JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

6 A Custom Policy

This chapter describes an example of implementing a custom java.security.Policy. The
pPolicy we’ll develop is actually composed of several parts: a CompositePolicy that
delegates to any number of “sub-Policy” implementations; a database-backed Policy that
retrieves permission grants from a database; and the default file-based Policy. Aggregating a
Policy like this allows for more flexibility and code reuse. As with previous chapters, we’ll
use a small class with a main() method to demonstrate using the custom Policy.

Our custom Policy takes one large short cut to simplify the example: Permission
checks are effectively only applied when a Subject is logged in, allowing most code to
execute with all permissions enabled. With that disclaimer aside, let’s jump into the code.

6.1 The “Main” Application

The simple application we use initializes the custom Policy and SecurityManager, creates
a test user, and then does a simple Permission check for reading a temporary file. The first
check will fail because the required java.ioFilePermission hasn’t been added to any of
the Subject’s Principals. Before doing a second check, the application associates the
needed FilePermission to one of the Subject’s Principals. After the
FilePermission has been added, the call to SecurityManager.checkPermission()
returns successfully.

Below is the code used to run the example:
package chp06;
import java.io.FilePermission;
import java.security.Policy;
import java.security.PrivilegedAction;
import java.util.ArrayList;
import java.util.List;
import javax.security.auth.Subject;
import util.id.Id;

public class Main {

static public void main(String[] args) throws Exception {

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

AuthHelper authHelper = new AuthHelper();

try {
Policy defaultPolicy = Policy.getPolicy();
DbPolicy dbPolicy = new DbPolicy();
List policies = new ArrayList(2);
policies.add(defaultPolicy);
policies.add(dbPolicy);
CompositePolicy p = new CompositePolicy(policies);
Policy.setPolicy(p);

System.setSecurityManager (new SecurityManager());
authHelper.createTestUser("testuser", "testpassword");
authHelper.loginTestUser();

Subject subject = authHelper.getSubject();

final FilePermission filePerm = new FilePermission(
"/tmp/test", "read");

boolean allowed = true;

try {
Subject.doAsPrivileged(subject, new PrivilegedAction() {

public Object run() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(filePerm);

}

return null;

}, null);
} catch (SecurityException e) {
allowed = false;

if (allowed) {
System.out.println("Subject can read file /tmp/test");
} else {
System.out.println("Subject cannot read file /tmp/test");

Id principalld = authHelper.getUserGrp().getId();
PermissionService.addPermission(principalId, Id.create(),

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

filePerm);
System.out.println("Added " + filePerm + " to Subject.");

allowed = true;

try {
Subject.doAsPrivileged(subject, new PrivilegedAction() {

public Object run() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(filePerm);

}

return null;

}, null);
} catch (SecurityException e) {
allowed = false;

if (allowed) {
System.out.println("Subject can read file /tmp/test");
} else {
System.out.println("Subject cannot read file /tmp/test");
}
} finally {
if (authHelper != null) {
authHelper.cleanUp();

To run the above, change directories to the root of this book’s project and execute the
command ant run-chp06. The output will include:

Subject cannot read file /tmp/test
Added (java.io.FilePermission /tmp/test read) to Subject.
Subject can read file /tmp/test

6.1.1 Initializing the Custom Policy

As its name suggests, the CompositePolicy is an implementation of the Composite
pattern: a CompositePolicy delegates it’s behavior to the 0-to-n Policys it holds, and

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

instances of CompositePolicy can be used wherever a java.security.Policy can be
used.

The CompositePolicy instance we use is composed of two Policys: the default J2SE
Policy’, obtained by calling the static method Policy.getPolicy() and our custom
chp06.DbPolicy. The default Policy performs Permission assignments and checks for
legacy code, and also assigns several basic permissions to every security context. For
example, the default Policy grants the permission to access many simple, low-risk properties.
Rather than re-implement this behavior, we just re-use the default Policy in our
CompositePolicy. The DbPolicy, discussed below in section 6.3, is backed by a database,
and provides us with a more dynamic runtime way of doing authorization checks.

Once the CompositePolicy and its sub-Policies are created, the application enables the
authorization by calling two static set methods: one method to set our CompositePolicy as
the VM-wide Policy, Policy.setPolicy(), and another method to enable the default
java.lang.SecurityManager, System.setSecurityManager().

The CompositePolicy is covered in more detail below, section 6.2.

6.1.2 Creating and Authenticating the Test User

The helper class chp06.AuthHelper is used to create, authenticate, and then cleanup the
Subject and its Principals that are used in the example. As the focus of this chapter is
authorization, the code isn’t excerpted here.

6.1.3 Checking Permissions

To check if the Subject has been authorized to read the file /tmp/test, the code first creates
a java.io.FilePermission instance describing the target and action, creates a security
context based on the Subject’s authorizations, and then uses the
SecurityManager.checkPermission(). If the FilePermission has been granted,
checkPermission() silently succeeds, otherwise it throws a SecurityException.

The Subject.doAsPrivileged() is used to limit the security context to only the
Permissions granted to the Subject’s Principals. As discussed in section 5.7 of the
previous chapter, the alternative is to use the Subject.doAs() method, which instead
combines the Subject’s Principals with the each ProtectionDomain in the execution
stack, namely the ProtectionDomain that represents chp06.Main.

6.2 The CompositePolicy

The purpose of CompostePolicy is to allow any number of Policys to be in effect at one
time. As with any Policy implementation, the CompositePolicy implements the three
methods: getPermissions(CodeSource), getPermissions(ProtectionDomain), and
the implies(ProtectionDomain, Permission). The first two methods combine the
Permissions of returned by the aggregated into one java.security.Permissions object,

: Implemented by the class sun.security.providers.PolicyFile, and, by default,
backed by the file <gaAvA HOME/>1ib/security/java.policy.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

which is returned. The implies () method returns if at least one of the aggregated Policys
returns true from their implies() method; that is, for a Permission to be granted to a
ProtectionDomain, at least one of it’s aggregate Policys must return true from it’s
implies () method.

The code for CompositePolicy is below:

package chp06;

import java.security.CodeSource;
import java.security.Permission;
import java.security.PermissionCollection;
import java.security.Permissions;
import java.security.Policy;

import java.security.ProtectionDomain;
import java.util.ArrayList;

import java.util.Collections;

import java.util.Enumeration;

import java.util.Iterator;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

public class CompositePolicy
extends Policy {

private List policies = Collections.EMPTY LIST;

public CompositePolicy(List policies) {
this.policies = new ArrayList(policies);

public PermissionCollection getPermissions(ProtectionDomain domain) {
Permissions perms = new Permissions();
for (Iterator itr = policies.iterator(); itr.hasNext();) {
Policy p = (Policy) itr.next();
PermissionCollection permCol = p.getPermissions(domain);
for (Enumeration en = permCol.elements(); en
.hasMoreElements();) {
Permission pl = (Permission) en.nextElement();
perms.add(pl);

}

return perms;

public boolean implies(final ProtectionDomain domain,
final Permission permission) {
for (Iterator itr = policies.iterator(); itr.hasNext();) {
Policy p = (Policy) itr.next();
if (p.implies(domain, permission)) {
return true;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

}

return false;

}

public PermissionCollection getPermissions(CodeSource codesource) {
Permissions perms = new Permissions();
for (Iterator itr = policies.iterator(); itr.hasNext();) {
Policy p = (Policy) itr.next();
PermissionCollection permsCol = p.getPermissions(codesource);
for (Enumeration en = permsCol.elements(); en
.hasMoreElements();) {
Permission pl = (Permission) en.nextElement();
perms.add(pl);

}
}

return perms;

}

public void refresh() {
for (Iterator itr = policies.iterator(); itr.hasNext();) {
Policy p = (Policy) itr.next();
p.refresh();

}

6.3 DbPolicy

The chp06.DbPolicy relies on the UserGroupPrincipal class introduced in chapter 4,
although it supports a wide variety of Permission implementations, including it’s own
DbPermission. DbPolicy implements the three Policy methods,
getPermissions (CodeSource), getPermissions (ProtectionDomain), and
implies(ProtectionDomain, Permission). As mentioned in the overview, DbPolicy
takes a shortcut by only providing authorization services for Subjects: if the security
context does not include a Subject, the DbPolicy grants all permissions. Though this helps
illustrate the inter-workings of JAAS, it can be extremely dangerous depending on your
security requirements.

First, we’ll look at the code. The rest of this section will then go over different methods
in DbPolicy.

package chp06;

import java.security.AccessController;
import java.security.AllPermission;
import java.security.CodeSource;
import java.security.Permission;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

import java.security.PermissionCollection;
import java.security.Permissions;

import java.security.Policy;

import java.security.Principal;

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.security.ProtectionDomain;

import java.sqgl.SQLException;

import java.util.Arrays;

import java.util.Enumeration;

import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import java.util.logging.Level;

import java.util.logging.Logger;

import chp04.UserGroupPrincipal;

public class DbPolicy
extends Policy {

public PermissionCollection getPermissions(CodeSource codesource) {
// others may add to this, so use heterogeneous Permissions
Permissions perms = new Permissions();
perms.add(new AllPermission());
return perms;

public PermissionCollection getPermissions(
final ProtectionDomain domain) {
final Permissions permissions = new Permissions();

// Look up permissions
final Set principalIlds = new HashSet();
Principal[] principals = domain.getPrincipals();
if (principals != null && principals.length > 0) {
for (int i = 0; i < principals.length; i++) {
Principal p = principals[i];
if (p instanceof UserGroupPrincipal) {
UserGroupPrincipal userGroup = (UserGroupPrincipal) p;
principalIds.add(userGroup.getId());

}
if (!principallds.isEmpty()) {
try {
List perms = (List) AccessController
.doPrivileged(new PrivilegedExceptionAction() {

public Object run() throws SQLException {
return PermissionService
.findPermissions(principallds);

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

}
)i

for (Iterator itr perms.iterator(); itr.hasNext();) {
Permission perm = (Permission) itr.next();
permissions.add(perm);

}

} catch (PrivilegedActionException e) {
// Log

}
}

} else if (domain.getCodeSource() != null) {

PermissionCollection codeSrcPerms = getPermissions(domain

.getCodeSource());
for (Enumeration en = codeSrcPerms.elements(); en
.hasMoreElements();) {
Permission p = (Permission) en.nextElement();
permissions.add(p);

}
}

return permissions;

}

public boolean implies(final ProtectionDomain domain,
final Permission permission) {
if (permission.getName().equals("/tmp/test.tx")) {
int 1 = 0;

}

PermissionCollection perms = getPermissions(domain);
boolean implies = perms.implies(permission);

return implies;

}

public void refresh() {
// does nothing for DB.

}
}

6.3.1 getPermissions(ProtectionDomain)

Most of the behavior of DbPolicy is done by getPermssions(ProtectionDomain). The
other getPermissions(CodeSource) method, as noted above, grants all permissions to
any CodeSource, while the implies method simply uses the PermissionCollection
returned by getPermissions (ProtectionDomain) to perform authorization
getPermissions (ProtectionDomain) first checks if a Subject is logged in, by
getting the Principals associated with the passed in ProtectionDomain. If there are no

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

Principals, we assume that there is no Subject logged in’. In such cases,
getPermissions (ProtectionDomain) delegates to getPermissions(CodeSource),
which grants all permissions.

If a Subject with Principals is logged in, getPermissions(ProtectionDomain)
first gathers all of the Subject’s DbUserGroupPrincipal 1Id’s, and then uses
PermissionService to retrieve the associated Permissions. The union of all the
Permissions is returned in a java.security.Permissions instance, which allows us to
collect different types of Permissions together.

Privileged Code

Also, notice that the call to PermissionService.findPermissions() is done in a
privileged code block. The database code used by PermissionService.findPermission()
requires that certain java.io.SocketPermissions be granted to the current security
context. The only Permission we’ve granted to the Subject, however, is the ability to
read the temporary file /tmp/test. The Subject does not have the required
SocketPermissions to connect to the database.

To get around this, enabling the DbPolicy to access the database regardless of which
Subject is logged in two conditions must be satisfied:

1. The ProtectionDomain that represents chp06.DbPolicy must be granted the
appropriate SocketPermissions.

2. A Privileged code block must be created to execute the sensitive database code in.
This Privileged block will exclude the Subject’s Principals and, thus,
Permission restrictions, from the security context.

Because of the shortcut we’ve taken, any code that executes without a Subject is granted
java.security.AllPermission, granting all Permissions, including the
SocketPermissions we need. So, by creating a Privileged code block around the call the
PermissionService.findPermission(), we exclude considering the Subject in the
authorization checks, thus, allowing the needed SocketPermission. See section 5.5.2 in
chapter 5 for more discussion on using privileged blocks.

6.3.2 UserGroupPrincipals Only

The DbPolicy works only with UserGroupPrincipals to support the database schema it
relies on. In the database, each Principal is assigned a unique Id. The Principal interface
doesn’t guarantee that the Principal’s name will be unique in any context, so a different
field must be used for a unique identifier, provided by UserGroupPrincpal’s Id field.
Limiting the Principals that a Policy supports in this way would be too constrictive if
the DbPolicy were the only Policy that could be used at one time. But, since we provide a
CompositePolicy, other Policys that do not have this limitation can co-exist, allowing
other types of Principals to be used and supported by other Policys. For example, the use

2 This does leave a loophole in which a subject with no principals is granted all
Permissions.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

of the SDK’s default Policy allows our application to support Principals other than
DbUserGroupPrincipal, albeit through the standard flat-file.

6.3.3 The Database and PermissionService

The PermissionService provides the data access layer between the DbPolicy and the
database. As with the DbLoginModule, pure JDBC calls are used to simplify the example.
Using JDBC directly like this isn’t required, of course. In production systems, it may be
appropriate for you to use more featureful data-access libraries like Hibernate, Spring, or
EJBs.

PermissionService provides methods for adding Permissions to Principals,
looking up the Permissions granted to Principals, and for removing Permissions and
their association to Principals.

Database Schema

Each of PermissionService’s static methods relies, of course, on the permission schema
in the database. The schema includes the tables from chapter XXX [authentication chapter],
and the tables below:

CREATE TABLE permission

(
id varchar(64) NOT NULL,

permissionClass varchar(255) NOT NULL,
name varchar(64),

actions varchar(255),

PRIMARY KEY (id )

)i

CREATE TABLE principal permission

(
principal id varchar(64) NOT NULL,

permission_id varchar(64) NOT NULL
)i

The permission table is responsible for storing each Permission assigned to a Principal.
Each entry must have an 1d and a fully qualified class name. The name and actions columns
are optional. The principal permission table is a tie table used to associate
Permissions to Principals.

PermissionService Implementation

The code for PermissionService is listed below. Most of the code is simple JDBC code
that does the grunt work of creating, reading, and updating the Permissions stored in the
database. The primary point of interest are the attempts to reflectively create the loaded
Permissions, marked by code annotations.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

package chp06;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.security.Permission;

import java.security.Principal;

import java.security.UnresolvedPermission;
import java.security.cert.Certificate;
import java.sgl.Connection;

import java.sql.PreparedStatement;

import java.sgl.ResultSet;

import java.sqgl.SQLException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import java.util.logging.Level;

import java.util.logging.Logger;

import util.db.DbService;
import util.id.Id;

public class PermissionServiceNoLogging {
static private final Certificate[] EMPTY CERTS = new Certificate[0];
static private final Class[] ZERO_ARGS = {};
static private final Object[] ZERO_OBJS = {};
static private final Class[] ONE_STRING ARG = { String.class };

static private final Class[] TWO_STRING_ARGS = { String.class,
String.class };

static public void removePermission(Id id) throws SQLException {

removePermissions(Collections.singleton(id));

static public void removePermissions(Set ids) throws SQLException {
Connection conn = null;

try {
conn = DbService.getInstance().getConnection();
String sql = "DELETE FROM principal permission WHERE
permission_id = ?";

PreparedStatement tiePstmt = conn.prepareStatement(sql);
PreparedStatement permPstmt = conn
.prepareStatement ("DELETE FROM permission WHERE id= ?");
for (Iterator itr = ids.iterator(); itr.hasNext();) {
// HSQLDB doesn't support addBatch() :(
Id id = (Id) itr.next();

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

tiePstmt.setString(l, id.getId());
permPstmt.setString(1l, id.getId());
tiePstmt.executeUpdate();
permPstmt.executeUpdate();

}
} finally {
if (conn != null) {
conn.close();
}

static public List findPermissions(Set principallds)
throws SQLException {
// HSQLDB doesn't allow batching, so we have to do a call per id
List permissions = new ArrayList();
for (Iterator itr = principalIds.iterator(); itr.hasNext();) {
Id principalld = (Id) itr.next();
permissions.addAll(findPermissions(principalId));

}

return permissions;

static public List findPermissions(Id principalld)
throws SQLException {
List perms = new ArrayList();
Connection conn = null;

try {
conn = DbService.getInstance().getConnection();
String sqgl = "SELECT permission.id id, "

+ "permission.permissionClass clazz, permission.name name,
"permission.actions actions "

"FROM principal permission, permission
"WHERE principal permission.principal_ id=?

"AND permission.id=principal permission.permission id ";

+ 4+ + +

PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(l, principallId.getId());
ResultSet rs = pstmt.executeQuery();
while (rs.next()) {
String idStr = rs.getString("id");
Id id = Id.create(idStr);
String clazzStr = rs.getString("clazz");
String name = rs.getString("name");
String actions = rs.getString("actions");

Permission perm = null;
// make class

Class clazz = null;

perm = createPermission(id, clazzStr, name, actions);

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

if (perm != null) {
perms.add(perm);
} else {
continue;

}
} finally {

if (conn != null) {
conn.close();

}

return perms;

private static Permission createPermission(Id id,

String clazzStr, String name, String actions) {

Permission perm = null;

Class clazz = null;

try {
clazz = Class.forName(clazzStr);

} catch (ClassNotFoundException e) {
// deal with below

if (clazz == null) {
perm = new UnresolvedPermission(clazzStr, name, actions,
EMPTY CERTS);

} else if (clazz.equals(DbPermission.class)) {
perm = new DbPermission(id, name, actions);
} else if (Permission.class.isAssignableFrom(clazz)) {
try {
if (name == null && actions == null) {
Constructor con = clazz.getConstructor (ZERO_ARGS); #1
perm = (Permission) con.newInstance(ZERO_OBJS);

} else if (actions == null) {
Constructor con = clazz.getConstructor (ONE_STRING_ ARG); #1
perm = (Permission) con
.newInstance(new String[] { name });
}
// BasicPermission types
else if (name != null && actions != null) {
Constructor con = clazz.getConstructor(TWO STRING ARGS); #1
perm = (Permission) con.newInstance(new String[] { name,
actions });
}
} catch (Exception e) {
// Log

}

return perm;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

}

static public void addPermission(Id principalld,
DbPermission dbPermission) throws SQLException {
addPermission(principalId, dbPermission.getId(), dbPermission);

}

static public void addPermission(Id principalld, Id permissionId,
Permission permission) throws SQLException {
Connection conn = null;
try {
conn = DbService.getInstance().getConnection();
PreparedStatement pstmt = conn
.prepareStatement ("INSERT INTO permission VALUES (?, ?, ?,
?)");
pstmt.setString(l, permissionId.getId());
pstmt.setString(2, permission.getClass().getName());
pstmt.setString(3, permission.getName());
pstmt.setString(4, permission.getActions());
pstmt.executeUpdate();

PreparedStatement pstmt2 = conn
.prepareStatement ("INSERT INTO principal permission VALUES
(2, 2)");
pstmt2.setString(l, principallId.getId());
pstmt2.setString(2, permissionId.getId());
pstmt2.executeUpdate();
} finally {
if (conn != null) {
conn.close();

}

(annotation) <#1 the findPermissions () method uses reflection extensively to create the Permission
instances retrieved from the database. Because Permission instances are not required to have a default, no argument
constructors, each instance must be reflectively created by attempting to acquire the
java.lang.reflect.Constructor needed, as dictated by the presence of absence of the name and
actions attributes. If an appropriate Constructor cannot be found, or and error occurs using it, the Permission
is skipped, avoiding the “throwing out the baby with the bathwater” effect where one bad apple ruins the whole barrel.
For a much more detailed discussion of reflection, see the Forman’s Java Reflection in Action.>

Summary

This chapter demonstrated integrating JAAS authorization functionality with a database. To
accomplish this goal, first we created a CompositePolicy class that allowed us to use
multiple Policys at the same time. Next, we created a custom Policy implementation that
was backed by a database rather than a flat file. Using a database instead of the flat files allows

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com

your application to more easily specify Permissions at runtime and provides an easier way
to maintain all of the Permission grants in your system than flat files.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




