JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

9 JAAS in Web Applications

Though the Servlet spec doesn’t officially integrate with JAAS, by convention, most Servlet
containers provide several JAAS-related functions: restricting access to pages in a web
application, providing a framework to authenticate users, and methods to access
authentication information. Pages restrictions are specified by URL patterns and a list of
“role” names that the requesting user must have to access the URLs. How these role names
map to Principals is not specified, but in Tomcat, the role names are simply the String
names of Principals. The framework for authenticating users can be used to create login
screens that gather a user’s username and password, and then associate the authenticated user
with the session. The methods for accessing authentication information allow you to
programmatically verify which Principals a user is in, retrieve their Servlet-centric
Principals, and access other security-related state.

9.1 The Web Application

lindex.jsp flogeut.jsp

.

ladminlindex.jsp
G

Yes No

llogin jsp

lcustomer/index jsp

This chapter uses a simple web application, diagramed above, with a handful of pages to
demonstrate each of the above integration points between JAAS and Servlets. The web
application provides a home page with links to an admin page, a customer page, and support
pages to log in users, log out users, and an error page. As their names suggest, a user must be
authenticated as an admin to access the admin page and a customer to access the customer

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

page. Also, this chapter discusses a simple custom tag library that displays it’s body content
based on an authenticated user’s Principal set.

9.2 Configuring JAAS with Servlets

To enable JAAS in a web application, three things must be configured. First, the web
container must be configured to create a “realm” that will be used to authenticate users. The
Servlet spec does not specify how this configuration is done, so it’s different for each web
container. Once a realm is setup, the web.xml file must be modified to enable the
authentication framework and to include mappings of URL patterns to the Principal
names required to access those URLs. Finally, JAAS must itself be configured to specify the
LoginModule implementations to use when authenticating a user.

9.2.1 Configuring Realms

A realm has one responsibility: authenticate a user based on a username and password, adding
“roles” to that user if authentication was successful. The Servlet spec doesn’t specify how
this responsibility is implemented, or very many other semantics of realms except that a
realm must be able to represent roles with String names. Because of this looseness, each web
container implementation is able to provide many different realm implementations: simple
flat-file based realms, LDAP or other directory-based realms, OS authentication realms, and
many other methods. Practically ever web container also provides a way to use JAAS as a
realm. In the instances when JAAS is used as a Servlet realm, the web container gathers a
user’s username and password credentials, and delegates authenticating the user to the JAAS
authentication framework, using a LoginContext and LoginModule implementations.

In this chapter, we use Tomcat 5.0.28 as our web container. Tomcat is the reference
implementation for the Servlet 2.4 specification, and it provides a simple way to use JAAS
realms. Realms are configured in Tomcat by modifying either the system-wide server.xml,
or the web application’s uniquely named server.xml. In our example, we modify the second
to keep our application as self-contained as possible.

Modifying server.xml

Web application server.xml files are stored in <tomcat
dir>/conf/Catalina/localhost/ and follow the convention of being named the same as
their corresponding web application. Our web application is named jaas-book-chp09, so
the server.xml file we’re interested in is found at <tomcat
dir>/conf/Catalina/localhost/jaas-book-chp09.xml. The content of the file is
below:

<?xml version="1.0"?>
<Context path="/jaas-book-chp09" docBase="~/tomcat/webapps/jaas-book-
chp09"
debug="0" reloadable="true">
<Realm className="org.apache.catalina.realm.JAASRealm" #1
appName="chp09" #2

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

userClassNames="chp09.UserPrincipal" |#3
roleClassNames="chp04.UserGroupPrincipal" |#3
useContextClassLoader="false"/> #4

</Context>

(annotation) <#1: The realm tag specifies that Tomcat’s JAASRealm will be used to authenticate users.

(annotation) <#2: appName is used to specify which LoginModule group will be used to authenticate users. “chp09”
is the application name that will be passed into the LoginContext constructor. So, we’ll have to ensure that our
javax.security.login.Configuration can return an AppConfigurationEntry array for that
application name.>

(annotation) <#3: The userClassNames and roleClassNames attributes specify which Principal
implementations will be used to represent the user Principal and the role Principals. Once a user has been
authenticated, creating a Subject with Principals, the user Principal is used when the web container looks
up the Subject’s user, for example, when looking up the value for Ht tpServletRequest’s

getRemoteUser () or getUserPrincipal (). The role Principals are used to lookup the Subject’s
roles, for example, when resolving if a user isin a role for Ht tpServletRequest’s isUserInRole.>
(annotation) <#4: setting this attribute to false tells Tomcat to use the web application’s class loader instead of the
server class loader. The LoginModule implementation we’ll be using (DbLoginModule and
TomcatLoginModule) will be stored in the web application’s lib directory, meaning that the server level class
loader will not be able to find it.>

With chp09-server.xml in place, Tomcat will create an authentication realm that will
be used once we configure web.xml to enable security.

9.2.2 Configuring web.xml

As with practically ever other feature in Servlets, enabling authentication and authorization is
done by modifying the web.xml file. Three tags are used to enable authentication, specify
URL access restrictions, and define the available user roles, or Principals.

Enabling Authentication

Web containers may provide five types of authentication schemes: BASIC and DIGEST,
which use the built in username and password dialog box for HTTP; FORM, which uses
custom JSP pages with standard form action and element names; CLIENT-CERT, which uses
digital certificates; and any proprietary mechanisms that the web container provides. In this
book, we’ll only cover the use of the FORM method because it covers the widest range of
cases and allows for a fair amount of customization.

In our example web application, configuring authorization in web.xml is done with the
following element:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>Chp09 Realm</realm-name> #1
<form-login-config> #2
<form-login-page>/login. jsp</form-login-page>
<form-error-page>/login-error.jsp</form-error-page>
</form-login-config>

</login-config>

(annotation <#1: the realm name is used purely for display purposes, mostly for web application development tools.>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

(annotation) <#2: this element and its sub-elements specify the location of the login page to use and JSP page to use
when authentication errors occur. The error page is used for invalid login attempts and when errors occur logging
in. A different page, covered below, is used when a user attempts to access a URL they’re not authorized to view.>

Locking Down URLs with security-constraints

To specify access control for parts of your web application, you use any number of
security-constraint elements. The security-constraint element specifies one or
more URL patterns and the Principals, represented by role names, a user is required to
have to access those URLs. When an unauthenticated user attempts to request one of the
protected URL, the web container redirects the request to the login page specified in the
login-config element in web.xml.

A URL pattern can be an exact match, like /admin/userlist.jsp, or a pattern, like
/admin/*. The first pattern specifies a single page, while the second specifies any URLs that
begin with /admin. The patterns are all relative to the web application context.

The role names specified may either be the String name of a Principal, or the special
role name *, which is shorthand for any role. When a user requests a URL specified by the
security-constraints URL patterns, the users Subject must have one of the roles
specified, or access is denied.

The security-constraint elements used in our example web.xml are below:

<security-constraint>

<web-resource-collection>
<web-resource-name>Admin Page (Chp09)</web-resource-name>
<url-pattern>/admin/*</url-pattern> #1
</web-resource-collection>

<auth-constraint>

<role-name>admin</role-name> #2
</auth-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>Customer Page (Chp09)</web-resource-name>
<url-pattern>/customer/*</url-pattern> #1
</web-resource-collection>
<auth-constraint>
<role-name>customer</role-name> #2
</auth-constraint>
</security-constraint>

(annotation) <#1: these tags specify the URLs that have access restrictions. The URL patterns used in this example
cover all URLs that begin with /admin and all URLs that begin with /customer. Each URL is relative to the web
application context.>

(annotation) <#2: the Principals required to access restricted URLs are specified in the auth-constraint
element by role-name elements. Any number of role-name elements may be specified. Each role-name
element specifies one Principal, by name, that may access the restricted URL. If none are specified, then no users
may access the restricted URLs, preventing all access to the URLs.>

Specifying the roles Used

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Finally, you must specify all of the role names that are referenced in web.xml with one
security-role eclement per role. Specifying each role that’s used seems tedious, but it
allows tools to get a list of roles used and provides crude referential integrity'.

The security-role elements for our example web application are below:

<security-role>
<description>
Role required to see admin pages.
</description>
<role-name>admin</role-name>
</security-role>

<security-role>
<description>
Role required to see customer pages.
</description>
<role-name>customer</role-name>
</security-role>

Other Settings and Entire web.xml Listing

The entire web.xml listing is below, with code notations for the remainder of the settings:

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd"
version="2.4">
<display-name>jaas-book</display-name>
<description>JAAS Book, Chapter 9</description>

<servlet>
<servlet-name>InitServlet</servlet-name> #1
<servlet-class>chp09.StartupServlet</servlet-class>
<load-on-startup>0</load-on-startup>

</servlet>

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

<error-page> #2
<error-code>403</error-code>
<location>/access-denied. jsp</location>

</error-page>

' Tomcat allows you to skip specifying the security-role element, but logs an error if you
omit them. Other web containers may not be so forgiving.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

<taglib> #3
<taglib-uri>auth-tags</taglib-uri>
<taglib-location>/WEB-INF/auth-tags.tld</taglib-location>
</taglib>

<security-constraint>
<web-resource-collection>
<web-resource-name>Admin Page (Chp09)</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>Customer Page (Chp09)</web-resource-name>
<url-pattern>/customer/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>customer</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>Chp09 Realm</realm-name>
<form-login-config>
<form-login-page>/login. jsp</form-login-page>
<form-error-page>/login-error.jsp</form-error-page>
</form-login-config>

</login-config>

<security-role>
<description>
Role required to see admin pages.
</description>
<role-name>admin</role-name>
</security-role>

<security-role>
<description>
Role required to see customer pages.
</description>
<role-name>customer</role-name>
</security-role>

</web-app>

(annotation) <#1 [InitServlet]: the InitServlet is used to configure DbConfiguration and configure logging.
See section XXX below for further discusion of the InitServlet.>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

(annotation) <#2 [error-page]: this error-page element specified the page to use when a user attempts to access a
URL they are not authorized to view. If this page is not specified, a generic error page is used instead. We’ll see this
page in action below when we walk through the web application’s pages.>

(annotation) <#3 [taglib]: this specifies the custom tag library that contains the role display tag, seen later in this
chapter.>

9.2.3 The JSP Pages

Our web.xml file references several JSP pages: login.jsp, login-error.jsp, and
access-denied.jsp. The login.jsp page is used to gather username and password
credentials, and the login-error.jsp when a user fails authentication or an error occurs
authenticating a user. The last page, access-denied. jsp, is used when an authenticated
user attempts to access a page that requires a Principal the user doesn’t have.

In addition to these 3 pages, 3 other pages are included in the example web application:
logout.jsp which invalidates the user’s session, thus logging out the user; the top level
index. jsp which has links to the Admin and Customer page, and a link to logout. jsp; and
an index. jsp pages for the admin and customer sub-directories.

Of these JSP pages, the only noteworthy pages are login. jsp and logout. jsp. At the
end of this chapter, in the RoleTag section, we’ll go over the top-level index.jsp. The
other JSPs are available in the accompanying source, and we won’t go over them here.

login.jsp
The login.jsp page contains the custom login form used in our web application. The
Servlet spec requires that the action for the login form be j security check. Also, the
form input field for the username must have the name j username, and the password input
field must have the name j_ password. Requiring these names makes implementing Servlet
security a little easier for web container vendors, and isn’t too much of an inconvenience for
developers.
The source for login. jsp is listed below:

<html>
<head><title>Chapter 09 Login</title></head>
<body>

<form method="POST" action="j security check">

<p>Username: <input type="text" name="3j username"/></p>
<p>Password: <input type="password" name="j password"/></p>
<input type="submit" value="Login"/>

</form>

</body>
</html>

logout.jsp

logout. jsp is interesting because it contains code that logs out the currently authenticated
user. The convention for logging out users is to invalidate the user’s session. The
logout. jsp does this with a small inline code fragment; this code could be done in a Servlet,
Struts Action, or other non-JSP code just as easily.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

The code listing is below:

<html>
<head><title>Chp09 Logout</title></head>
<body>

<%

try {
session.invalidate();

}
catch(IllegalStateException e) {

// we don't care

}

%>

<p>You've been logged out.</p>
<p><a href="<%= request.getContextPath() %>/index.jsp">Home</p>

</body>
</html>

9.2.4 Configuring JAAS

JAAS authorization services must be enabled for Tomcat’s JAASRealm to work. This is done
through the standard methods of using either VM arguments, modifying the VM’s
security.properties file, or programmatically setting the
javax.security.auth.Configuration to use. In our application, we use
DbConfiguration, from chapter 4, as our Configuration implementation. To make the
web application more self-contained, we programmatically set the Configuration by
calling DbConfiguration’s init () method in a startup Servlet.

A startup Servlet is a Servlet that the web container loads immediately after loading the
web application. By overriding the init() method, you can programmatically configure
your web application. We use this pattern to configure DbConfiguration and to configure
JDK logging in our web application. The Servlet is specified and configured in web . xm1.

The code for the startup Servlet is below:

package chp09;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import util.LoggerInit;

import chpO04.DbConfiguration;

public class StartupServlet
extends HttpServlet {

public void init(ServletConfig config) throws ServletException {

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

DbConfiguration.init();
LoggerInit.init();

}

When our example web application loads, before serving any requests, the above code is
executed, configuring DbConfiguration to be used by JAAS.

TomcatLoginModule

With JAAS configured, we now need to specify a LoginModule to use when authenticating
users. We can re-use the functionality of chapter 4’s DbLoginModule, allowing us to specify
and manage users and their role-Principals in a database. However, we need to add an
additional Principal that represents the authenticated Subject’s user. Effectively, this
Principal simply wraps the username entered in the login page’. As mentioned above, this
Principal is returned from HttpServletRequest’s getUserPrincipal () method.

To add the user Principal, we create a new LoginModule implementation,
TomcatLoginModule, which extends DbLoginModule and overrides the commit () method
The result is that the Subject is given all of the Principals assigned to it in the database
in addition to the special user Principal needed by Tomcat.

package chp09;
import javax.security.auth.login.LoginException;
import chp04.DbLoginModule;

public class TomcatLoginModule
extends DbLoginModule {

public boolean commit() throws LoginException {

if (super.commit()) {
UserPrincipal userP = new UserPrincipal(getUsername()); #1
getSubject().getPrincipals().add(userP);
getPrincipalsAdded().add(userP);
return true;

} else {
return false;

}

(annotation) <#1: chp09 .UserPrincipal is the Principal we specified when configuring the realm for
Tomcat. The user Principal simply wraps the username provided by the user.>

Database Setup

2 If a different mapping makes more sense for your web application, the Servlet spec does
not require that the user Principal’s name is the same as the username. In our example,
and most web applications, wrapping the username is sufficient.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

To support DbConfiguration and TomcatLoginModule, we setup the same database we
used in chapter 4, seeding it with rows for the customer and admin users, and then adding the
corresponding RolePrincipal to each:

INSERT INTO app_configuration VALUES
('chp09', 'chp09.TomcatLoginModule', 'REQUIRED');

INSERT INTO db user VALUES
('admin-user-id', 'admin', 'secret');

INSERT INTO db user VALUES
('customer-user-id', 'customer', 'secret');

INSERT INTO principal VALUES
('admin-principal-id',
"admin',
'chp09.RolePrincipal');

INSERT INTO principal db user VALUES
('admin-user-id', 'admin-principal-id');

INSERT INTO principal VALUES
('customer-principal-id',
'customer’,
'chp09.RolePrincipal');

INSERT INTO principal db_ user VALUES
('customer-user-id', 'customer-principal-id')

9.3 The Web Application

Once the above configurations and other setup are done, we’re ready to use our example web
application, demonstrating how JAAS can be used with Servlets to restrict access to sections
of the web application. This section walks through the pages of the example web application,
demonstrating how the web container uses the configuration and code in the preceding
sections.

9.3.1 URL Access Control

Each time a restricted URL is requested, the web container first ensures that a user is logged
in, redirecting the request to the login.jsp if there is no user associated with the current
session. Once a user has been logged in, the web container will then see if the user belongs to
any of the role-Principals that are allowed to access the restricted URL, specified by the
security-constraint element in web.xml. If the user does belong to one of those roles,
they’re allowed to access the URL. Otherwise, if the user does not belong to one of those
roles, they’re forwarded to the 403 error page, specified by the error-page element in
web.xml.
The diagram below illustrates this flow:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Yes

s
request No

fadminfindex.jsp

flogin.js .
oginjep laccess-denied.)sp

9.3.2 Example: Accessing /admin/index.jsp

Let’s suppose that we have a user who wants to access the admin page, /admin/index. jsp
in our web application. The user hasn’t been authenticated yet, so when he first attempts to
access the page, he’ll be redirected to login. jsp:

'8 O 6 Chapter 09 Login o)
Q_’/' % v GQ E{,] [j http:f/localhost:8080/jaas-book-chp09fadmin/
Username: |
Password: |

Login |

Done {:ﬂStylev

The user types in the correct username, admin, but uses the incorrect password. When
TomcatLoginModule is invoked to authenticate the user, it throws a LoginException
from it’s login() method, causing the web container to forward to the login-error.jsp
page:

SOME RIGHTS RESERVED

This work 1is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

r Bl

e 06 Login Error (Chapter 09) o

G_’/l' v *@ @ lj http:f/localhost:8080/jaas-book-chp09fadminfj «

Error logging in. Back home.

Done Eystyley [B]

The user realizes their mistake, goes back to the login page, and enters the correct
password. With the correct password, TomcatLoginModule’s login() method returns
true, causing commit () to be called, successfully authenticating the user and adding the
required admin RolePrincipal to the user’s Subject. Because the user has now been
authenticated and has the required admin RolePrincipal, the web container forwards them
to access the originally requested page, /admin/index. jsp:

r Bl

e 066 Admin Page (Chapter 09))

& - «@ 3 L] http:flocalhost:8080/jaas-book-chp08 fadmin/ v

Admih Page

Username: admin
Servlet Principal: GenericPrincipal[admin(admin,)]

Home

Done Eystyley [B]

The page displays the username and the toString() value of the Principal returned
from HttpRequest’s method getUserPrincipal().

SOME RIGHTS RESERVED
This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

9.3.3 Example: Accessing /customer/index.jsp

Next, the wuser attempts to access the customer page by going to the URL
/customer/index.jsp. The security-constraint for this page requires the user to have the
customer RolePrincipal which the admin user does not have. So, the web container
redirects the user to 403 error page as specified by the error-page element in web.xml,
access-denied. jsp:

r8 O 6 Access Denied 403 (Chapter 09) =)
&73" v @ @ || http:{/localhost:8080/jaas-book-chp09/custom v

Access denied to request page.

Back home.

Done) Style v

9.4 RolesTag

To demonstrate programmatically some of a Servlet’s JAAS-related methods, we’ll develop a
custom tag library that displays the body of the tag only if the authenticated user has one of
the Principals the tag specifies. This is a very common scenario. For example, we may
have a section of the page that we only want users with the admin RolePrincipal to see.
The tag’s only attribute, roles, specifies a comma-separated list of Principals that
the user must have to see the body of the tag. The body of the tag will be displayed if the
authenticated user has at least one of the Principals specified by the roles attribute.

9.4.2 A Pure Scriptlet Implementation

To appreciate the utility of having a tag to perform role checks, we’ll first look at how we’d
check for a user’s roles purely with JSP scriptlets:

<%@ taglib uri="auth-tags" prefix="auth" %>
<html>

<head><title>Index</title></head>

<body>

Admin Page |
Customer Page |

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Logout

<% if (request.isUserInRole("customer")) { %> #1
<p>0Only the customer role sees this.</p>
<% } %>

<% if (request.isUserInRole("admin") ||
request.isUserInRole("superadmin")) { %> #2

<p>Only the admin role sees this.</p>

<% } %>

<p>Principals: <%= request.getUserPrincipal() %>.</p>

</body>
</html>

(annotation) <#1 HitpServletRequest provides the method isUserinRole which returns true if the currently logged in
user has the passed in role.>

(annotation) <#2 isUserInRole only accepts one role at a time, so to check for multiple roles, you have to or together a
call for each role.>

While using a pure scriptlet approach doesn’t require any extra code or configuration files (as
the below taglib approach does), it suffers a key disadvantages: lack of abstraction. Instead of
layer how our web application does security checks, we’re directly coding that method into
our JSP page. If we later decide to check for a user’s role using a different way than using the
isUserInRole() method, we’ll have a lot of JSP pages to change. Aside from that, as with
most scriptlet code, it just looks ugly.

9.4.1 Using RolesTag

The top-level index. jsp uses demonstrates the use of this tag:

<%@ taglib uri="auth-tags" prefix="auth" %>
<html>
<head><title>Chapter 09 Index</title></head>
<body>

Admin Page |
Customer Page |
Logout

<auth:roles roles="customer">
<p>0Only the customer role sees this.</p>
</auth:roles>

<auth:roles roles="admin">
<p>Only the admin role sees this.</p>

</auth:roles>

<p>Principals: <%= request.getUserPrincipal() %>.</p>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

</body>
</html>

The RolesTag is used twice in this page. The first instance creates a section of the JSP page
that will only be displayed when a user with the customer RolePrincipal is logged in, while
the second displays it’s body content only when a user with the admin RolePrincipal is
logged in. For example, when a customer is logged in, the JSP will be rendered as:

"® 06 Chapter 09 Index o)

@J v @@ @ lj http:/flocalhost:8080/jaas-book-chp09/ v

Admin Page | Customer Page | Logout
Only the customer role sees this.

Principals: GenericPrincipal[customer(customer,)].

Done) stylev

9.4.2 RolesTag’s TLD

The following tag library descriptor configures the RolesTag:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library
1.1//EN" "http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">
<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1l.1</jspversion>
<shortname>auth</shortname>
<uri>/WEB-INF/auth-tags.tld</uri>
<tag>
<name>roles</name>
<tagclass>chp09.RolesTag</tagclass>
<bodycontent>JSP</bodycontent>
<attribute>
<name>roles</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

We saw the tag library included with the taglib element in the complete listing of the web
application’s web.xml above.

RolesTag Code

Once RolesTag verifies that a value for the roles attribute was specified, it splits the list of
roles in an array of names. RolesTag then iterates over this array of names, passing each
name to isUserInRole() on HttpServletRequest. If isUserInRole() returns true,
RolesTag returns INCLUDE BODY, causing the body of the tag to be displayed. Otherwise, if
the user does not have one of the roles required, SKIP_BODY is returned causing the body of
the tag to be omitted from the rendered JSP. If the user is not even authenticated,
isUserInRole() will return false each time, causing the body of the tag to be omitted to
un-authenticated users as well.

package chp09;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.jsp.tagext.TagSupport;

public class RolesTag
extends TagSupport {

public int doStartTag() {
if (roles_ != null || roles_.length() != 0) {
boolean userHasRole = false;
HttpServletRequest request = (HttpServletRequest) pageContext
.getRequest();
String[] splitRoles = roles .split(",");
for (int i = 0; i < splitRoles.length; i++) {
String role = splitRoles[i];
if (request.isUserInRole(role.trim())) {
return EVAL_BODY_ INCLUDE;

}

}

return SKIP BODY;

}

public String getRoles() {
return roles_;

}

public void setRoles(String roles) {
roles_ = roles;

}

private String roles_;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Running the Example Web Application

To deploy the example web application for this chapter, change directories to the source
code directory, and execute the command ant deploy-chp09. This will configure the
database for you, compile the required code, and deploy the web application to Tomcat.

Once you start Tomcat, you’ll be able to load the example web application by going to
the URL http://localhost:8080/jaas-book-chp09/ in your browser. The first page
you’ll see is below:

NaXaXa) Index =3
@ &5 @ http://localhost:8080/jaas-book-chp09/ ¥

Admin Page | Customer Page | Logout

Principals: null.

Done

From the index page, you can attempt to access both the Admin and Customer page.
Once you click on either link, you’ll be redirected to the login page which will prompt you
for a username and password as seen in the screenshots in the previous sections. To login as
an admin, use the credentials admin/secret; to login as a customer, use the credentials
customer/secret.

Summary

With a good understanding of JAAS under our belts, we were ready to start using JAAS in a
web application. The first step using JAAS in a web application was modifying the
application's web.xml file to enable authentication. Once authentication was enabled, we
learned how to customize the different JSP pages used by the web container to log a user in
and display error messages. With the configuration under our belts, we went over two simple
ways to secure parts of any web applications: URL access restrictions and a custom tag library
that conditionally displays it's JSP body according the roles the logged in Subject has.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

