
JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

3 Authentication
The act of verifying the identity of a user, or “logging in,” is called authentication. When
JAAS authenticates a java.security.auth.Subject it first verifies the user’s claims of
identity by checking their credentials. If these credentials are successfully verified, the
authentication framework associates the credentials, as needed, with the Subject, and
then adds Principals to a Subject. The Principals represent any sort of identity the
Subject has in the system, whether that identity is an “individual identity,” such as an
employee number, or a “group identity,” such as belonging to a certain user group.

To perform the above functions, the javax.security.auth.login.LoginContext
must be configured to use plug-in implementations of
javax.security.auth.spi.LoginModules, usually provided by you. In addition to
covering the above, this chapter will describe how to configure the LoginContexts, through
both the standard flat-file, and also at runtime, programmatically.

3.1 Authentication Lifecycle
The diagram below illustrates the authentication lifecycle:

While the javax.security.auth.login.LoginContext interface contains only 3
methods, the lifecycle it goes through to authenticate a Subject is quite complex. A
LoginContext is first created with at least two items: the “application name” it will be

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

authenticating Subjects for, and the
javax.security.auth.callback.CallbackHandler to use for gathering credentials.

The “application name” is an arbitrary1 name given to a set of one or more
LoginModules that the LoginContext will delegate authentication to. This delegation
allows JAAS to be both “pluggable” and “stackable.” It’s pluggable because anyone can write a
LoginModule implementation and configure JAAS to use it, and stackable because multiple
LoginModules can be used when authenticating a Subject. Configuring the LoginContext
is done by static methods on the javax.security.auth.login.Configuration object,
and by providing the singleton Configuration implementations that those methods use.
Out of the box, the SDK uses a flat-file based Configuration implementation. A
Configuration’s primary responsibility is answer the question, “for the specified
‘application name’ what LoginModules should a LoginContext use when authenticating a
user?”

The LoginContext uses the list of LoginModules provided by the Configuration,
following the LoginModule lifecycle diagramed above. More than one LoginModule may be
used, allowing your application to have more than one source of authentication. For
example, your application could consist of many sub-systems, each of which contributes their
own Principals and, thus, different sets of permissions, to a Subject. Each LoginModule
specified will first authenticate Subject, and, if the overall process was successful, add in any
credentials and Principals needed to the Subject. The diagram below highlights this
process:

Once all of the needed LoginModules have successfully verified a Subject’s claims of

identity, the LoginContext has performed the bulk of its job. The same LoginContext
used to authenticate a Subject is used to acquire the fully authenticated Subject. At the
end of its lifecycle, the LoginContext can be used to log a user out of the system.

1 The name is “arbitrary” because there is no special syntax for the name. By convention,
new line characters and other white space characters are usually not used in an
application name.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

3.2 The LoginContext
A javax.security.auth.login.LoginContext instance is the controller used by JAAS
to authenticate Subjects. LoginContexts are instance-based objects: a new instance is
created each time you want to login or logout a Subject. Four constructors are provided:

LoginContext(String name)
LoginContext(String name, CallbackHandler callbackHandler)
LoginContext(String name, Subject subject)
LoginContext(String name, Subject subject, CallbackHandler
callbackHandler)

The second constructor is the one you’ll typically use. The other constructors are there

to provide you with the ability to control the Subject instance that will be used, or to use
the default CallbackHandler instead of providing your own2. Providing a Subject is useful
for logging out users when you have a Subject but not the original LoginContext used to
authenticate the Subject.

In addition to the constructors listed above, LoginContext has three methods:

getSubject()
login()
logout()

Before going in to details about those methods, we’ll first take a look at the

CallbackHandler interface and associated classes, as they are used through out the rest of
the authentication lifecycle.

3.2.1 CallbackHandlers: Providing Credentials
The CallbackHandler is given the responsibility of gathering credentials for the Subject
during authentication. A CallbackHandler is always associated with a LoginContext
instance, and passed to the LoginModules that LoginContext controls. For example, a
console-centric CallbackHandler may use “Username” and “Password” prompts to gather
those two credentials; a Swing CallbackHandler may pop open a window to gather similar
credentials; or, more common in web applications, the CallbackHandler will cache the
username and password credentials entered with a request, pushing off the interactive part of
gathering credentials to another part of the web application. In summary, all a
CallbackHandler does is provide LoginModules with credentials when asked by the
LoginModules.

The CallbackHandler interface contains just one method:

2 The default CallbackHandler is specified by the security property
auth.login.defaultCallbackHandler. This property is defined in the flat file <JAVA
HOME>/lib/security/java.security. In general, we recommend providing your own
CallbackHandler instead of specifying it by security property.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

handle(Callback[] callbacks)

The Callback interface itself has no methods. This seems peculiar at first, but after

understanding of how credentials are designed in JAAS, a methodless Callback interface
makes sense. Credentials themselves have no type in JAAS: they’re simple
java.lang.Object instance, or anything. The thinking behind this is that credentials can
take any form, for example, from a simple String of a username and password, to a more
complex object that represents a thumbprint.

As such, JAAS cannot place any limitations on what a Callback implementation must
provide. Instead, the CallbackHandler implementation must know the type of the
Callback and know how to handle instances of it. Similarly, when dealing with the
credentials that a CallbackHandler provides, the LoginModule must know how to cast
and deal with the credentials.

As the example in Chapter 1 showed, the CallbackHandler checks the type of each
Callback passed into the handle() method. If the CallbackHandler recognized the type,
casts it and fills in the Callback details as needed:

public void handle(Callback[] callbacks) {
 for (int i = 0; i < callbacks.length; i++) {
 Callback callback = callbacks[i];
 if (callback instanceof NameCallback) {
 NameCallback nameCB = (NameCallback) callback;
 nameCB.setName(username);
 } else if (callback instanceof PasswordCallback) {
 PasswordCallback passwordCB = (PasswordCallback) callback;
 passwordCB.setPassword(password.toCharArray());
 }
 }
 }

While handle() can throw an UnsupportedCallbackException if the Callback

passed in not supported by the CallbackHandler, we favor simply not filling out the
Callback, and allowing the LoginModule to fail to login the user. If you choose to follow
this convention, instead of throwing an UnsupportedCallbackException, a warning
message should be logged.
 As you can imagine, there can be a large degree of difference between various
CallbackHandler and Callback implementations. Later in this book, in chapter XXX,
we’ll go over several best practices and idioms for implementing the two interfaces.

Callbacks for Name and Password
J2SE ships with several Callbacks, two of which will be particularly useful to you:

javax.security.auth.callback.NameCallback
javax.security.auth.callback.PasswordCallback

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

As the class names suggest, the NameCallback provides a JavaBean-style property for
the name, or username, of the Subject authenticating, while the PasswordCallback
provides a property for a password. In most cases, these two Callbacks, and the credentials
they provide, will suffice for authenticating a user. As such, most of the CallbackHandlers
you write will probably support the NameCallback and PasswordCallback.

NameCallback
In addition to the getName() and setName() property methods, NameCallback provides a
method, and constructor argument for setting the String “prompt.” In those cases where
your CallbackHandler will interact with the user to gather credentials, this prompt is used
to ask the user to enter their name. When the CallbackHandler is not performing this
user-interaction, the prompt can simply be set to null, or any value, and ignored by the
CallbackHandler.

PasswordCallback
The PasswordCallback contains several methods to help deal with the sensitive nature of
passwords. For example, the clearPassword() method erases the value of the password
property. Once a Subject has been authenticated, this method should be called to ensure that a
malicious piece of code can’t call getPassword() on the PasswordCallback handler.
That is, this method is used to minimize the time the clear-text password is available in the
VM.

3.3 LoginModules
Implementations of LoginModules provide the core of JAAS authentication. Though
LoginContext provides the client interface for JAAS authentication, LoginContext acts as
a controller, delegating the majority of the authentication work and decisions to the list of
LoginModules configured.
 Three design goals drive the interface and implementation contract for LoginModules:

1. LoginModules should be “plugin-able.”
2. LoginModules should be “stackable,”
3. As a consequence of being stackable, LoginModules should follow a two-phase

commit cycle.
Being plugin-able means that the same LoginModule implementation can potentially be

re-used in different applications, and added to an application without having to recompile
code. For example, a LoginModule that authenticates users for in Windows Domains or
Active Directory, could be provided by a third party for use in other applications.

LoginModules are “stackable” because multiple LoginModules can be used to
authenticate one Subject. You may need to use more than one LoginModule because your
application may have more than identity management system. For example, your
application could be an employee records system that needs to authenticate with the HR
system to access insurance records and the payroll system to access salary records. Each of
these two systems could require a user to login, contributing Principals to the Subject,
and thus granted the required Permissions.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

When more than one LoginModule is used, a certain degree of transaction management
is implicitly required. If your application is using two LoginModules to authenticate
Subjects, if an error occurs in either, or if either fails to authenticate a user, the positive
effects of the other should not occur to the Subject. For example, if the first LoginModule
successfully logs a user in, but the second does not, the Subject being authenticated should
not get the Principals that the first LoginModule would assign the Subject. In fact,
LoginModules can be configured to be either strictly required, or completely optional.

The job of a LoginModule is simple: use credentials to verify a Subject’s identity and
then associate the appropriate Principals and credentials with that Subject. To enable
the transactional benefits of a two phase commit process, however, things are complicated by
the need for a lifecycle.

3.2.2 LoginModule Life-Cycle
Below is an activity diagram of a javax.security.auth.spi.LoginModule
implementations’ lifecycle:

 First, the LoginModule implementation’s default constructor is used to create a new
instance of the LoginModule. Because the default, no argument constructor is used, another
method is used to pass in the objects the LoginModule will use. This is done with the
initialize() method, which takes the Subject to be authenticated, the
Callbackhandler to use to gather credentials, a Map used as a session shared by all the
LoginModules in use, and a Map of configuration options specified by the Configuration.

When the LoginContext executes a LoginModule’s login() method, the
LoginModule does whatever is needed to authenticate the Subject. This is the first phase
of the two-phase process. If the login attempt succeeds, true to returned; if it failed, a
javax.security.auth.LoginException, or one of it’s sub-classes, is thrown; if the
LoginModule should be ignored [for what reason?], false is returned. Each LoginModule
stores whether is succeeded or not as private state, accessible by the other methods during the
authorization lifecycle. Notice that Principals and Credentials are not yet added to the
Subject in the login() method.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

Once all the LoginModules required to be successful have succeeded, the LoginContext
controller calls the commit() method on each LoginModule. In the commit() method, the
LoginModule will access the private success state. If authentication succeeded, the
commit() method adds Principals and Credentials to the Subject and does any cleanup
needed; if unsuccessful, just clean-up is done.
 If login wasn’t successful, the LoginModule’s abort() method is called instead of
commit(). Execution of the abort() method signals that the LoginModules should cleanup
any state kept, and assure that no Principals or Credentials are added to the Subject.
 Next, we go over each of these steps, and implementing them, in detail.

3.2.3 Configuration, Creation, and Initialization
As summarized above, the LoginModules are configured in groups by the
javax.security.auth.login.Configuration service. The LoginContext
authenticates Subjects using these groups. By default, a flat-file based Configuration is
used, which is sufficient for our examples. Chapter 4 introduces a more dynamic, runtime
Configuration. A Configuration defines several “stacks” of LoginModules, each given
a name. The term stack is often used because the order each LoginModule is specified in is
important: they’ll be used in that order. JAAS refers to this an “application.” Another way to
think of these stacks and application names is as “LoginModule groups” and “group names.”
 The below login module file, in the syntax of the default Configuration
implementation, shows several examples of these LoginModule groups:

simple
{
 auth.SimpleLoginModule REQUIRED;
};

multipleSources
{
 auth.WindowsDomainLoginModule REQUIRED;
 auth.SolarisLoginModule OPTIONAL;
 auth.CustomSystemLoginModule OPTIONAL;
}

In the above example, the “simple” LoginModule application, or group, consists of just
one LoginModule that must pass for a Subject to be fully authenticated. A single
LoginModule group like this is what you’ll typically use for self-contained applications. The
second group contains three LoginModules, only one of which is required. A group like this
is more typical in an application that integrates with several other systems and applications.
[More explanation of an example where this might occur?]

Control Flags
Each stack of LoginModules in a Configuration is given a “success acceptability” control
flag. This flag determines how the success or failure of a LoginModule effects the over-all
success of the authentication attempt. The 4 possible states of “success acceptability” are:

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

o required – the LoginModule must succeed. That is, it must return true from the
login() method. However, regardless of success, the LoginContext continues
calling the login() method on the rest of the LoginModules.

o requisite – the LoginModule must succeed: it must return true from the login()
method. Unlike required LoginModules, the failure of a requisite
LoginModule prevents the login() method of the remaining LoginModules from
being called.

o sufficient – the LoginModule isn’t required to succeed. But, if it does succeed, no
other LoginModules are called. That is, once a sufficient LoginModule returns
true from it’s login() method, no other login() methods will be called.

o optional – success isn’t required for optional LoginModules. Whether an
optional LoginModule is successful or fails, the authentication still goes down the
stack.

The overall success of a group of LoginModules is determined by the collective success as
outlined in the above. If successful, the commit() method will be called on all
LoginModules. Otherwise, the abort() method is called, signaling to all LoginModules
that the overall authentication process failed.

Creation and Initialization
Typically, and definitely with the default Configuration, LoginModules are created using
the default, no argument constructor. As such, instead of performing instance initialization in
the constructor, the initialize() method should is used. The initialize method will be
called before the LoginModule’s other methods are called. Four parameters are passed into
the method:

public void initialize(Subject subject, CallbackHandler handler, Map
sharedState, Map options)

A LoginModule implantation should store each of these items as private session state, as

the other methods will need to access them. Each object passed in is shared between all
LoginModules in a LoginModule group, so care must be taken not to ruin them for the
others, for example, removing all the entries from the sharedState Map.

LoginModule Options
In addition to configuring the control flag, an optional Map of configuration “options” is
passed into the initialize method. The contents of this Map aren’t defined, but with the
default Configuration, the Map contains entries of String keys and String values. With
the default Configuration implementation, these options are configured in as name/value
pairs after the control flag. Building on the above flat-file example:

multipleSources
{
 auth.WindowsDomainLoginModule REQUIRED debug=“true”;
 auth.SolarisLoginModule OPTIONAL;
 auth.CustomSystemLoginModule OPTIONAL setCookie=”false”,

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

caching=“session”;
}

 When the initialize method for the above CustomSystemLoginModule is called, you’d
access these options like this:

// from chp03.ExampleLoginModule
public void initialize(Subject subject,
 CallbackHandler callbackHandler, Map sharedState, Map options) {
 // store other args as member fields
 this.debug = Boolean.valueOf((String)options.get("debug"));
 this.caching = options.get("caching");
 // do other setup
 }

If you provide an alternative to the file-based Configuration, it’s a good idea to keep the
contents of the options Map as String name/value pairs. This assures that your
LoginModule is easily plug-able into a wider range of Configuration implementations, such
as the default Configuration.

Shared State
To facilitate coordination among the LoginModule instances in a group of LoginModules,
a Map known as the shared state is passed to each LoginModule. Because of the sequential
nature of executing the LoginModule stack, the Map is effectively thread-safe3. But, since
the same Map is passed to each, each LoginModule could ruin the Map for the others.
 The exact use of the sharedState isn’t specified, much like the exact way to use an
HttpSession is left up to the end-users. One use, for example, might be to store credentials
like username and password that other LoginModules have gathered. Instead of having to
request them from a user again, other LoginModules can first attempt to pull them from the
shared state.

login()
Once the LoginModule has been initialized, the login() method is called. In this method,
the LoginModule authenticates the user, but doesn’t yet modify the Subject. The login()
method implementation typically creates Callbacks, and passes them to the
CallbackHanlder’s handle() method. Once the credentials are gathered, the login()
method is responsible for verifying the credentials, for example, by comparing a username
and password to those stored in a database.
 The login() method below shows a simple, but typical implementation:

 // from chp03.ExampleLoginModule

public boolean login() throws LoginException {
 NameCallback name = new NameCallback("Username:");

3 Of course, if a LoginModule’s code passes the Map to another thread that’s running
concurrently to the LoginContext, the use of the Map could become un-thread-safe.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 PasswordCallback password = new PasswordCallback("Password",
 false);
 try {
 handler.handle(new Callback[] { name, password });
 } catch (IOException e) {
 LoginException ex = new LoginException(
 "IO error getting credentials: " + e.getMessage());
 e.initCause(e);
 throw ex;
 } catch (UnsupportedCallbackException e) {
 LoginException ex = new LoginException(
 "UnsupportedCallback: " + e.getMessage());
 e.initCause(e);
 throw ex;
 }

 String usernameText = name.getName();
 String passwordText = String.valueOf(password.getPassword());

 userAuthenticated = UserService.checkPassword(usernameText,
 passwordText);

 if (userAuthenticated) {
 username = usernameText;
 return true;
 } else {
 throw new FailedLoginException("Username/Password for "
 + usernameText + " incorrect.");
 }
 }

Let’s take a look at each step in this implementation.

Gathering Credentials with Callbacks
This login() implementation is only concerned with two credentials, username and
password. The first thing it does is create NameCallback and PasswordCallback instances:

NameCallback name = new NameCallback("Username:");
PasswordCallback password = new PasswordCallback("Password:",

false);

The first argument passed to each is the prompt to use when interactively gathering the
credentials. The PasswordCallback takes a second argument, whether to echo the password
entered or not. Typically, you’ll want this to be false, as displaying a password is a bad idea.
As mentioned above, interactive gathering is typically done for single-user, desktop

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

applications. When a LoginModule is used in web applications, Callbacks and
CallbackHandlers will typically not be given the responsibility to gather credentials from
the user. A form on a JSP page will collect the credentials, and your CallbackHandler will
be used more like a data transport object between the JSP page and JAAS’s authorization
framework. We’ll see an example of this type of CallbackHandler in the next chapter.
 Once the Callbacks have been created, they’re passed to the CallbackHandler that
attempts to fetch the credentials represented by the Callback.

Using the CallbackHandler
// from chp03.ExampleLoginModule#login()
try {
 handler.handle(new Callback[] { name, password });
 } catch (IOException e) {
 LoginException ex = new LoginException(
 "IO error getting credentials: " + e.getMessage());
 e.initCause(e);
 throw ex;
 } catch (UnsupportedCallbackException e) {
 LoginException ex = new LoginException(
 "UnsupportedCallback: " + e.getMessage());
 e.initCause(e);
 throw ex;
 }

Though the above code revolves around just one line, the bulk of the code is error handling.
First, we create an anonymous, inline array of the Callbacks that specify the credentials we
need. CallbackHandler’s interface doesn’t guarantee that the Callbacks will be used in
the order that they appear in the array, but the convention is to simply iterate through them
in the array order. As such, you would typically put a username Callback before a password
Callback. However, there is no guaranteed that the CallbackHandler will respect the
order of the array.

Indeed, a CallbackHandler may not support a Callback passed to it’s handle()
method. In such cases, the CallbackHandler may either throw an
javax.security.auth.callback.UnsupportedCallbackException, or simply ignore
the Callback. Our recommendation is to simply ignore the Callback, at most logging a
warning message. This strategy allows for a more tolerant CallbackHandler that can more
easily be re-used and plugged into to different LoginModule groups.

A java.io.IOException may also be thrown from the CallbackHandler if an error
occurs acquiring the credentials. As with other design features of JAAS authentication,
throwing an IOException really makes sense only for desktop application, where the
CallbackHandler will actually be responsible for prompting the user for credentials. In such
cases, the CallbackHandler may write out the prompt to System.out, for example, and
then encounter an IOException reading from System.in.

In both cases, in our example code if an UnsupportedCallbackException or
IOException is thrown, a LoginException wraps the exception. Because the

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

LoginException constructors don’t take a cause exception (functionality which wasn’t
introduced until J2SE 1.4), we call the initCause() method to record the cause.

Verifing Credentials
 // from chp03.ExampleLoginModule#login()
 String usernameText = name.getName();
 String passwordText = String.valueOf(password.getPassword());

 userAuthenticated = UserService.checkPassword(usernameText,
 passwordText);

 if (userAuthenticated) {
 username = usernameText;
 return true;
 } else {
 throw new FailedLoginException("Username/Password for "
 + usernameText + " incorrect.");
 }

Once the CallbackHandler has filled out the Callbacks, we’re ready to verify those
credentials with our authentication source. In our example, we have a service method
UserService.checkPassword() that simply returns true if the passed in credentials match
what’s stored in the database. The success of this verification is saved in the private member
Boolean field, userAuthenticated_. This field is used by other methods to signal if the
user was successfully authenticated.

If the user did successfully authenticate, the login() method first saves the username
entered as a private field for later use to create Principals and credentials, and then returns
true. Otherwise, a sub-class of LoginException,
javax.security.auth.login.FailedLoginException, is thrown. Returning false
from the login() method signals to JAAS to ignore this LoginModule. You may want the
LoginModule ignored if it has nothing to contribute to the Subject. Typically, these
LoginModules will be configured with the control flag optional.

3.2.4 commit()
If the Subject has authenticated as required by the LoginModule group’s collective control
flags, the commit() method will be called on each LoginModule. The abort() method is
called if authentication didn’t succeed. For example, if there are 3 LoginModules in a
LoginModule group, one required, and two optional, as long as the required
LoginModule returns true from login(), the authentication process will call commit() on
each LoginModule, regardless of the optional LoginModules success.

Our example commit() method is below:

// from chp03.ExampleLoginModule
public boolean commit() {
 if (userAuthenticated) {
 Set groups = UserService.findGroups(username);

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 for (Iterator itr = groups.iterator(); itr.hasNext();) {
 String groupName = (String) itr.next();
 UserGroupPrincipal group = new UserGroupPrincipal(groupName);
 subject.getPrincipals().add(group);
 }

 UsernameCredential cred = new UsernameCredential(username);
 subject.getPublicCredentials().add(cred);
 }
 // either way, cleanup
 username = null;
 return true;
 }

First, commit() checks the private field userAuthenticated to see if authentication
was successful in the login() method. If it was, the commit() method looks up the groups
that the Subject is a member of, and then creates a UserGroupPrincipals for each,
adding them to the Subject. Next, the commit() method adds a credentials for the
username. The class UsernameCredentual is another custom class that simply wraps the
username, providing a getUsername() method as well as equals() and hashCode()
implementations. You’ll typically want to store at least the username credential for looking
up who the user is later in the application.

Finally, whether or not authentication was successful, the username credential is cleared
out. You should clear out any other credentials you’ve stored at this point as well.
Additionally, to keep sensitive information from lingering in memory, where it could be
compromised by malicious code while waiting to be garbage collected, you should null-out
references to other fields.

Once the commit() method is done, it returns true to indicate that everything went
well. If an error occurs in commit(), a LoginException may be thrown. If this
LoginModule should be ignored, as with the login() method, commit()should return false.

3.2.5 abort()
// from chp03.ExampleLoginModule
public boolean abort()
 {
 username = null;
 subject = null;
 return true;
 }

The abort method is called when overall authentication fails. In the abort() method you
should cleanup any member fields to remove state, and prevent malicious code from accessing
potentially sensitive information. If an error occurs, abort() can throw a
LoginException.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

3.2.6 logout()

The logout() method is called when the LoginContext’s logout() method is called. This
is usually done much after the login()/commit()/abort() cycle. A LoginModule’s
logout() method should remove any Principals and credentials it added to the Subject.
For example:

 // from chp03.ExampleLoginModule
 public boolean logout() {
 if (!subject.isReadOnly()) {
 Set principals = subject
 .getPrincipals(UserGroupPrincipal.class);
 subject.getPrincipals().removeAll(principals);
 Set creds = subject
 .getPublicCredentials(UsernameCredential.class);
 subject.getPublicCredentials().removeAll(creds);
 return true;
 } else {
 return false;
 }
 }

In the above example, we first check that the Subject is modifiable by calling

isReadOnly() on Subject, avoiding an exception being thrown when we attempt to
modify a read only Subject. If the Subject is modifiable, we use the principal and credential
query methods on Subject to retrieve the items the ExampleLoginModule added (in the
commit() method) to the Subject. In general, you shouldn’t rely on the LoginModule’s
instance state – fields you set in the login() or commit() methods – because you’re not
guaranteed to have the same LoginModule instance when logout() is called as when the
other methods were called. For example, a new LoginModule instance could be created when
when it’s time to log out a Subject.

Because of this inability to guarantee that the LoginModule is the same instance, you
may find it difficult to figure out which Principals and credentials to remove from the
Subject in the logout() method. One design tactic to get around this is to associate
Principal and credentials implementation with specific LoginModule implementations.
That is, in your system, a specific LoginModule can only ever add a specific types of
Principal and credentials to a Subject. This way, a LoginModule can always remove
Principals as is done above, by getting the Set of Principals by type, and then calling
removeAll() on the Subject’s Principal Set.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

3.3 Subject
Once the LoginContext, and the group of LoginModules it delegates to, have
authenticated a Subject, you can retrieve the Subject by calling the getSubject()
method of LoginContext. The Subject class contains two types of methods: static, doAs
methods to help execute code with a Subject’s privileges, and instance methods to retrieve
and modify the Subject’s state. We cover the doAs methods in more detail in chapter
XXX, so here we just go over the second type of methods.
 The Subject aggregates three things: Principals, public credentials, and private
credentials. Each of these aggregated items can be retrieved through one of two methods: one
version returns all the items, while the other methods filters based on the java.lang.Class
type of the item. We saw the second type of this method in use in our
ExampleLoginModule’s logout() method.

3.3.4 Principals
getPrincipals()
getPrincipals(Class)

The two Principal methods both return Sets of Principals. The no argument method
returns all of the Subject’s Principals, while the second returns only those Principals
that are instances of subclasses of the passed in java.lang.Class.

3.3.5 Credentials
getPublicCredentials()
getPublicCredentials(Class)
getPrivateCredentials()
getPrivateCredentials(Class)

A Subject’s credentials are divided into two types: public and private. As their names imply,
the simple rule of thumb is that credentials that could safely accessible to anyone are public,
while all other credentials are private. Usernames are typically public, while passwords are
certainly private.

As with the Principal methods, credentials can either be retrieved all at once with the
no argument methods, or filtered using a passed in java.lang.Class. When a Class is
passed in, the credentials in the returned Set will be either instances or subclasses of the
passed in Class.

3.3.6 Read Only State
Finally, the Subject provides two methods to set and query for the Subject’s modifiability:

isReadOnly()
setReadOnly()

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

The isReadOnly() method is a typically JavaBean read get-method, returning true if the
Subject is read only, and false otherwise. Once a Subject’s setReadOnly() method has
been called, the Subject cannot be made writeable again.

Summary
This chapter introduced the JAAS classes used to authenticate, or "log in" users. In the
opening sequence diagram, and following discussion, we saw that the LoginContext is used as
a controller to coordinate the use of the other classes such as Configuration,
LoginModules, and as the glue for putting together the other authentication classes. We also
covered LoginModule's life-cycle in-depth and provided a simple example of implementing
a LoginModule. Finally, we discussed some of the finer methods available on Subject,
along with how and why you might use them.

