
JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

2. Two Quick Examples 
This chapter provides a two quick examples of how JAAS can be used to provide 
authentication and authorization. The examples are very simple, using the flat-file based 
Policy implementation provided by Sun Microsystems. Because both examples are simple 
you can get your feet wet enough to understand the basic concepts and prepare for the more 
in-depth discussion that follows. 

2.1. A Simple, Cheesy Example 
This example illustrates using of a JAAS policy file to grant permissions to the executing 
code. Our application will check to see if it’s been granted permission to write to a file called 
cheese.txt. The first time we run the application, permission will be denied because the 
permission has been commented out in the policy file. Then, we’ll uncomment the 
permission grant in the policy file, giving the code permission to write to the file. Finally, 
with the correct permission granted, the application will be able to write to cheese.txt. 

2.1.1. The “Application” 
Here is the application code: 
 
package chp02; 
 
import java.io.File; 
import java.io.IOException; 
 
public class Chp02aMain { 
 
  public static void main(String[] args) throws IOException { 
    File file = new File("build/conf/cheese.txt"); 
    try { 
      file.canWrite(); 
      System.out.println("We can write to cheese.txt"); 
    } catch (SecurityException e) { 
      System.out.println("We can NOT write to cheese.txt"); 
    } 
  } 
} 
 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

The above code simply checks to see if we have been granted permission to write to the 
file build/conf/cheese.txt. When we run the application for the first time, we’ll turn on 
the Java security manager by specifying in the system property java.security.manager. 
By default, the security manager is very restrictive in what permissions are granted: only the 
bare minimum needed to execute the program and check some basic system properties are 
granted. The default set of permissions does not include access to just any file, such as 
cheese.txt. 

2.1.2 Running Without Permission 
To run the program for the first time, execute the command ant run-chp02a. This 

Ant command will do the following: 
1. Compile the code. 
2. “Build” the required configuration files, such as the policy. 
3. Execute the command to run the application. 

The command that runs the application, which the Ant task executes on your behalf, is: 
 
java -cp build/java  
-Djava.security.manager  
-Djava.security.policy=build/conf/chp02a.policy  
chp02.Chp02aMain 
 
This command turns on the Java security manager, and specified the policy file to use. The 
security manager performs permission checks as needed, while the policy file describes the 
permissions that are granted to executing code and users. We’ll learn much more about the 
security manager and the policy file in upcoming sections and chapters. 
 When this command is run for the first time, you’ll see the following output: 
 
run-chp02a: 
     [java] We can NOT write to cheese.txt 
 
This output indicates that the application has not been granted permission to write to the 
cheese file. A quick look at the policy file will confirm this: 

 
grant 
{ 
//  permission java.io.FilePermission "build/conf/cheese.txt", "write"; 
};  
 
We’ll go over the policy file format later, but for now all you need to notice is that 
permission to write to the cheese file has been commented out with the leading “//”. 

2.1.3 Running with Permission 
 Before we execute the application again, uncomment the grant by opening the file 
src/conf/chp02a.policy, and deleting the leading double slashes. After doing this, when we run 
the ant command ant run-chp02a again, we’ll see the below output: 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

 
run-chp02a: 
     [java] We can write to cheese.txt 

 
With the permission grant uncommented in the policy file, our code now has been 

granted permission to write to the file cheese.txt. 
 

2.2  User Based Authentication and Authorization 
In the second example, we’re interested in protecting JAAS itself from being hacked by users 
of the application it’s protecting. For simplicities sake, the example won’t protect JAAS 
from all possible attempts to hack it. Rather, the example will focus on simply protecting 
access to the Policy file. The Policy file specifies which permissions logged in users, and 
the application in general, are granted. Any user that can modify the Policy file can 
potentially grant themselves all permissions, compromising the security of the system. Thus, 
restricting access to the Policy file is very important. 

The example system will have two types of users: normal users and systems 
administrators: 

• Normal users cannot access the Policy file. 
• Only system administrators will be allowed to modify the Policy file. Normal users 

will not. 
A Principal will represent each of these users. The Policy file will declare which 

permissions each Principal, and thus user, is given. The “application” will be represented by a 
small class with a main method. The application will log each type of user in, and then 
attempt to access the Policy file to demonstrate how access is both checked and restricted 
with JAAS. 

2.2.1.  Logging in the User 
Before JAAS can be used, the user must be logged in. As noted in the previous chapter, a user 
is represented by a Subject, which holds on to the identities of that user, represented by 
Principals. In the example, then, the concepts of a “normal user” and a “system 
administrator” are each represented by a Principal. 
 
UserPrincipal(String username) 
SysAdminPrincipal(String username) 
 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

 
 
The diagram below illustrates the high-level process of logging in a user: 

1. Collect credentials for the user, done by the handle() method on 
CallbackHandler. 

2. Verify the credentials, performed by the LoginModule implementation. 
3. Associated Principals accordingly with a Subject, also done by the LoginModule 

implementation. 
 
 JAAS coordinates all this via the LoginContext, which has pluginable items called 
LoginModules that do steps 2 and 3. Multiple LoginModules may be configured, allowing 
multiple sources to contribute Principals. 

2.2.2.  The “Application” 
Below is the code that runs the tests for the simple example. 

 
package chp02; 
 
import java.io.File; 
import java.security.PrivilegedAction; 
import javax.security.auth.Subject; 
import javax.security.auth.login.LoginContext; 
import javax.security.auth.login.LoginException; 
 
import chp02.auth.SimpleCallbackHandler; 
 
public class Chp02Main { 
 
  public static void main(String[] args) throws Exception { 
 
    File policyFile = new File("build/conf/chp02.policy"); 
 
    testAccess(policyFile, "user", "password"); 
    testAccess(policyFile, "sysadmin", "password"); 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

  } 
 
  static void testAccess(final File policyFile, 
      final String username, final String password) 
      throws LoginException { 
    //  Login a user 
    SimpleCallbackHandler cb = new SimpleCallbackHandler(username, 
        password); 
    LoginContext ctx = new LoginContext("chp02", cb); 
    ctx.login(); 
    Subject subject = ctx.getSubject(); 
    System.out.println("Logged in " + subject); 
 
    // Create privileged action block which limits permissions	

     
    // to only the Subject's permissions. 
    try { 
      Subject.doAsPrivileged(subject, new PrivilegedAction() { 
 
        public Object run() { 
          policyFile.canRead(); 
          System.out.println(username + " can access Policy file."); 
          return null; 
        } 
      }, null); 
    } catch (SecurityException e) { 
      System.out.println(username + " can NOT access Policy file."); 
    } 
  } 
} 

The method testAccess() is used to test a specific user’s ability to read the Policy 
file. 

First, a custom CallbackHandler, SimpleCallbackHandler is instantiated and passed 
to the LoginMadule. CallbackHandlers are the part of JAAS that are responsible for 
collecting the credentials for users. A custom callback handler works in concert with a custom 
LoginModule to authenticate a user, adding Principals to the Subject being authenticated fis 
all goes well. 

The LoginContext is a final class in JAAS that coordinates running all the 
LoginModules, and determines what to do if there are any problems along the way. The 
LoginContext is configured through a properties file where each grouping of LoginModules 
are given a name. Thus, when the LoginContext is instantiated, the name of the 
LoginModule group is passed to it to tell the LoginModule which group to use. 

Once the LoginConext has authenticated all the users (delegating to the LoginModules 
configured), we can get the authenticated Subject, which will contain the appropriate 
Principals. When the user “user” is authenticated, their Subject will have a 
UserPrincipal. When the user “sysadmin” is authenticated, their Subject will have a 
SysAdminPrincipal. 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

Next, with the Subject authenticated, we attempt to read the Policy file. Creating a 
java.io.File instance for the policy does this. A security check is done within the 
canRead() method, and will throw an exception if it fails.  

2.2.3.  Authentication Code 
There are three custom authentication parts to needed for our example: 

1. A custom LoginModule for logging in Subjects, adding the appropriate 
Principals. 

2. A custom CallbackHandler to collect a Subject’s credentials for our custom 
LoginModule, 

3. A configuration properties file to configure JAAS to use the custom 
LoginModule. 

In this section, we’ll go over each. 

Custom LoginModule and CallbackHandler 
LoginModules are given the responsibility of authenticating a Subject based on the 
credentials provided. Credentials can be anything that helps confirm the identity of a 
Subject. The most common credentials are username and password. Once a LoginModule 
has verified the identity of a Subject, the LoginModule will add Principals, as 
appropriate the Subject. 

JAAS can be configured to use any number of LoginModules, allowing disparate 
authentication sources to contribute Principals to a Subject. Because multiple 
LoginModules can be used to authenticate a user, a multi-phase process is used to log users 
in. This is covered in more detail in THE CHAPTER ON LOGINMODULEs. For now, you 
just need to know that the login module is used the authorize a Subject, while the commit() 
method used to add Principals to a fully authenticated Subject. 

The custom LoginModule used for the above is below: 
 
package chp02.auth; 
 
import java.io.IOException; 
import java.security.Principal; 
import java.util.Map; 
 
import javax.security.auth.Subject; 
import javax.security.auth.callback.Callback; 
import javax.security.auth.callback.CallbackHandler; 
import javax.security.auth.callback.NameCallback; 
import javax.security.auth.callback.PasswordCallback; 
import javax.security.auth.callback.UnsupportedCallbackException; 
import javax.security.auth.login.LoginException; 
import javax.security.auth.spi.LoginModule; 
 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

import chp02.SysAdminPrincipal; 
import chp02.UserPrincipal; 
 
public class SimpleLoginModule implements LoginModule { 
 
  private Subject subject; 
  private CallbackHandler callbackHandler; 
  private String name; 
  private String password; 
 
  public void initialize(Subject subject, 
      CallbackHandler callbackHandler, Map sharedState, Map options)   
  { 
    this.subject = subject; 
    this.callbackHandler = callbackHandler; 
  } 
 
  public boolean login() throws LoginException { 
    // Each callback is responsible for collecting a credential 
    // needed to authenticate the user. 
    NameCallback nameCB = new NameCallback("Username"); 
    PasswordCallback passwordCB = new PasswordCallback("Password", 
        false); 
    Callback[] callbacks = new Callback[] { nameCB, passwordCB }; 
    // Delegate to the provided CallbackHandler to gather the 
    // username and password. 
    try { 
      callbackHandler.handle(callbacks); 
    } catch (IOException e) { 
      e.printStackTrace(); 
      LoginException ex = new LoginException( 
          "IOException logging in."); 
      ex.initCause(e); 
      throw ex; 
    } catch (UnsupportedCallbackException e) { 
      String className = e.getCallback().getClass().getName(); 
      LoginException ex = new LoginException(className 
          + " is not a supported Callback."); 
      ex.initCause(e); 
      throw ex; 
    } 
 
    // Now that the CallbackHandler has gathered the  



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

    // username and password, use them to  
    // authenticate the user against the expected passwords. 
    name = nameCB.getName(); 
    password = String.valueOf(passwordCB.getPassword()); 
 
    if ("sysadmin".equals(name) && "password".equals(password)) { 
      // login in sysadmin 
      return true; 
    } else if ("user".equals(name) && "password".equals(password)) { 
      // login user 
      return true; 
    } else { 
      return false; 
    } 
  } 
 
  public boolean commit() { 
    // If this method is called, the user successfully  
    // authenticated, we can add the appropriate  
    // Principles to the Subject. 
    if ("sysadmin".equals(name)) { 
      Principal p = new SysAdminPrincipal(name); 
 
      subject.getPrincipals().add(p); 
      password = null; 
      return true; 
    } else if ("user".equals(name)) { 
      Principal p = new UserPrincipal(name); 
      subject.getPrincipals().add(p); 
      password = null; 
      return true; 
    } else { 
      return false; 
    } 
  } 
 
  public boolean abort() { 
    name = null; 
    password = null; 
    return true; 
  } 
 
  public boolean logout() { 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

    name = null; 
    password = null; 
    return true; 
  } 
} 

 
 
The diagram above illustrates the interaction between the LoginContext and LoginModule 
when a Subject is being authenticated, the LoginContext: 

1. Creates an instance of the above LoginModule. 
2. Calls the initialize() method, which gives the LoginModule the Subject it will 

authenticate and the CallbackHandler to retrieve credentials with. 
3. Calls the login() method on the LoginModule, telling the LoginModule to 

attempt to authenticate the user. 
4. If the login() method succeeds, calls the commit() method, signaling the 

LoginModule to add Principals to the Subject. 
5. If the login() method fails or other errors occur, calls the abort method, signaling 

the LoginModule to do any cleanup needed (this is not shown in the diagram above). 
 

A Closer Look at login() and commit() 
In our example, the most interesting methods are the login() and commit() methods. 

The login() method uses the CallbackHandler passed in to the initialize method to 
collect the credentials required. The SimpleLoginModule is only interested in the  username 
and a password. A NameCallback and PasswordCallback instance are created, and passed 
to the CallbackHandler. The SimpleCallbackHandler method handle (shown below) 
simply fills in the passed- in Callbacks: 

 
package chp02.auth; 
 
import javax.security.auth.callback.Callback; 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

import javax.security.auth.callback.CallbackHandler; 
import javax.security.auth.callback.NameCallback; 
import javax.security.auth.callback.PasswordCallback; 
 
public class SimpleCallbackHandler implements CallbackHandler { 
 
  private String name; 
  private String password; 
 
  public SimpleCallbackHandler(String name, String password) { 
    this.name = name; 
    this.password = password; 
  } 
 
  public void handle(Callback[] callbacks) { 
    for (int i = 0; i < callbacks.length; i++) { 
      Callback callback = callbacks[i]; 
      if (callback instanceof NameCallback) { 
        NameCallback nameCB = (NameCallback) callback; 
        nameCB.setName(name); 
      } else if (callback instanceof PasswordCallback) { 
        PasswordCallback passwordCB = (PasswordCallback) callback; 
        passwordCB.setPassword(password.toCharArray()); 
      } 
    } 
 
  } 
} 
Once the CallbackHandler has collected the username and password, they’re stored ion 

the SimpleLoginModule instance. Then, the stored credentials are compared against hard-
coded values1: if each type of user has the correct password, the login method returns true, 
indicating that the SimpleLoginModule has verified the identity of the Subject. 

The LoginContext calls the commit method once the Subject being logged in has been 
authenticated with all the LoginModules required. SimpleLoginModule’s commit method 
is repeated below: 

 
public boolean commit() { 
    if ("sysadmin".equals(name)) { 
      // sysadmin Principal 
      Principal p = new SysAdminPrincipal(name); 

                                                
1 In a real system, of course, the credentials wouldn’t be hard-coded; they would be 
looked up in a database or otherwise retrieved. 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

 
      subject.getPrincipals().add(p); 
      password = null; 
      return true; 
    } else if ("user".equals(name)) { 
      // login user Principal 
      Principal p = new UserPrincipal(name); 
      subject.getPrincipals().add(p); 
      password = null; 
      return true; 
    } else { 
      return false; 
    } 
  } 
 
Since the Subject has been authenticated by the login method, the commit() method 

need only check which user has logged in, and add the appropriate Principal to the 
Subject. The commit() method returns true if everything went OK, or false if 
something went wrong. 

The Principals SysAdminPrincipal and UserPrincipal are simple implementations 
of the Principal class. We won’t go over them here, but THE CHAPTER/SECTION ON 
PRINCIPALS covers them in more detail. 

LoginContext Configuration 
JAAS is configured to use the custom LoginModule by specifying it’s use in a login module 
properties file. The file specifies groupings of LoginModules by “application.” Applications 
are really just ordered groupings of LoginModules, each of which may be required or 
optional for a Subject to be successfully authenticated in the context of that application. 
These groupings may map to the traditional idea of a software application, or they can just 
be different groupings. 

Our example configuration file contains the below: 
 

chp01  
 { 
 chp01.auth.SimpleLoginModule REQUIRED; 
 }; 
 
This configuration creates an application/group named “chp01.” Any Subject wishing to be 
authenticated for that application is required to be successfully authenticated by the 
SimpleLoginModule. 
 A system property is used to specify the location of the configuration file. In our 
example, when executing the VM, the following system property is specified  
 
-Djava.security.auth.login.config=src/conf/chp01-



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

loginmodules.properties  
 
Many applications will need to set the LoginContext configuration in a more dynamic way, 
programmatically at runtime. Chapter 4 covers this. Using a flat-file works fine for our 
example. 

2.2.4.  Authorization Code 
Once the Subject has been authenticated, we’re ready to attempt to access the Policy 

file, showing off how JAAS performs authorization, or permission, checks. The process is as 
following: 

1. The Subject is acquired from the LoginContext. 
2. The static method Subject.doAsPrivileged is used to execute a protected 

block of code on behalf of the Subject.  
3. The block of code is implemented by a PrivilegedAction implementation. 

In addition to the code, you must pass in another VM argument that points to the 
Policy configuration file to configure JAAS’s default Policy. 

Priviliged Block of Code: doAsPrivleged 
The method Subject.idoAsPrivleged is used to demark that a sensitive block of code be 
executing on behalf of a given Subject. By passing in null as the last argument to the 
doAsPrivleged method, we’re telling JAAS to execute the PrivlegedAction code with 
only the Permissions granted to the Subject. This means that the Subject must contain 
at least one Principal that has been granted the permission to read the Policy file. 

The inline implementation of PrivlegedAction acts as a closure to pass to JAAS. It 
wraps the code to be executed with the permissions granted to the Subject. The method 
File.canRead() contains an authorization check that eventually results in code like the 
following being called:  

 
FilePermission filePerm = new FilePermission(“some.policy”, “read”); 
AccessController.checkPermission(filePerm); 
 

In the above code, we: 
1. Create a FilePermission instance that represents the permission to read the 

file some.policy.  
2. Use the AccessController to see if the Principal currently logged in has 

been granted to required permission. 
If the user has been granted permission to read the file, the checkPermission() 

method silently succeeds. Otherwise, if the Subject does not have Permission, an 
AccessControlException is thrown. Thus, if you want to avoid thrown exceptions 
from disrupting your application, to check a Permission you have to wrap a try/catch block 
around the sensitive code, and catch any AccessControlException that’s thrown. If 
the exception is thrown, the access check has failed. 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

The Permissions granted to each Principal are specified in a Policy configuration 
file. This file is used by the default, file based, Policy that ships with the SDK. The location 
of this file is specified by a VM argument.  

The two grant entries below are of interest to us2: 
 
grant Principal chp02.UserPrincipal "user" 
{ 
 // not granted anything 
};  
 
grant Principal chp02.SysAdminPrincipal "sysadmin" 
{ 
  permission java.io.FilePermission "/Users/cote/dev/jaas-

book/build/conf/chp02.policy", "read"; 
};  
 
Each of the grant sections above is used to grant (or not grant) Permissions to specific 

permissions. The syntax used is to specify the class of the Principal, the name the class 
will have, and then to list the Permissions granted to that Principal. 

The permission to read the Policy file is configured by specifying the class of the 
Permission to grant, the path to the file the Permission covers (the target), and the 
action the Permission is for. We’ve purposefully included the commented- out grant for 
the UserPrincipal to emphasis that the Principal doesn’t have that grant. 

When this policy is applied, only Subjects that have a SysAdminPrincipal with the 
name “sysadmin” will be able to read the policy file chp02.policy. 

2.2.5.  Running the Example 
To make running the example easier, we’ve provided an Ant target: 

1. Go to the root directory of the source code for this book. 
2. Type ant run-chp02. 

 
The output will include the following output: 

 
run-chp02: 
     [java] Logged in Subject: 
     [java]     Principal: (UserPrincipal: name=user) 
     [java] user can NOT access Policy file. 
     [java] Logged in Subject: 
     [java]     Principal: (SysAdminPrincipal: name=sysadmin) 
     [java] sysadmin can access Policy file. 

                                                
2 After running the ant target ant run-chp02, the policy file will be available at 
build/conf/chp02.policy. 



JAAS in Action by Coté / www.JAASbook.com/ www.DrunkAndRetired.com 

 
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 

License: http://creativecommons.org/licenses/by-nc/2.5/ 
 

2.3.  Summary 
With the astronaut's- and bird's-eye views of security and Java security, we further brought 
the discussion down to the worm's-eye view of JAAS in this chapter. By using two simple 
examples, we discussed the core classes in the JAAS API: as Policy, Permission, Subject, 
and Principal. We discussed the roles of each class and spent time decomposing them into 
their parts. Without too much detailed discussion, which we've saved for the upcoming 
chapters, we went over on short example of using JAAS to give you a basic sense of both how 
JAAS works and what JAAS-enabled code looks like. 


