JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

5 Permissions and Access Control

Once a Subject is fully authenticated by JAAS, the real work of controlling what an
authenticated Subject may or may not do can begin. In JAAS, a handful of classes define
the core of interfaces and service layer for authorization: java.security.Permission,
java.lang.SecurityManager, java.security.AccessController, and
java.security.Policy. Permissions are granted to Principals, and determine what
actions, on which targets, a Principal may perform. The Policy is the service used to
query for which Permissions a Subject’s Principals have been granted. The
AccessController verifies that a Subject, when on whose behalf code is being executing,
has a Principal that has been granted the Permissions needed to execute that block of
code.

This chapter goes over these three core classes, their support classes, use and
configuration. The domain discussion in this chapter helps lay the foundation for
understanding the custom authorization implementation in the next chapter.

5.1 java.security. Permission

A Permission encapsulates the granted ability to perform one or more actions, usually to
some target. For example, you might have a java.net.SocketPermission with the
actions “accept” and “connect” for the target mcote.manning.com:5656, which would
grant the ability to accept connections from and connect to the target hostname and port
number. Permissions are always granted to and associated with Principals, instead of
directly with Subjects.
The class java.security.Permission is abstract, so you always deal with sub-classes.
Several sub-classes exist in the SDK, such as:
* Jjava.security.BasicPermission, which provides an  abstract base
implementation for creating other Permissions.
* java.io.FilePermission (seen in chapter 2), which governs access to the file
system
* Jjava.util.PropertyPermission, which governs access to system properties
Permissions that are derived from BasicPermission follow a hierarchical naming
scheme, and typically support a comma-separated list of actions. Other, more complex,
Permissionslike java.io.FilePermissions define their own special syntax.

5.1.2 Aspects of a Permission

A Permission always has a type, implicit in the actual sub-class of Permission that it
implements. Each instance of any Permission is assigned a name. The semantics of a

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Permission’s name aren’t specified, but sub-classes of Permission typically treat the
name as the target for the permission, like the hostname and port for the above
SocketPermission. If the Permission does not intrinsically have a target, the name is
often descriptive of the broad action granted, for example, the ability to log into a system.

Optionally, a Permission can specify actions that are granted. These actions are usually
things that can be done to the target, such as accepting or creating connections as in the
above SocketPermission example. If a Permission sub-class has actions, it must
implement the getActions() method to always return the canonical, String
representation of the actions. The returned String is effectively a marshalling of the
actions, and should always be the same for a given set of actions. Using the
SocketPermission, as an example, the the getActions () method would always return the
String “accept,connect”, always comma-separated in the same order.

The interface contract for java.security.Permission specifies that all
Permissions are immutable. To satisfy this contract, setting the name and actions of a
Permission sub-class is only done when the constructor is called. Permission sub-classes,
then, should never provide set methods that could be used to mutate the Permission’s state,
such as the name and actions.

When creating your own custom Permission sub-classes, you’re not limited to having
only a name/target and actions. Though you must have a name, your Permission
implementations could hold onto any type of other values needed to represent the
Permission. It’s a good idea to add only “data objects” to the Permission instead of more
action-oriented state like service layers, or any code that performs some action. A
Permission is an immutable representation of a granted right, so associating objects that
can change the state of the Permission can easily make your Permission mutable.

5.1.3 implies(Permission)

The implies(Permission) method on Permission is used to answer the question “if a
Principal has been granted the Permission at hand, are they also granted the passed-in
Permission.” If one Permission implies another, the Permissions are not necessarily
equal as determined by the equals () method. Rather, the implies () method determines if
the passed-in Permission is a subset of the current Permission. This means, of course,
that implies () will return true for Permissions that are equal.

For example, suppose a Principal has ©been granted the following
java.io.FilePermission, which grants read and write access to any file directly under the
/tmp directory:

FilePermission parent = new FilePermission(“/tmp/*”, “read, write”);
p p

When the below permission is passed to the above FilePermission instance’s
implies () method, true is returned:

FilePermission child = new FilePermission(“/tmp/log.txt”, “read,
write”);

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

5.1.4 Permission Containers

JAAS provides several containers for permissions. Each Permission container must
implement the abstract class java.security.PermissionsCollection. Implementations
are available either by calling the newPermissionCollection() method on some
Permission sub-classes, by instantiating instances of the java.security.Permissions,
or by custom implementations of PermissionCollection. All containers act as collections
for permissions, and provide an implies() used to query if at least one of the aggregated
Permissions imply the passed in Permission.

Jjava.security. PermissionsCollection

PermissionsCollection provides an interface for any class whose responsibility is to hold
onto a group of Permissions. The methods on PermissionCollection allow you to add
Permissions, set the instance as read only, get an Enumeration of the Permissions in the
collection, and query the aggregate Permissions with an implies() method. The
implementation of the implies () method may optimize how Permissions are looked up.

Aside from custom implementations of PermissionCollection, there are two ways to
obtain a concrete PermissionCollection implementation: by calling
newPermissionCollection() on a java.security.Permission object, or by
instantiating a java.security.Permissions object. The PermissionCollection
returned by newPermissionCollection() methods are intended to store only one type of
Permission, for example, java.io.FilePermissions. The collection of Permissions
must be homogenous: each Permission in a PermissionsCollection has the same type.

If a Permission’s newPermissionCollection() method returns a non-null value,
only that PermissionCollection can safely be used to store collections of the associated
Permission type. The java.security.Permission class requires that hashCode() and
equals () be implemented, seeming to make it safe to store Permissions in collections
that rely on those methods, like java.util.HashSets. In practice, however, Permission
implementations are not always “collection-safe.” For example, java.io.FilePermission
bases it’s hashCode () implementation on only the FilePermission’s path, meaning that
you may loose FilePermissions that have the same path, but different actions, if you store
them in a some collections'.

java.security. Permissions

When you want to store different types of Permissions together, you can use the
PermissionCollection sub-class, java.security.Permissions (notice the “s” at the
end). This class aggregates any number of PermissionCollections, allowing a
heterogeneous collection of Permissions to be collected together. Permissions provides
the same behavior as other PermissionCollection sub-classes: setting the collection as

! Arguably, this could be considered a bug in FilePermission’s hashCode ()
implementation. Bug or not, you’ll have to deal with it, which means storing groups of
FilePermission’s in the FilePermissionCollection returned by FilePermission’s
newPermissionCollection () method.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

read only, adding new Permissions, and using implies() to query if any aggregated
Permission implies a passed in Permission.

The only difference is that java.security.Permissions can store different types of
Permissions, not just one type. As we’ll see in the next chapter, Permissions is a very
useful class for implementing java.security.Policy’s methods.

5.2 java.security.ProtectionDomain

A ProtectionDomain represents a “security context,” or frame of execution, in which a
permission check is performed. This security context is commonly referred to as a "domain,"
and can be thought of as a snap-shot of the point at which code is being execution where a
permission check is to be performed. A ProtectionDomain, can encapsulate two things:

1. The principal(s) executing code.
2. The java.security.CodeSource that described where the executing code
originates , such as a URL to the JAR from which the class was loaded.

With these items, JAAS is given enough information to check if a Permission has been
granted to either the specified Principals, the CodeSource, or a combination of the two.
When a Permission check is finally done, the Permission to check and a
ProtectionDomain wrapping the above will be passed to the Policy in effect. The Policy
will then determine if the security context represented by the ProtectionDomain has been
granted the Permission. When talking about user-centric, role-based permission systems,
this means the Policy will be primarily interested in the ProtectionDomain’s Principals.

For example, using the quick, simple example from Chapter 2, when the code
File.canRead() is executed, JAAS creates a new ProtectionDomain with the logged in
Subject’s Principals and chp02.Main’s CodeSource. Eventually, this protection
domain is passed to the Policy implies(ProtectionDomain, Permission) where the
Policy will determine if the passed in ProtectionDomain has been granted the
Permission.

5.2.1 Dynamic vs. Static ProtectionDomains

When a ProtectionDomain is created with the constructor that takes a Principal’s
array, the ProtectionDomain is known as a “dynamic” protection domain. Before J2SE
1.4, class loaders statically bound Permissions to ProtectionDomains when their
corresponding classes were loaded. This meant that changing permissions during runtime
overly difficult: once a class was loaded, the Permissions that governed access to its
methods and members were effectively set in stone.

Dynamic ProtectionDomains were introduced in J2SE 1.4, and made modifying
Permission grants at runtime much easier. Under the dynamic model, when a
ProtectionDomain’s implies method is called, it first checks it’s own optional list of static
Permissions, and then delegates to the Policy in effect. With this scheme, a dynamic

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Policy, for example backed by a database, can enforce and modify Permissions during
runtime. The majority of this book focuses on the use of dynamic ProtectionDomains.

5.2.2 Principals

A ProtectionDomain may optionally have an array Principals, available from the
getPrincipals() method. The Principals in this array are the Principle of the
Subject, if any, in the security context “snap-shot.” These Principals will be used to lookup
the permissions granted in the Policy. When code execution occurs outside of the context
of a logged in Subject, getPrincipals () returns an empty array of Principals, assuring
that a non-null value is always returned from getPrincipals(). The array of Principals
returned in copy of the ProtectionDomain’s Principals, so modifications to the returned
array will have no effect on the underlying ProtectionDomain.

5.2.3 java.security. CodeSource

A CodeSource is simply meta-information about the place from which a class was loaded: a
JAR, a directory on a file system, or any "location" that can be specified by a URL. This
book deals primarily with user-centric, role-based permissions, so we don’t discuss or use,
CodeSources in very much detail. Other JAAS material available, such as Scott Oak’s Java
Security, goes into great depth about CodeSources.

A ProtectionDomain can optionally specify what CodeSource the code protected
comes from, and which digital certificates must have signed the CodeSource. A CodeSource
is simply the URL that the class being granted a Permission comes from, and digital
certificates used to sign the code. When a class loader loads a class, it remembers the source
from which it read the bits for the class, and associates that URL with the
java.lang.Class instance. CodeSources also specify any certificates that were used to
sign the class.

In regards to Permissions, a CodeSource can be thought of a sort of system-level
Subject. A Policy implementation can use CodeSources to determine, for example, that
code loaded from a remote URL is not allowed to modify any files on the local file system.
Indeed, the early Java security models, concerned with providing a secure sandbox to execute
applets downloaded from remote sites, relied heavily on this security model.

5.3 The SecurityManager

Since the first version of Java, the class java.lang.SecurtyManager provides the service
interface for doing all security checks. Earlier versions of Java implemented each permission
check by adding a new permission checking method to the SecurityManager. This older
model explains why there are so many check methods on SecurityManager, such as
checkDelete(), checkPrintJobAccess (), or checkPropertyAccess(). The SDK 1.2
introduced the checkPermission(Permission) method, which each of the above, and
other, legacy check methods now delegate to instead of performing their own permission
checking. The old check methods are kept for legacy code that calls them directly.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

The SecurityManager is enabled by either passing the VM argument
java.security.manager, or calling the static method System.setSecurityManager (),
passing in the SecurityManager instance to use. Because the SecurityManager to use may
be passed into the setSecurityManager (), and because SecurityManager is not a final
class, you can provide your own SecurityManager implementation. Before the inclusion of
JAAS in the SDK, many application servers, web browsers, and other Java containers did just
this to provide an authentication layer. Because there was no standard specified way these
implementations should behave however, there was no guarantee that each custom
SecurityManager would be implemented in the same way. To provide a standard model of
doing authorization, JAAS was introduced.’ More specifically,
java.security.AccessController was made the default security model used by the
SecurityManager. Thus, all the check permission methods on SecurityManager
eventually delegate to AccessController.checkPermission(). The diagram bellow
illustrates the sequence used when SecurityManager’s checkPermission() is called:

T Cacasiopmamons | Caccasscopizaiier]  [Brstecsionomnin

checkPermission() ! :
------------- > | . |
checkPermission() '
------------ [
foreach(rrotecti

Ll
; ionDomain),
[ call implies(permission) :
! - [!static] implies(this, Permission)
If implies() returnsfalse;y [ J----=----=""7"7[" >
SecurityException i T

thrown. i

L}
l Call implies() onown
' L}
| hard-coded rermissicns;
'

Though the sSecurityManager delegates practically all of it’s work to the
AccessController, your code should always use the SecurityManager when checking for
Permissions, instead of directly calling the AccessController. Doing so ensures that
your permission checks will (1) be performed only when security is enabled, and, (2) be
performed no matter what SecurityManager is in place.

To obtain the current SecurityManager, you call the static
System.getSecurityManager () method, which returns the SecurityManager currently
in effect, or null if the SecurityManager is turned “off.” Because
getSecurityManager() can return null, this leads to the unfortunately necessary
convention of always having the check for a null SecurityManager before calling
checkPermission(). For example, when checking for permission to read the system
property java.version:

SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(
new PropertyPermission("java.version", "read"));

? See Inside Java 2 Security, 2" Edition, pg. 109-112 for more discussion of the history
of securityManager and AccessController.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

If the permission has been granted in the current security context, the
checkPermission() method silently succeeds. Otherwise, if the Permission has not been
granted in the current security context, an instance of java.lang.SecurityException is
thrown.

Simplifying Permission Checks

For convenience sake, to avoid having to create try/catch blocks for simple Permission
checks you may want to use a utility method like the below:

static public boolean hasPermission(Permission perm) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
try {
sm.checkPermission(perm);
} catch (SecurityException e) {
return false;

}

return true;

The only drawback with such a helper method would be a dependency from your code to
the class that contained that helper code, a relatively small price to pay for streamlining the
above code.

5.5 java.security.AccessController

As it’s name implies, the AccessController is at the center of JAAS. The
AccessController’s methods fulfill three responsibilities:
1. Determining if a given Permission is granted to the current security context.
2. Executing code in a “privileged” block as needed and allowed, isolating it from
complete security checking.
3. Creating security context snap-shots of the current security context to be used in the
above two situations.

5.5.1 checkPermission()

The checkPermission() 1is the AccessController’s entry point for permission
checking. When code needs to perform a permission check, by default, the call to
SecurityManager.checkPermission() delegates to AccessController’s
checkPermission () method. This method follows the below flow:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

3 rrollex zotectionDomai | Policy |

Get protectionbomain Stack

foreach(zrotecticonbemain),

call implies(permission) ey ) o
= [!static] implies(this, Permission)
= o

- >
[check fails] e ] U

throws securityException

Call implies() on own
hard-coded permissions

If the Permission has been granted to the current security context,
checkPermission() silently succeeds, returning nothing. If the permission has not been
granted, an instance of the runtime exception java.security.SecurityException is
thrown. This means that, at some level, your code should catch SecurityException and
attempt to recover accordingly. Methods that contain calls to checkPermission() should
document which Permissions are required, and that the method will throw
SecurityException if the Permissions are not granted to the security context.

As noted in the above discussion of java.lang.SecurityManager, to ensure that your
code follows the Java security convention and model, the majority of your code should call
SecurityManager.checkPermission() instead of calling
AccessController.checkPermission() directly.

5.5.2 Privileged Code

When code is executing, there are times when the security Policy currently in effect needs
to be ignored. In these cases, the methods doPrivileged(PrivilegedAction) and
doPrivileged(PrivilegedExceptionAction) on AccessController can be used to
create a privileged security context.

A privileged security context causes a break in the normal security checking. Normally,
the AccessController calls the implies() method for each ProtectionDomain in the
execution stack, starting from the current code’s ProtectionDomain. Using a privileged
block allows the code that is marked as privileged to perform sensitive operations regardless
of the current Subject’s granted Permissions and the Permissions granted to
ProtectionDomains in the call stack. Instead, only the ProtectionDomain of the code
marked as privileged is checked.

We’ll use our custom Policy from the next chapter, DbPolicy as an example. When a
user is logged in who doesn’t have permission to access the database that DbPolicy’s
information is stored in, the current security context would prevent checking the DbrPolicy.
The current security context contains a ProtectionDomain for each class in the call stack.
Each ProtectionDomain contains the Principals of the logged in Subject, and none of
these Principals has been granted permission to connect to the database. So, without a
privileged block, when DbPolicy attempts to connect to the database, permission will be
denied because none of the Principals have been granted the needed permissions.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

To fix this problem, two things are done. First, the DbPolicy’s CodeSource, the JAR
perms.jar, is granted permission to connect to the database. Second, a privileged block is
created when DbPolicy looks up the Permissions granted to the Subject, the code that
requires database access. This privileged block prevents the evaluation of the entire
ProtectionDomain stack (domains 1, 2, 3 in the below diagram), only checking that the
code in the privileged block (domain 4 in the below diagram) has been granted permission.
DbPolicy has been granted the needed permission, so authorization passes, and we can
connect to the database.

The diagram below illustrates this example. Each ProtectionDomain is represented by a
dotted box, and lists the CodeSource and whether or not the domain has Principals. The
note contains the part from the getPermissions(ProtectionDomain) method that
creates a privileged block.

; CodeSource IS app.jar, :Coceso:rce system, . .CodeSource perms.Jjar, '
With principals | With principal$ © ' With principals

[ mMain 1! [ securitymanager/ |:: [ __pbeolicy |

| . 'l _AccessCoptroller |
. ' |
% : ' d .
checkPermission() : | getPermissions(Protectionbomain)
. ,r| implies() :
| ‘ > r v
' ! '
| '
! ! CodeSource perms.jar.
| 1
| | ‘
| : : 4.)
| bbby = - ceseasnt
P iy :|
. ' ik ' ’
(1) ) : (3):
2PN L SRR £ 2% LI
'
1

//...getPermissions(ProtectionbDomain)
List perms = (List)AccessController.doPrivileged(
new PrivilegedExceptionaction(){
public Object run() throws SQLException
{
return PermissionService.findPermissions(principalids);

y

b

//...returns permissions

5.5.3 Creating Security Contexts

The two overloaded versions of the method doPrivileged() that take an
AccessControllerContext as the second argument are used to perform security checks in
the security context represented by the passed in AccessControllerContext. An
AccessControllerContext allows you to create a security context to use instead of the
current thread’s context. One use of this, for example, is to execute code with only the
Permissions of a Subject, not those of the system the Subject is running in.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

5.5.4 AccessControllerContext

An AcccessControllerContext instance is used to create a security context, usually one
that’s different than the currently executing thread. This allows you to create security
contexts on the fly, regardless of the permissions the currently logged in Subject has been
granted. Once an  AccessControllerContext  instance is  created, the
checkPermission() method can be used to query if a permission has been granted in the
newly created context. Like many of the «classes in the JAAS API,
AccessControllerContexts are rarely handled directly by the users of the API. Instead,
AccessControllerContext instances more often used internally within JAAS.

Instances can be created with the two constructors, or by calling
AccessController.getContext (), which provides a snap shot of the current security
context.

5.6 SecurityManager vs. AccessController

While it’s still possible to provide and use your own java.lang.SecurityManager, it’s not
advisable, primarily because you would need to devise a new security checking model, or re-
invent the wheel, creating the same model that the AccessController already provides.
Instead, when you want to customize the authorization checks are performed, you should use
the default SecurityManager, implying the use of java.security.AccessController,
along with a custom java.security.Policy. This strategy provides a ready-to-use design,
and an easily pluggable interface that works hand-in-hand with the authentication services
provided by JAAS.

5.7 Subject.doAs() and Subject.doAsPrivieged

The doAs() methods on Subject provide convenience methods for creating security
contexts that include the Permissions granted to a Subject’s Principals. The
doAsPrivleged() methods allows security checks to be done with only the Subject’s
permissions. Additionally, AccessControllerContexts can be optionally be passed into
doAsPrivleged (), allowing further fine-grained control of the security context used.

When doAs () or doAsPrivileged() is invoked, a DomainCombiner is created to add
the Ssubject’s Principals to each ProtectionDomain in the execution stack. These will
be the methods you use the most. We’ll an example of using Subject’s doAsPrivileged()
in the next chapter, where we implement a custom java.secuirty.Policy.

5.8 The Policy

The abstract Policy provides the service that answers all queries about dynamic permissions.
The AccessController delegates permission checks to the Policy in effect. For dynamic
permission models the implies (ProtectionDomain, Permission) method is the central
method on Policy. This is the method that will be called to resolve if a Subject’s

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

Principals have been granted a Permission. The other methods are either utility methods
for maintaining the Policy (setting it, refreshing it), and for supporting legacy code that
uses the static permission model.

5.8.1 getPermissions(ProtectionDomain)

The getPermissions (ProtectionDomain) method returns a PermissionCollection of
all Permissions granted to the passed in ProtectionDomain. This method is usually used
for two purposes:
1. To list all the Permissions a granted to the Principals in a ProtectionDomain,
for example, to list them in a page where they’re being edited.
2. By the implies() method to lookup the permissions a ProtectionDomain has
been granted in order to resolve if a specific permission has been granted.

The default implementation of getPermissions(ProtectionDomain) returns the static
Permissions granted to a ProtectionDomain by class loaders and the result of
getPermissions(CodeSource) for the ProtectionDomain’s CodeSource. Policy
implementations that override getPermissions(ProtectionDomain) should maintain
this same behavior, in addition to new behavior, for example, looking up a Principal’s
permissions in a database.

5.8.2 implies()

As with other implies methods, Policy’s implies method is used to determine if a security
context has been granted a Permission, either directly or indirectly by implication.
Policy’s implies method takes two arguments: the ProtectionDomain that represents the
security context to check, and a Permission. The method returns true if the
ProtectionDomain has been granted the passed in Permission, or false if the Permission
has not been granted.

The DbPolicy implementation in the next chapter will provide an example of
implementing this method.

5.8.3 Utility Methods

static getPolicy()
static setPolicy()
abstract refresh()

The above utility methods are used to set the Policy implementation to use, and to
refresh the Policy currently in effect. Some Policy implementations may not implement
any special action when refresh() is called. File-based Policy implementations typically
implement the refresh () method to re-read in the file(s) that the Policy uses.

Summary

We've introduced the primary classes that compose JAAS's authorization services. In doing
so, we've gone over a detail discussion of JAAS's core authorization classes:

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




JAAS in Action by Coté / www.JAASbook.com / www.DrunkAndRetired.com

* The permission classes Permision, PermissionCollection and the heterogeneous
Permissions container.

* ProtectionDomain which is used to describe the permissions granted to a Subject
and/or grouping of code.

* The SecurityManager and AccessController which provide the core services
layer for enforcing permission checks. Also, the special doAs () methods on Subject
that allow you to create Subject based access contexts.

* The Policy, which provides the service interface for determining which permissions
are granted to which Principals, and thus, which Subjects.

In the next chapter(s) we’ll use several of these classes to develop a database-backed dynamic
Policy.

SOME RIGHTS RESERVED

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License: http://creativecommons.org/licenses/by-nc/2.5/




