JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

2. Two Quick Examples

This chapter provides a two quick examples of how JAAS can be used to provide
authentication and authorization. The examples are very simple, using the flat-file based
Policy implementation provided by Sun Microsystems. Because both examples are simple
you can get your feet wet enough to understand the basic concepts and prepare for the more
in-depth discussion that follows.

2.1. A Simple, Cheesy Example

This example illustrates using of a JAAS policy file to grant permissions to the executing
code. Our application will check to see if it’s been granted permission to write to a file called
cheese.txt. The first time we run the application, permission will be denied because the
permission has been commented out in the policy file. Then, we’ll uncomment the
permission grant in the policy file, giving the code permission to write to the file. Finally,
with the correct permission granted, the application will be able to write to cheese.txt.

2.1.1. The “Application”

Here is the application code:
package chp02;

import java.io.File;
import java.io.IOException;

public class Chp02aMain {

public static void main(String[] args) throws IOException {
File file = new File("build/conf/cheese.txt");
try {
file.canWrite();
System.out.println("We can write to cheese.txt");
} catch (SecurityException e) {
System.out.println("We can NOT write to cheese.txt");

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

The above code simply checks to see if we have been granted permission to write to the
file build/conf/cheese.txt. When we run the application for the first time, we’ll turn on
the Java security manager by specifying in the system property java.security.manager.
By default, the security manager is very restrictive in what permissions are granted: only the
bare minimum needed to execute the program and check some basic system properties are
granted. The default set of permissions does not include access to just any file, such as
cheese.txt.

2.1.2 Running Without Permission

To run the program for the first time, execute the command ant run-chp02a. This
Ant command will do the following:
1. Compile the code.
2. “Build” the required configuration files, such as the policy.
3. Execute the command to run the application.
The command that runs the application, which the Ant task executes on your behalf, is:

java -cp build/java

-Djava.security.manager
-Djava.security.policy=build/conf/chp02a.policy
chp02.Chp02aMain

This command turns on the Java security manager, and specified the policy file to use. The
security manager performs permission checks as needed, while the policy file describes the
permissions that are granted to executing code and users. We’ll learn much more about the
security manager and the policy file in upcoming sections and chapters.

When this command is run for the first time, you’ll see the following output:

run-chp02a:
[java] We can NOT write to cheese.txt

This output indicates that the application has not been granted permission to write to the
cheese file. A quick look at the policy file will confirm this:

grant

{

// permission java.io.FilePermission "build/conf/cheese.txt", "write";

}i

We’ll go over the policy file format later, but for now all you need to notice is that
permission to write to the cheese file has been commented out with the leading “/ /.

2.1.3 Running with Permission

Before we execute the application again, uncomment the grant by opening the file
src/conf/chp02a.policy, and deleting the leading double slashes. After doing this, when we run
the ant command ant run-chp02a again, we’ll see the below output:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

run-chp02a:
[java] We can write to cheese.txt

With the permission grant uncommented in the policy file, our code now has been
granted permission to write to the file cheese.txt.

2.2 User Based Authentication and Authorization

In the second example, we’re interested in protecting JAAS itself from being hacked by users
of the application it’s protecting. For simplicities sake, the example won’t protect JAAS
from all possible attempts to hack it. Rather, the example will focus on simply protecting
access to the Policy file. The Policy file specifies which permissions logged in users, and
the application in general, are granted. Any user that can modify the Policy file can
potentially grant themselves all permissions, compromising the security of the system. Thus,
restricting access to the Policy file is very important.

The example system will have two types of users: normal users and systems
administrators:

* Normal users cannot access the Policy file.

* Only system administrators will be allowed to modify the Policy file. Normal users

will not.

A Principal will represent each of these users. The Policy file will declare which
permissions each Principal, and thus user, is given. The “application” will be represented by a
small class with a main method. The application will log each type of user in, and then
attempt to access the Policy file to demonstrate how access is both checked and restricted
with JAAS.

2.2.1. Logging in the User

Before JAAS can be used, the user must be logged in. As noted in the previous chapter, a user
is represented by a Subject, which holds on to the identities of that user, represented by
Principals. In the example, then, the concepts of a “normal user” and a “system
administrator” are each represented by a Principal.

UserPrincipal (String username)
SysAdminPrincipal (String username)

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

[LoginContext | [LoginModule | [CallbackHandler |

Lagim(}) handle|)
Ty
= —
| T | Verify credentials
commit} > Find
- -4 Principals, add
10 subject.

The diagram below illustrates the high-level process of logging in a user:

1.

Collect credentials for the wuser, done by the handle() method on
CallbackHandler.

Verify the credentials, performed by the LoginModule implementation.

Associated Principals accordingly with a Subject, also done by the LoginModule
implementation.

JAAS coordinates all this via the LoginContext, which has pluginable items called

LoginModules that do steps 2 and 3. Multiple LoginModules may be configured, allowing

multiple sources to contribute Principals.

2.2.2.

The “Application™

Below is the code that runs the tests for the simple example.

packag
import
import
import
import
import
import
public

publ

Fi

te
te

e chp02;
java.io.File;
java.security.PrivilegedAction;
javax.security.auth.Subject;
javax.security.auth.login.LoginContext;
javax.security.auth.login.LoginException;
chp02.auth.SimpleCallbackHandler;
class Chp02Main {
ic static void main(String[] args) throws Exception {

le policyFile = new File("build/conf/chp02.policy");

stAccess(policyFile, "user", "password");
stAccess(policyFile, "sysadmin", "password");

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

}

static void testAccess(final File policyFile,
final String username, final String password)
throws LoginException {
// Login a user
SimpleCallbackHandler cb = new SimpleCallbackHandler (username,
password) ;
LoginContext ctx = new LoginContext("chp02", cb);
ctx.login();
Subject subject = ctx.getSubject();
System.out.println("Logged in " + subject);

// Create privileged action block which limits permissions
// to only the Subject's permissions.

try {
Subject.doAsPrivileged(subject, new PrivilegedAction() {

public Object run() {
policyFile.canRead();
System.out.println(username +
return null;

can access Policy file.");

}
}, null);

} catch (SecurityException e) {
System.out.println(username +

can NOT access Policy file.");

}

The method testAccess() is used to test a specific user’s ability to read the Policy
file.

First, a custom CallbackHandler, SimpleCallbackHandler is instantiated and passed
to the LoginMadule. CallbackHandlers are the part of JAAS that are responsible for
collecting the credentials for users. A custom callback handler works in concert with a custom
LoginModule to authenticate a user, adding Principals to the Subject being authenticated fis
all goes well.

The LoginContext is a final class in JAAS that coordinates running all the
LoginModules, and determines what to do if there are any problems along the way. The
LoginContext is configured through a properties file where each grouping of LoginModules
are given a name. Thus, when the LoginContext is instantiated, the name of the
LoginModule group is passed to it to tell the LoginModule which group to use.

Once the LoginConext has authenticated all the users (delegating to the LoginModules
configured), we can get the authenticated Subject, which will contain the appropriate
Principals. When the user “user” is authenticated, their Subject will have a
UserPrincipal. When the user “sysadmin” is authenticated, their Subject will have a
SysAdminPrincipal

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

Next, with the Subject authenticated, we attempt to read the Policy file. Creating a
java.io.File instance for the policy does this. A security check is done within the
canRead () method, and will throw an exception if it fails.

2.2.3. Authentication Code

There are three custom authentication parts to needed for our example:
1. A custom LoginModule for logging in Subjects, adding the appropriate
Principals.
2. A custom CallbackHandler to collect a Subject’s credentials for our custom
LoginModule,
3. A configuration properties file to configure JAAS to use the custom
LoginModule.
In this section, we’ll go over each.

Custom LoginModule and CallbackHandler

LoginModules are given the responsibility of authenticating a Subject based on the
credentials provided. Credentials can be anything that helps confirm the identity of a
Subject. The most common credentials are username and password. Once a LoginModule
has verified the identity of a Subject, the LoginModule will add Principals, as
appropriate the Subject.

JAAS can be configured to use any number of LoginModules, allowing disparate
authentication sources to contribute Principals to a Subject. Because multiple
LoginModules can be used to authenticate a user, a multi-phase process is used to log users
in. This is covered in more detail in THE CHAPTER ON LOGINMODULEs. For now, you
just need to know that the login module is used the authorize a Subject, while the commit ()
method used to add Principals to a fully authenticated Subject.

The custom LoginModule used for the above is below:

package chp02.auth;

import java.io.IOException;
import java.security.Principal;
import java.util.Map;

import javax.security.auth.Subject;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.NameCallback;

import javax.security.auth.callback.PasswordCallback;

import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;

import javax.security.auth.spi.LoginModule;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

import chp02.SysAdminPrincipal;
import chp02.UserPrincipal;

public class SimpleLoginModule implements LoginModule {

private Subject subject;

private CallbackHandler callbackHandler;
private String name;

private String password;

public void initialize(Subject subject,
CallbackHandler callbackHandler, Map sharedState, Map options)

this.subject = subject;
this.callbackHandler = callbackHandler;

public boolean login() throws LoginException {
// Each callback is responsible for collecting a credential
// needed to authenticate the user.
NameCallback nameCB = new NameCallback("Username");
PasswordCallback passwordCB = new PasswordCallback("Password",
false);

Callback[] callbacks = new Callback[] { nameCB, passwordCB };
// Delegate to the provided CallbackHandler to gather the
// username and password.
try {

callbackHandler.handle(callbacks);
} catch (IOException e) {

e.printStackTrace();

LoginException ex = new LoginException(

"IOException logging in.");

ex.initCause(e);

throw ex;
} catch (UnsupportedCallbackException e) {

String className = e.getCallback().getClass().getName();

LoginException ex = new LoginException(className

+ " is not a supported Callback.");
ex.initCause(e);
throw ex;

// Now that the CallbackHandler has gathered the

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

// username and password, use them to

// authenticate the user against the expected passwords.
name = nameCB.getName();

password = String.valueOf (passwordCB.getPassword());

if ("sysadmin".equals(name) && "password".equals(password)) {
// login in sysadmin
return true;
} else if ("user".equals(name) && "password".equals(password)) {
// login user
return true;
} else {
return false;

public boolean commit() {
// If this method is called, the user successfully
// authenticated, we can add the appropriate
// Principles to the Subject.
if ("sysadmin".equals(name)) {
Principal p = new SysAdminPrincipal (name);

subject.getPrincipals().add(p);
password = null;
return true;

} else if ("user".equals(name)) {
Principal p = new UserPrincipal (name);
subject.getPrincipals().add(p);
password = null;
return true;

} else {
return false;

public boolean abort() {
name = null;
password = null;
return true;

public boolean logout() {

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

name = null;
password = null;
return true;

}
}
|_LoginContext | [LoginModule |
TR e
=
initialize() :
login) -
commit() -

The diagram above illustrates the interaction between the LoginContext and LoginModule
when a Subject is being authenticated, the LoginContext:
1. Creates an instance of the above LoginModule.
2. Calls the initialize() method, which gives the LoginModule the Subject it will
authenticate and the CallbackHandler to retrieve credentials with.
3. Calls the login() method on the LoginModule, telling the LoginModule to
attempt to authenticate the user.
4. If the login() method succeeds, calls the commit() method, signaling the
LoginModule to add Principals to the Subject.
5. If the login() method fails or other errors occur, calls the abort method, signaling
the LoginModule to do any cleanup needed (this is not shown in the diagram above).

A Closer Look at login() and commit()

In our example, the most interesting methods are the login() and commit () methods.
The login() method uses the CallbackHandler passed in to the initialize method to
collect the credentials required. The SimpleLoginModule is only interested in the username
and a password. A NameCallback and PasswordCallback instance are created, and passed
to the callbackHandler. The SimpleCallbackHandler method handle (shown below)
simply fills in the passed- in callbacks:

package chp02.auth;

import javax.security.auth.callback.Callback;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;

public class SimpleCallbackHandler implements CallbackHandler {

private String name;
private String password;

public SimpleCallbackHandler (String name, String password) {
this.name = name;
this.password = password;

public void handle(Callback[] callbacks) {
for (int i = 0; i < callbacks.length; i++) {

Callback callback = callbacks[i];

if (callback instanceof NameCallback) {
NameCallback nameCB = (NameCallback) callback;
nameCB.setName (name) ;

} else if (callback instanceof PasswordCallback) {
PasswordCallback passwordCB = (PasswordCallback) callback;
passwordCB.setPassword(password.toCharArray());

}

Once the callbackHandler has collected the username and password, they’re stored ion
the simpleLoginModule instance. Then, the stored credentials are compared against hard-
coded values': if each type of user has the correct password, the login method returns true,
indicating that the SimpleLoginModule has verified the identity of the Subject.

The LoginContext calls the commit method once the Subject being logged in has been
authenticated with all the LoginModules required. SimpleLoginModule’s commit method
is repeated below:

public boolean commit() {
if ("sysadmin".equals(name)) {
// sysadmin Principal
Principal p = new SysAdminPrincipal (name);

"In areal system, of course, the credentials wouldn’t be hard-coded; they would be
looked up in a database or otherwise retrieved.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

subject.getPrincipals().add(p);
password = null;
return true;

} else if ("user".equals(name)) {
// login user Principal
Principal p = new UserPrincipal (name);
subject.getPrincipals().add(p);
password = null;
return true;

} else {
return false;

Since the Subject has been authenticated by the login method, the commit () method
need only check which user has logged in, and add the appropriate Principal to the
Subject. The commit() method returns true if everything went OK, or false if
something went wrong.

The Principals SysAdminPrincipal and UserPrincipal are simple implementations
of the Principal class. We won’t go over them here, but THE CHAPTER/SECTION ON
PRINCIPALS covers them in more detail.

LoginContext Configuration

JAAS is configured to use the custom LoginModule by specifying it’s use in a login module
properties file. The file specifies groupings of LoginModules by “application.” Applications
are really just ordered groupings of LoginModules, each of which may be required or
optional for a Subject to be successfully authenticated in the context of that application.
These groupings may map to the traditional idea of a software application, or they can just
be different groupings.

Our example configuration file contains the below:

chp01

{
chpOl.auth.SimpleLoginModule REQUIRED;

}i

This configuration creates an application/group named “chp01.” Any Subject wishing to be
authenticated for that application is required to be successfully authenticated by the
SimpleLoginModule.

A system property is used to specify the location of the configuration file. In our
example, when executing the VM, the following system property is specified

-Djava.security.auth.login.config=src/conf/chp01l-

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

loginmodules.properties

Many applications will need to set the LoginContext configuration in a more dynamic way,
programmatically at runtime. Chapter 4 covers this. Using a flat-file works fine for our
example.

2.2.4. Authorization Code

Once the Subject has been authenticated, we’re ready to attempt to access the Policy
file, showing off how JAAS performs authorization, or permission, checks. The process is as
following:

1. The Subject is acquired from the LoginContext.

2. The static method Subject.doAsPrivileged is used to execute a protected
block of code on behalf of the Subject.

3. The block of code is implemented by a PrivilegedAction implementation.

In addition to the code, you must pass in another VM argument that points to the
Policy configuration file to configure JAAS’s default Policy.

Priviliged Block of Code.: doAsPrivleged

The method Subject.idoAsPrivleged is used to demark that a sensitive block of code be
executing on behalf of a given Subject. By passing in null as the last argument to the
doAsPrivleged method, we’re telling JAAS to execute the PrivlegedAction code with
only the Permissions granted to the Subject. This means that the Subject must contain
at least one Principal that has been granted the permission to read the Policy file.

The inline implementation of PrivlegedAction acts as a closure to pass to JAAS. It
wraps the code to be executed with the permissions granted to the Subject. The method
File.canRead() contains an authorization check that eventually results in code like the
following being called:

FilePermission filePerm = new FilePermission(“some.policy”, “read”);
AccessController.checkPermission(filePerm);

In the above code, we:

1. Create a FilePermission instance that represents the permission to read the
file some.policy.

2. Use the AccessController to see if the Principal currently logged in has
been granted to required permission.

If the user has been granted permission to read the file, the checkPermission()
method silently succeeds. Otherwise, if the Subject does not have Permission, an
AccessControlException is thrown. Thus, if you want to avoid thrown exceptions
from disrupting your application, to check a Permission you have to wrap a try/catch block
around the sensitive code, and catch any AccessControlException that’s thrown. If
the exception is thrown, the access check has failed.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

The Permissions granted to each Principal are specified in a Policy configuration
file. This file is used by the default, file based, Policy that ships with the SDK. The location
of this file is specified by a VM argument.

The two grant entries below are of interest to us’:

grant Principal chp02.UserPrincipal "user"
{

// not granted anything

}i

grant Principal chp02.SysAdminPrincipal "sysadmin"
{
permission java.io.FilePermission "/Users/cote/dev/jaas-
book/build/conf/chp02.policy", "read";
}i

Each of the grant sections above is used to grant (or not grant) Permissions to specific
permissions. The syntax used is to specify the class of the Principal, the name the class
will have, and then to list the Permissions granted to that Principal

The permission to read the Policy file is configured by specifying the class of the
Permission to grant, the path to the file the Permission covers (the target), and the
action the Permission is for. We’ve purposefully included the commented- out grant for
the UserPrincipal to emphasis that the Principal doesn’t have that grant.

When this policy is applied, only Subjects that have a SysAdminPrincipal with the
name “sysadmin” will be able to read the policy file chp02.policy

2.2.5. Running the Example

To make running the example easier, we’ve provided an Ant target:
1. Go to the root directory of the source code for this book.
2. Type ant run-chp02.

The output will include the following output:

run-chp02:
[java] Logged in Subject:
[Jjava] Principal: (UserPrincipal: name=user)

[java] user can NOT access Policy file.

[java] Logged in Subject:

[Java] Principal: (SysAdminPrincipal: name=sysadmin)
[java] sysadmin can access Policy file.

* After running the ant target ant run-chpo2, the policy file will be available at
build/conf/chp02.policy.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

2.3. Summary

With the astronaut's- and bird's-eye views of security and Java security, we further brought
the discussion down to the worm's-eye view of JAAS in this chapter. By using two simple
examples, we discussed the core classes in the JAAS API: as Policy, Permission, Subject,
and Principal. We discussed the roles of each class and spent time decomposing them into
their parts. Without too much detailed discussion, which we've saved for the upcoming
chapters, we went over on short example of using JAAS to give you a basic sense of both how
JAAS works and what JAAS-enabled code looks like.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

