
JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

8 JAAS for Data Access Control
This chapter is an overview of using JAAS to protect access to specific instances or pieces of
data. For example, in a system where you have employee records, you might want to restrict
access to those files based on who is trying to view or modify those records. This is called
“data access control.” JAAS is very good at, and commonly used to providing permissions for
broad, class-level actions in systems, for example, controlling which users may change the
system-wide java.security.Policy in effect. However, it’s less common to see JAAS
used to protect access to specific instances of classes. This chapter goes over using JAAS in
this respect, using a custom java.security.Permission class to protect access to class
instances.

8.2 The Record Domain

To demonstrate data access control, we’ll use a simple domain of generic records. Each
Record has a unique ID, a name, and text content. The records are immutable, and are
maintained by the RecordKeeper. The RecordKeeper is a simplistic service that that
manages the persistence and data access control for records. Before creating, reading,
updating, or deleting any Record, the RecordKeeperService does a security check to verify
that the current security context has been granted the appropriate RecordPermision, a
custom java.security.Permission class used to protect Records.
 The RecordPermission extends the ActionsPermission from chapter 7, providing an
implementation of implies() that uses RecordPermission’s actions. RecordPermission’s
actions are used to specify which CRUD operation (create, read, update, or delete) the
permission is granting. For example, to create an instance of RecordPermission that
granted the right to read and update a Record, you would use the following code:

RecordPermission perm = new RecordPermission(id, “read, update”);

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

8.1.2 Record
The record class is a simple, immutable data object:

package chp08;

import util.id.Id;

public class Record
{

 public Id id;
 public String name;
 public String text;

 public Record(Id id, String name, String text)
 {
 this.id = id;
 this.name = name;
 this.text = text;
 }

 public Id getId()
 {
 return id;
 }

 public String getName()
 {
 return name;
 }

 public String getText()
 {
 return text;
 }
}

8.1.3 RecordKeeper
RecordKeeper is a simplistic service that manages the life of Record instances. To keep
this example simple, RecordKeeper stores Records in memory instead of in a more durable
persistence store, like a database. RecordKeeper stores Record instances in a
java.util.HashMap, where the key is the Record’s ID and the value is the Record instance
itself. Before performing any of the four data modification actions, RecordKeeper creates a
RecordPermission to verify that the current security context has been granted the
appropriate RecordPermission.
 The code for RecordKeeper is below:

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

package chp08;

import java.security.AccessController;
import java.util.HashMap;
import java.util.Map;

import util.id.Id;

public final class RecordKeeper {

 private Map records = new HashMap();

 public void create(Record record) {
 RecordPermission perm = new RecordPermission(record.getId(),
 "create");
 AccessController.checkPermission(perm);
 records.put(record.getId(), record);
 }

 public Record read(Id recordId) {
 RecordPermission perm = new RecordPermission(recordId, "read");
 AccessController.checkPermission(perm);
 return (Record) records.get(recordId);
 }

 public void update(Record record) {
 RecordPermission perm = new RecordPermission(record.getId(),
 "update");
 AccessController.checkPermission(perm);
 records.put(record.getId(), record);
 }

 public void delete(Id recordId) {
 RecordPermission perm = new RecordPermission(recordId, "delete");
 AccessController.checkPermission(perm);
 records.remove(recordId);
 }
}

8.1.4 RecordPermission
The custom permission used to protected Records uses the permission’s name to specify the
Record’s unique Id, and the actions attribute to specify if permission is granted to create,
read, update, or delete the Record in question. Because RecordPermission extends
ActionsPermission, all we need to implement in the code is a constructor that takes the Id
of the Record being protected and the actions granted for that Record:

package chp08;

import util.id.Id;

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

import chp07.ActionsPermission;

public class RecordPermission
 extends ActionsPermission {

 public RecordPermission(String recordId, String actions) {
 super(recordId, actions);
 }

 public RecordPermission(Id recordId, String actions) {
 this(recordId.getId(), actions);
 }
}

8.2 JAAS Code
We’ll use the authentication code developed in chapter 4 along with the database-backed
authorization code developed in chapter 6. Recall that the authorization code stores
Permission grants in a table with columns for the Permission type, a unique ID for the
Permission, the Permission’s name, and the Permission’s actions.

8.3 The Example Application
Once again, we’ll use a script-class with a main method to demonstrate this chapter’s code in
action. The “application” first configures JAAS to use our custom authentication and
authorization code, then attempts to use the RecordKeeper without any
RecordPermission being granted, grants the needed RecordPermission, and then uses
RecordKeeper.
 The code is below:

package chp08;

import java.security.Policy;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;

import util.id.Id;
import chp04.UserGroupPrincipal;
import chp06.AuthHelper;
import chp06.DbPolicy;
import chp06.PermissionService;

public class Main {

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 public static void main(String[] args) throws Exception {
 AuthHelper authHelper = new AuthHelper();

 try {
 authHelper.createTestUser("testuser", "password");
 UserGroupPrincipal p = authHelper.getUserGrp();
 authHelper.loginTestUser();
 Subject subject = authHelper.getSubject();

 Policy.setPolicy(new DbPolicy());
 boolean granted = true;
 try {
 Subject.doAsPrivileged(subject, new PrivilegedAction() {

 public Object run() {
 Record r = new Record(Id.create("id1"), "record1",
 "this is some content.");
 RecordKeeper rk = new RecordKeeper();
 rk.create(r);
 return null;
 }
 }, null);
 } catch (SecurityException e) {
 granted = false;
 }

 System.out.println("Permission granted? " + granted);

 RecordPermission perm = new RecordPermission(
 Id.create("id1"), "create,read");
 PermissionService.addPermission(p.getId(), Id
 .create("permId1"), perm);
 System.out.println("Added grant for RecordPermission.");
 granted = true;
 try {
 Subject.doAsPrivileged(subject, new PrivilegedAction() {

 public Object run() {
 Record r = new Record(Id.create("id1"), "record1",
 "this is some content.");
 RecordKeeper rk = new RecordKeeper();
 rk.create(r);
 return null;
 }

JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License: http://creativecommons.org/licenses/by-nc/2.5/

 }, null);
 } catch (SecurityException e) {
 granted = false;
 }
 System.out.println("Permission granted? " + granted);
 } finally {
 authHelper.cleanUp();
 PermissionService.removePermission(Id.create("permId1"));
 }
 }

}

To run the above, change to the root directory of this book’s project, and type ant run-
chp08.The output of will include the following:

Permission granted? false
Added grant for RecordPermission.
Permission granted? true

Summary
This chapter provided a concise example of using JAAS for data access control. When you're
restricting access to specific instance of object or data, not just general, system-wide actions,
you're doing data access control. For our example, we created a small data object that
represented a Record, and a service layer, RecordKeeper, that performed persistence and
lookup of and for that data object. Also, we created a custom Permision,
RecordPermision, that was used by RecordKeeper to restrict the actions of creating,
reading, updating, and deleting specific Records. As the demonstration at the end of this
chapter showed, this powerful, yet simple model allowed us to easily control access to each
individual Record.

