method, Comparison Methodscomparing null and undefined values, null and undefinedcomparing primitive values and wrapper objects, Wrapper Objectstype conversions and equality, Conversions and Equality=== (strict equality) operator, Operator Overview, Equality and Inequality Operators=? in URL or data string passed to jQuery.getJSON(), jQuery.getJSON()assignment operator, Operator Overview
!= (inequality) operator, Arithmetic in JavaScript, Operator Overview, Equality and Inequality Operators, Comparison MethodsNaN comparisons, Arithmetic in JavaScriptsubstituting compareTo() method, Comparison Methods!== (strict inequality) operator, Boolean Values, Operator Overview, Equality and Inequality Operators, Testing Propertiescomparing variable to null, Boolean Valuestesting for undefined properties, Testing Properties
-- (decrement) operator, Optional Semicolons, Operator Overview, Operator Side Effects, Unary Arithmetic Operators, Expression Statementsline breaks in statements and, Optional Semicolonsside effects, Operator Side Effects, Expression Statements-= (subtraction and assignment) operator, Assignment with Operation-Infinity (negative infinity), Arithmetic in JavaScriptnegation operator, Operator Overviewstatements beginning with, Optional Semicolonssubtraction operator, Arithmetic in JavaScript, Operator Overviewunary minus operator, Unary Arithmetic Operators
enclosing expressions in if statements, ifgrouping in regular expressions, Alternation, Grouping, and Referencesin function and method invocations, Invocation Expressionsin function definitions, Function Definition Expressions, Defining Functionsin generator expressions, Generator Expressionsin object creation expressions, Object Creation Expressionsstatements beginning with (, Optional Semicolons
%= (modulus and assignment) operator, Operator Overview, Assignment with Operationmodulus operator, Arithmetic in JavaScript, Operator Overview
++ (increment) operator, Optional Semicolons, Operator Overview, Operator Side Effects, Unary Arithmetic Operators, Expression Statementsline breaks in statements and, Optional Semicolonsside effects, Operator Side Effects, Expression Statements+= (addition and assignment) operator, Operator Overview, Assignment with Operation, Element Content As HTMLappending text to innerHTML property, Element Content As HTMLaddition and string concatenation operators, Object to Primitive Conversions, The + Operatorobject-to-primitive conversions, Object to Primitive Conversionsaddition operator, Arithmetic in JavaScript, Operator Overviewmatching one or more occurrences in regular expressions, Repetitionstatements beginning with, Optional Semicolonsstring concatenation operator, Operator Overviewunary plus operator, Unary Arithmetic Operators
?! (negative lookahead assertion) in regular expressions, Specifying Match Position?: (conditional) operator, Operator Overview, The Conditional Operator (?:)?= (positive lookahead assertions) in regular expressions, Specifying Match Positionnongreedy repetition in regular expressions, Nongreedy repetition
quoting in stylesheet or style attribute strings, Scripting Inline Styles
single-quoted HTML attribute, JavaScript code in, Bookmarklets
ending statements, Core JavaScript, Statementsoptional, ending statements, Optional Semicolonsplacing outside of style attribute or stylesheet strings, Scripting Inline Stylesseparating name-value pairs in style properties, Overview of CSSstatement blocks and, Compound and Empty Statements
/* */ comments in javascript: URL code, JavaScript in URLs/*@cc_on and @*/in conditional comments, Conditional Comments in Internet Explorer// and /**/ in comments, Comments// in comments, Core JavaScript/= (division and assignment) operator, Operator Overview, Assignment with Operationdivision operator, Arithmetic in JavaScript, Operator Overviewenclosing regular expression literals, Defining Regular Expressionsstatements beginning with, Optional Semicolons
accessing array elements, Reading and Writing Array Elementsaccessing individual string characters, Strings As Arraysaccessing values in multidimensional arrays, Multidimensional Arraysaccessing individual string characters, Working with Stringscreating arrays, Creating Arraysenclosing array comprehensions, Array Comprehensionsenclosing array initializers, Object and Array Initializersenclosing character classes in regular expressions, Character Classesin property access expressions, Property Access Expressions, Method Invocation, Subsets for Securityrestriction in secure subsets, Subsets for Securityquerying and setting properties, Querying and Setting Properties, Objects As Associative Arraysstatements beginning with [, Optional Semicolons
alternation in regular expression pattern matching, Alternation, Grouping, and Referencesbitwise OR operator, Operator Overview, Bitwise Operators|= (bitwise OR and assignment) operator, Operator Overview, Assignment with Operation
having name attribute rather than href attribute, Selecting Elements by Typehref attribute, JavaScript in URLs, Selecting Elements by Type
FileReader object, void abort()XMLHttpRequest object, HTTP Progress Events, Aborting Requests and Timeouts
class hierarchies and, Class Hierarchies and Abstract Classes, Classes in ECMAScript 5
adding to existing objects, Property Attributesdefining using object literal syntax, Property Getters and Settersinheritance and, Inheritancelegacy API for, Legacy API for Getters and Settersproperty descriptor, Property Attributesuses of, Property Getters and Setters
DOMTokenList object, Scripting CSS Classes, void add(string token)HTMLOptionsCollection object, void add(Element option, [any before])jQuery, Selection MethodsSelect element, void add(Element element, [any before])
capturing event handlers, Event PropagationEventTarget object, void addEventListener(string type, function listener, [boolean useCapture])incompatibilities between attachEvent() and, Compatibility Librariesnot implemented by Internet Explorer, Compatibility and Interoperabilityregistering event handlers, addEventListener()Worker object, Worker ObjectsWorkerGlobalScope object, Worker Scope
defined, Scripted HTTPfunctions in jQuery, jQuery Ajax Functionsin jQuery 1.5, The jQuery.ajax() Functiontransport mechanisms for, Scripted HTTPutilities in jQuery, Ajax with jQuery, Ajax Events, The load() Method, jQuery.getScript(), jQuery.getJSON(), jQuery.getJSON(), jQuery.get() and jQuery.post(), jQuery.get() and jQuery.post(), The jQuery.ajax() Function, Uncommon options and hooksajax() function, The jQuery.ajax() Function, Uncommon options and hooksdata types, jQuery.get() and jQuery.post()get() and post() functions, jQuery.get() and jQuery.post()getJSON() function, jQuery.getJSON()getScript() function, jQuery.getScript()load() method, The load() Methodpassing data to, jQuery.getJSON()XML with, Scripted HTTP
callbacks, Callbackscommon options, Common Optionsuncommon options and hooks, Uncommon options and hooks
specifying in canvas, Colors, Transparency, Gradients, and Patternstransparency of a color, Color, Transparency, and Translucency
Event object, Propertiesmouse events, Mouse events
animation options object, The animation options objectanimation properties object, The animation properties objectcustom animations with, Custom Animations
client-side libraries supporting, CSS Animationscreating using inline scripting of CSS, CSS Animations, CSS Animationscreating using jQuery, Animated Effects, Canceling, Delaying, and Queuing Effects, Simple Effects, Custom Animations, Canceling, Delaying, and Queuing Effects, Canceling, Delaying, and Queuing Effectscanceling, delaying, and queuing effects, Canceling, Delaying, and Queuing Effectscustom animations, Custom Animations, Canceling, Delaying, and Queuing Effectssimple effects, Simple EffectsCSS Transitions and Animations, CSS ExamplejQuery methods for, jQuery Effects and Animation Methods
(see also ‘ ’ (quotation marks, single), under Symbols)escaping in single-quoted strings, String Literals
BlobBuilder object, Building Blobs, void append(string text, [string endings])FormData object, ConstructorjQuery, Inserting and Replacing Elements
Comment node, MethodsText node, void appendData(string text)
creating application manifest file, The Application Cache Manifeststatus property values, Cache Updatesupdates, Cache Updates, Cache Updates
constants, values for status property, Constantsevent handlers, Event Handlersstatus property, Cache UpdatesswapCache() method, void swapCache()update() method, void update()
restrictions in secure subsets, Subsets for Security
Navigator object, The Navigator Object, PropertiesWorkerNavigator object, Properties
Navigator object, The Navigator Object, PropertiesWorkerNavigator object, Properties
object properties as, Using Object Properties As Argumentsvariable-length argument lists, Variable-Length Argument Lists: The Arguments Object
callee and caller properties, The callee and caller propertiescallee property, Descriptionlength property, The length Property, Descriptionrestriction in secure subsets, Subsets for Security
+ operator, The + Operatorbitwise operators, Bitwise Operatorsunary arithmetic operators, Unary Arithmetic Operators
changing to generator expressions, Generator Expressionssyntax, Array Comprehensions
Arguments object, Variable-Length Argument Lists: The Arguments ObjectDOMTokenList object, Scripting CSS Classesframes property referring to, Relationships Between FramesHTMLCollection objects, Selecting Elements by TypejQuery, Queries and Query Resultstyped arrays, Typed Arrays and ArrayBuffers
byte ordering endianness, Typed Arrays and ArrayBuffersreadAsArrayBuffer(), FileReader, Reading Blobs, Reading Blobs
adding and deleting elements, Adding and Deleting Array ElementsArray class, Types, Values, and Variables, Object to Primitive Conversions, indexOf() and lastIndexOf()indexOf() and lastIndexOf(), indexOf() and lastIndexOf()toString() method, Object to Primitive ConversionsArray object, join(), reverse(), sort(), concat(), slice(), splice(), push() and pop(), unshift() and shift(), toString() and toLocaleString(), forEach(), map(), filter(), every() and some(), every() and some(), reduce(), reduceRight(), Strings As Arrays, Comparison Methods, Selecting Elements by Type, Arguments, Example, Properties, Methods, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Description, Arguments, Returns, Arguments, Arguments, Arguments, Description, Returns, Arguments, Arguments, Arguments, Arguments, Returns, Returns, Argumentsevery() method, every() and some(), ArgumentsindexOf() method, ArgumentsisArray() method, Strings As ArrayslastIndexOf() method, Argumentslength property, Properties, Descriptionmethods, Methodsmethods, invoking indirectly on NodeLists or HTMLCollections, Selecting Elements by Typepop() method, Returnspush() and pop() methods, push() and pop()push() method, Argumentsreduce() and reduceRight(), reduce(), reduceRight()reduce() method, ArgumentsreduceRight() method, Argumentsreverse() method, reverse(), Descriptionshift() method, Returnssome() method, every() and some(), ArgumentstoLocaleString() method, ReturnstoString() and toLocaleString(), toString() and toLocaleString()toString() method, Returnsunshift() and shift() methods, unshift() and shift()unshift() method, Argumentsof class instances, sorting, Comparison Methodsto strings, toString() and toLocaleString()converting jQuery object to true array, Queries and Query Resultscreating, Creating Arraysdistinguishing from non-array objects, Array TypeES5 Array methods, Compatibility Libraries, Queries and Query Resultsfunctions assigned to elements, Functions As Valuesinitializers, Object and Array Initializerswith for/each loops, The for/each Loopwith for/in loops, for/inwith jQuery.each() method, Utility FunctionsJava, getting and setting elements with JavaScript in Rhino, Scripting Java with Rhinolength of, Array Lengthmethods, Array Methods, toString() and toLocaleString(), ECMAScript 5 Array Methods, indexOf() and lastIndexOf()ECMAScript 5, ECMAScript 5 Array Methods, indexOf() and lastIndexOf()multidimensional, Multidimensional Arraysobjects as associative arrays, Objects As Associative Arraysprocessing with functions, Processing Arrays with Functions, Higher-Order Functionsproperty access expressions, Property Access Expressionsreading and writing elements, Reading and Writing Array Elementssparse, Sparse Arraysstrings as, Working with Strings, Strings As Arraystyped, TypedArraytyped, and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffersArrayBuffers, Typed Arrays and ArrayBuffersefficiency of typed arrays, Typed Arrays and ArrayBufferskinds of typed arrays, Typed Arrays and ArrayBuffersset() method, Typed Arrays and ArrayBufferssubarray() method, Typed Arrays and ArrayBuffersof values, destructuring assignments, Destructuring Assignment
destructuring, Destructuring Assignment, Iteratorsobject properties, Inheritanceproperties, Inheritance, Property Access Errorsrules for success or failure of, Property Access Errors
assignment with operation, Assignment with Operationside effects, Expression Statements
side effects, Operator Side Effects
animation interfering with, Animated Effects
scripting with Node, Asynchronous I/O with Node, Node Example: HTTP Client Utilities Module, Node Example: HTTP Server, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP client utilities module (example), Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP server (example), Node Example: HTTP Server, Node Example: HTTP Client Utilities ModuleXMLHttpRequest and File API specifications, Version 2, HTML5 Events
handlers registered with, this value, Event Handler Contextincompatibilities between addEventListener() and, Compatibility Librariesregistering event handlers in IE, attachEvent()
as Attr nodes, Attributes As Attr NodesCSS attribute names for animation properties object, The animation properties objectdataset, Dataset Attributesevent handlers registered as, scope, Event Handler Scopegetting and setting CSS attributes with jQuery, Getting and Setting CSS Attributesgetting and setting HTML attributes with jQuery, jQuery Getters and Settersgetting and setting non-HTML attributes, Getting and Setting Non-HTML AttributesHTML attributes affecting audio and video playback, Controlling Media PlaybackHTML attributes mirrored by event handler properties, Event Handlers in HTMLHTML elements, HTML Elements and Attributes, HTML Elements and AttributesHTML, as element properties, HTML Attributes As Element Propertiesobject, Objects, Object Attributes, Serializing Objects, The class Attribute, The extensible Attributeclass attribute, The class Attributeextensible attribute, The extensible Attributeproperty attributes, Objects, Property Attributes, Legacy API for Getters and Setters, Property Attributes, Property Attributescopying, Property Attributesquerying and setting, Property Attributessetting for event handlers, Setting Event Handler Attributes
MediaElement superclass, MediaElement, void play()MediaError objects, MediaErrorscripting, Scripting Audio and Video, Controlling Media Playback, Querying Media Status, Media Eventscontrolling playback, Controlling Media Playbackmedia events, Media Eventsquerying media status, Querying Media Statustype selection and loading, Type Selection and LoadingVideo object, Video
controls attribute, Scripting Audio and Videoevents, HTML5 Events
Form object, PropertiesInput object, Properties
drawing in canvas, Drawing and Filling Curves, RectanglesquadraticCurveTo() method, void quadraticCurveTo(double cpx, cpy, x, y)
Blobs and APIs that use them, Blobsin HTTP responses, Decoding the response
event handler registration in jQuery, Advanced Event Handler Registrationsimilarity of jQuery.proxy() function, Utility FunctionsFunction.bind() method for ECMAScript 3, The bind() Methodlive events and, Live Eventspartial application of functions, Partial Application of Functions
building, Building Blobsdownloading, Downloading Blobsfiles as, Files As Blobsobtaining, methods for, Blobsreading, Reading Blobsdisplaying dropped image files, Blob URLsusing, Blobs
lack of, addressing by using let keyword, Constants and Scoped Variables
motion blur with ImageData, Pixel ManipulationshadowBlur property in canvas, Shadows
bubbling alternative to, DOM Eventsevent handler registration with jQuery, Simple Event Handler Registration
Element object, void blur()Window object, void blur()
Document object, PropertiesHTMLDocument object, Selecting Elements by Type
for currently selected text, Querying Selected Textusing javascript: URLs for, JavaScript in URLs
toString() method, ReturnsvalueOf() method, Returns
boolean values, Boolean Valuesconversions, Type Conversionsobject-to-boolean conversions, Object to Primitive Conversionswrapper objects, Wrapper Objects
in CSS box model, The CSS Box Model and Positioning Detailsspecifying color of element’s border, Color, Transparency, and Translucencyspecifying in CSS, Borders, Margins and Padding
border box model and box-sizing property, The border-box model and the box-sizing propertyjQuery.support.boxModel property, Utility Functions
line break interpreted as semicolon, Optional Semicolons
using navigator.userAgent, The Navigator Object
History object, Historytransition, PopStateEvent, PopStateEvent
event handling in jQuery, Simple Event Handler Registrationkeyboard events to document and window, Key eventslive events, Live Eventsmanually triggered events, Triggering Eventsmouse events, DOM Eventsnon-bubbling version of mouse events in IE, Mouse eventsplace in event propagation after invoking event handlers, Event Propagation
testing for, Browser Testing
onclick event handler, JavaScript in URLsregistering event handlers for click event, addEventListener()Button object, Buttonpush buttons in forms, Push Buttonstoggle buttons in forms, Toggle Buttons
(see also application cache)memoization of functions, Memoization
restrictions in secure subsets, Subsets for Security
functions passed to setTimeout() and setInterval(), Event-Driven JavaScriptjQuery.ajax() function, Callbackspassing to jQuery effects methods, Animated Effects
Arguments object, The callee and caller propertiesrestriction in secure subsets, Subsets for Security
application cache updates, Cache Updatestextinput and keypress events, Text Events
array of bytes in CanvasPixelArray, Typed Arrays and ArrayBufferscanvas dimensions and coordinates, Canvas Dimensions and CoordinatesCanvas object, Graphics in a <canvas>, Images, Canvas, object getContext(string contextId, [any args...]), string toDataURL([string type], [any args...])getContext() method, Graphics in a <canvas>, object getContext(string contextId, [any args...])toDataURL() method, Images, string toDataURL([string type], [any args...])clipping, Clippingcolors, transparency, gradients, and patterns, Colors, Transparency, Gradients, and Patterns, Line Drawing Attributescompositing, Compositingcoordinate system transformations, Coordinate System Transformsdrawing and filling curves, Drawing and Filling Curves, Rectanglesdrawing lines and filling polygons, Drawing Lines and Filling Polygonsdrawing red square and blue circle, Graphics in a <canvas>drawing sparklines (example), Canvas Example: Sparklines, Canvas Example: Sparklinesdrawing text, Textgraphics attributes defined on context object, Graphics Attributes, Canvas Dimensions and Coordinateshit detection, determining if point is in a path, Hit Detection, Hit Detectionline drawing attributes, Line Drawing Attributespath, Graphics in a <canvas>rectangles, Rectanglesreference, Canvas, void translate(double x, double y)shadows, Shadows
context object, Graphics Attributes
addColorStop() method, void addColorStop(double offset, string color)fill or stroke with color gradient, Colors, Transparency, Gradients, and Patterns
fill or stroke using, Colors, Transparency, Gradients, and Patterns
save() and restore() methods, Graphics Attributes
arcTo() method, void arcTo(double x1, y1, x2, y2, radius)beginPath() method, void beginPath()bezierCurveTo() method, void bezierCurveTo(double cp1x, cp1y,cp2x, cp2y, x, y)clearRect() method, void clearRect(double x, y, width, height)clip() method, Clipping, void clip()closePath() method, void closePath()compositing, Compositing, CompositingcreateImageData() method, Pixel Manipulation, ImageData createImageData(ImageData imagedata)createLinearGradient() method, Colors, Transparency, Gradients, and Patterns, CanvasGradient createLinearGradient(double x0, y0, x1, y1)createPattern() method, Colors, Transparency, Gradients, and Patterns, CanvasPattern createPattern(Element image, string repetition)createRadialGradient() method, Colors, Transparency, Gradients, and Patterns, CanvasGradient createRadialGradient(double x0, y0, r0, x1, y1, r1)drawImage() method, Images, void drawImage(Element image, double dx, dy, [dw, dh])drawing and filling curves, Drawing and Filling Curves, Rectanglesdrawing rectangles, Rectanglesfill() method, void fill()fillRect() method, void fillRect(double x, y, width, height)fillText() method, Text, void fillText(string text, double x, y, [double maxWidth])getImageData() method, Pixel Manipulation, ImageData getImageData(double sx, sy, sw, sh)graphics attributes, Graphics Attributes, Canvas Dimensions and Coordinatesgraphics attributes for shadows, ShadowsisPointInPath() method, Hit Detection, boolean isPointInPath(double x, y)lineTo() method, void lineTo(double x, double y)measureText() method, Text, TextMetrics measureText(string text)moveTo() method, void moveTo(double x, double y)putImageData() method, Pixel Manipulation, void putImageData(ImageData imagedata, double dx, dy, [sx, sy, sw, sh])quadraticCurveTo() method, void quadraticCurveTo(double cpx, cpy, x, y)rect() method, void rect(double x, y, w, h)restore() method, void restore()rotate() method, void rotate(double angle)save() and restore() methods, Saving graphics statesave() method, void save()scale() method, void scale(double sx, double sy)setTransform() method, void scale(double sx, double sy)stroke() method, void stroke()strokeRect() method, void strokeRect(double x, y, w, h)strokeText() method, Text, void strokeText(string text, double x, y, [maxWidth])transform() method, void transform(double a, b, c, d, e, f)translate() method, void translate(double x, double y)
mouse events in IE, Mouse Events
property names, HTML Attributes As Element Properties
multiple catch clauses, Multiple Catch Clauses
Document object, PropertiesScript object, Properties
custom Server-Sent Events chat server, Comet with Server-Sent Eventsserver using WebSockets and Node, Web Socketssimple client using EventSource, Comet with Server-Sent EventsWebSocket-based chat client, Web Sockets
form elements, Selecting Forms and Form ElementsInput object, Properties
browsing history and, Browsing History
(see also web browsers)current version, Compatibility and Interoperabilityimplementation of Filesystem API, The Filesystem APIJavaScript in URLs, JavaScript in URLstextInput event, DOM Events
Array, Array TypeHTML elements, Selecting Elements by CSS Class, HTML Attributes As Element Propertiestesting for true function object, Callable Objects
(see also modules; objects)augmenting by adding methods to prototype, Augmenting Classesbuilt-in, automatically predefined in all windows, JavaScript in Interacting Windowsand class identity, Constructors and Class Identityconstructor property, The constructor Propertydefining for CSS properties, Nonstandard Propertiesdefining, example, Core JavaScriptdefining, multiple windows and, JavaScript in Interacting Windowsdetermining class of an object, Classes and Types, Duck-Typing, The instanceof operator, The constructor property, The Constructor Name, Duck-Typingduck-typing, Duck-Typingusing constructor name as class identifier, The Constructor Nameusing constructor property, The constructor propertyusing instanceof operator, The instanceof operatorin ECMAScript 5, Classes in ECMAScript 5, Making Properties Nonenumerable, Defining Immutable Classes, Encapsulating Object State, Encapsulating Object State, Preventing Class Extensions, Subclasses and ECMAScript 5, Property Descriptors, Modulesdefining immutable classes, Defining Immutable Classes, Encapsulating Object Stateencapsulating object state, Encapsulating Object Statemaking properties nonenumerable, Making Properties Nonenumerablepreventing class extensions, Preventing Class Extensionsproperty descriptors, Property Descriptors, Modulessubclasses, Subclasses and ECMAScript 5getting and setting CSS classes, Getting and Setting CSS Classesgetting class of an object, The class Attributeinstanceof operator, The instanceof Operatorinstantiating, Scripting Java with Rhinoquerying and setting static fields in Rhino, Scripting Java with RhinoJava-style, in JavaScript, Java-Style Classes in JavaScript, Java-Style Classes in JavaScript, Java-Style Classes in JavaScript, Java-Style Classes in JavaScript, Java-Style Classes in JavaScriptdefining complex class, Java-Style Classes in JavaScriptfeatures not supported in JavaScript, Java-Style Classes in JavaScriptfunction defining simple classes, Java-Style Classes in JavaScriptobject-oriented programming with, Object-Oriented Techniques in JavaScript, Constructor Overloading and Factory Methods, Example: A Set Class, Example: Enumerated Types, Example: Enumerated Types, Standard Conversion Methods, Standard Conversion Methods, Comparison Methods, Comparison Methods, Borrowing Methods, Private State, Constructor Overloading and Factory Methodsborrowing methods, Borrowing Methodscomparison methods, Comparison Methods, Comparison Methodsconstructor overloading and factory methods, Constructor Overloading and Factory Methodsenumerated types (example), Example: Enumerated Types, Standard Conversion Methodsprivate state, Private StateSet class (example), Example: A Set Class, Example: Enumerated Typesstandard conversion methods, Standard Conversion Methodspartial class hierarchy of document nodes, Overview of the DOMprototypes and, Classes and Prototypesscripting CSS classes, Scripting CSS Classes, Scripting Stylesheetssubclasses, Subclasses, Defining a Subclass, Constructor and Method Chaining, Constructor and Method Chaining, Composition Versus Subclassing, Class Hierarchies and Abstract Classes, Classes in ECMAScript 5class hierarchies and abstract classes, Class Hierarchies and Abstract Classes, Classes in ECMAScript 5composition versus subclassing, Composition Versus Subclassingconstructor and method chaining, Constructor and Method Chaining, Constructor and Method Chainingdefining, Defining a Subclass
approximating functionality, example of, Scripting CSS Classes, Scripting StylesheetsElement object, Properties
Element object, Client-Side JavaScript, Properties
ConsoleCommandLine object, void clear()Storage object, void clear()
Window object, string btoa(string btoa)WorkerGlobalScope object, void clearInterval(long handle)
Window object, void clearTimeout(long handle)WorkerGlobalScope object, void clearTimeout(long handle)
detail property, Mouse eventsregistering event handlers for, Client-Side JavaScriptregistering event handlers on button element for, addEventListener()
Element object, void click()
building web applications with, Client-Side Frameworkscompatibility and interoperability issues, Compatibility and Interoperabilitykeeping HTML content separate from JavaScript behavior, Setting Event Handler Attributesloan calculator (example), Example: A JavaScript Loan Calculator, Example: A JavaScript Loan Calculatorscripting HTML document content, Client-Side JavaScriptsecurity, Securitythreading model, Client-Side JavaScript Threading Model
application storage and offline web applications, Application Storage and Offline Webapps, Cache Updates, The Application Cache Manifest, Cache Updates, Cache Updates, Cache Updatesapplication cache manifest, The Application Cache Manifest, Cache Updatescache updates, Cache Updates, Cache Updatesstorage with cookies, Storage with Cookies, IE userData PersistenceIE userData persistence, IE userData Persistence, Application Storage and Offline WebappslocalStorage and sessionStorage properties, localStorage and sessionStoragesecurity, privacy, and, Client-Side Storage
offline web applications, Offline Web Applications, Offline Web Applications
distinguishing between Window and Document objects, Closing windowsDocument object, void close()EventSource object, void close()generators, GeneratorsMessagePort object, MessagePortWebSocket object, Web Sockets, void close()Window object, void close()WorkerGlobalScope object, Worker Scope, void close()
access to outer function arguments, Closurescombining with property getters and setters, Closureslexical scoping rule for nested functions, Closuresprivate property accessor methods using, Closuresproperty accessor methods using, Private Stateshorthand functions (expression closures), Shorthand Functionsusing in uniqueInteger() function (example), Closures
DOMException object, PropertiesFileError object, ConstantsGeolocationError object, ConstantsMediaError object, Constants, Properties
background-color property, Positioning Elements with CSSgradients in canvas, Colors, Transparency, Gradients, and PatternsshadowColor property, Shadowsspecifying for paths in canvas, Colors, gradients, and patternsspecifying in canvas, Colors, Transparency, Gradients, and Patterns, Colors, Transparency, Gradients, and Patternsspecifying with CSS, Color, Transparency, and Translucency
Server-Sent Events with, Comet with Server-Sent Events, Comet with Server-Sent Eventstransport mechanisms for, Scripted HTTP
ConsoleCommandLine objects, ConsoleCommandLinetext editing, Editable Content
Comment node, Commentconditional, Conditional Comments in Internet ExplorercreateComment(), Document object, Creating Nodescreating Comment node, Comment createComment(string data)CSS handling of, Overview of CSSJavaScript code in URLs, JavaScript in URLsstyles of, Comments
compareTo() method, Comparison Methodsequals() method, Comparison Methods
primitive values, Immutable Primitive Values and Mutable Object References
browser testing, Browser Testingcompatibility libraries, Compatibility Librariesconditional comments in Internet Explorer, Conditional Comments in Internet Explorerfeature testing, Feature Testinggraded browser support, Graded Browser Supportquirks mode and standards mode, Quirks Mode and Standards Mode
locally rather than globally, Compositing
subclassing versus, Composition Versus Subclassingusing with partial application of functions, Partial Application of Functions
String object, String.concat()
in array comprehensions, Array Comprehensionselse if, else ifif, ifswitch, switch
deletion of properties, Deleting Propertiesextensible attribute used with, The extensible Attribute
block scope and use of let keyword, Constants and Scoped Variablesfields declared final in Java classes, Java-Style Classes in JavaScript
from subclass to superclass, Constructor and Method Chaining, Constructor and Method Chaining
identifying class of an object, The constructor propertyrestrictions in secure subsets, Subsets for Security
and class identity, Constructors and Class Identityconstructor property, The constructor Propertyclient-side, in WorkerGlobalScope objects, Worker Scopeconstructor property of an object, Descriptiondefined, Types, Values, and Variablesinteractive windows and, JavaScript in Interacting Windowsinvoking, Constructor Invocationobject prototypes and, Prototypesoverloading, Constructor Overloading and Factory Methodsprototype property, The prototype Attributefor typed arrays, Constructorusing name of as class identifier, The Constructor Name
generating document content at load time, Synchronous, Asynchronous, and Deferred Scriptssimple client-side script for revealing, Client-Side JavaScript
automatically set for request by XMLHttpRequest, XML-encoded requestsHTTP requests, Specifying the Requestoverriding incorrect MIME type in response, Decoding the response
jQuery objects, Queries and Query Results
semicolon interpreted as line break, Optional Semicolons
(see also statements)
attributes, lifetime and scope, Cookie Attributes: Lifetime and Scopedetermining if they are enabled, Cookieslimitations on size and number of, Cookie Limitationsreading, Reading Cookiesstorage with, Storage with Cookies, IE userData Persistencestoring, Storing Cookies
canvas, Canvas Dimensions and Coordinates, Imagesimages, Imagesconverting document to viewport coordinates, More on Element Size, Position and Overflowdocument and viewport, Document Coordinates and Viewport Coordinatesdocument, as scrollbar offsets, ScrollingGeocoordinates object, Geocoordinatesposition of mouse in window coordinates, Mouse events
adding properties to newly created object, Property Attributes
requesting link details with HEAD and CORS, Cross-Origin HTTP Requests
box model and positioning details, The CSS Box Model and Positioning Detailsclasses, selecting elements by, Selecting Elements by CSS Classcolor specifications, Colors, Transparency, Gradients, and Patternscolor, transparency, and translucency, Color, Transparency, and Translucencyelement display and visibility, Element Display and Visibilitygetting and setting CSS attributes, Getting and Setting CSS Attributesgetting and setting CSS classes, Getting and Setting CSS Classesimportant style properties, Important CSS Propertiesoverlapping translucent windows (example), Example: Overlapping Translucent Windows, Example: Overlapping Translucent Windowsoverview, Overview of CSSpartial visibility, overflow and clip, Partial Visibility: overflow and clippositioning elements, Positioning Elements with CSS, CSS positioning example: Shadowed text, Mousewheel Events, Drag and Drop Eventsquerying computed styles, Querying Computed Styles, Querying Computed Stylesrevolutionary new features of, CSS Examplescripting CSS classes, Scripting CSS Classes, Scripting Stylesheetsanimations, CSS Animations, CSS Animationsscripting stylesheets, Scripting Stylesheets, Creating New Stylesheetsselectors, Selecting Elements with CSS Selectorsstyles, specified for Element object, Client-Side JavaScriptuse with JavaScript to style presentations of HTML, Client-Side JavaScriptweb page styled with CSS (example), CSS Example
computed styles, Querying Computed Stylesdescribing styles associated with selector, Querying, Inserting and Deleting Stylesheet Rulesproperties corresponding to shortcut properties, Scripting Inline Stylesusing in scripting inline styles, Scripting Inline Styles
creating, Creating New Stylesheetsdisabled property, Enabling and Disabling Stylesheetsinserting and deleting rules, Querying, Inserting and Deleting Stylesheet Rulesquerying, inserting, and deleting stylesheet rules, Querying, Inserting and Deleting Stylesheet Rules
CSSRule object, PropertiesCSSStyleDeclaration object, Scripting Inline Styles, Querying, Inserting and Deleting Stylesheet Rules, Properties
Event object, Properties
Element object, Propertiesin Internet Explorer (IE), Querying Computed Styles
attributes of, Property Attributes
CharacterData object, Element Content As Text NodesComment object, PropertiesImageData object, Typed Arrays and ArrayBuffers, PropertiesMessageEvent object, Cross-Origin Messaging, MessageEventProcessingInstruction object, PropertiesText node, Properties
booleans, Boolean Valuesclasses and, Classes and Types, The instanceof operator, The constructor property, The Constructor Name, Duck-Typing, Standard Conversion Methodsdetermining class of an object with constructor property, The constructor propertydetermining class of an object with instanceof, The instanceof operatorduck-typing, Duck-Typingstandard conversion methods, Standard Conversion Methodsusing constructor name as class identifier, The Constructor Nameconversions, Types, Values, and Variables, Type Conversions, Variable Declaration, Type Conversions, Conversions and Equality, Explicit Conversions, Object to Primitive Conversions, Object to Primitive Conversions, Variable Declarationequality and, Conversions and Equalityobject to primitive, Object to Primitive Conversions, Variable Declarationsummary listing of, Type Conversionsfunction argument, Argument TypesJava, conversions in Rhino, Scripting Java with RhinojQuery's Ajax data types, jQuery.get() and jQuery.post()methods, Types, Values, and Variablesmutable and immutable types, Types, Values, and Variablesnumbers, Numbers, Text, Integer Literals, Floating-Point Literals, Binary Floating-Point and Rounding Errors, Dates and Timesbinary floating-point and rounding errors, Binary Floating-Point and Rounding Errorsdates and times, Dates and Timesfloating-point literals, Floating-Point Literalsinteger literals, Integer Literalsobjects and arrays, Core JavaScriptoperand and result type, Operand and Result Typeprimitive and object types, Types, Values, and Variablestext, Text, Boolean Values, String Literals, Escape Sequences in String Literals, Working with Strings, Pattern Matchingescape sequences in string literals, Escape Sequences in String Literalspattern matching, Pattern Matchingstring literals, String Literalsworking with strings, Working with Stringstypeof operator, The typeof Operatorvariable declaration and, Variable Declaration
client-side, Client-Side Databases, Web Socketsclient-side database functionality in browsers, Client-Side Storage
using to create image rollovers, Unobtrusive Image Rollovers
files property, Uploading a file, Files As Blobs
methods reading/writing values from ArrayBuffer, Typed Arrays and ArrayBuffers
toString() method, Object to Primitive ConversionsDate object, Object to Primitive Conversions, Object to Primitive Conversions, Prototypes, Date, Returns, Methods, Methods, Static Methods, Returns, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, Returns, Returns, Returns, Arguments, Returns, Returns, Returns, Returns, Returns, Returns, Arguments, Returnsconversions to strings and numbers, Object to Primitive ConversionsgetDate() method, ReturnsgetDay() method, ReturnsgetFullYear() method, ReturnsgetHours() method, ReturnsgetMilliseconds() method, ReturnsgetMinutes() method, ReturnsgetMonth() method, ReturnsgetSeconds() method, ReturnsgetTime() method, ReturnsgetTimezoneOffset() method, ReturnsgetUTCDate() method, ReturnsgetUTCDay() method, ReturnsgetUTCFullYear() method, ReturnsgetUTCHours() method, ReturnsgetUTCMilliseconds() method, ReturnsgetUTCMinutes() method, ReturnsgetUTCMonth() method, ReturnsgetUTCSeconds() method, ReturnsgetYear() method, Returnsnow() method, Returnsparse() method, Argumentsprototype property, PrototypesseMilliseconds() method, ArgumentssetDate() method, ArgumentssetFullYear() method, ArgumentssetHours() method, ArgumentssetMinutes() method, ArgumentssetMonth() method, ArgumentssetSeconds() method, ArgumentssetTime() method, ArgumentssetUTCDate() method, ArgumentssetUTCFullYear() method, ArgumentssetUTCHours() method, ArgumentssetUTCMilliseconds() method, ArgumentssetUTCMinutes() method, ArgumentssetUTCMonth() method, ArgumentssetUTCSeconds() method, ArgumentssetYear() (deprecated), Argumentsstatic methods, Static MethodstoDateString() method, ReturnstoGMTString() method, ReturnstoISOString() method, ReturnstoJSON() method, ArgumentstoLocaleDateString() method, ReturnstoLocaleString() method, ReturnstoLocaleStringTime() method, ReturnstoString() method, ReturnstoTimeString() method, ReturnstoUTCString() method, ReturnsUTC() method, ArgumentsvalueOf() method, Object to Primitive Conversions, Returnsquick tutorial on, Dates and Timesserializing Date objects to ISO-formatted date strings, Serializing Objects
var statement, var
Checkbox object, Toggle ButtonsInput object, Properties
Input object, PropertiesOutput object, PropertiesTextArea object, Properties
creating or modifying multiple properties, Property Attributes
creating new property or setting attributes, Property Attributesdefining configurable, read-only properties, Property Access Errorsmaking length property of array read-only, Array Lengthmaking properties nonenumerable, Making Properties Nonenumerable
deleting array elements, Adding and Deleting Array Elementsdeleting configurable properties of global object, Deleting Propertiesdeleting properties, Deleting Propertiesremoving XML attributes and tags in E4X, E4X: ECMAScript for XMLside effects, Expression Statements
Comment node, Methods
Table object, void deleteRow(long index)TableSection object, void deleteRow(long index)
using with Iterator () function in for/in loop, Iterators
HTML dialog box displayed with showModalDialog(), Dialog Boxesrepeated, in cross-site scripting attacks, Cross-Site Scriptingrepeated, in denial-of-service attacks, Denial-of-Service Attacks
Console object, void dir(any object)ConsoleCommandLine object, void dir(object o)
Console object, void dirxml(any node)ConsoleCommandLine object, void dirxml(Element elt)
CSSStyleSheet object, PropertiesFieldSet object, PropertiesFormControl object, PropertiesLink object, PropertiesOption object, PropertiesStyle object, Properties
quirks mode and standards mode, Quirks Mode and Standards Modestrictness of, Selecting Elements by CSS Class
addEventListener() method, addEventListener()close() method, Closing windowscompatMode property, Quirks Mode and Standards Modecookie property, Cookies, Reading Cookiesparsing, Reading CookiescreateDocumentFragment() method, Using DocumentFragmentscreateElement() method, Creating, Inserting, and Deleting NodescreateElementNS() method, Creating NodescreateStyleSheet() method, Creating New StylesheetscreateTextNode() method, Creating NodesdesignMode property, Editable ContentelementFromPoint() method, Determining the Element at a Pointevents, Eventsforms property, Selecting Forms and Form ElementsgetElementById() method, Document Elements As Window Properties, Selecting Elements By IDgetElementsByClassName() method, Selecting Elements by CSS ClassgetElementsByTagName() method, Array-Like Objects, Selecting Elements by Typelocation property, Browser Location and Navigationopen() method, Browsing Historyparsed HTTP responses available as, Decoding the responseproperties, Document Properties, PropertiesqueryCommandEnabled() method, Editable ContentquerySelector() method, Selecting Elements with CSS SelectorsquerySelectorAll() method, Selecting Elements with CSS Selectors, Enabling and Disabling StylesheetsreadyState property, Client-Side JavaScript Timeline, Document Load EventsremoveEventListener() method, addEventListener()same-origin policy applied to properties, The Same-Origin PolicystyleSheets property, Scripting Stylesheets, Querying, Inserting and Deleting Stylesheet RulesURL property, Browser Location and Navigationwrite() method, Synchronous, Asynchronous, and Deferred Scripts, Client-Side JavaScript Timeline, Browsing History, The document.write() Methodwriteln() method, The document.write() Method
implementing insertAdjacentHTML() using innerHTML, Using DocumentFragmentsquerySelector() and querySelectorAll() methods, Selecting Elements with CSS Selectorsusing to reverse order of children of a Node, Using DocumentFragments
altering structure using jQuery, Altering Document Structure, Deleting Elementsassociating CSS stylesheet with, Overview of CSSattributes of elements, Attributes, Attributes As Attr Nodescreating, inserting, and deleting nodes, Creating, Inserting, and Deleting Nodes, Example: Generating a Table of Contents, Creating Nodes, Inserting Nodes, Removing and Replacing Nodes, Using DocumentFragmentscreating nodes, Creating Nodesinserting nodes, Inserting Nodesremoving and replacing nodes, Removing and Replacing Nodesusing DocumentFragments, Using DocumentFragmentsDocument properties, Document Propertieseditable content, Editable Content, Editable Contentdocument and element geometry and scrolling, Document and Element Geometry and Scrolling, More on Element Size, Position and Overflowelement content, Element Content, Element Content As Text Nodeselements as Window object properties, Document Elements As Window Propertiesgenerating content at load time, Synchronous, Asynchronous, and Deferred Scriptsgenerating table of contents (example), Example: Generating a Table of Contents, Document and Element Geometry and ScrollingHTML forms, HTML Forms, Select and Option ElementsJavaScript in web documents, JavaScript in Web Documentsload events, Document Load Events, Mouse Eventsloading new, Loading New Documentsnested HTML documents, Multiple Windows and Framesorigin of, The Same-Origin Policy, Storage Lifetime and Scopeoverview of DOM, Overview of the DOMquerying selected text, Querying Selected Textselecting elements in, Selecting Document Elements, Document Structure and Traversalstructure and traversal, Document Structure and Traversal, Attributes, Documents As Trees of Nodes, Documents As Trees of Elements, Attributesdocuments as trees of elements, Documents As Trees of Elements, Attributesdocuments as trees of nodes, Documents As Trees of Nodeswrite() method, The document.write() Method
dojox.secure, Subsets for SecuritySizzle library, Selecting Elements with CSS Selectors
DOM Level 2 Events specification, Compatibility and InteroperabilityDOM Level 3 Events specification, Types of Events, Key events, DOM Events, Keyboard Events, Proposed Properties, Proposed Methodkey property, Keyboard Eventsproposed method, Proposed Methodproposed properties, Proposed Propertiesevent cancellation in current Events module draft, Event Cancellationimplementation of types as classes, Documents As Trees of Elementsoverview, Overview of the DOMtextinput event, Text EventsXML objects and E4X standard, E4X: ECMAScript for XML
domain attribute, cookies, Cookie Attributes: Lifetime and Scope, Storing Cookiessetting, Storing Cookiesproblems with same-origin policy and subdomains, Relaxing the same-origin policy
access to files user drops over element, Uploading a filecustom drag source, Drag and Drop EventsDataTransfer objects, DataTransferdisplaying dropped image files with Blob URLs, Blob URLsdrag source events, Drag and Drop Eventsdrag() function evoked from mousedown event handler, Mouse Eventsdragging document elements, Mouse Events, Mouse Eventsdrop targets, Drag and Drop Eventsdropping local files into browser for script access, Files As BlobsHTML5 drag-and-drop API, HTML5 Eventslist as drop target and drag source (example), Drag and Drop Events, Text Eventsobtaining files from DnD API and uploading via HTTP request, Upload progress events
passing to jQuery effects methods, Animated Effects
introduction to, E4X: ECMAScript for XML, E4X: ECMAScript for XML
adding to jQuery, Extending jQuery with Plug-ins
JavaScript extensions, JavaScript Subsets and Extensions
array methods, ECMAScript 5 Array Methods, indexOf() and lastIndexOf(), Array-Like Objects, Queries and Query Resultsclasses in, Classes in ECMAScript 5, Making Properties Nonenumerable, Defining Immutable Classes, Encapsulating Object State, Encapsulating Object State, Preventing Class Extensions, Subclasses and ECMAScript 5, Property Descriptors, Modulesdefining immutable classes, Defining Immutable Classes, Encapsulating Object Statedefining nonenumerable properties, Making Properties Nonenumerableencapsulating object state, Encapsulating Object Statepreventing class extensions, Preventing Class Extensionsproperty descriptors, Property Descriptors, Modulessubclasses, Subclasses and ECMAScript 5RegExp literals and object creation, Defining Regular Expressionsreserved words, Reserved Words
attributes property, Attributes As Attr NodescontentEditable property, Editable Contentdataset property, Dataset Attributesdefining custom methods, Documents As Trees of Elementsevent handlers, Event HandlersgetAttribute() and setAttribute() methods, Getting and Setting Non-HTML Attributes, Scripting Inline StylesgetBoundingClientRect() method, More on Element Size, Position and OverflowhasAttribute() method, Getting and Setting Non-HTML Attributesimplementing outerHTML property, using innerHTML, Removing and Replacing NodesinnerHTML property, Element Content As HTMLNode objects, Documents As Trees of NodesoffsetLeft and offsetTop properties, More on Element Size, Position and OverflowoffsetParent property, More on Element Size, Position and OverflowouterHTML property, Element Content As HTMLproperties, Propertiesproperties, element-based document traversal API, Documents As Trees of ElementsremoveAttribute() method, Getting and Setting Non-HTML Attributesrepresenting <style> and <link> elements, scripting stylesheets, Scripting Stylesheetsstyle property, Scripting Inline Styles
array, Arraysattributes of, Attributes, Attributes As Attr Nodes, Getting and Setting Non-HTML Attributes, Dataset Attributes, Attributes As Attr Nodesattributes as Attr nodes, Attributes As Attr Nodesdataset attributes, Dataset Attributesnon-HTML, getting and setting, Getting and Setting Non-HTML Attributescomputed style, The Cascadecontent, Element Contentcontent as HTML, Element Content As HTMLcontent as plain text, Element Content As Plain Textcontent as Text nodes, Element Content As Text Nodescopying with jQuery, Copying Elementsdeleting using jQuery, Deleting Elementsdisplay and visibility properties (CSS), Element Display and Visibilitydocument, as Window properties, Document Elements As Window Propertiesdocuments as trees of, Documents As Trees of Elements, Attributesgeometry and scrolling, Document and Element Geometry and Scrolling, More on Element Size, Position and Overflowgetting and setting content, Getting and Setting Element Contentgetting and setting element data, Getting and Setting Element Datagetting and setting geometry, Getting and Setting Element GeometryHTML elements and attributes, HTML Elements and Attributes, HTML Elements and AttributesHTML form, HTML Formsinserting and replacing in documents with jQuery, Altering Document StructurejQuery element methods, jQuery Element Methodsmedia, MediaElement, void play()positioning with CSS, Positioning Elements with CSSquerying geometry of, Querying the Geometry of an Elementthe selected elements in jQuery, The jQuery() Functionselecting document elements, Selecting Document Elementsselecting HTML form elements, Selecting Forms and Form Elementssize, positioning, and overflow, More on Element Size, Position and Overflowwrapping around other elements, using jQuery, Wrapping Elements
FieldSet object, PropertiesForm object, Selecting Forms and Form Elements, Properties
event handlers in HTML, Event Handlers in HTMLJavaScript in URLs, JavaScript in URLs<script> element, The <script> Elementscript type, Script Typescripts in external files, Scripts in External Files
Document object, PropertiesHTMLDocument object, Selecting Elements by Type
object state, in ECMAScript 5, Encapsulating Object Statestate variables, Private State
TimeRanges object, double end(unsigned long n)
propertyIsEnumerable() test, Testing Properties
arrays, enumeration by for/each loop, The for/each LoopObject.propertyIsEnumerable() method, Argumentsreturning own enumerable property names, Arguments
classes representing cards, Example: Enumerated Typescomparisons, Comparison Methods
order of, in for/in loops, Property enumeration order
binary floating-point and rounding errors, Binary Floating-Point and Rounding Errorstype conversions and, Conversions and Equality
FileReader object, PropertiesMediaElement object, Querying Media Status, Properties
Console object, void error(any message...)
Error class, Types, Values, and Variables, throwerror handlers, similarity to events, Types of EventsjavaException property, Scripting Java with Rhinomessage property, Descriptionname property, DescriptiontoString() method, Returnshandling in Window objects, Error Handlingproperty access, Property Access Errors
in string literals, Escape Sequences in String LiteralsUnicode, Unicode Escape Sequences
removal in secure subsets, Subsets for Security
eval() function, eval()global eval(), Global eval()strict eval(), Strict eval()
Internet Explorer, setCapture() for mouse events, Mouse EventsjQuery event handlers and, Advanced Event Handler Registration
advanced event handler registration with jQuery, Advanced Event Handler RegistrationApplicationCache object, Event Handlersdefined, Client-Side JavaScriptdefining for FileReader, Reading Blobs, Event Handlersdefining for offline web application, Offline Web Applicationsdefining, onclick handler (example), Client-Side JavaScriptderegistering with jQuery, Deregistering Event HandlersElement objects, Event HandlersEventSource object, Event Handlersform and form element, Form and Element Event Handlersform controls, Event HandlersForm objects, Event Handlersfunctions for, Event-Driven JavaScriptin HTML, Event Handlers in HTMLHTTP progress events, HTTP Progress EventsHTTP upload progress event, Upload progress eventsinvoking, Event Handler Invocation, Event Cancellation, Event Handler Argument, Event Handler Context, Event Handler Scope, Handler Return Value, Invocation Order, Event Propagation, Event Cancellationevent cancellation, Event Cancellationevent handler argument, Event Handler Argumentevent handler context, Event Handler Contextevent handler scope, Event Handler Scopeevent propagation, Event Propagationhandler return value, Handler Return Valueorder of invocation, Invocation OrderjQuery, jQuery Event Handlersmousewheel events, Mousewheel Events, Drag and Drop Eventsonerror property, Window object, Error Handlingproperties defined by HTMLElements, HTML Attributes As Element Propertiesproperties of Window, Document, and Element objects, Client-Side JavaScript, Event Handlersregistering, Touchscreen and Mobile Events (see registering event handlers)text input elements, Text FieldsWebSocket, Event HandlersWorker object, Event HandlersWorkerGlobalScope, Event HandlersXMLHttpRequest object, Retrieving the Response, Event Handlersreadystatechange events, Retrieving the ResponseXMLHttpRequestUpload, Event Handlers
(see also event handlers)same-origin policy, What JavaScript Can’t Do
constants defining values of eventPhase property, ConstantsdefaultPrevented property, Event CancellationjQuery, The jQuery Event Objectmethods, MethodspreventDefault() method, Event Cancellationproperties, Propertiesproposed method, DOM Level 3 specification, Proposed Methodproposed properties, DOM Level 3 specification, Proposed PropertiesreturnValue property, Event CancellationstopImmediatePropagation() method, Event CancellationstopPropagation() method, Event Cancellation
cancelling, Event Cancellationdefined, Handling Eventsstopping, void stopImmediatePropagation()
constants defining values of, Constants
Ajax in jQuery, Ajax Eventscategories of, Types of EventscreateEvent(), Document object, Event createEvent(string eventInterface)default actions associated with, Handling Eventsdefined, Handling Eventsdevice-independent, Accessibilitydocument load, Document Load Events, Mouse EventsDOM (Document Object Model), DOM Eventsdrag and drop, Drag and Drop Events, Text EventsErrorEvent object, ErrorEventevent emitters in Node, Asynchronous I/O with Nodeevent objects, Handling Eventsevent propagation, Handling Eventsevent target, Handling Eventsevent type or event name, Handling Eventshandling application cache events, Cache Updates, Cache Updateshandling with jQuery, Handling Events with jQuery, Live Events, Simple Event Handler Registration, The jQuery Event Object, Advanced Event Handler Registration, Deregistering Event Handlers, Triggering Events, Custom Events, Live Eventsadvanced event handler registration, Advanced Event Handler Registrationcustom events, Custom Eventsderegistering event handlers, Deregistering Event Handlersevent handler registrations methods, Simple Event Handler RegistrationEvent object, The jQuery Event Objectlive events, Live Eventstriggering events, Triggering Eventshashchange event, History ManagementHashChangeEvent object, HashChangeEventHTML5, HTML5 EventsHTTP abort events, Aborting Requests and TimeoutsHTTP progress events, HTTP Progress Events, Aborting Requests and TimeoutsHTTP timeout events, Aborting Requests and Timeoutsimplementing Java event listeners with JavaScript in Rhino, Scripting Java with Rhinoinvocation of event handlers, Event Handler Invocation, Event CancellationjQuery, jQuery Event Methodskeyboard, Keyboard Events, Keyboard Eventslegacy event types, Legacy Event Typesmedia, Media Events, Event Handlersmouse, Mouse Events, Mouse Eventsmousewheel, Mousewheel Events, Drag and Drop Eventsoverview, Event-Driven JavaScriptpage transition, PageTransitionEventpopstate, PopStateEventprogress, ProgressEvent, ProgressEventregistering event handlers, Registering Event Handlers, Event Handler InvocationServer-Sent Events with Comet, Comet with Server-Sent Events, Comet with Server-Sent Eventsstorage, Storage Events, StorageEventsupported by Document objects, Eventstesting if mouse event is over current path in canvas, Hit Detectiontesting if mouse event is over painted pixel in canvas, Hit Detectiontext, Text Events, Keyboard Eventstouchscreen and mobile, Touchscreen and Mobile Eventstypes of, Types of EventsWebSocket, Web Sockets
constants defining values of readyState property, Constantsemulating with XMLHttpRequest, Comet with Server-Sent Events, Comet with Server-Sent Eventsusing in simple chat client, Comet with Server-Sent Events
handling with try/catch/finally statements, try/catch/finally, Multiple Catch Clausesmultiple catch clauses, Multiple Catch ClausesJava, handling as JavaScript exception in Rhino, Scripting Java with Rhinothrowing, throwthrown by Worker objects, Worker Objects
event handlers, Event Handler Context
client-side threading model, Client-Side JavaScript Threading Modelclient-side timeline, Client-Side JavaScript Timelineevent-driven, Event-Driven JavaScriptsynchronous, asynchronous, and deferred scripts, Synchronous, Asynchronous, and Deferred Scripts
arithmetic, Arithmetic Expressions, Bitwise Operators, The + Operator, Unary Arithmetic Operators, Bitwise Operators+ (addition or string concatenation) operator, The + Operatorbitwise operators, Bitwise Operatorsunary arithmetic operators, Unary Arithmetic Operatorsassignment, Assignment Expressions, Assignment with Operationassignment with operation, Assignment with Operationcomma operator (,), The Comma Operator (,)conditional operator (?:), The Conditional Operator (?:)defined, Core JavaScriptdelete operator, The delete Operatorevaluation, Evaluation Expressions, Strict eval()before for keyword in array comprehensions, Array Comprehensionsgenerator, Generator Expressionsinvocation, Invocation Expressions, Function Invocationlogical AND (&&) operator, Logical AND (&&)logical NOT (!) operator, Logical NOT (!)logical OR (||) operator, Logical OR (||)object and array initializers, Object and Array Initializersobject creation, Object Creation Expressionsoperator overview, Operator Overview, Order of Evaluationprimary, Primary Expressionsproperty access, Property Access Expressions, Method Invocationrelational, Relational Expressions, Equality and Inequality Operators, Comparison Operators, The in Operator, The instanceof Operatorcomparison operators, Comparison Operatorsequality and inequality operators, Equality and Inequality Operatorsin operator, The in Operatorinstanceof operator, The instanceof Operatorstatements versus, Core JavaScripttypeof operator, The typeof Operatorvoid operator, The void Operator
constants and scoped variables, Constants and Scoped Variablesdestructuring assignment, Destructuring AssignmentE4X (ECMAScript for XML), E4X: ECMAScript for XML, E4X: ECMAScript for XMLiteration, Iteration, Shorthand Functions, The for/each Loop, Iterators, Generators, Generators, Array Comprehensions, Array Comprehensions, Generator Expressionsarray comprehensions, Array Comprehensionsfor/each loop, The for/each Loopgenerator expressions, Generator Expressionsgenerators, Generators, Array Comprehensionsiterators, Iterators, Generatorspreventing, Static Methods, Argumentspreventing class extensions in ECMAScript 5, Preventing Class Extensionsshorthand functions (expression closures), Shorthand Functions
class factory function and method chaining, Constructor and Method Chainingcreating and initializing new object, Classes and Prototypes
fadeIn() and fadeOut() methods, Animated Effects, Simple EffectsfadeTo(), Simple Effectsqueued, animate() method and, The animation options object
constants defining values of readyState property, Constantsevent handlers, Event Handlersevents tracking progress of asynchronous I/O, HTML5 Eventsevents triggered on, HTML5 Eventsmethods, void abort()properties, Propertiesreading Blobs, Reading Blobs
as Blobs, Files As BlobsFile object, Filelocal files and XMLHttpRequest, Using XMLHttpRequestmonitoring HTTP upload progress, Upload progress eventsNode file and filesystem API, Asynchronous I/O with Nodeuploading with HTTP POST request, Uploading a file
Input object, Properties
client-side storage by web applications, Client-Side Storagereading user-selected files with JavaScript, What JavaScript Can’t Dousing asynchronous filesystem API, The Filesystem APIusing synchronous filesystem API, The Filesystem APIworking with files in local filesystem, The Filesystem API
clipped, Clippingcolors, gradients, and patterns in Canvas, Colors, Transparency, Gradients, and Patterns, Line Drawing Attributes, Colors, gradients, and patterns
jQuery, Deleting Elements, Selection Methods
(see also web browsers)changes to History API in Firefox 4, History ManagementcharCode property, Text Eventscurrent version, Compatibility and InteroperabilityDOMMouseScroll events, Mousewheel EventsECMAScript 5 array methods, Array-Like Objectsglobal compositing approach, CompositingJavaScript versions and extensions, JavaScript Subsets and Extensions, Constants and Scoped Variables
binary floating-point and rounding errors, Binary Floating-Point and Rounding Errors
bubbling focusin and focusout events, DOM Eventsevent handler registration with jQuery, Simple Event Handler Registrationkeyboard focus for document elements, Key events
Element object, void focus()Window object, boolean confirm(string message)
text in canvas, Text
font-size and font-weight, and color style properties, Scripting Inline Stylesweb fonts in CSS, CSS Example
calling jQuery.each() instead, Queries and Query Resultscontinue statements in, continueiterating arrays, Iterating Arrayslet keyword used as loop initializer, Constants and Scoped Variablesvariables declared with let keyword, Constants and Scoped Variables
in array comprehensions, Array Comprehensionsdefined in E4X, iteration through lists of XML tags and attributes, E4X: ECMAScript for XML
in array comprehensions, Array Comprehensionscontinue statements in, continueenumerating properties, Enumerating Properties, Enumerating Propertiesextension to work with iterable objects, Iterators, Generatorsiterating arrays, Iterating Arraysiterating through methods, fields and properties of Java classes and objects, Scripting Java with Rhinolet keyword in, Constants and Scoped Variablesproperty enumeration order, Property enumeration orderusing with associative arrays, Objects As Associative Arrays
action, encoding, method, and target attributes, Form and Element Propertiesmethod attribute, Selecting Forms and Form Elementssetting form-submission attributes of, HTML Attributes As Element Propertiestriggering submit event on, Triggering Events
elements property, Form and Element Propertiesevent handlers, Event Handlersmethods, boolean checkValidity()properties, Propertiesreferred to as this.form by form element event handlers, Form and Element Event Handlerssubmit() and reset() methods, Form and Element Properties
FormControl object, PropertiesLabel object, PropertiesMeter object, PropertiesOption object, PropertiesProgress object, Properties
encoding an object, Form-encoded requestsfile upload with POST request, Uploading a fileJSON-encoded body, JSON-encoded requestsmaking GET request, Form-encoded requestsmaking HTTP POST request, Form-encoded requestsmultipartform=data requests, multipart/form-data requestsXML-encoded body, XML-encoded requests
Button object, PropertiesInput object, Properties
event handlers, Event Handlersmethods, boolean checkValidity()properties, FormControl
Button object, PropertiesInput object, Properties
Button object, PropertiesInput object, Properties
Button object, PropertiesInput object, Properties
Button object, PropertiesInput object, Properties
inability to close, Closing windowsmultiple windows and frames, Multiple Windows and Frames, JavaScript in Interacting Windows, Relationships Between Framesrelationships between frames, Relationships Between Frames
(see also functions, invoking)as expression statements, Expression Statements
toString() method, Object to Primitive Conversions
function declaration statements versus, function
creating a variable, JavaScript in Interacting Windows
apply() method, Argumentsarguments property, Descriptioncall() method, The class Attribute, Argumentscaller property, Descriptiondefining your own properties, Defining Your Own Function Propertieslength property, Function.lengthmethods, Methodsproperties, Propertiesprototype property, DescriptiontoString() method, Returns
and hoisting, Function Scope and Hoistingas private namespace in modules, Function Scope As a Private Namespace, Function Scope As a Private Namespace
removal in secure subsets, Subsets for Security
Ajax utility functions in jQuery, Ajax Utility Functionsarguments and parameters, Function Arguments and Parameters, Functions As Values, Optional Parameters, Variable-Length Argument Lists: The Arguments Object, Using Object Properties As Arguments, Argument Typesargument types, Argument Typesoptional parameters, Optional Parametersusing object properties as arguments, Using Object Properties As Argumentsvariable-length argument lists, Variable-Length Argument Lists: The Arguments Objectarguments[] array, Descriptionbind () method, The bind() Methodcall() and apply() methods, The call() and apply() Methodscallable objects, Callable Objectsconstructor, Global Objectsdefined, Core JavaScript, Types, Values, and Variablesnested functions, Nested Functionsdefinition expressions, Function Definition Expressionsdemonstrating control structure statements, Core JavaScriptFunction() constructor, The Function() Constructorgenerator, Generators, Array Comprehensionsglobal, Reserved Words, Global Functionshigher-order, Higher-Order Functionsinvocation expressions, Invocation Expressionsinvoking, Invoking Functions, Indirect Invocation, Method Invocation, Constructor Invocation, Indirect Invocationconstructor invocation, Constructor Invocationindirect invocation, Indirect Invocationmethod invocation, Method Invocationinvoking when document is ready, Document Load EventsjQuery function (term), The jQuery() FunctionjQuery() function ($ ()), The jQuery() FunctionMath, Static Functionsmemoization, Memoizationnames, Defining Functionsas namespaces, Functions As Namespaces, Closuresnested, Client-Side JavaScriptpartial application of, Partial Application of Functions, Memoizationprocessing arrays, Processing Arrays with Functions, Higher-Order Functionsproperties, Function Properties, Methods, and Constructor, The length Property, The prototype Property, The constructor Propertylength property, The length Propertyprototype, The prototype Property, The constructor Propertyrestrictions in secure subsets, Subsets for Securityreturning arrays of values, destructuring assignment with, Destructuring Assignmentsetting event handler attributes to, Setting Event Handler Attributessharing between frames or windows, JavaScript in Interacting Windowsshorthand for (expression closures), Shorthand FunctionstoString() method, The toString() Methoddefining your own function properties, Defining Your Own Function Propertiesvariables declared with var or let, Constants and Scoped Variables
pipeline of, Generatorsrestarting with send () or throw () method, Generators
example demonstrating all features, Geolocationusing to display a map, Geolocation
determining element positioned at a point, Determining the Element at a Pointdocument coordinates and viewport coordinates, Document Coordinates and Viewport Coordinateselement size, position, and overflow, More on Element Size, Position and Overflowgetting and setting element geometry, Getting and Setting Element Geometryhandling mousewheel events (example), Mousewheel Events, Drag and Drop Eventsquerying geometry of an element, Querying the Geometry of an Elementscrolling, Scrolling
making HTTP request with form-encoded data, Form-encoded requestsno request body, Specifying the Request
selecting forms and form elements, Selecting Forms and Form Elements
Document object, Selecting Elements by CSS Class, NodeList getElementsByClassName(string classNames)Element object, NodeList getElementsByClassName(string classNames)
Document object, Selecting Elements by Type, Selecting Forms and Form Elements, NodeList getElementsByTagName(string qualifiedName)selecting forms and form elements, Selecting Forms and Form ElementsElement object, NodeList getElementsByTagName(string qualifiedName)
Document object, NodeList getElementsByTagNameNS(string namespace, string localName)
jQuery, jQuery Getters and Setters, Getting and Setting Element Data, jQuery Getters and Setters, Getting and Setting CSS Attributes, Getting and Setting CSS Classes, Getting and Setting HTML Form Values, Getting and Setting Element Content, Getting and Setting Element Geometry, Getting and Setting Element Datafor CSS attributes, Getting and Setting CSS Attributesfor CSS classes, Getting and Setting CSS Classesfor element content, Getting and Setting Element Contentfor element data, Getting and Setting Element Datafor element geometry, Getting and Setting Element Geometryfor HTML attributes, jQuery Getters and Settersfor HTML form values, Getting and Setting HTML Form Valuesproperty, Property Getters and Setters, Property Getters and Setters, Legacy API for Getters and Setters, Closurescombining closures with, Closureslegacy API for, Legacy API for Getters and Setters
defined in Rhino, Scripting Java with Rhino
properties referring to predefined JavaScript objects, Global Objects
avoiding by using functions as namespaces, Functions As Namespacesavoiding creation of, in modules, Objects As Namespacesas properties of global object, Variables As Propertiesrestriction in secure subsets, Subsets for Securityuse of element IDs as, Document Elements As Window Properties
Caja secure subset, Subsets for SecurityClosure library, Client-Side Frameworkspromoting ability to load scripts from other sites, Scripts in External FilesV8 JavaScript engine and Node, Asynchronous I/O with Node
CanvasGradient object, CanvasGradient
specifying for stroke or fill, Colors, Transparency, Gradients, and Patterns
(see also Canvas API)scripting images, Scripting ImagesSVG (Scalable Vector Graphics), SVG: Scalable Vector Graphics, Graphics in a <canvas>
graphics state management utilities, Graphics Attributes
saving, Saving graphics state, void save()state management utilities, Graphics Attributes
Link object, PropertiesWorkerLocation object, Properties
checking Content-Type response header, Decoding the responseContent-Length header, HTTP Progress EventsCORS (Cross-Origin Resource Sharing) headers, Cross-Origin HTTP Requestsresponse headers, Retrieving the Responsesetting for POST request file upload, Uploading a filesetting POST request Content-Type header, Form-encoded requestssetting request header, Specifying the Request
(see also width and height properties)ClientRect object, PropertiesIFrame object, Properties
combined with partial application, Partial Application of Functions
back(), forward() and go() methods, Browsing Historyhistory management with (example), History Management, Cross-Origin MessagingreplaceState() method, History Management
Link object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
Link object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
CSSStyleSheet object, PropertiesLink object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
attributes of elements, HTML Attributes As Element Properties, Attributes As Attr Nodescase-insensitive tag names, Selecting Elements by Typeelement content as, Element Content As HTMLelements and attributes, HTML Elements and Attributes, HTML Elements and Attributesembedding JavaScript code using <script> tags, Client-Side JavaScriptembedding JavaScript in, Embedding JavaScript in HTML, Bookmarkletsescaping and inactivating HTML tags in untrusted data, Cross-Site Scriptingevent handlers, Event Handlers in HTMLgetting and setting attributes with jQuery, jQuery Getters and Settersincluding CSS stylesheet in HTML page, Overview of CSSkeeping HTML content separate from JavaScript behavior, Setting Event Handler Attributesnot case-sensitive, Case Sensitivity<script> element, Client-Side JavaScriptscripting document content, Client-Side JavaScriptString class methods, HTML Methodsstrings, single- and double-quoted, String Literalsusing JavaScript to script content, Client-Side JavaScript
elements, HTML Formsevents, Form eventsform and element event handlers, Form and Element Event Handlersform and element properties, Form and Element PropertiesForm objects, Form, Event Handlersform-encoded HTTP requests, Form-encoded requests, HTTP Progress EventsFormControl objects, FormControl, FormControlFormData objects, FormDataFormValidity objects, FormValiditygetting and setting values, Getting and Setting HTML Form Valueshandler return value, preventing invalid input, Handler Return ValueHTMLFormControlsCollection object, HTMLFormControlsCollectionnew features in HTML5, HTML5 Eventspush buttons, Push Buttonsselect and option elements, Select and Option Elementsselecting forms and form elements, Selecting Forms and Form Elementstext fields, Text Fieldstoggle buttons, Toggle Buttons
APIs for web applications, JavaScript in Web Applicationsapplication cache, Application Storage and Offline WebappsBlobs, Blobs, Reading BlobsclassList property, Scripting CSS Classes, Getting and Setting CSS Classesclient-side databases, Client-Side Databases, Web Socketscross-origin messaging, Cross-Origin Messaging, Web Workersdataset attributes and dataset property, Dataset AttributesDOMContentLoaded event, Document Load Eventsdrag and drop (DnD) API, Drag and Drop Eventsediting commands, Editable Contentevent handlers directed at browser as a whole, Setting Event Handler Attributesevents, HTML5 EventsFilesystem API, The Filesystem API, Client-Side Databasesframes property as self-referential property, Relationships Between FramesGeolocation API, Geolocation, History ManagementgetElementsByClassName() method, Selecting Elements by CSS Classhistory management, History Management, Cross-Origin MessaginginnerHTML and outerHTML properties, Element Content As HTMLinsertAdjacentHTML() method, Element Content As HTMLOffline Web Applications API, Client-Side Storageplaceholder attribute, text fields, Text Fieldssandbox attribute for <iframe> element, Cross-Site ScriptingSVG markup appearing directly in HTML files, SVG: Scalable Vector Graphicstyped arrays and ArrayBuffers, Typed Arrays and ArrayBuffers, Typed Arrays and ArrayBuffers“web workers”, Client-Side JavaScript Threading ModelWeb Workers specification, Web Workers, Typed Arrays and ArrayBuffersWebSocket API, Web Sockets, Web SocketsWindowProxy object, JavaScript in Interacting Windows
form elements, Selecting Forms and Form Elementsoverview of, Selecting Elements by Type
(see also Document object)getElementsByName() method, Selecting Elements by Nameimages, forms, and links properties, Selecting Elements by Type
(see also Element object)properties mirroring HTML attributes of elements, HTML Attributes As Element Propertiesrepresenting HTML elements in documents, Document Elements As Window Propertiestext property, Script Type
Label object, PropertiesOutput object, Properties
attributes of HTML elements, HTML Attributes As Element Propertiesclient utilities module in Node (example), Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP server in Node (example), Node Example: HTTP Server, Node Example: HTTP Client Utilities Modulescripted, Scripted HTTP, Comet with Server-Sent Events, Using XMLHttpRequest, HTTP by <script>: JSONP, HTTP by <script>: JSONP, Comet with Server-Sent Events, Comet with Server-Sent Events, Comet with Server-Sent Eventsusing <script> elements, HTTP by <script>: JSONP, Comet with Server-Sent Eventsusing Comet with Server-Sent Events, Comet with Server-Sent Events, Comet with Server-Sent Eventsusing XMLHttpRequest, Using XMLHttpRequest, HTTP by <script>: JSONP
bookmarking destination of, BookmarkletsLink objects, Linkonclick event handler, Push Buttons
asynchronous, scripting with Node, Asynchronous I/O with Node, Node Example: HTTP Client Utilities Module, Node Example: HTTP Server, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP client (example), Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP server (example), Node Example: HTTP Server, Node Example: HTTP Client Utilities Module
defined, Identifiers and Reserved Wordsformat control characters and, Whitespace, Line Breaks, and Format Control Charactersin labeled statements, Labeled Statementsin property access expressions, Property Access Expressions
in array comprehensions, Array Comprehensionsin else if statements, else ifnested, with else clauses, if
Ajax transport with, Scripted HTTPbrowsing history and, Browsing HistorycontentWindow property, Relationships Between Framesdeleting to close frames, Closing windowsdocument properties for, referring to Window object, Selecting Elements by Namemaking document editable in, Editable Contentname attribute, Opening and Closing Windowsnested documents in HTML documents, Multiple Windows and Framesreturning contents of, Using a selection as contextsandbox attribute in HTML5, Cross-Site Scriptingusing in history management, Browsing Historywith name and id attribute, becoming value of global variable, Document Elements As Window Properties
copying onto the canvas, void putImageData(ImageData imagedata, double dx, dy, [sx, sy, sw, sh])data property, array of bytes, Typed Arrays and ArrayBufferspassing to worker via postMessage(), Web Worker Examples
displaying dropped image files with Blob URLs, Blob URLsextracting canvas content as, ImagesImage object, Imagescripting, Scripting Imagesunobtrusive image rollovers, Unobtrusive Image RolloversWeb Worker for image processing (example), Web Worker Examples
Ajax transport and, Scripted HTTPdisplaying SVG images, SVG: Scalable Vector Graphics
testing for inherited or noninherited properties, Testing Properties
database of U.S. postal codes (example), Client-Side Databases, Web Sockets
indexOf () and lastIndexOf () methods, indexOf() and lastIndexOf()object property names versus, Reading and Writing Array Elementszero-based, string and array, Text
Array object, indexOf() and lastIndexOf(), ArgumentsString object, String.indexOf()
accessor properties, Property Getters and Settersclasses and prototypes, Classes and Prototypescreating new object that inherits from prototype, Object.create()enumeration of properties and, Enumerating Propertiesfavoring composition over, in object-oriented design, Composition Versus Subclassingobject properties, Inheritanceprototype constructor as prototype for new object, Classes and Constructorssubclasses, Defining a Subclass
CSS animations, CSS Animations, CSS Animationssetting while querying computed styles, Querying Computed Styles
streaming API for, The document.write() Methoduse in jQuery to get element content, Getting and Setting Element Contentusing to implement outerHTML, Removing and Replacing Nodes
file uploads with, Uploading a file
device-dependent and -independent, Types of Eventstriggered on text input form elements, Form events
methods, Methodsproperties, Properties
implementing using innerHTML and DocumentFragment, Using DocumentFragments
Comment node, Methods
Table object, TableRow insertRow([long index])TableSection object, TableRow insertRow([long index])
determining class of an object, The instanceof operatorinability to distinguish array type, Array TypeisPrototypeOf() method and, The prototype Attributenot working across windows, JavaScript in Interacting Windowsusing with constructors to test objects’ class membership, Constructors and Class Identityworking with Java objects and classes in Rhino, Scripting Java with Rhino
arrays of, sorting, Comparison Methodsconstructor property, The constructor Propertycreating and initializing with factory function, Classes and Prototypesfactory methods returning, Constructor Overloading and Factory Methods
<canvas> element, Graphics in a <canvas>clientInformation property, Window object, The Navigator Objectcomputed styles, Querying Computed Stylesconditional comments in, Conditional Comments in Internet ExplorerCSS box model, The border-box model and the box-sizing propertycurrent version, Compatibility and Interoperabilitydrag and drop (DnD) API, Drag and Drop Eventsevent model, Event-Driven JavaScript, Form events, attachEvent(), Event Propagation, Internet Explorer MethodsattachEvent() and addEventListener() methods, Event-Driven JavaScriptattachEvent() and detachEvent() methods, attachEvent(), Internet Explorer Methodsevent capturing and, Event Propagationform events, Form eventsfilter property, Color, Transparency, and TranslucencyinnerText property instead of textContent, Element Content As Plain Textnonbubbling mouse events, Mouse eventsnot supporting getElementsByClassName(), Selecting Elements by CSS Classpropertychange event, using to detect text input, Text Eventsquerying selected text, Querying Selected Textremoving script tags and other executable content in IE8, Cross-Site Scriptingrules property instead of cssRules, Querying, Inserting and Deleting Stylesheet Rulestimer methods, Timersuse of callable host objects rather than native Function objects, Callable ObjectsuserData API, Client-Side StorageuserData persistence, IE userData Persistence, Application Storage and Offline WebappsXMLHttpRequest in IE 6, Using XMLHttpRequest
JavaScript versions, Constants and Scoped Variablessupport for E4X, E4X: ECMAScript for XMLsupport for JavaScript extensions, JavaScript Subsets and Extensions
function invocation, Function Invocationprecedence, Operator Precedence
constructor invocation, Constructor Invocationevent handlers, Event Handler Invocation, Event Cancellationindirectly, Indirect InvocationjQuery() function, The jQuery() Functionmethod invocation, Method Invocation
DOMTokenList object, string item(unsigned long index)HTMLCollection object, Selecting Elements by Type, HTMLCollectionHTMLOptionsCollection object, Element item(unsigned long index)NodeList object, Selecting Elements by Type, Node item(unsigned long index)Select element, any item(unsigned long index)
arrays, Iterating Arrays, Iterating Arraysfor/each loop defined in E4X, E4X: ECMAScript for XMLJava classes and objects with for/in loop, Scripting Java with Rhinolanguage extensions for, Iteration, Shorthand Functions, The for/each Loop, Iterators, Generators, Generators, Array Comprehensions, Array Comprehensions, Generator Expressionsarray comprehensions, Array Comprehensionsfor/each loop, The for/each Loopgenerator expressions, Generator Expressionsgenerators, Generators, Array Comprehensionsiterators, Iterators, Generators
browser plug-ins, Scripting Plug-ins and ActiveX Controlsscripting with Rhino, Scripting Java with Rhino, Asynchronous I/O with Node, Rhino Example, Asynchronous I/O with NodeGUI (graphical user interface) example, Rhino Example, Asynchronous I/O with Node
files ending in .js, Scripts in External Filesnames and versions, Introduction to JavaScript
using for bookmarklets, Bookmarklets
Ajax functions, jQuery Ajax FunctionsAjax in jQuery 1.5, The jQuery.ajax() FunctionAjax with, Ajax with jQuery, Ajax Events, The load() Method, Ajax Utility Functions, jQuery.getJSON(), The jQuery.ajax() Function, Uncommon options and hooks, Ajax EventsAjax events, Ajax Eventsajax() function, The jQuery.ajax() Function, Uncommon options and hooksload() method, The load() Methodpassing data to Ajax utilities, jQuery.getJSON()utility functions, Ajax Utility Functionsaltering document structure, Altering Document Structure, Deleting Elementsanimated effects, Animated Effects, Canceling, Delaying, and Queuing Effectsbasic methods and properties, Basic jQuery Methods and Propertiesbasics of, jQuery BasicsCSS selector-based queries, Selecting Elements with CSS Selectorseffects and animation methods, jQuery Effects and Animation Methodselement methods, jQuery Element Methodsevent methods, jQuery Event Methodsextending with plugins, Extending jQuery with Plug-ins, The jQuery UI Librarygetters and setters, jQuery Getters and Setters, Getting and Setting Element Datahandling events with, Handling Events with jQuery, Live Eventsinsertion and deletion methods, jQuery Insertion and Deletion MethodsjQuery() function ($()), The jQuery() Function, Queries and Query Resultsnames of functions and methods in official documentation, The jQuery() Functionobtaining, jQuery Basicsqueries and query results, Queries and Query Resultsselector grammar, jQuery Selector Grammarselectors, jQuery Selectors, Selection Methods, Simple selectors, Simple selectors, Selector combinations, Selector groupscombinations of, Selector combinationsgroups of, Selector groupssimple, Simple selectors, Simple selectorsterminology, The jQuery() FunctionUI library, The jQuery UI Library
jQuery.getJSON() function, jQuery.getJSON()jQuery.parseJSON() function, Utility Functionsmaking HTTP POST request with JSON-encoded body, JSON-encoded requestsmethods, implementation in classes, Standard Conversion Methodsparsing HTTP response, Decoding the responsetoJSON() method, The toJSON() Method
making request with script element, HTTP by <script>: JSONPrequest specified by URL or data string passed to jQuery.getJSON(), jQuery.getJSON()
break, breakcontinue, continuelabeled, Labeled Statementsreturn, returnthrow, throwtry/catch/finally, try/catch/finally
Event object, DOM Events, Proposed PropertiesStorageEvent object, StorageEvent
event handler registration with jQuery, Simple Event Handler Registrationkeydown and keyup, Keyboard EventsKeymap class for keyboard shortcuts (example), Keyboard Events, Keyboard Eventstext input, Text Events
Event object, Properties
enumerating property names, Enumerating Properties
continue, continue
FormControl object, PropertiesMeter object, PropertiesProgress object, Properties
Array object, indexOf() and lastIndexOf(), ArgumentsString object, String.lastIndexOf()
ClientRect object, Properties
form events, Form eventskey events, Key eventsmouse events, Mouse eventswindow events, Window events
determining, Working with Strings
Arguments object, Variable-Length Argument Lists: The Arguments Object, DescriptionArray object, Descriptionmanipulating, Array Lengthsparse arrays, Sparse ArraysComment node, PropertiesCSSStyleDeclaration object, PropertiesDOMTokenList object, PropertiesForm object, PropertiesFunction object, Function.lengthfunctions, The length PropertyHistory object, PropertiesHTMLCollection object, PropertiesHTMLOptionsCollection object, PropertiesjQuery objects, Queries and Query ResultsNodeList object, PropertiesSelect element, PropertiesStorage object, PropertiesString object, Working with Strings, String.lengthText node, PropertiesTimeRanges object, PropertiesTypedArray object, PropertiesWindow object, Relationships Between Frames, Properties
destructuring assignment used to initialize variables, Destructuring Assignmentused as loop initializer, Constants and Scoped Variablesusing as variable declaration, Constants and Scoped Variables
and functions shared between frames or windows, JavaScript in Interacting Windowsrules for nested functions, Closures
client-side, supporting visual effects, CSS Animationscompatibility, Compatibility Librarieshistory management, Browsing History
interpreted as semicolon, exceptions, Optional Semicolonsin JavaScript code, Whitespace, Line Breaks, and Format Control Characterstreatment as semicolons in JavaScript, Optional Semicolons
drawing in Canvas API, Drawing Lines and Filling Polygons, Graphics Attributesline drawing attributes in canvas, Line Drawing Attributes
Link object, Linkrequesting details about with HTTP HEAD and CORS, Cross-Origin HTTP Requests
defined, Literalsnumeric, Numbersobject, Object Literalsregular expression, Defining Regular Expressionsstring, String LiteralsXML literals included in JavaScript code, E4X: ECMAScript for XML
browser support for, Client-Side JavaScript Timelineevent propagation, Event PropagationFileReader object, Reading Blobsonload event handler, Window object, Client-Side JavaScriptregistering event handler for, Client-Side JavaScript
Ajax utility in jQuery, The load() Methodmedia elements, Type Selection and LoadingMediaElement object, void load()
offline web applications, Offline Web Applicationsstorage API, Storage APIstorage events, Storage Eventsstorage lifetime and scope, Storage Lifetime and Scope
assign() and replace() methods, Loading New Documentshash property, History Managementhref property, Parsing URLsreload() method, Loading New DocumentsURL decomposition properties, Parsing URLs
Event object, Proposed PropertiesWorkerGlobalScope object, Worker Scope, Properties
logical AND (&&) operator, Logical AND (&&)logical NOT (!) operator, Logical NOT (!)logical OR (||) operator, Logical OR (||)
continue statements in, continuedo/while, do/whilefor, forfor/each, The for/each Looplet keyword as variable declaration or loop initializer, Constants and Scoped Variableswhile, while
complex manifests, Complex manifestsupdates, Cache Updates, Cache Updates
Array and jQuery, Queries and Query Results
in CSS box model, The CSS Box Model and Positioning Detailsspecifying for elements with CSS, Borders, Margins and Padding
abs() function, Math.abs()acos() function, Math.acos()asin() function, Math.asin()atan() function, Math.atan()atan2() function, Math.atan2()ceil() function, Math.ceil()constants, Constantscos() function, Math.cos()exp() function, Argumentsfloor() function, Descriptionfunctions and constants defined as properties, Arithmetic in JavaScriptlog() function, Math.log()max() function, The call() and apply() Methodsmax() method, Math.max()min() function, Math.min()pow() function, Argumentsrandom() function, Returnsround() function, Argumentssin() function, Argumentssqrt() function, Argumentsstatic functions, Static Functionstan() function, Math.tan()
Input object, PropertiesMeter object, PropertiesProgress object, Properties
controlling playback, Controlling Media Playbackevents, Media Eventsquerying status, Querying Media Statusscripting audio and video, Scripting Audio and Videotype selection and loading, Type Selection and Loading
CSSStyleSheet object, PropertiesStyle object, Properties
constants defining values for networkState and readyState, Constantsevent handlers, Event Handlersmethods, string canPlayType(string type)properties, Properties
Error object, Properties, DescriptionErrorEvent object, PropertiesEvalError object, PropertiesGeolocationError object, PropertiesReferenceError object, PropertiesURIError object, Properties
message event used for asynchronous communication, HTML5 Eventssending data to Worker objects with postMessage(), Worker Objectssupport by WebSocket API, Web Sockets
Event object, The jQuery Event Object, Propertiesin jQuery, The jQuery Event Object
from subclass to superclass, Constructor and Method Chaining, Constructor and Method Chaining
adding to prototype objects for classes, Augmenting Classesarray, Array Methods, toString() and toLocaleString(), ECMAScript 5 Array Methods, indexOf() and lastIndexOf(), Array-Like ObjectsECMAScript 3, Array Methods, toString() and toLocaleString()ECMAScript 3 and ECMAScript 5, Array-Like ObjectsECMAScript 5, ECMAScript 5 Array Methods, indexOf() and lastIndexOf()borrowing, Borrowing Methodsclass, Classes and Modulescommon object methods, Object Methods, The toString() Method, The toLocaleString() Method, The toJSON() Method, The valueOf() MethodtoJSON(), The toJSON() MethodtoLocaleString(), The toLocaleString() MethodtoString(), The toString() MethodvalueOf(), The valueOf() Methodcomparison, Comparison Methods, Comparison Methodsdefined, Core JavaScriptinvocation expressions, Invocation Expressionsinvoking, Method InvocationJava, invoking with JavaScript programs in Rhino, Scripting Java with RhinojQuery, The jQuery() Functionspecial, restriction in secure subsets, Subsets for Securitytype conversion, Standard Conversion Methods
application cache manifest files, The Application Cache Manifestform data encoding, Form-encoded requestsmedia, Type Selection and Loadingoverriding incorrect type in HTTP response, Decoding the responsespecifying in HTTP Content-Type headers, Specifying the Requesttext, Decoding the response
Input object, PropertiesMeter object, Properties
(see also dialog boxes)
evaluation of, Node Example: HTTP Client Utilities Modulefunction scope as private namespace, Function Scope As a Private Namespace, Function Scope As a Private Namespaceobjects as namespaces, Objects As Namespaces
coordinates of pointer, Document Coordinates and Viewport Coordinatestwo-dimensional mouse wheels and wheel event, DOM Eventsusing keyboard instead of, Accessibility
default actions that can be prevented, Mouse EventsDOM Level 3 Events specification, DOM Eventsregistering event handlers with jQuery, Simple Event Handler Registrationtesting if event is over painted pixel in canvas, Hit Detectiontesting whether event is over current path in canvas, Hit Detection
handling, Mousewheel Events, Drag and Drop Eventsworking with, interoperably, Mousewheel Events
downloading Rhino from, Scripting Java with RhinoJavaScript versions, JavaScript Subsets and Extensions, Constants and Scoped Variables
Input object, PropertiesSelect element, Properties
MediaElement object, Propertiessetting for audio playback, Controlling Media Playback
selecting elements by name, Selecting Elements by Namesetting, creating properties on Document object, Selecting Elements by Name
Attr object, PropertiesDocumentType object, PropertiesDOMException object, PropertiesError object, Methods, DescriptionEvalError object, PropertiesFile object, Files As Blobs, Propertiesform elements, Form and Element PropertiesForm object, PropertiesFormControl object, PropertiesIFrame object, PropertiesReferenceError object, PropertiesURIError object, PropertiesWindow object, Opening and Closing Windows, Properties
HTMLCollection object, Selecting Elements by Type, HTMLCollectionHTMLOptionsCollection object, Element item(unsigned long index)Select element, any namedItem(string name)
CSS properties in JavaScript, Scripting Inline Stylesof functions, Defining Functionswindow name, importance of, Opening and Closing Windows
createElementNS() method, Creating NodescreateElementNS() method, Document, Element createElementNS(string namespace, string qualifiedName)function scope as private namespace, in modules, Function Scope As a Private Namespace, Function Scope As a Private Namespacefunctions as, Functions As Namespaces, ClosuresgetAttributeNS(), Element object, string getAttribute(string qualifiedName)getElementsByTagNameNS() method, NodeList getElementsByTagNameNS(string namespace, string localName)isDefaultNamespace(), Node object, Node insertBefore(Node newChild, Node refChild)jQuery, The jQuery() FunctionjQuery plug-in binding event handlers, Extending jQuery with Plug-inslookupPrefix(), Node object, string lookupPrefix(string namespace)namespaceURI property, Element object, Propertiesobjects as, Objects As Namespacesprocess namespace, Node, Asynchronous I/O with Nodespecifying for event handlers with jQuery, Advanced Event Handler RegistrationXML documents including attributes from other namespaces, Getting and Setting Non-HTML AttributesXML, working with in E4X, E4X: ECMAScript for XML
equality comparisons and, Arithmetic in JavaScriptisNaN() function, ArgumentsNumber.NaN, Number.NaN
browser sniffing properties, The Navigator ObjectcookieEnabled property, Cookiesgeolocation property, Geolocationmiscellaneous properties and methods, The Navigator ObjectonLine property, Offline Web Applications
Window object, The Navigator Object, PropertiesWorkerGlobalScope object, Worker Scope, Properties
equality comparisons to positive zero, Arithmetic in JavaScript
client-side JavaScript and, What JavaScript Can’t DoTCP-based, net module in Node, Asynchronous I/O with Node
instantiating Java classes, Scripting Java with Rhinopreceding object creation expressions, Object Creation Expressions
constructor invocation with, Classes and Constructorscreating objects, Object Literals
generators, Generatorsiterators, Iterators
chat server using WebSockets and, Web Socketsonline documentation, Asynchronous I/O with Nodescripting asynchronous I/O with, Asynchronous I/O with Node, Node Example: HTTP Client Utilities Module, Asynchronous I/O with Node, Asynchronous I/O with Node, Asynchronous I/O with Node, Asynchronous I/O with Node, Asynchronous I/O with Node, Asynchronous I/O with Node, Asynchronous I/O with Node, Node Example: HTTP Server, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities Modulebuffers, Asynchronous I/O with Nodeclient-side timer functions, Asynchronous I/O with Nodeevent emitters, Asynchronous I/O with Nodefile and filesystem API in fs module, Asynchronous I/O with Nodefunctions, Asynchronous I/O with NodeHTTP client utilities module (example), Node Example: HTTP Client Utilities Module, Node Example: HTTP Client Utilities ModuleHTTP server (example), Node Example: HTTP Server, Node Example: HTTP Client Utilities Modulestreams, Asynchronous I/O with NodeTCP-based networking, Asynchronous I/O with Node
appendChild() method, Inserting Nodesattributes property, Attributes As Attr NodescloneNode() method, Creating Nodesconstants, possible values of nodeType property, Constantsconstants, return value of compareDocumentPosition(), Constantsdocuments as trees of, Documents As Trees of NodesinsertBefore() method, Inserting Nodesmethods, Node appendChild(Node newChild)properties, PropertiesremoveChild() method, Removing and Replacing NodesreplaceChild() method, Removing and Replacing NodestextContent property, Element Content As Plain Text
overview of, Selecting Elements by Typereturned by getElementsByTagName(), Selecting Elements by Type
creating, inserting, and deleting in documents, Creating, Inserting, and Deleting Nodes, Example: Generating a Table of Contents, Creating Nodes, Creating Nodes, Inserting Nodes, Removing and Replacing Nodes, Using DocumentFragmentscreating nodes, Creating Nodesinserting nodes, Creating Nodes, Inserting Nodesremoving and replacing nodes, Removing and Replacing Nodesusing DocumentFragments, Using DocumentFragments
normalized, defined, TimeRangesUnicode encodings, Normalization
properties with, access errors, Property Access Errorsproperty access expressions and, Property Access Expressions
constants, ConstantsMAX_VALUE, Number.MAX_VALUEmethods, MethodsMIN_VALUE, Number.MIN_VALUENaN, Number.NaNNEGATIVE_INFINITY, Number.NEGATIVE_INFINITYPOSITIVE_INFINITY, Number.POSITIVE_INFINITYread-only values for Infinity and NaN global variables, Arithmetic in JavaScripttoExponential() method, Number.toExponential()toFixed() method, Number.toFixed()toLocaleString() method, Number.toLocaleString()toPrecision() method, Number.toPrecision()toString() method, Explicit Conversions, Number.toString()valueOf() method, Number.valueOf()
arithmetic in JavaScript, Arithmetic in JavaScriptbinary floating-point and rounding errors, Binary Floating-Point and Rounding Errorsconversions, Type Conversions, Explicit Conversions, Explicit Conversions, Object to Primitive Conversions, Object to Primitive Conversionsnumber-to-string, Explicit Conversionsobject-to-number, Object to Primitive Conversions, Object to Primitive Conversionsdates and times, Dates and Timesdefining a complex number class (example), Java-Style Classes in JavaScriptfloating-point literals, Floating-Point Literalsinteger literals, Integer Literalswrapper objects, Wrapper Objects
constructor property, Properties, DescriptiondefineProperties() function, Property Attributes, ArgumentsdefineProperty() function, Property enumeration order, Property Attributes, Legacy API for Getters and Setters, Array Length, Argumentsfreeze() function, The extensible Attribute, Object.freeze()getOwnPropertyDescriptor() function, Property Attributes, Legacy API for Getters and Setters, ArgumentsgetOwnPropertyNames() function, Enumerating Properties, ArgumentsgetPrototypeOf() function, The prototype Attribute, ArgumentshasOwnProperty() method, Testing Properties, Object.hasOwnProperty()isExtensible() function, The extensible Attribute, ArgumentsisFrozen() function, The extensible Attribute, ArgumentsisPrototypeOf() method, The prototype Attribute, Object.isPrototypeOf()isSealed() function, Argumentskeys() function, Enumerating Properties, Argumentsmethods, Object Methods, MethodspreventExtensions() function, The extensible Attribute, ArgumentspropertyIsEnumerable() method, Testing Properties, Object.propertyIsEnumerable()prototype property, Prototypesseal() function, The extensible Attribute, Argumentsstatic methods, Static MethodstoLocaleString() method, The toLocaleString() Method, Object.toLocaleString()toString() method, The toString() Method, Object.toString()valueOf() method, The valueOf() Method, Object.valueOf()
displaying SVG images, SVG: Scalable Vector Graphics
favoring composition over inheritance, Composition Versus Subclassingseparating interface from implementation, Class Hierarchies and Abstract Classesstrongly typed languages, Classes and Modules
borrowing methods, Borrowing Methodsconstructor overloading and factory methods, Constructor Overloading and Factory Methodsemulating private instance fields, Private Stateenumerated types (example), Example: Enumerated Types, Standard Conversion Methodsimplementing comparison methods in classes, Comparison Methods, Comparison MethodsSet class (example), Example: A Set Class, Example: Enumerated Typesstandard conversion methods, Standard Conversion Methods
array-like, Array-Like Objectsarrays of, Arraysattributes of, Objects, Object Attributes, Serializing Objects, The prototype Attribute, The class Attribute, The extensible Attributeclass attribute, The class Attributeextensible attribute, The extensible Attributeprototype attribute, The prototype Attributecallable, Callable Objectsconversion to primitives, Object to Primitive Conversions, Variable Declarationconversion to strings, History Managementconversion to strings for Ajax, The load() Methodconversions, Type Conversionscreating, Creating Objects, Object.create(), Object Literals, Object Literals, Prototypes, Object.create()using new operator, Object Literalsusing object literals, Object Literalsusing Object.create() function, Object.create()using prototypes, Prototypesdeleting properties, Deleting Propertiesdetermining class of, Classes and Types, The instanceof operator, The constructor property, The Constructor Name, Duck-Typingusing constructor name as class identifier, The Constructor Nameusing constructor property, The constructor propertyusing duck-typing, Duck-Typingusing instanceof operator, The instanceof operatorenumerating properties, Enumerating Properties, Enumerating Propertiesform-encoding properties for HTTP request, Form-encoded requestsglobal object, The Global Objectinitializers, Object and Array Initializersinstanceof operator, The instanceof Operatoriterable, Iteratorsiterating through properties with jQuery.each() function, Utility FunctionsJava, querying and setting fields in Rhino, Scripting Java with RhinojQuery, The jQuery() Functionuniversal, Object Methodsmutable object references, Immutable Primitive Values and Mutable Object Referencesproperties, Objectsproperty access expressions, Property Access Expressionsproperty attributes, Property Attributes, Legacy API for Getters and Settersproperty getters and setters, Property Getters and Setters, Property Getters and Settersquerying and setting properties, Querying and Setting Properties, Property Access Errors, Objects As Associative Arrays, Inheritance, Property Access Errorsinheritance and, Inheritanceobjects as associative arrays, Objects As Associative Arraysproperty access errors, Property Access Errorsserializing, Serializing Objectsstructured clones of, History Managementtesting properties, Testing Propertieswrapper, Wrapper Objects
application storage and, Application Storage and Offline Webappsevents, HTML5 Events
text fields, Text Fieldstoggle buttons in forms, Toggle Buttons
button elements in forms, Push Buttons
setting to a function, Event-Driven JavaScriptWorkerGlobalScope object, Worker Scope
Navigator object, The Navigator Object, PropertiesWorkerNavigator object, Properties
in client-side script revealing content, Client-Side JavaScriptin digital clock program, The <script> Element
animating, Simple Effects, The animation options objectanimating changes for fadeable elements, CSS Animations
Window object, JavaScript in URLs, Opening and Closing Windows, Window open([string url], [string target], [string features], [string replace])javascript:URL as argument, JavaScript in URLsXMLHttpRequest object, void open(string method, string url, [boolean async, string user, string pass])
closing windows, Closing windows
(see also web browsers)current version, Compatibility and Interoperabilityglobal compositing approach, Compositing
drag-and-drop operations based on, HTML5 Eventsweb browsers as, JavaScript in Web Applications
+ (addition or string concatenation) operator, The + Operatorarithmetic, Arithmetic Expressionsassignment, Assignment with Operationassociativity, Operator Associativitybitwise, Bitwise Operatorscomparison, Comparison Operatorsconditional (?:), The Conditional Operator (?:)delete, The delete Operatorequality and inequality, Equality and Inequality Operatorsin, The in Operatorinstanceof, The instanceof Operatorlist of JavaScript operators, Operator Overviewlogical AND (&&), Logical AND (&&)logical NOT (!), Logical NOT (!)logical OR (||), Logical OR (||)lvalues, Lvaluesnumber of operands, Number of Operandsoperand and result type, Operand and Result Typeorder of evaluation, Order of Evaluationprecedence, Operator Precedenceside effects, Operator Side Effects, Expression Statementstypeof, The typeof Operatorunary arithmetic operators, Unary Arithmetic Operatorsvoid, The void Operator
implementing using innerHTML, Removing and Replacing Nodes
in CSS box model, The CSS Box Model and Positioning Detailsspecifying for elements with CSS, Borders, Margins and Padding
in jQuery, The jQuery Event Object
optional, Optional Parameters
Window object, Properties
CSSRule object, PropertiesCSSStyleSheet object, Properties
setting, Storing Cookies
Link object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
canvas, Graphics in a <canvas>, Drawing Lines and Filling Polygons, Drawing Lines and Filling Polygons, Drawing and Filling Curves, Line Drawing Attributes, Hit Detection, Creating and rendering paths, void beginPath(), void closePath(), boolean isPointInPath(double x, y)beginPath() method, void beginPath()closePath() method, void closePath()creating and rendering, Creating and rendering pathscurved paths, Drawing and Filling Curvesdefining, Drawing Lines and Filling Polygonsdetermining if point is on, boolean isPointInPath(double x, y)determining whether point is in, Drawing Lines and Filling Polygonsline drawing attributes, Line Drawing Attributestesting if mouse event is over current path, Hit Detection
(see also regular expressions)string methods for, String Methods for Pattern Matching
fill or stroke using, Colors, Transparency, Gradients, and Patterns, CanvasPatternspecifying for fill or stroke in canvas, Colors, Transparency, Gradients, and Patterns
enlarged withdrawImage() in canvas, Imagestesting if mouse event is over painted pixel in canvas, Hit Detection
Navigator object, The Navigator Object, PropertiesWorkerNavigator object, Properties
scripting in browsers, security implications, Scripting Plug-ins and ActiveX Controls
Document object, PropertiesHTMLDocument object, Selecting Elements by Type
Link object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
Progress object, Properties
CSS box model, The CSS Box Model and Positioning DetailsCSS example, shadowed text, CSS positioning example: Shadowed textdocument and element geometry and scrolling, Document and Element Geometry and Scrolling, More on Element Size, Position and Overflowgetting and setting element geometry in jQuery, Getting and Setting Element Geometryhandling mousewheel events (example), Mousewheel Events, Drag and Drop Events
encoding HTTP request body with XML document, XML-encoded requestsfile upload with HTTP request, Uploading a filemaking HTTP request with form-encoded data, Form-encoded requestsmaking HTTP request with JSON-encoded body, JSON-encoded requestsposting plain text to a server, Specifying the Requestrequest body, Specifying the Request
MessagePort object, void postMessage(any message, [MessagePort[] ports])Window object, Relaxing the same-origin policy, Cross-Origin Messaging, Cross-Origin Messaging, Web Workers, Window open([string url], [string target], [string features], [string replace])Twitter search gadget controlled by, Cross-Origin Messaging, Web WorkersWorker object, Worker Objects, ConstructorWorkerGlobalScope object, void postMessage(any message, [MessagePort[] ports])
Attr object, PropertiesElement object, Properties
conversion of JavaScript primitives to Java, Scripting Java with Rhino, Scripting Java with Rhinoconversions to other types, Type Conversionsimmutable primitive values and mutable object references, Immutable Primitive Values and Mutable Object Referencesobject to primitive conversions, Object to Primitive Conversions, Variable Declaration
beforeprint and afterprint events, HTML5 Eventsdefining jQuery.fn.println() function, Extending jQuery with Plug-ins
emulating private instance fields in JavaScript, Private State
Console object, void profile([string title])ConsoleCommandLine object, void profile(string title)
Console object, void profileEnd()ConsoleCommandLine object, void profileEnd()
HTTP, HTTP Progress Eventsupload, Upload progress eventsXMLHttpRequest Level 2 (XHR2), Event Handlers
class, Classes and Modulescomputed style, Querying Computed Stylesconverting HTML attribute names to, HTML Attributes As Element PropertiesCSS style properties, Overview of CSSdataset attributes converted to, Dataset Attributesdefined, Objectsdeleting, Deleting Propertiesenumerating, Enumerating Properties, Enumerating Propertiesmirroring HTML attributes, Event Handlers in HTMLnaming convention, Event-Driven JavaScriptform and form element, Form and Element PropertiesFunction object, defining your own, Defining Your Own Function Propertiesfunctions assigned to, Functions As Valuesgetters and setters, Property Getters and Setters, Property Getters and Settersglobal, Global PropertiesHTMLElement, mirroring HTML element attributes, HTML Attributes As Element Propertiesimportant CSS style properties, Important CSS Propertiesinherited, checking for, Argumentsiterating through, with for/in loops, for/in, Property enumeration orderenumeration order, Property enumeration ordermaking nonenumerable, Making Properties Nonenumerablenames and values, Object Literalsnaming conventions for CSS properties in JavaScript, Scripting Inline Stylesnonstandard CSS properties, Nonstandard PropertiesObject.defineProperties() method, Argumentsprivate, in Java-style classes, Java-Style Classes in JavaScriptproperty names versus array indexes, Reading and Writing Array Elementsprototype, inheritance of, Prototypesquerying and setting, Querying and Setting Properties, Property Access Errors, Objects As Associative Arrays, Inheritance, Property Access Errorsaccess errors, Property Access Errorsinherited properties, Inheritanceobjects as associative arrays, Objects As Associative Arraysshortcut properties in CSS, Shortcut Propertiesspecial, restriction in secure subsets, Subsets for Securitytesting, Testing Propertiesusing as function arguments, Using Object Properties As Argumentsvariables as, Variables As Properties
method invocations, Method Invocationprecedence, Operator Precedence
ECMAScript 5 properties utilities, Property Descriptors, Modulesgetting for named property of an object, Property Attributesutility functions for, Defining Immutable Classes
Link object, PropertiesLocation object, Parsing URLs, PropertiesWebSocket object, Web Sockets, PropertiesWorkerLocation object, Properties
Function object, Descriptionfunctions, The prototype Propertyrestrictions in secure subsets, Subsets for Security
adding methods to augment classes inheriting from, Augmenting ClassesArray.prototype, Arraysclasses and, Classes and Prototypesconstructor function, The constructor Propertyconstructor property and, The constructor Propertyconstructor, used as prototype of new object, Classes and Constructorsdefined, Objectsduck-typing and, Duck-Typinginheritance and, ObjectsjQuery.fn, Extending jQuery with Plug-insmaking nonextensible, Preventing Class Extensionsin multiple, interacting windows, JavaScript in Interacting WindowsObject.getPrototypeOf() method, ArgumentsObject.isPrototypeOf() method, Argumentsproper initialization, key to subclassing, Defining a Subclasstesting prototype chain of an object, The instanceof operator
adding elements to end of array, Adding and Deleting Array Elements
history management with (example), History Management, Cross-Origin Messaging
Document object, Element querySelector(string selectors)Element object, Element querySelector(string selectors)
Document object, Enabling and Disabling Stylesheets, Queries and Query Results, NodeList querySelectorAll(string selectors)$() function versus, Queries and Query ResultsElement object, NodeList querySelectorAll(string selectors)selecting form elements, Selecting Forms and Form Elements
canceling, delaying, and queuing effects, Canceling, Delaying, and Queuing Effectsqueue property, animation options object, The animation options object
HTML document display, Selecting Elements by CSS Class
(see also FileReader object)events triggered on XMLHttpRequest or FileReader, HTML5 Events
FileReaderSync object, ArrayBuffer readAsArrayBuffer(Blob blob)
FileReader object, Reading Blobs, void readAsArrayBuffer(Blob blob)FileReaderSync object, string readAsBinaryString(Blob blob)
FileReader object, Reading Blobs, void readAsDataURL(Blob blob)FileReaderSync object, string readAsDataURL(Blob blob)
FileReader object, Reading Blobs, void readAsText(Blob blob, [string encoding])FileReaderSync object, string readAsText(Blob blob, [string encoding])
EventSource object, ConstantsFileReader object, Reading Blobs, ConstantsWebSocket object, Constantsvalues, Retrieving the Response
CanvasRenderingContext2D, void rect(double x, y, w, h)
clearRect() method, void clearRect(double x, y, width, height)ClientRect objects, ClientRectdrawing in canvas, Rectangles, Drawing rectanglesfillRect() method, void fillRect(double x, y, width, height)
toString() method, Object to Primitive Conversions
as callable object, Callable Objectsinstance properties, Instance PropertieslastIndex property, RegExp.lastIndexproperties, RegExp Propertiessource property, RegExp.sourcetest() method, RegExp Methods, RegExp.test()toString() method, Returns
advanced event handler registration with jQuery, Advanced Event Handler Registrationderegistering event handlers with jQuery, Deregistering Event Handlersfor HTTP progress events, HTTP Progress Eventsfor load and click events, Client-Side JavaScriptsetting event handler attributes, Setting Event Handler Attributessetting event handler properties, Setting Event Handler Propertiessimple event handler registration with jQuery, Simple Event Handler Registrationusing addEventListener(), addEventListener()
defining, Defining Regular Expressions, Literal Characters, Character Classes, Repetition, Alternation, Grouping, and References, Specifying Match Position, Flagsalternation, grouping, and references, Alternation, Grouping, and Referencescharacter classes, Character Classesflags, Flagsliteral characters, Literal Charactersrepetition, Repetitionspecifying match position, Specifying Match PositionRegExp objects, The RegExp Object, RegExp Methodsstring methods using, String Methods for Pattern Matching, String Methods for Pattern Matching
comparison operators, Comparison Operatorsequality and inequality operators, Equality and Inequality Operatorsin operator, The in Operatorinstanceof operator, The instanceof Operator
DOMTokenList object, Scripting CSS Classes, void remove(string token)jQuery, Deleting ElementsSelect element, void remove(long index)
Document object, addEventListener()EventTarget object, void removeEventListener(string type, function listener, [boolean useCapture])Worker object, Worker ObjectsWorkerGlobalScope object, Worker Scope
nongreedy, Nongreedy repetition
Location object, Loading New Documents, void replace(string url)String object, String Methods for Pattern Matching, String.replace()
Comment node, Methods
aborting requests and timeouts, Aborting Requests and Timeoutsdecoding the response, Decoding the responseencoding request body, Encoding the Request Body, HTTP Progress Eventsgetting onreadystatechange response, Retrieving the Responseorder of request parts, Specifying the Requestresponse components, Retrieving the Responsespecifying the request, Specifying the Requestsynchronous responses, Synchronous responses
Input object, PropertiesSelect element, Properties
CSS properties having reserved word in name, Scripting Inline StylesHTML attribute names, HTML Attributes As Element Propertiesprimary expressions, Primary Expressionsusing as property names, Object Literals, Querying and Setting Propertiesquerying and accessing the properties, Querying and Setting Properties
parsing response, Decoding the response
Event object, jQuery Event Handlers, The jQuery Event ObjectFileReader object, Reading Blobs, Properties
line break interpreted as semicolon, Optional Semicolonsuse by generator functions, Generators
event handler, Handler Return ValuejQuery event handler functions, jQuery Event Handlerssetting returnValue property of event to false, Event Cancellation
BeforeUnloadEvent object, BeforeUnloadEventEvent object, Event Cancellation, PropertiesWindow object, Properties
JavaScript versions, Constants and Scoped Variablesscripting Java with, Scripting Java with Rhino, Asynchronous I/O with Node, Rhino Example, Asynchronous I/O with NodeGUI (graphical user interface) example, Rhino Example, Asynchronous I/O with Nodesupport for E4X, E4X: ECMAScript for XMLsupport for JavaScript extensions, JavaScript Subsets and Extensions
Table object, PropertiesTableSection object, Properties
querying, inserting, and deleting in stylesheets, Querying, Inserting and Deleting Stylesheet Rules
current version, Compatibility and Interoperabilitygesture and touch events on iPhone and iPad, Touchscreen and Mobile EventsJavaScript in URLs, JavaScript in URLsmouse, two-dimensional trackball, Mousewheel EventstextInput event, DOM Events
Canvas objects, toDataURL() method, Imagesfilesystems and, The Filesystem APIorigin of a document, Storage Lifetime and Scopepreventing cookie swapping across sites, Cookie Attributes: Lifetime and Scoperelaxing, Relaxing the same-origin policy
event handler functions, Event Handler Scopefunction scope and hoisting, Function Scope and Hoisting, Defining Functionsfunctions as namespaces, Functions As NamespacesIE userData, IE userData PersistenceJavaScript functions and, Functionsnested functions, Nested Functionsscope chain, The Scope ChainsessionStorage, Storage Eventsstorage scope, localStorage and sessionStorage, Storage Lifetime and Scopevariables as properties, Variables As Propertiesvariables defined with let keyword, Constants and Scoped VariablesWorker threads, Worker ScopeWorkerGlobalScope object, WorkerGlobalScope
Event object, PropertiesWindow object, Properties
Ajax transport with, Scripted HTTPasync and defer attributes, Synchronous, Asynchronous, and Deferred Scripts, Client-Side JavaScript Timelineembedding JavaScript in HTML, Client-Side JavaScript, The <script> ElementHTTP by, JSONP, HTTP by <script>: JSONP, Comet with Server-Sent EventsHTTP scripting with, Decoding the responsesrc attribute, Scripts in External Filestext in, Element Content As Plain Texttype attribute, Script Type
in external files, Scripts in External FilesjQuery.getScript() function, jQuery.getScript()Script object, Scriptsynchronous, asynchronous, and deferred, Synchronous, Asynchronous, and Deferred Scriptstype attribute, specifying MIME type, Script Type
Window object, Scrolling, void scroll(long x, long y)
scroll events in windows, Window events
Element object, Properties
Link object, PropertiesLocation object, Parsing URLs, PropertiesWorkerLocation object, Properties
client-side storage and, Client-Side Storagecookie data and, Cookiescross-origin HTTP requests, Cross-Origin HTTP Requestscross-site scripting (XSS), Cross-Site Scriptingdenial-of-service attacks, Denial-of-Service Attackssame-origin policy, The Same-Origin Policyscripting plug-ins and ActiveX controls, Scripting Plug-ins and ActiveX Controlsscripts and, HTTP by <script>: JSONPfeatures removed, Subsets for Securitylisting of important subsets, Subsets for SecuritytoDataURL() method, Canvas objects, Imageswhat JavaScript can’t do, What JavaScript Can’t Do
Input object, void select()TextArea object, void select()
HTMLOptionsCollection object, PropertiesSelect element, Select and Option Elements, Properties
document.all[] collection, document.all[]by id, Selecting Elements By IDby name, Selecting Elements by Nameby type, Selecting Elements by Type
reverting to previous selection, Reverting to a previous selectionusing selection as context, Using a selection as context
Input object, PropertiesTextArea object, Properties
Input object, PropertiesTextArea object, Properties
CSS, Selecting Elements with CSS Selectors, Overview of CSS, Querying, Inserting and Deleting Stylesheet Rules, The jQuery() Functionfor style rules, Querying, Inserting and Deleting Stylesheet Rulesusing to invoke jQuery() function, The jQuery() FunctionjQuery, jQuery Selectors, Selection Methods, Simple selectors, Simple selectors, Selector combinations, Selector groups, jQuery Selector Grammarcombinations of, Selector combinationsfilters for, Simple selectors, Simple selectorsgroups, Selector groupsselecting part of document to display with jQuery, The load() Method
Window object, PropertiesWorkerGlobalScope object, Worker Scope, Properties
generators, GeneratorsWebSocket object, void close()XMLHttpRequest object, Specifying the Request, void send(any body)
example, JSON.stringify() function, Description
custom chat server, Comet with Server-Sent Eventsemulating EventSource with XMLHttpRequest, Comet with Server-Sent Events, Comet with Server-Sent Eventssimple chat client using EventSource, Comet with Server-Sent Events
asynchronous I/O with Node, Asynchronous I/O with Node, Node Example: HTTP Client Utilities Modulescripting Java with Rhino, Scripting Java with Rhino, Asynchronous I/O with Node
cookies versus, Cookie Attributes: Lifetime and Scopestorage API, Storage APIstorage events, Storage Eventsstorage lifetime and scope, Storage Lifetime and Scope
use in malicious code, Denial-of-Service AttacksWorkerGlobalScope object, long setInterval(any handler, [any timeout], any args...)
implementing timeouts for XMLHttpRequest, Aborting Requests and Timeouts
Window object, Client-Side JavaScript, Timers, long setTimeout(function f, unsigned long timeout, any args...)WorkerGlobalScope object, long setTimeout(any handler, [any timeout], any args...)
corresponding properties in CSSStyleDeclaration object, Scripting Inline Styles
case expressions containing, switchexpressions with, Statementsoperator, Operator Side Effects
Blob object, PropertiesInput object, PropertiesSelect element, Properties
Blob object, Blobs, Building Blobs, Blob slice(unsigned long start, unsigned long length, [string contentType])jQuery, Selection MethodsString object, String.slice()
functions as arguments, Functions As Values
MessageEvent object, Cross-Origin Messaging, PropertiesRegExp object, RegExp.source
drawing in canvas (example), Canvas Example: Sparklines, Canvas Example: Sparklines
destructuring assignment, Destructuring AssignmentJavaScript versions, Constants and Scoped Variablessupport for E4X, E4X: ECMAScript for XMLsupport for JavaScript extensions, JavaScript Subsets and Extensions
splitting cookie property into name/value pairs, Reading CookiesString object, String Methods for Pattern Matching, String.split()
IFrame object, PropertiesImage object, PropertiesMediaElement object, PropertiesScript object, Properties
HTML document display, Selecting Elements by CSS Class
MessagePort object, void start()TimeRanges object, double start(unsigned long n)
History object, History ManagementPopStateEvent object, History Management, Properties
compound and empty, Compound and Empty Statementselse if, else ifif, ifswitch, switchcontrol structure, in function body, Core JavaScriptdebugger, debuggerdeclaration, Declaration Statementsdefined, Core JavaScriptexpression statements, Expression Statementsfunction declaration, function, Defining Functionsbreak statements, breakcontinue statements, continuelabeled statements, Labeled Statementsreturn statements, returnthrow statements, throwtry/catch/finally statements, try/catch/finallydo/while loops, do/whilefor loops, forfor/in loops, for/inwhile loops, whilesummary of, Summary of JavaScript Statementsterminating, optional semicolons and, Optional Semicolonswith statement, Miscellaneous Statements
ApplicationCache object, Cache UpdatesXMLHttpRequest object, Properties
thrown by generators' next() method, Generators
(see also client-side storage)
reserved words, Reserved Words
event handlers defined in non-strict mode, Setting Event Handler Attributes
escape sequences in, Escape Sequences in String Literals
as arrays, Strings As Arraysconversions, Type Conversions, Explicit Conversions, Object to Primitive Conversions, Scripting Java with Rhinobetween JavaScript and Java, Scripting Java with Rhinoobject to string, Object to Primitive Conversionsconverting arrays to, toString() and toLocaleString()encoding application state as, History Managementimmutability of, Types, Values, and Variablesmethods for pattern matching, String Methods for Pattern Matching, String Methods for Pattern Matching, String Methods for Pattern Matching, String Methods for Pattern Matching, String Methods for Pattern Matchingmatch() method, String Methods for Pattern Matchingreplace () method, String Methods for Pattern Matchingsearch () method, String Methods for Pattern Matchingobject conversion to, for Ajax, The load() Methodparsing HTTP response, Decoding the responsepattern matching, Pattern Matchingproperties accessed with [] notation, Objects As Associative ArraysString object, Comparison Operators, Comparison Operators, Comparison Operators, Text Events, String, Throws, Methods, Static Methods, HTML Methods, Arguments, Arguments, Arguments, Arguments, Arguments, Arguments, String.length, Arguments, String.match(), String.replace(), String.search(), String.slice(), String.split(), Arguments, String.substring(), Returns, String.toLocaleUpperCase(), Returns, Returns, Returns, Returns, String.valueOf()charAt() method, ArgumentscharCodeAt() method, Argumentsconcat() method, ArgumentsfromCharCode() method, Text Events, ArgumentsHTML methods, HTML MethodsindexOf() method, ArgumentslastIndexOf() method, Argumentslength property, String.lengthlocaleCompare () method, Comparison OperatorslocaleCompare() method, Argumentsmatch() method, String.match()methods, listed, Methodsreplace() method, String.replace()search() method, String.search()slice() method, String.slice()split() method, String.split()static method, fromCharCode(), Static Methodssubstr() method (deprecated), Argumentssubstring() method, String.substring()toLocaleLowerCase() method, ReturnstoLocaleUpperCase() method, String.toLocaleUpperCase()toLowerCase() method, Comparison Operators, ReturnstoSting() method, ReturnstoUpperCase() method, Comparison Operators, Returnstrim() method, ReturnsvalueOf() method, String.valueOf()Unicode characters, codepoints, and, Textvalues in stylesheet or style attribute, Scripting Inline Stylesworking with, Working with Stringswrapper objects, Wrapper Objects
colors, gradients, and patterns in Canvas, Colors, Transparency, Gradients, and Patterns, Line Drawing Attributes, Colors, gradients, and patternsdefined, void stroke()pattern and gradient stroke, Colors, Transparency, Gradients, and Patternsunclipped, Clipping
classes in, Classes and Modulesobjects in, Objects As Associative Arrays
documents as trees of elements, Documents As Trees of Elements, Attributesdocuments as trees of nodes, Documents As Trees of Nodes
Element objects representing, Scripting Stylesheetsenclosing CSS stylesheet in, Overview of CSS
combining using shortcut properties, Shortcut Propertiesimportant, Important CSS Propertiesunits for settings, Scripting Inline Styles
CSSRule object, Properties
associating with HTML documents, Overview of CSScreating new, Creating New StylesheetsCSSStyleSheet object, CSSStyleSheetdefined, Overview of CSSenabling and disabling, Enabling and Disabling Stylesheetsquerying, inserting, and deleting rules, Querying, Inserting and Deleting Stylesheet Rules
class hierarchies and abstract classes, Class Hierarchies and Abstract Classes, Classes in ECMAScript 5composition versus subclassing, Composition Versus Subclassingconstructor and method chaining, Constructor and Method Chaining, Constructor and Method Chainingcreating using ECMAScript 5 features, Subclasses and ECMAScript 5defining, Defining a Subclass
Form object, Form and Element Properties, void submit()triggering events, Triggering Events
The Good Parts, The Good Partsfor security, Subsets for Security, Subsets for Securitylisting of important subsets, Subsets for Security
Comment node, Methods
<canvas> element versus, Graphics in a <canvas>displaying time by manipulating image, SVG: Scalable Vector Graphicspie chart built with JavaScript, SVG: Scalable Vector Graphics, SVG: Scalable Vector Graphics
case clauses, switch
raised in strict mode when deleting properties, Deleting Properties
Element object, Properties
Event object, The jQuery Event Object, Propertiesin jQuery, The jQuery Event Objectevents, Handling EventsForm object, Form and Element Properties, PropertiesProcessingInstruction object, Properties
CharacterData methods for manipulating, Element Content As Text Nodesconversion to speech in screen readers, Accessibilityelement content as plain text, Element Content As Plain Textembedding arbitrary textual data using script element, Script Typeescape sequences in string literals, Escape Sequences in String Literalspattern matching with regular expressions, Pattern Matchingquerying selected text in documents, Querying Selected Textreading text files with FileReader, Reading Blobsin <script> elements, Element Content As Plain Textstring literals, String Literalstext fields in forms, Text Fieldsworking with strings, Working with Strings
filtering user input (example), Text Events, Text Eventssupport for, DOM Events specification, DOM Eventsusing propertychange event to detect, Text Events
creating, Creating Nodeselement content as, Element Content As Text Nodes
HTMLElement object, Script TypeLink object, PropertiesOption object, Select and Option Elements, PropertiesScript object, Properties
browsers triggering input event on, Form events
TextArea object, Properties
in event handlers, Form and Element Event Handlersfunction invocation context, Functionsfunctions used as methods, Method Invocationin method invocation, Method Invocationnested function invoked as method or function, Method Invocationas primary expression, Primary Expressionsreferring to global object, The Global Object, Descriptionreferring to target of event handlers, Event Handler Contextremoval or restriction in secure subsets, Subsets for Securityuse in property getters and setters, Property Getters and Setters
in client-side JavaScript, Client-Side JavaScript Threading ModelFileReaders and, Reading BlobsIndexedDB operations and, Client-Side DatabasesWeb Workers specification, Web Workers, Typed Arrays and ArrayBuffers, Worker Scope, Web Worker Examplesdebugging Worker threads, Web Worker ExamplesWorker execution model, Worker ScopeWorker threads, WorkerWorkerGlobalScope object, WorkerGlobalScope
(see also dates and time)Date.getTime() function, ReturnsUTC and GMT, Constructor
client-side timer functions implemented by Node, Asynchronous I/O with Nodemethods available to WorkerGlobalScope object, Worker Scopesimilarity to events, Types of Eventsusing in inline scripting of CSS animation, CSS Animations, CSS Animationsutility function for (example), Timers
CSSStyleSheet object, Scripting Stylesheets, PropertiesDocument object, Document Properties, PropertiesElement object, PropertiesLink object, PropertiesStyle object, Properties
DOMTokenList object, boolean toggle(string token)
Date object, Serializing Objects, Argumentsimplementation in classes, Standard Conversion Methods
Array object, toString() and toLocaleString(), ReturnsDate object, Returnsimplementation in classes, Standard Conversion MethodsNumber object, ReturnsObject class, Returns
ClientRect object, PropertiesWindow object, Relationships Between Frames, Properties
null frameElement property, Relationships Between Framesparent property referring to self, Relationships Between Frames
Array object, toString() and toLocaleString(), ReturnsBoolean object, Returnsconverting boolean values to strings, Boolean ValuesDate object, ReturnsFunction object, Returnsfunctions, The toString() Methodimplementation in classes, Standard Conversion MethodsLocation object, Parsing URLsNumber object, Explicit Conversions, Number.toString()Object class, Returnsquerying class attribute, The class AttributeRegExp object, ReturnsSelection object, Querying Selected TextString object, Returnstype conversions with, Object to Primitive Conversions
canvas coordinate system, Coordinate System Transforms, Drawing and Filling Curves, Understanding transformations mathematically, Transformation example, Coordinate space and transformationstransformation example, Transformation exampleunderstanding mathematically, Understanding transformations mathematicallycoordinate system in canvas, Shadowsshadows and, ShadowssetTransform() method in canvas, void scale(double sx, double sy)
compositing operations with hard and soft transparency, Compositingspecifying alpha values in canvas, Colors, Transparency, Gradients, and Patternsspecifying for colors in CSS, Color, Transparency, and Translucency
documents as trees of elements, Documents As Trees of Elements, Attributesdocuments as trees of nodes, Documents As Trees of Nodesgeometrical, coordinate-based view of document versus, Document and Element Geometry and Scrollingrepresentation of HTML documents, Overview of the DOM
preventing jQuery from triggering Ajax-related events, Ajax Events
multiple catch clauses in, Multiple Catch Clauses
Blob object, PropertiesCSSRule object, PropertiesCSSStyleSheet object, PropertiesEvent object, Propertiesevents, Handling Eventsform elements, HTML Forms, Form and Element PropertiesFormControl object, PropertiesScript object, PropertiesSelect element, Select and Option ElementsStyle object, Properties
property access errors, Property Access Errorsraised by attempts to create or modify properties, Property Attributesresulting from attempts to delete properties, Deleting Propertiesthrown in type conversions, Type Conversions
applied to null and undefined values, null and undefinedusing with XML objects, E4X: ECMAScript for XML
events, Types of EventsJava, implementing using JavaScript in Rhino, Scripting Java with Rhino, Rhino Example, Asynchronous I/O with NodeGUI example, Rhino Example, Asynchronous I/O with NodejQuery UI library, The jQuery UI Library
properties set to, testing, Testing Propertiesproperties with, access errors, Property Access Errorsproperty access expressions and, Property Access Expressionsreturned by functions, Defining Functionsvariables declared without initializer, var
deregistering event handlers for live events, Live Events
characters, codepoints, and JavaScript strings, Textcodepoints, Text Eventsescape sequences for, Unicode Escape Sequencesformat control characters, Whitespace, Line Breaks, and Format Control Charactersin identifiers, Identifiers and Reserved Wordsnormalization of character encodings, Normalization
BeforeUnloadEvent object, BeforeUnloadEvent
decodeURI() function, ArgumentsdecodeURIComponent() function, ArgumentsencodeURI() function, ArgumentsencodeURIComponent() function, Arguments
Window object, Properties
EventSource object, PropertiesStorageEvent object, PropertiesWebSocket object, Properties
blank-page URL, about:blank, Opening and Closing Windowsdisplayed as current state of web application, History ManagementimportScripts() function arguments, Worker ScopeJavaScript, JavaScript in URLsloading document and displaying portions of it with jQuery, The load() Methodparsing, Parsing URLsrelative, Loading New Documentssubject of HTTP request, Specifying the RequestURL object, URLWebSocket, Web Socketswildcard, in network section of application cache manifest, Complex manifests
filtering, Text Events, Text Eventstext events, Text Events
Navigator object, The Navigator Object, PropertiesWorkerNavigator object, Properties
FormValidity objects, FormValiditymechanism in HTML5, HTML5 Events
comparisons of primitives, Immutable Primitive Values and Mutable Object References
DOMSettableTokenList object, DOMSettableTokenListform elements, Form and Element PropertiesFormControl object, PropertiesMeter object, PropertiesOption object, PropertiesProgress object, Properties
Boolean object, ReturnsDate object, Returnsimplementation in classes, Standard Conversion MethodsNumber object, ReturnsObject class, Returnsobject comparisons, Comparison MethodsString object, Returnstype conversions with, Object to Primitive Conversions
defining your own function properties, Defining Your Own Function Properties
replacing with let, Constants and Scoped Variables
in array comprehensions, Array Comprehensionscreating with function keyword, JavaScript in Interacting Windowsdata types and, Types, Values, and Variablesrepeated and omitted declarations, Repeated and Omitted Declarationsdeclaring with let, Constants and Scoped Variablesdestructuring assignment, Destructuring Assignmentfunctions assigned to, Functions As Valuesglobal, Reserved Wordsscope, Variable Scope, The Scope Chain, Function Scope and Hoisting, Variables As Properties, The Scope Chainfunction scope and hoisting, Function Scope and Hoistingscope chain, The Scope Chainvariables as properties, Variables As Propertiesvariable reference as primary expression, Primary Expressions
controls attribute, Scripting Audio and Videoevents, HTML5 Events
determining size of, Document Coordinates and Viewport Coordinates
element positions in, Querying the Geometry of an Element
partial visibility with overflow and clip style properties, Partial Visibility: overflow and clipvisibility property, Important CSS Properties, Element Display and Visibility
image rollovers, Scripting ImagesjQuery methods for, Animated Effects, jQuery Effects and Animation MethodsjQuery methods for simple effects, Simple Effectsmotion blur of canvas graphics with ImageData, Pixel Manipulation
forcing invocation or assignment expressions to be undefined, JavaScript in URLs
setting for media playback, Controlling Media Playbackvolume property, MediaElement, Properties
XMLHttpRequest Level 2 standard (XHR2), Using XMLHttpRequest
JavaScript in, JavaScript in Web Applicationsloan calculator (example), Example: A JavaScript Loan Calculator, Example: A JavaScript Loan Calculator
asynchronous script execution, Client-Side JavaScript Timeline<canvas> element support, Graphics in a <canvas>children property of Element objects, support of, Documents As Trees of Elementsclient-side databases integrated into, Client-Side Storagecompatibility and interoperability issues, Compatibility and Interoperabilitycompositing operations in, Compositingconsole tools, Introduction to JavaScriptCORS (“Cross-Origin Resource Sharing”) headers support, Cross-Origin HTTP RequestsCSS box model, The border-box model and the box-sizing propertyCSS box-sizing property, The border-box model and the box-sizing propertyCSS color specifications support, Color, Transparency, and TranslucencyCSS selector support, Selecting Elements with CSS SelectorsCSS support, CSS Historycurrent versions, Compatibility and Interoperabilitydatabase support, Client-Side Databasesdataset property, not implemented, Dataset AttributesDOMContentLoaded event, Document Load Eventsediting document content, Editable Contentelement-by-element document traversal support, Documents As Trees of Elementsevent handlers directed at browser as a whole, Setting Event Handler Attributesevent listener registration methods, Event-Driven JavaScriptEventSource support, Comet with Server-Sent EventsHTML5 form features and events, HTML5 EventsHTTP progress events implementation, HTTP Progress Eventsimplementation of CSS Transitions, CSS Animationsinformation about browsers and their screens, Browser and Screen Information, Dialog Boxesinput event type fired after text insertion into element, Text EventsinsertAdjacentHTML() method support, Element Content As HTMLJavaScript in, JavaScript in Web Browsers, Client-Side Frameworks, JavaScript in Web Documents, JavaScript in Web Applications, Embedding JavaScript in HTML, Bookmarklets, JavaScript in URLs, Execution of JavaScript Programs, Client-Side JavaScript Timeline, Compatibility and Interoperability, Accessibility, Accessibility, Security, Denial-of-Service Attacks, Client-Side Frameworksaccessibility, Accessibilityclient-side frameworks, Client-Side Frameworkscompatibility and interoperability, Compatibility and Interoperability, Accessibilityembedding JavaScript in HTML, Embedding JavaScript in HTML, Bookmarkletsexecution of JavaScript programs, Execution of JavaScript Programs, Client-Side JavaScript Timelinesecurity, Security, Denial-of-Service AttacksURLs, JavaScript in URLsweb applications, JavaScript in Web Applicationsweb documents, JavaScript in Web DocumentsJavaScript tools, Introduction to JavaScriptjavascript: URLs, JavaScript in URLsjQuery.browser property, Utility FunctionskeyIdentifier property in Chrome and Safari, Keyboard Eventslocation and navigation, Browser Location and Navigation, Browsing Historymousewheel event support, Mousewheel EventsNavigator object, The Navigator Objectopacity specifications, Color, Transparency, and Translucencyprefixes for nonstandard CSS properties, Nonstandard PropertiesRegExp literals and object creation, Defining Regular ExpressionsSafari on iPhone and iPad, Touchscreen and Mobile Eventsscope of localStorage, Storage Lifetime and Scopescripting a modal dialog (example), Client-Side JavaScriptstring indexing, Working with Stringssupport for E4X, The for/each Loopsupport for object literal get and set syntax, Legacy API for Getters and Setterssupport of getElementsByClassName(), Selecting Elements by CSS ClassSVG support, SVG: Scalable Vector Graphicstimeouts for HTTP requests, XHR2, Aborting Requests and Timeoutstransformed into simple operating systems, JavaScript in Web Applicationstriggering input event on text-input form elements, Form eventsuse of callable objects, Callable Objectsusing JavaScript, Client-Side JavaScriptweb applications stored on, Application Storage and Offline Webappswebsites for compatibility information, Compatibility and InteroperabilityXMLHttpRequest readyState values, Retrieving the Response
JavaScript in, JavaScript in Web Documents
scripting content, presentation, and behavior, Client-Side JavaScript
chat server using WebSockets and Node, Web Socketscreating socket and registering event handlers, Web Socketscreating WebSocket-based chat client, Web Sockets
Worker object, WorkerWorkerGlobalScope object, WorkerGlobalScopeWorkerLocation object, WorkerLocationWorkerNavigation object, WorkerNavigator
access to Blob URLs, Blob URLsadvanced worker features, Worker Scopedebugging workers, Web Worker Examplesmaking synchronous XMLHttpRequests in (example), Web Worker Examplesusing synchronous filesystem API with worker threads, The Filesystem APIworker for image processing (example), Web Worker ExamplesWorker objects, Worker ObjectsWorker scope, Worker Scope
continue statements in, continue
in JavaScript code, Whitespace, Line Breaks, and Format Control Charactersmatching with regular expressions, Character Classes
Canvas context objects, Canvas Dimensions and CoordinatesCanvas object, PropertiesImage object, PropertiesImageData object, Propertiesquerying for element in jQuery, Getting and Setting Element GeometryScreen object, PropertiesVideo object, Properties
ClientRect object, PropertiesIFrame object, PropertiesTextMetrics object, Properties
alert(), confirm(), and prompt() methods, Dialog BoxesapplicationCache property, Cache Updatesbeforeprint and afterprint events, HTML5 Eventsclose() method, Closing windowsclosed property, Closing windowsconstructors, ConstructorsdialogArguments property, Dialog Boxesdocument property, Client-Side JavaScript, Scripting Documentsentry point to client-side JavaScript, Client-Side JavaScriptevent handlers, Event Handlersevent handlers directed at browser as a whole, Setting Event Handler Attributesevent property, Event Handler Argumentfeatures available to WorkerGlobalScope objects, Worker ScopeframeElement property, Relationships Between Framesframes property, Relationships Between FramesgetComputedStyle() method, Querying Computed StylesgetSelection() method, Querying Selected Textlength property, Relationships Between Framesload event, Document Load EventslocalStorage and sessionStorage properties, localStorage and sessionStoragelocation property, Browser Location and Navigationmethods, Methodsname property, Opening and Closing Windowsnavigator property, The Navigator Objectoffline and online events, HTML5 Eventsonbeforeunload event handler, Handler Return Valuesetting to a function, Event-Driven JavaScriptonhashchange property, History Managementonload event handler, Client-Side JavaScriptopen() method, JavaScript in URLs, Opening and Closing Windowsjavascript: URL as argument, JavaScript in URLsopener property, Relationships Between Framesorientation property, Touchscreen and Mobile EventspageXOffset and pageYOffset properties, Document Coordinates and Viewport Coordinatesparent property, Relationships Between FramespostMessage() method, Relaxing the same-origin policy, Cross-Origin Messaging, Cross-Origin Messaging, Web WorkersTwitter search gadget controlled by, Cross-Origin Messaging, Web Workersproperties, Propertiesscreen property, The Screen Object, Screenscroll() method, ScrollingscrollTo() and scroll() methods, ScrollingsetInterval() method, TimerssetTimeout() method, Timerssetting onload property to event handler function, Setting Event Handler Propertiesstorage event, HTML5 Eventstop property, Relationships Between FramesURL property, URL
browser and screen information, Browser and Screen Information, The Screen Objectbrowser location and navigation, Browser Location and Navigation, Browsing History, Parsing URLs, Loading New Documentsloading new documents, Loading New Documentsparsing URLs, Parsing URLsbrowser, JavaScript opening and closing, What JavaScript Can’t Dobrowser, same-origin policy and, The Same-Origin Policybrowsing history, Browsing Historydialog boxes, Dialog Boxes, Error Handlingdocument elements as properties of, Document Elements As Window Propertieserror handling, Error Handlingevents, Window eventsmultiple windows and frames, Multiple Windows and Frames, JavaScript in Interacting Windows, Opening and Closing Windows, Closing windows, Relationships Between Frames, JavaScript in Interacting WindowsJavaSclript in interacting windows, JavaScript in Interacting Windowsopening and closing windows, Opening and Closing Windows, Closing windowsrelationship between frames, Relationships Between Framesoverlapping translucent windows (CSS example), Example: Overlapping Translucent Windows, Example: Overlapping Translucent Windowsquerying scrollbar positions, Document Coordinates and Viewport Coordinatesquerying viewport size, Document Coordinates and Viewport Coordinates
removal in secure subsets, Subsets for Security
properties, Worker Scope
extensible attribute used with, The extensible Attribute
downloading URL contents as Blob, Downloading BlobsFormData API, multipart/form-data requestshandling binary responses, Decoding the responseoverrideMimeType() method, Decoding the responseprogress events, Event Handlerstimeout property, Aborting Requests and Timeouts
case sensitivity, Case Sensitivity<script> elements, The <script> ElementSVG embedded in document, SVG: Scalable Vector Graphics
E4X (ECMAScript for XML), E4X: ECMAScript for XML, E4X: ECMAScript for XMLintroduction to, E4X: ECMAScript for XML, E4X: ECMAScript for XMLECMAScript for XML (E4X), The for/each LoopHTTP request encoded with XML document as body, XML-encoded requestsinnerHTML property, use with XML elements, Element Content As HTMLnamespaces, createElementNS() method, Creating Nodesoptional in scripted HTTP, Scripted HTTPouterHTML property, use of, Element Content As HTMLparsing HTTP response document with responseXML property, Decoding the responseprocessing instruction in a document, ProcessingInstructionquerying and setting elements of documents, Getting and Setting Non-HTML AttributesSVG (Scalable Vector Graphics), SVG: Scalable Vector GraphicsText nodes in documents, Element Content As Text Nodes
core portions and Level 2 draft (XHR2), Using XMLHttpRequest
aborting requests and setting timeouts, Aborting Requests and Timeoutsconstants defining values of readyState property, Constantscross-origin HTTP requests, Cross-Origin HTTP Requests, HTTP by <script>: JSONPemulating EventSource with, Comet with Server-Sent Events, Comet with Server-Sent Eventsencoding request body, Encoding the Request Body, HTTP Progress Eventsevent handlers, Event HandlersHTTP progress events, HTTP Progress Events, Aborting Requests and TimeoutsHTTP requests and responses, Using XMLHttpRequestinstantiating, Using XMLHttpRequestlocal files and, Using XMLHttpRequestmaking synchronous requests in Web Worker, Web Worker Examplesmethods, void abort()POSTing plain text to a server, Specifying the Requestposting user’s chat messages to server, Comet with Server-Sent Eventsproperties, PropertiesresponseText property, Decoding the responseretrieving the response, Retrieving the Response, Encoding the Request Bodysimulation by jqXHR object in jQuery 1.5, The jQuery.ajax() Functionspecifying the request, Specifying the Requestuse by Ajax utility functions in jQuery, jQuery.getScript()Version 2 of specification, HTML5 Events
David Flanagan is a programmer and writer with a website at http://davidflanagan.com. His other O'Reilly books include JavaScript Pocket Reference, The Ruby Programming Language, and Java in a Nutshell. David has a degree in computer science and engineering from the Massachusetts Institute of Technology. He lives with his wife and children in the Pacific Northwest between the cities of Seattle, Washington, and Vancouver, British Columbia.
The animal on the cover of JavaScript: The Definitive Guide, sixth edition, is a Javan rhinoceros. All five species of rhinoceros are distinguished by their large size, thick armor-like skin, three-toed feet, and single or double snout horn. The Javan rhinoceros, along with the Sumatran rhinoceros, is one of two forest-dwelling species. The Javan rhinoceros is similar in appearance to the Indian rhinoceros, but smaller and with certain distinguishing characteristics (primarily skin texture).
Rhinoceroses are often depicted standing up to their snouts in water or mud. In fact, they can frequently be found just like that. When not resting in a river, rhinos will dig deep pits in which to wallow. Both of these resting places provide a couple of advantages. First, they give the animal relief from the tropical heat and protection from blood-sucking flies. (The mud that the wallow leaves on the skin of the rhinoceros also provides some protection from flies.) Second, mud wallows and river water help support the considerable weight of these huge animals, thereby relieving the strain on their legs and backs.
Folklore has long held that the horn of the rhinoceros possesses magical and aphrodisiac powers, and that humans who gain possession of the horns will also gain those powers. This is one of the reasons why rhinos are a prime target of poachers. All species of rhinoceros are in danger, and the Javan rhino population is the most precarious. Fewer than 100 of these animals are still living. At one time, Javan rhinos could be found throughout southeastern Asia, but they are now believed to exist only in Indonesia and Vietnam.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono Condensed.