
JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

7 Authentication Base Classes
There are several interfaces in JAAS that you can easily end up implementing again and
again. In programming, once you perform the same task twice, you should start asking, “what
code could I write to prevent having to do this again?” This chapter answers that question
with four classes: BasePrincipal, BaseCredential, BundleCallbackHandler, and
ActionsPermission.
 Each class caters to common authentication situations, for example, when a Subject’s
credentials are username and password, or when a Principal can be represented by a simple
String name.

7.1 Base Classes for Principal and credentials
As we saw in previous chapters, when a Subject is being authenticated, two types of classes
are encountered over and over again: Principals and credentials. Principals provide an
interface to implement that, in it’s most basic form, wraps the String name of the
Principal. Credentials do not provide an interface to implement, except, of course,
java.lang.Object. However, in many cases a credential will also be a wrapper for a
String. Here, we provide abstract base classes for both following the model of wrapping
Strings.

7.1.1 BasePrincipal
BasePrincipal is an abstract class that wraps a java.lang.String name, provides
equals() and hashCode() implementations, and is designed to be sub-classed easily. The first
motivation behind these features is to support the method getPrincipals(Class) on
java.security.Subject. Principals are not stored as keyed entries (for example, by
name), on Subject, but are instead “keyed,” and grouped together by java.lang.Class
instances. In this model, the type of a Principal becomes part of a Principal’s identity.
This isn’t an extremely common way of identifying data class instances in Java, so it takes a
little bit of getting used to. Typically, when you want to identify a particular instance of a
class in a collection, such as a java.util.HashMap, Java APIs use Strings.

BasePrincipal supports the model of using the Principals type as part of its identity by
including the evaluation of the Princpal’s Class in the hashCode() and equals() method,
ensuring that the Principal can be safely stored in collections. By doing this in the base class,
concrete implementations of BasePrincipal don’t need to concern themselves with
implementing these two methods. Along with code to support the getName() method,
implementing the equals() and hashCode() method satisfies the second motivation
behind BasePrincipal’s implementation: to provide a quick and easy class to extend when
you need a new type of Principal.

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

The code for BasePrincipal is below:

package chp07;

import java.security.Principal;

public abstract class BasePrincipal implements Principal,
 Comparable {

 private String name;

 public BasePrincipal(String name) {
 if (name == null) {
 throw new NullPointerException("Name may not be null.");
 }

 this.name = name;
 }

 public String getName() {
 return name;
 }

 public int hashCode() { #1
 return getName().hashCode() * 19 + getClass().hashCode() * 19;
 }

 public boolean equals(Object obj) { #2
 if (this == obj) {
 return true;
 }

 if (!getClass().equals(obj.getClass())) {
 return false;
 }

 BasePrincipal other = (BasePrincipal) obj;

 if (!getName().equals(other.getName())) {
 return false;
 }

 return true;
 }

 public String toString() { #4
 StringBuffer buf = new StringBuffer();
 buf.append("(");
 buf.append(getClass().getName());
 buf.append(": name=");
 buf.append(getName());

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 buf.append(")");
 return buf.toString();
 }

 public int compareTo(Object obj) { #3
 BasePrincipal other = (BasePrincipal) obj;
 int classComp = getClass().getName().compareTo(
 other.getClass().getName());
 if (classComp == 0) {
 return getName().compareTo(other.getName());
 } else {
 return classComp;
 }
 }

}
(annotation) <#1 The hashCode() method bases it’s value on both the Principal name and the class of the
Principal. To get the class, BasePrincipal uses the getClass() method to dynamically retrieve the
type of the instance, instead of statically referencing BasePrincipal.class. This ensures that we use the
java.lang.Class of the concrete implementation of BasePrincipal.>
(annotation) <#2 As with hashCode(), the equals method uses both the Principal’s name, and the
java.lang.Class obtained by calling getClass(), ensuring that sub-classes of the same type will be equal
to each other.>
(annotation) <#3 We’ve implemented the java.lang.Comparable interface largely for easing testing. For
example, if you’re using JUnit’s assertEquals() to compare two collections of BasePrincipals (a
collection of the Principals you’re expecting, and a collection your test code returned), JUnit will display the
String values of those collections when the assert fails. The order that BasePrinciapls listed in will not always
be guaranteed, and may very well be different between the two collections. This makes eyeballing an assertion er ror
from JUnit difficult when you’re trying to figure out how the two collections are unequal. So, by implementing
Comparable, depending on the java.util.Collection implementation you’re using,
BasePrincipal makes this task easier: the BasePrincipals in each collection will be in the same order,
allowing you to more easily spot which BasePrincipals are different between the two collections.>
(annotation) <#4 As with implementing Comparable, the motivation behind implementing toString() is primarily
to ease testing. Without implementing toString(), making sure to display the relevant values of
BasePrincipal’s name and Class, you would have to use a debugger to evaluate the state of a
BasePrincipal.>

Example
A Principal commonly represents a user group, a grouping of users such as “Administrators,”
“Accounting Department,” or other classification of users. In its simplest form, a user group
can be represented by the name of the group. In JAAS, in addition to this, the user group
would have a type. The implementation of this using BasePrincipal as the super class
might be like the code below:

package chp07;

public class UserGroupPrincipal
 extends BasePrincipal {

 public UserGroupPrincipal(String name) { #1
 super(name);

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 }
}

(annotation) <#1 implementing BasePrincipal requires just providing a constructor that takes the name of the
Principal, delegating to the BasePrincipal’s constructor.>

 Next, in a LoginModule’s commit() method, you would use code like this to associated
UserGroupPrincipals to the Subject being authenticated:

public void commit() {
 if (authenticated) {
 List groupNames = findGroups(userId);
 for (Iterator itr = groupNames.iterator(); itr.hasNext();) {
 String groupName = (String) itr.next();
 UserGroupPrincipal up = new UserGroupPrincipal(groupName);
 subject.getPrincipals().add(up);
 }
 }
 }

Once the Subject has been authenticated, you can access the Subject’s
UserGroupPrincipals as the code below demonstrates:

LoginContext ctx = new LoginContext("example",
 new BundleCallbackHandler("mcote", "thepassword"));
ctx.login();
Subject subj = ctx.getSubject();
Set groups = subj.getPrincipals(UserGroupPrincipal.class);

The items in groups will all be of type UserGroupPrincipal.

7.1.2 BaseCredential
JAAS doesn’t provide an interface or other class that credentials must implement. Instead, as
explained in chapter 5, section XXX, credentials are allowed to be of any type. In many
instances, credentials can be represented, or are, simple Strings. For example, one of the
most common credentials, a username, is usually a String typed in for a user.
BaseCredential provides an abstract class for these types of credentials, those that can be
represented by a String.
 The abstract BaseCredential is almost identical to the BasePrincipal class.
Following our original motivation to re-use code, if the code for both is so much alike we
might at first think that BaseCredential and BasePrincipal should be the same class.
However, a credential is not a Principal, and a Principal is not a credential. If both
classes were derived from the same base class, they would implicitly be the same thing, if only
abstractly. This can lead to confusion when the classes are used, and even programmatic
errors where an instance of a credential is used when a Principal should be. So, though the
code in the BaseCredential class is very similar to the code in BasePrinciapl, we divide
the two concepts into separate classes.

The code is below:

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

package chp07;

public abstract class BaseCredential implements Comparable {

 private String value;

 public BaseCredential(String name) {
 if (name == null) {
 throw new NullPointerException("Name may not be null.");
 }

 value = name;
 }

 public String getValue() {
 return value;
 }

 public int hashCode() {
 return value.hashCode() * 29 + getClass().hashCode() * 29;
 }

 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }

 if (!getClass().equals(obj.getClass())) {
 return false;
 }

 BasePrincipal other = (BasePrincipal) obj;

 if (!getValue().equals(other.getName())) {
 return false;
 }

 return true;
 }

 public String toString() {
 StringBuffer buf = new StringBuffer();
 buf.append("(");
 buf.append(getClass().getName());
 buf.append(": value=");
 buf.append(getValue());
 buf.append(")");
 return buf.toString();
 }

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 public int compareTo(Object obj) {
 BaseCredential other = (BaseCredential) obj;
 int classComp = getClass().getName().compareTo(
 other.getClass().getName());
 if (classComp == 0) {
 return getValue().compareTo(other.getValue());
 } else {
 return classComp;
 }
 }

}

Example
A username is commonly stored as a credential. Like a UserGroup, because a String can
easily represent a username, using BaseCredential is a natural fit for implementing a
UsernameCredential. As with UserGroupPrincipal and BasePrincipal, the only code
required to implement BaseCredential is a one-argument constructor that delegates to the
super class:

package chp07;

public class UsernameCredential
 extends BaseCredential {

 public UsernameCredential(String name) {
 super(name);
 }

}

 In a LoginModule’s commit() method, where the instance field username_ was the
name the user entered, you might use code like the following to add a UsernameCredential
to the Subject:

public void commit() {
 //...other code to add Princiapls...
 if (authenticated) {
 UsernameCredential cred = new UsernameCredential(username);
 }
 }

Once the Subject has been authenticated, you can access the UsernameCredential as

shown below:

LoginContext ctx = new LoginContext("exampleApp",
 new BundleCallbackHandler("mcote", "thepassword"));
 ctx.login();
 Subject subject = ctx.getSubject();

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 Set usernames = subject.getPrincipals(UsernameCredential.class);
 if (usernames.size() > 1) { #1
 LOGGER
 .warning("More than one UsernameCredential found.");
 } else {
 UsernameCredential username = (UsernameCredential) usernames
 .iterator().next();
 }
(annotation) <#1 In most cases, a Subject will have only one username, so we log a warning message if more than
one UsernameCredential is found. In cases where there is more than one username, it’s generally a good
idea to c reate a different type of UsernameCredential for each username so that your code can distinguish
between the different usernames.>

7.2 BundleCallbackHandler
JAAS’s original model of gathering credentials is for a
javax.security.callback.CallbackHandler to gather credentials directly from the
user, for example, popping up a Swing dialog box to get a user’s username and password. In
web applications, this original model of gathering credentials doesn’t quite work out so
elegantly. Instead, the CallbackHandler must know the values of the required credentials
ahead of time, caching the values until one of the Callbacks passed into the handle()
method requests them. We saw this strategy in section 4.3 with our custom LoginModule,
and in several other sections where a CallbackHandler was used.
 The most common types of credentials we’ve encountered are usernames and passwords.
Indeed, they’re so widely used that JAAS provides two Callback for these credentials out of
the box: javax.security.callback.NameCallback and
javax.security.callback.PasswordCallback. To make gathering these, and other,
credentials easier, the BundleCallbackHandler provides handling for NameCallback and
PasswordCallback, and allows for easily extension to add other Callback types. Set
methods are provided to allow a BundleCallbackHandler easily cache the credential values
ahead of time.
 The protected handleCallback() method gives sub-classes the opportunity to override
BundleCallbackHandler’s behavior, re-doing how NameCallback and
PasswordCallback are resolved, or also adding handling for new Callbacks.
handleCallback() returns a boolean value indicating if the passed in Callback was
successfully handled. This return value allows sub-classes to delegate to the super class’s
implementation, and only attempt to fill out the Callback if the super-class wasn’t able to.
 First, we’ll take a look at the code, below. Then, we’ll look at an example of extending
BundleCallbackHandler to handle other types of Callbacks. Finally, we’ll see an
example of BundleCallbackHandler in action.

package chp07;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

public class BundleCallbackHandler implements CallbackHandler {

 private static final char[] EMPTY_CHARS = new char[0];
 private Map callbackValues = new HashMap();

 public BundleCallbackHandler() {
 }

 public BundleCallbackHandler(String username, String password) {
 setName(username);
 setPassword(password);
 }

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 if (callbacks == null || callbacks.length == 0) {
 return;
 }
 for (int i = 0; i < callbacks.length; i++) {
 Callback c = callbacks[i];
 handleCallback(c);
 }

 }

 protected boolean handleCallback(Callback callback) {
 if (callback instanceof NameCallback) {
 NameCallback c = (NameCallback) callback;
 if (callbackValues.containsKey(NameCallback.class)) {
 String name = (String) callbackValues
 .get(NameCallback.class);
 c.setName(name);
 return true;
 } else {
 return false;
 }
 } else if (callback instanceof PasswordCallback) {
 PasswordCallback c = (PasswordCallback) callback;

 if (callbackValues.containsKey(PasswordCallback.class)) {
 String password = (String) callbackValues
 .get(PasswordCallback.class);
 if (password == null) {
 c.setPassword(EMPTY_CHARS);
 } else {

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 c.setPassword(password.toCharArray());
 }
 return true;
 } else {
 return false;
 }
 } else {
 return false;
 }
 }

 public void setName(String name) {
 callbackValues.put(NameCallback.class, name);
 }

 public void setPassword(String password) {
 callbackValues.put(PasswordCallback.class, password);
 }

}

7.2.1 Extending BundleCallbackHandler
When gathering credentials for Windows login, in addition to the username and password, you
need the Windows domain. This text String can be embedded in the username, but it’s more
user friendly to gather it as a separate credentials. JAAS provides
javax.security.auth.callback.TextInputCallback whose purpose is to gather
“generic text information,” such as a Windows domain. Let’s say we want to add the ability
to handle TextInputCallback to BundleCallbackHandler. First, we would create a new
class, WindowsCallbackHandler that extends BundleCallbackHandler. Then,
WindowsCallbackHandler would override handleCallback, delegating to the
BundleCallbackHandler’s implementation, and then attempting to handle any Callbacks
not handled by the super class’s method.

The code is below:

package chp07;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.TextInputCallback;

public class WindowsCallbackHandler
 extends BundleCallbackHandler {

 private String domain;

 public WindowsCallbackHandler(String username, String password,
 String domain) {
 super(username, password);
 this.domain = domain;
 }

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 protected boolean handleCallback(Callback callback) {
 if (!super.handleCallback(callback)) {
 if (callback instanceof TextInputCallback) {
 TextInputCallback c = (TextInputCallback) callback;
 c.setText(domain);
 return true;
 }

 return false;
 }

 return false;
 }

}

7.2.2 Example of using BundleCallbackHandler
You use the BundleCallbackHandler just as you would any other Callbackhandler,
passing in an instance of BundleCallbackHandler to the LoginContext constructor:

BundleCallbackHandler bundle = new BundleCallbackHandler("mcote",
 "thepassword");
LoginContext ctx = new LoginContext("exampleApp", bundle);
ctx.login();
Subject subject = ctx.getSubject();

 LoginModules used with BundleCallbackHandler instances behave normally. For
example, the below is an example of a LoginModule’s login() method:

public boolean login() throws LoginException {
 NameCallback name = new NameCallback("Username:");
 PasswordCallback password = new PasswordCallback("Password:",
 false);
 try {
 callbackHandler.handle(new Callback[] { name, password });
 } catch (IOException e) {
 throw new LoginException(e.getMessage());
 } catch (UnsupportedCallbackException e) {
 throw new LoginException(e.getMessage());
 }
 String username = name.getName();
 String pw = String.valueOf(password.getPassword());
 authenticated = checkPassword(username, pw);
 if (authenticated) {
 return true;
 } else {
 throw new LoginException("User " + name
 + " not authenticated.");
 }

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 }

7.3 Base java.security.Permission Classes
Creating a custom permission in JAAS requires you to implement the abstract
java.security.Permission class, meaning that your new class must provide
implementations for Permission’s four abstract methods equals(), getActions(),
hashCode(), and implies(). The SDK provides a base Permission implementation for
action-less permissions. Additionally, this section provides a base Permission
implementation for permissions that use actions.

7.3.1 java.security.BasicPermission
If the permission you’re creating will not use the actions property, known as a “named
permission,” you can extend the abstract java.security.BasicPermission provided in
the SDK. BasicPermission implements the four abstract methods, providing a no-op
method for getActions(). Because getActions() is ignored, any actions passed into the
constructor for a BasicPermission will be ignored, and getActions() always returns an
empty String.

BasicPermission also provides special handling for the permissions name. The name is
treated as hierarchical name, where each level is separated by a period. A wild-card can be
used to represent “anything below this level.” For example, the class
java.util.PropertyPermission uses this naming convention to control access to VM
properties. One group of properties is the OS group, containing properties such as os.name
and os.version, which store the name and version number of the underlying OS. To grant
permission to read the value of only the os.name property, you would create a new
PropertyPermission with the name “os.name”. If you wanted to grant permission to read
all OS properties, you would use the wild-card name “os.*”.

For those instances where you do not need to use the actions property of a Permission,
we recommend extending java.security.BasicPermission.

7.3.2 ActionsPermission
Permissions often specify actions that the grantee may perform. For example, a
java.io.FilePermission specifies not only a file (the Permission’s name) for a
Permission, but also what actions may be performed on that file, such as permission to
read, write to, and delete the file. The SDK does not provide a base
java.security.Permission class that uses actions. But, because actions are typically
represented by a comma-separated list of action names, it’s easy to provide a base class for
action-based permissions. In this section, we provide such an implementation,
chp07.ActionsPermission.
 Our class must implement the four abstract methods on java.security.Permission,
equals(), getActions(), hashCode(), and implies(). The implementation of equals()
and hashCode() is straight forward, and follows the same code-pattern as the other base

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

classes in this chapter: equals() tests for class equality, and then tests for member equality;
hashCode()bases the hash value of the class and member values.
 The getActions() implementation returns the canonical representation of the actions,
which contains each of the actions passed into the constructor, in natural order, separated by
a comma. The implies() method returns true if both the class type and name of the passed
in permission is the same, and if the actions are a sub-set of the actions at hand. For example,
the code below will output “Implies? true”:

TestActionsPermission superSet = new TestActionsPermission("name",
"create, read");
TestActionsPermission subSet = new TestActionsPermission("name",
"create");

System.out.println("Implies? "+superSet.implies(subSet));

The code for chp07.ActionsPermission is below:

package chp07;

import java.security.Permission;
import java.util.Collections;
import java.util.Iterator;
import java.util.Set;
import java.util.TreeSet;

public abstract class ActionsPermission
 extends Permission {

 private Set actionSet;
 private String actions;

 public ActionsPermission(String name, String actions) {
 super(name);
 if (name == null) {
 throw new NullPointerException(
 "permission name may not be null.");
 }

 actionSet = splitActions(actions);
 this.actions = canonizeActions(actionSet);
 }

 public String getActions() {
 return actions;
 }

 public boolean hasAction(String action) {
 return actionSet.contains(action);
 }

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }

 if (obj.getClass() != ActionsPermission.class) {
 return false;
 }

 ActionsPermission other = (ActionsPermission) obj;

 return getName().equals(other.getName())
 && getActions().equals(other.getActions());

 }

 public int hashCode() {
 return getClass().getName().hashCode() * 19
 + getName().hashCode() * 19 + getActions().hashCode() * 19;
 }

 public boolean implies(Permission permission) {
 // Test: this implies passed in permission?
 // i.e., passed in permission is a sub-set of this.
 if (equals(permission)) {
 return true;
 }

 if (getClass() != permission.getClass()) {
 return false;
 }

 ActionsPermission other = (ActionsPermission) permission;
 if (!getName().equals(other.getName())) {
 return false;
 }

 if (!actionSet.containsAll(other.actionSet)) {
 return false;
 }

 return true;
 }

 private Set splitActions(String actions) {
 Set actionSet = Collections.EMPTY_SET;
 if (actions != null && actions.trim().length() > 0) {
 actionSet = new TreeSet();
 String[] split = actions.split(",");
 for (int i = 0; i < split.length; i++) {
 String action = split[i];
 actionSet.add(action.trim());

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 }
 }
 return actionSet;
 }

 private String canonizeActions(Set actions) {
 if (actions == null || actions.isEmpty()) {
 return "";
 }

 StringBuffer buf = new StringBuffer();
 for (Iterator itr = actions.iterator(); itr.hasNext();) {
 String action = (String) itr.next();
 buf.append(action);
 if (itr.hasNext()) {
 buf.append(",");
 }
 }

 return buf.toString();
 }

}

The next chapter contains an example of using ActionsPermission.

Summary
As we've seen in previous chapters, JAAS is composed of several interfaces and base classes
that you'll find yourself implementing and extending again and again. Unless you have a set
of base cases to take care of the repetitive, but needed basic code–such as toString(),
equals(), and hashCode()–you'll end up implementing the same functionality several
times over. The base classes provided in this chapter for Principals, credentials,
CallbackHandlers, and Permissions provided this set of base classes, allowing you to
focus on the business logic of your application's security instead of the tedious plumbing.

