JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

10 Extending JAAS Integration in
Web Applications

As the last chapter demonstrated, the Servlet specification provides an API for
authenticating users, and testing the user’s membership in roles that represent the user’s
Principals. Since JAAS is not tightly coupled to the Servlet spec, using the other features
of JAAS, such as permission checking, are not as easily accomplished. To use all of JAAS,
you need access to the authenticated javax.security.auth.Subject instance, allowing
you to create Subject-based privileged blocks. This chapter demonstrates one way to get an
authenticated Subject, and then goes over using that Subject to perform authorization
checks.

10.1 The AuthenticationFilter

If there is no other way for you to obtain the authenticated Subject from your web
container, you can use a ServletFilter to create one yourself. In this strategy, the user is
authenticated twice: once when the web container logs the user in where you cannot have
access to the Subject, and again in a ServletFilter where you can access to the
Subject. The second round of authentication is done automatically, without the user having
to provide their credentials. The ability to do this relies on the way that
HttpServletRequest’s getRemoteUser () works. The getRemoteUser () method returns
the username of the authenticated user for the request. If there is no authenticated user, the
method returns null. Thus, when getRemoteUser () returns a non-null value, you know
that the container has already authenticated the user by prompting for the username and
password. Knowing this, you can go through the process of authenticating the user without
actually asking for their credentials. This step allows you to easily get access to an
authenticated Subject instance by going through the process of authenticating a user
without having to prompt the user for their username and password.
The diagram below illustrates the process:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Web Container AuthenticationFilter
[client] [) | ationFilter | [Log |
Login request Authenticate
’ T 4»
Apply filters '
Re-authenticate

// psuedo-code

if (request.getRemoteUser() != null) { B
loginContext.login(); !
Subject subj = loginContext.getSubject();

session.setAttribute(subjKey, subj);

When the client first logs in, the web container catches the special request (by looking
for the action j_security check) and uses your JAAS LoginModule(s) to authenticate the
user. Once the user has been successfully authenticated, the web container will apply any
ServletFilters configured. To re-authenticate the user, allowing us to acquire a reference
to the authenticated Subject, we configure the AuthenticationFilter to be applied to
all requests, meaning that the filter will be run after the web container has performed it’s own
authentication. As the pseudo-code in the diagram shows, each time the
AuthenticationFilter runs, it checks if the user has been authenticated in the current
request by calling getRemoteUser(). If the request is authenticated, the filter re-
authenticates the user with it’s own LoginContext instance, allowing the Filter to access the
authenticated Subject. Once the AuthenticationFilter authenticates the Subject, it
caches the Subject in the session so that other components in the web application can
access the Subject.

The code for the AuthenticationFilter is below:

package chpl0;

import java.io.IOException;
import java.sqgl.SQLException;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.security.auth.Subject;

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

import chp04.UserService;
import chp07.BundleCallbackHandler;

public class AuthenticationFilter implements Filter {

public void init(FilterConfig config) throws ServletException { #1

appName = config.getInitParameter("app-name");
subjectKey = config.getInitParameter("subject-key");
if (subjectKey_ == null) {

subjectKey = DEFAULT SUBJECT KEY;
}

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
HttpServletRequest httpRequest = (HttpServletRequest) request;

String remoteUser = httpRequest.getRemoteUser();
if (remoteUser != null) { #2

if (LOGGER.isLoggable(Level.FINE)) {
Subject subj = (Subject) httpRequest.getSession()
.getAttribute(subjectKey);

LOGGER.logp(Level.FINE, LOG _TOPIC, "doFilter()",
"Subject found under key {0}:\n{l1}", new Object[] {
subjectKey , subj });

String password = null;
try {
password = UserService.lookupPassword(remoteUser); #3
} catch (SQLException e) {
throw new ServletException(
"Error retrieving credentials for

+ remoteUser, e);

}

BundleCallbackHandler cb = new BundleCallbackHandler
remoteUser, password);

try {
LoginContext ctx = new LoginContext(appName , cb);

ctx.login();
Subject subj = ctx.getSubject();

httpRequest.getSession().setAttribute(subjectKey , subj);

LOGGER.info("Authenticated Subject " + subj
+ ". Under session key " + subjectKey);

} catch (LoginException e) {
LOGGER
.logp(

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Level .WARNING,

LOG_TOPIC,

"doFilter()",

"LoginException thrown when validating user {0}.
Exception:\n{1}",

new Object[] { remoteUser, e });

}
}

chain.doFilter(request, response);

}

public void destroy() {
}

static private String LOG_TOPIC = AuthenticationFilter.class
.getName();

static private Logger LOGGER = Logger.getLogger (LOG_TOPIC) ;
static private final String DEFAULT SUBJECT KEY = "subject";
private String appName_;

private String subjectKey_;

}

(annotation) <#1: [init():The AuthenticationFilter is configured with 2 filter parameters: the name of the
JAAS AppConfigurationEntry group to use, and the session key to place the authenticated Subject
under. A default value of “subject” is used for subject-key if that parameter isn’t specified.>

(annotation) <#2: [Check for remoteUserName]: Authentication is done for every request, assuring that the changes to
the Subject’s Principal set take effect while the user is logged in.

(annotation) <#3: [Lookup password]: to simplify the example, the filter looks up a user’s password so that we can
reuse the same TomcatLoginModule as used in chapter 9. Alternatively, to avoid looking up the plaintext
password, you could use a LoginModule that doesn’t require a password to authenticate a user. The assumption with
this type of LoginModule would be that the user was already authenticated.>

Sidebar: Obtaining the Subject in Different Application Servers.

Depending on the application server your application is running in, you may be able to use
one of the below methods to get the authenticated Subject:

JBoss: the class org.jboss.security.SecurityAssociation provides the static method
getSubject ().

WebSphere: the class com.ibm.websphere.security.auth.WSSubject provides the
static method getCallerSubject().

WebLogic: the class weblogic.security.Security provides the static method
getCurrentSubject ().

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

End Sidebar

10.2 The DoAsPrivilegedFilter

With a reference to the authenticated Subject available, our web application can use all of
the features JAAS provides. To make checking permissions easier, we use another
ServletFilter to wrap the entire request in a privileged block using the Subject’s static
method doAsPrivileged(). Once this filter is applied, calls in code to
AccessController.checkPermission() will use the authenticated Subject when
checking for access.

The code for DoAsPrivilegedFilter is below:

package chpl0;

import java.io.IOException;

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.logging.Level;

import java.util.logging.Logger;

import javax.security.auth.Subject;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;

public class DoAsPrivilegedFilter implements Filter {

public void init(FilterConfig config) throws ServletException { #1

subjectKey = config.getInitParameter("subject-key");
if (subjectKey_ == null) {

subjectKey = DEFAULT SUBJECT KEY;
}

public void doFilter(final ServletRequest request,

final ServletResponse response, final FilterChain chain)
throws IOException, ServletException {

HttpServletRequest httpRequest = (HttpServletRequest) request;

Subject subj = (Subject) httpRequest.getSession().getAttribute(

subjectKey);

if (subj == null) {

LOGGER

.logp(
Level.FINE,

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

LOG_TOPIC,
"doFilter ()",
"No Subject found under key {0}, so creating "+
"new Subject.",
subjectKey);
subj = new Subject();
}

try {
if (LOGGER.isLoggable(Level.FINE)) {

LOGGER.logp(Level.FINE, LOG _TOPIC, "doFilter()",
"Running doAsPrivileged block with Subject: {0}", subj);

}

Subject.doAsPrivileged(subj, new PrivilegedExceptionAction() { #2

public Object run() throws Exception {
chain.doFilter(request, response);
return null;

}, null);
} catch (PrivilegedActionException e) {
LOGGER
. logp(
Level.SEVERE,
LOG_TOPIC,
"doFilter()",
"Exception executing filter with Subject:\n"+
{0}\nException: {1}",
new Object[] { subj, e });
throw new ServletException(e);
}
}

public void destroy() {
}

static private String LOG_TOPIC = DoAsPrivilegedFilter.class
.getName();

static private Logger LOGGER = Logger.getLogger (LOG_TOPIC) ;

static private final String DEFAULT SUBJECT KEY = "subject";

private String subjectKey_;

(annotation) <#1 [init(): DoAsPrivilegedFilter is configured with one optional init parameter, subject-
key, which specifies session key to look for the authenticated Subject under. If this parameter is not specified, the
default value of “subject” is used.>

(annotation) <#2 [Subject.doAsPrivileged() call: DoAsPrivilegedFilter passesina null
AccessControllerContext as the third argumentto doAsPrivileged, assuring that only
authenticated Subject is used for authorization.>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

10.2.1 Advantages & Limitations of the DoAsPrivilegedFilter

Aesthetically, the DoAsPrivilegedFilter is appealing because it wraps an entire request in
a secure block of code. The chain of code from the UI all the way down to the back-end is
protected in this block. Also, instead of passing the Subject down the entire execution
chain, you can rely on JAAS to provide the Subject as needed.

Unfortunately, wrapping your entire request in a privileged block can cause several
challenging problems in an application that uses a lot of 3™ party libraries. Because the
entire execution stack is executed in the privileged block, the Subject must be granted all
the permissions needed by each piece of code, or each block of code must be wrapped in it’s
own privileged block and granted those permissions. With the amount of third party libraries
in most Java programming, assuring either of these two states can be incredibly time
consuming and tedious. Most Java code is not written with such JAAS-centric concerns in
mind, let alone documented with the permissions needed for normal execution. The result is
that if you want to wrap an entire request in a privileged block, you’ll have several days, if
not weeks, of tedious trial and error in front of you as you try out each path in your
application to discover which permissions a Subject must be granted. This approach may
work for small applications, or applications that depend on few third party libraries, but will
be cost prohibitive for medium to large applications.

If you’re concerned about securing your application to the hilt, going through this
process may be worth it to you. Otherwise, should strongly consider not using the
DoAsPrivileged filter, and instead performing security checks in the sensitive parts of your
code, such as the code that retrieves or updates sensitive data.

10.3 The Permission Tag Libraries

With the request wrapped in a privileged block, we can now use JAAS authorization methods,
namely AccessController.checkPermission(). As our example, we’ll create two
custom tag libraries that perform two very useful functions:
* The perm:granted tag which will only display its body if the logged in user has been
granted the permission.
* The perm:notGranted tag which will only display its body if the user hasn’t been
granted the permission.
For example, the following JSP page will display different text if the user has been
granted the permission to read and write the file /tmp/test.txt:

<%@ taglib uri="perm-tags" prefix="perm" %>

<html>

<head><title>Permission Check</title></head>

<body>

<perm:granted type="java.io.FilePermission"
name="/tmp/test.txt"
actions="read,write">

Granted FilePermission to read and write to /tmp/test.txt

</perm:granted>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

<perm:notGranted type="java.io.FilePermission"
name="/tmp/test.txt"
actions="read,write">
Not granted FilePermission to read and write to /tmp/test.txt
</perm:notGranted>
</body>
</html>

If the authenticated Subject can read and write the file, they’ll see the first block of text.
If they cannot read and write the file, they’ll see the second block of text.

10.3.1 Permission Tag Classes

The implementation of the two permission tags, perm:granted and perm:notGranted, is
provided largely by the abstract class PermissionTag. This class has the responsibility of
collecting the tag attributed, instantiating the permission with the appropriate name and
optional actions, and then checking if the Subject has been granted the permission. The
two sub-classes GrantedPermissionTag and NotGrantedPermissionTag implement
doStartTag(), calling PermissionTag’s checkPermission(), and then displaying the
tag’s body accordingly.
The relationship between these 3 classes is diagramed below:

PermissionTag
+lype
+name
+options
#checkPermission()

GrantedPermissionTag | | NotGrantedPermissionTag |

doStartTag() doStartTag()

The code for each tag is listed in the following sections.

PermissionTag

The primary work done by the PermissionTag is done in the checkPermission()
method. This method attempts to reflectively instantiate the permission specified by the
type, name, and optional actions tags. Once the permission instance is created, it uses that
instance to call AccessController.checkPermission().

package chpl0;
import java.lang.reflect.Constructor;

import java.lang.reflect.InvocationTargetException;
import java.security.AccessController;

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

import java.security.Permission;

import javax.security.auth.Subject;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

public abstract class PermissionTag
extends TagSupport {

protected boolean checkPermission() throws JspException {
Subject ctxSubject = Subject.getSubject(AccessController
.getContext());
String type = getType();
if (type == null) {
throw new NullPointerException("type is null.");

String name = getName();
String actions = getActions();
Permission perm = null;

Class clazz = null;
try {
clazz = Class.forName(type);
} catch (ClassNotFoundException e) {
throw new JspException(type + " was not found.", e);

if (!Permission.class.isAssignableFrom(clazz)) {
throw new IllegalArgumentException(type
+ " is not a java.security.Permission.");

try {
if (name != null && actions == null) {

Constructor ¢ = clazz
.getConstructor(new Class[] { String.class });
perm = (Permission) c.newInstance(new Object[] { name });
} else if (name != null && actions != null) {
// name and actions
Constructor ¢ = clazz.getConstructor(new Class[] {
String.class, String.class });
perm = (Permission) c.newInstance(new Object[] { name,
actions });
} else {
throw new NullPointerException(
"Permission name must be specified.");
}
} catch (SecurityException e) {
throw new JspException(e);
} catch (NoSuchMethodException e) {
throw new JspException("Could not instantiate

+ type

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

+ " instance.", e);

} catch (IllegalArgumentException e) {
throw new JspException(e);

} catch (InstantiationException e) {
throw new JspException(e);

} catch (IllegalAccessException e) {
throw new JspException(e);

} catch (InvocationTargetException e) {
throw new JspException(e);

boolean granted = true;

try {
AccessController.checkPermission(perm);

} catch (SecurityException e) {
granted = false;

}

return granted;

public String getActions() {
return actions_;

}

public void setActions(String actions) {
actions_ = actions;

}

public String getName() {
return name_;

}

public void setName(String name) {
name_ = name;

}

public String getType() {
return type_ ;

}

public void setType(String type) {
type_ = type;
}

private String type_ ;
private String name_;
private String actions_;

}

GrantedPermissionTag

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

The GrantedPermissionTag displays the tag body if the p
omits the tag’s body if the Permission has not been granted:

package chpl0;
import javax.servlet.jsp.JspException;

public class GrantedPermissionTag
extends PermissionTag {
public int doStartTag() throws JspException
boolean granted checkPermission();

if (granted) {

return EVAL_BODY_ INCLUDE;
} else {

return SKIP_ BODY;

}

NotGrantedPermissionTag

The NotGrantedPermissionTag displays the tag body if th
omits the body if the permission has been granted:

package chpl0;
import javax.servlet.jsp.JspException;

public class GrantedPermissionTag
extends PermissionTag {
public int doStartTag() throws JspException
boolean granted checkPermission();

if (granted) {

return EVAL_BODY_ INCLUDE;
} else {

return SKIP_ BODY;

}

}
Tag Library Descriptor

ermission has been granted, or

e permission is not granted, or

The following TLD is used to specify the usage of the two tags:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems,
1.1//EN"
<taglib>
<tlibversion>1.0</tlibversion>

SOME RIGHTS RESERVED

Inc.//DTD JSP Tag Library
"http://java.sun.com/j2ee/dtds/web-jspta

glibrary 1 1.dtd">

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/license

s/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

<jspversion>1l.1</jspversion>
<shortname>auth</shortname>
<uri>/WEB-INF/auth-tags.tld</uri>
<tag>
<name>granted</name>
<tagclass>chpl0.GrantedPermissionTag</tagclass>
<bodycontent>JSP</bodycontent>
<attribute>
<name>type</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>
<name>actions</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
<tag>
<name>notGranted</name>
<tagclass>chpl0.NotGrantedPermissionTag</tagclass>
<bodycontent>JSP</bodycontent>
<attribute>
<name>type</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>
<name>actions</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

10.4 Pulling it all Together

To demonstrate the filters and tags introduced in this chapter, we’ll expand on the web
application from chapter 9. As in chapter 9, the database is populated with two users, and
admin and a customer, each belonging to two different roles. The admin user is granted the

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

permission to read and write to the file /tmp/test.txt, while the customer’s is not granted
that permission.

Deploying the Example Web Application

To deploy the example web application, change to the source code directory and type ant
deploy-chp10. This will seed the test database with the appropriate users and permissions,
configure the web application, and deploy it to the Tomcat install.

Once you start Tomcat, you’ll be able to load the example web application in your
browser with the URL http://localhost:8080/jass-book-chpl0/.

Adding Principals to the Users

The example web applications first uses the the SQL inserts used in chapter 9 to setup up the
database. Additionally, the following SQL is used to grant java.io.FilePermission to all
users in the admin user group access to our test file:

INSERT INTO permission VALUES
('file-perm-id', 'java.io.FilePermission','/tmp/test.txt', 'read,write')

INSERT INTO principal permission VALUES
('admin-principal-id', 'file-perm-id"')

Adding in the Filters

First, in chapter 10’s web.xml, we add in the AuthenticationFilter and the
DoAsPrivilegedFilter, making sure to map them to all URLs:

<!—except from src/webapp/chpl0/WEB-INF/web.xml -->
<filter>
<filter-name>authentication-filter</filter-name>
<filter-class>chplO.AuthenticationFilter</filter-class>
<init-param>
<param-name>app-name</param-name>
<param-value>chp09</param-value>
</init-param>
<init-param>
<param-name>subject-key</param-name>
<param-value>subject</param-value>
</init-param>
</filter>

<filter>
<filter-name>privileged-filter</filter-name>
<filter-class>chpl0.DoAsPrivilegedFilter</filter-class>
<init-param>
<param-name>subject-key</param-name>
<param-value>subject</param-value>
</init-param>
</filter>

<filter-mapping>

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

<filter-name>authentication-filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

<filter-mapping>
<filter-name>privileged-filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

With these filters in place, we’ll be able to get the currently logged in Subject from the
session, and all requests will execute in the security context of that Subject.

Using the Taglibs

We first add in a link to the permission-check. jsp from above to the index page. The
first page we see looks familiar to the page in chapter nine, but has a Check Permissions link:
e o6 Chapter 10 Index)

-.\,b' Lfvv [Sj 9http://Iocalhost:8080/jaas—book—chp10/ v

Admin Page | Customer Page | Check Permissions | Logout

Done

The page permission-check. jsp, listed above in section XXX, uses the permission
tags to display different messages when the authenticated user is granted the correct
java.io.FilePermission and when the user isn’t granted the
java.io.FilePermission. When a user that has’t been granted permission to access the
file clicks on Check Permissions, they see this message:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

r)

e o6 Permission Check o
‘{)3' [E_g] @ http://localhost:8080 /jaas-book-chp10/permission- ¥ (. :

Not granted FilePermission to read and write to /tmp/test.txt

Done

Once the user is granted permission, they’ll see this message:

r N

e 06 Permission Check =
i):l' fr__*,—] @ http://localhost:8080 /jaas-book-chp10, ¥ [:

Granted FilePermission to read and write to /tmp/test.txt

Done

To test this out yourself, first login as the customer with the username/password
customer/secret. You’ll see the first, “Not granted” page. Then, logout, and login as the
admin with the username “admin” and the password “secret.” This time, you’ll see the

“Granted” page.
SOME RIGHTS RESERVED

This work 1is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Summary

This chapter introduced several ways to use JAAS to secure web applications. First, we used a
ServletFilter to get the authenticated Subject from the web container. Once we had the
Subject, we could wrap an entire request in a privileged filter, allowing the code to execute
as the requesting Subject. Finally, we implemented two tags that conditionally show their
JSP bodies if the appropriate Permission has been granted to the logged in Subject. With
each of the above, you can easily use JAAS to secure any web application.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/

