

Use your data – or lose
Save 20% with code EBOOK

Register Now

Strata Conference
Sep 22-23, 2011, NY

Strata Summit
Sep 20-21, 2011, NY

Strata Jumpstart
Sep 19, 2011, NY

http://strataconf.com/?cmp=ba-conf-ebooks-strata-ny-ebooks-ad

©2011 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Learn how to turn
data into decisions.

From startups to the Fortune 500,
smart companies are betting on
data-driven insight, seizing the
opportunities that are emerging
from the convergence of four
powerful trends:

n	 New methods of collecting, managing, and analyzing data

n	 Cloud computing that offers inexpensive storage and flexible, 	
	 on-demand computing power for massive data sets

n	 Visualization techniques that turn complex data into images
	 that tell a compelling story

n	 Tools that make the power of data available to anyone

Get control over big data and turn it into insight with
O’Reilly’s Strata offerings. Find the inspiration and
information to create new products or revive existing ones,
understand customer behavior, and get the data edge.

Visit oreilly.com/data to learn more.

Getting Started with GEO,
CouchDB, and Node.js

Getting Started with GEO,
CouchDB, and Node.js

Mick Thompson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Getting Started with GEO, CouchDB, and Node.js
by Mick Thompson

Copyright © 2011 David M. Thompson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Hendrickson and Julie Steele
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Getting Started with GEO, CouchDB, and Node.js, the image of a fifteen-spined
stickleback, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30752-3

[LSI]

1311082908

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Node.js . 1
Getting Started with Node.js 1

Asynchronous Callbacks 2
Using Node.js on the Web 4

ExpressJS 4

2. Geographic Data . 7
Geo Datasets 7
GeoJSON 8

Example Geometries 8
GDAL 9

Installing 9
Grab Some Data 9
Ogrinfo 10
Ogr2ogr 11

Geohash 11

3. CouchDB . 15
How Does CouchDB Work? 15

Replication 15
Indexes and Views 16

Getting Started with CouchDB 16
Creating a Database 16
Creating a View 17
View Options 19
Using Reduce 20
Using CouchApps…For Fun and Profit 21
Load Shared Code 22

GeoCouch 24

v

Importing Data 25
Using Cradle to Talk to Geocouch 25
Bounding Box Queries 27
Displaying the Data Using Node.js 28

CouchDB Hosting Options 31

4. MapChat - Example Project . 33
Realtime Chat 33

Socket.io 33
Setting Up the Project 34

Using Google Maps 38
Getting User Location 39
Custom Overlays 40

Chat Messages from CouchDB 43
Clustering 45

Using a List Function 45
Notify Clients of Cluster Updates 46
Display List of Clusters in the Client 47

vi | Table of Contents

Preface

Where. Whether it refers to where you have been, where you are, or where you are
going, the concept of where is important. Where links data to the physical world. A
shopping list can be a very useful collection of data on its own, but that data can be
even more useful with more context. If you map the location of the stores needed for
each item on the shopping list, then you can create an efficient route to acquire the
items on the list. Driving directions, traffic information, and weather can impact the
route. All of this data can be fetched based on the location data added to the simple
shopping list.

Location can add a new filter or layer of insight into existing data. It makes all kinds of
new applications possible. In the past, using location or geographic data meant using
complex or at times expensive software. Datasets could be costly or hard to find. De-
veloping using open source tools such as Node.js and CouchDB has recently made
working with location data simple and fast.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

vii

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Getting Started with GEO, CouchDB, and
Node.js by Mick Thompson (O’Reilly). Copyright 2011 David Thompson,
978-1-449-30752-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

viii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/97814493075232

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://oreilly.com/catalog/97814493075232
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Node.js

Node.js has quickly become a very popular asynchronous framework for JavaScript. It
is built on top of the same V8 engine that the Chromium and Google Chrome web
browsers use to interpret JavaScript. With the addition of networking and file system
API support, it has quickly proved to be a capable tool for interacting with IO in a
asynchronous way.

There are many other libraries in several other languages that can accomplish the same
asynchronous handling of IO. There are different conventions, schools of thought, and
preferences of developers. Node.js uses callbacks for the developer to notified of the
progress of asynchronous operations. Callbacks are nothing new for developers accus-
tom to Python’s Twisted library or other similar frameworks. Callbacks can be a very
easy and powerful way to manage the flow of an appilication, but as with anything new
they also offer an opportunity to trip up a developer. The first thing to keep in mind
when getting started with asynchronous development is that execution might not fol-
low the same squence every time.

Getting Started with Node.js
In order to install Node.js, download the source and build it. The main Node.js web
page at http://nodejs.org can be very helpful in linking to downloads, source code re-
positories, and documentation. The master branch of the repository is kept in a semi-
unstable state, so before building check out the most recent tagged version. For exam-
ple: v0.4.9.

The Node.js package manager or NPM is an extremely useful tool. It
can handle installing, updating, and removing packages and their de-
pendencies. Creating packages is also simple since the configuration for
the package is contained in the package.json file. Installation instruc-
tions for NPM are included in the Node.js repository.

1

http://nodejs.org

Asynchronous Callbacks
An Example case to show how asynchronous IO works is to make two HTTP requests
and then combine the results. In the first example the request to the second web API
will be nested in the callback from the first. This might seem like the easiest way to
combine the results, but will not be the most effective usage of asynchronous IO.

Google provides an API that returns the elevation for a given latitude and longitude.
The example requests will be of two points random points on Earth. To start create a
function that will handles the request to the Google elevation API as well as parses the
response:

var http = require("http"),
 sys = require("sys");

function getElevation(lat,lng, callback){
 var options = {
 host: 'maps.googleapis.com',
 port: 80,
 path: '/maps/api/elevation/json?locations='+lat+','+lng+'&sensor=true'
 };
 http.get(options, function(res) {
 data = "";
 res.on('data', function (chunk) {
 data += chunk;
 });
 res.on('end', function (chunk) {
 el_response = JSON.parse(data);
 callback(el_response.results[0].elevation);
 });
 });
}

In order to run the requests sequentially, the call to fetch the second elevation is in the
callback for the first:

var elevations= []
getElevation(40.714728,-73.998672, function(elevation){
 elevations.push(elevation);
 getElevation(-40.714728,73.998672, function(elevation){
 elevations.push(elevation);
 console.log("Elevations: "+elevations);
 });
});

This will add the two elevations in order to the elevations array. However, the program
will wait for the first request to finish before making the second request. The amount
of time fetching the two elevations can be reduced by making the initial requests in
parallel and combining the results in the callback:

var elevations= [];
function elevationResponse(elevation){
 elevations.push(elevation);

2 | Chapter 1: Node.js

 if(elevations.length == 2){
 console.log("Elevations: "+elevations);
 }
}

getElevation(40.714728,-73.998672, elevationResponse);
getElevation(-40.714728, 73.998672, elevationResponse);

Now the callback checks to see if the combined data is complete; in this case, it checks
to see if there are two items in the array.

Sometimes the first response callback gets called before the second, and sometimes it
does not. Since the requests are carried out at the same time and they can take a variable
ammount of time, it isnt guaranteed what order the callback functions will be called
in. But what if this data needs to be displayed in order?

There are cases that require nesting the call to another function in a callback—perhaps
if the response to the first request was going to provide the needed data to make the
second request. In that case, there is no choice but to wait, and make the second request
after the first.

In the elevation example, there is no need to wait. Both requests can be made at the
same timea and the results can be combined later. By adding a function to correctly
combine the data and using that as the response callback, the data can then be presented
in the correct order every time.

By doing these two requests asynchronously, the execution time is reduced. This makes
the app more responsive to the user, and frees the app to do other needed processing
while waiting on IO tasks. A quick timing of the two methods show the difference in
time needed to fetch the same data.

hostname $ time node elevation_request.js

Elevations: 8.883694648742676,-3742.2880859375

real 0m0.627s
user 0m0.076s
sys 0m0.029s

hostname $ time node elevation_request2.js
Elevations: 8.883694648742676,-3742.2880859375

real 0m0.340s
user 0m0.074s
sys 0m0.027s

In other languages this can be accomplished through threading, in many cases. Threads
are sometimes messy to work with, as they require synchronizing or locking in order
to manipulate shared memory safely. The forced Asnychronous IO of Node.js gives a
clean way to accomplish parallel tasks.

Getting Started with Node.js | 3

Using Node.js on the Web
One of the many uses of Node.js is to serve up dynamic content over HTTP: that is to
say, websites. Again another advanage of Node.js’s Asynchronous IO is the preform-
ance of handling many requests at same time. There is a maturing list of modules and
frameworks to handle some of the common tasks of a web server. ConnectJS is an
HTTP server module that has a collection of plugins that provide logging, cookie pars-
ing, session management and much more.

ExpressJS
Built on top of ConnectJS is ExpressJS framework. ExpressJS extends ConnectJS add-
ing robust routing, view rendering, and templating. Using ExpressJS, it is easy to get a
simple web server up and running. ExpressJS can be installed using npm:

hostname $ npm install express

Routes

There are only a few lines of code needed to start a server and handle a URL route:

var express = require('express');
var app = express.createServer();

app.get('/', function(req, res){
 res.send('nodejs!');
});

app.listen(3000);

Run this with Node.js:

hostname $ node app.js

This server can now be reached at http://localhost:3000/.

When setting up a route in ExpressJS, the second argument is a callback function. The
callback is executed when the route matches the requested URL. The callback is passed
two arguments. First, a request object that contains all the information about that
HTTP request. Second a response object which has member functions that manipulate
the HTTP response.

The param function on the request object parses parameters that are in the query string
or in the post body. The function returns the value or an optional default value that is
set using the second argument to the function:

app.get('/echo', function(req, res){
 echo = req.param("echo", "no param")
 res.send('ECHO: '+echo);
});

4 | Chapter 1: Node.js

http://localhost:3000/

Templates

The response object has member functions which can be used to set the headers and
the status code, return files, or simply return a text response body as above. The re-
sponse object also handles rendering templates:

app.get('/template', function(req, res){
 res.render('index.ejs', { title: 'New Template Page', layout: true });
});

The above code will looks for the template named index.ejs by default in a directory
named views and replaces the template variables with the set passed into the render
function:

<h1><%= title %></h1>

ExpressJS supports several templating markups, and of course can be extended to sup-
port others. These include the following:

• Haml: A haml implementation

• Jade: The haml.js successor

• EJS: Embedded JavaScript

• CoffeeKup: CoffeeScript based templating

• jQuery: Templates for node

Static Files

ExpressJS can also serve up static files such as images, client side JavaScript, and style-
sheets. The first argument to the use function specifies a base route. The second argu-
ment specifics the local directory to serve static files from. In this case, files in the static
directory will be accessible along the same path:

app.use('/static', express.static(__dirname + '/static'));
// This mean the file "static/client.js" will be available at
// http://localhost:3000/static/client.js

ExpressJS handles many other aspects of running a HTTP server, including session
support, routing middleware, cookie parsing, and many other things. The full docu-
mentation for ExpressJS is provided at http://expressjs.com/guide.html

Node.js with its powerful asynchronous IO, common and simple syntax, and many
useful modules in active development is a great choice for building web applications.

Using Node.js on the Web | 5

http://expressjs.com/guide.html

CHAPTER 2

Geographic Data

Geographic data comes in many formats. So many in fact, there could easily be a book
based just on that subject, but to keep this simpler, here is an explanation of a few of
the most common ones.

Shapefiles are one of the most common formats. The format was created and is main-
tained by ESRI, who also sells many tools for manipulating data in that format. The
also sell other popular closed source GIS server and client software. The format is a
mostly open specification for GIS data. Shapefiles spatially describe geometries, those
can include points, polygons, and lines. A shapefile comes as a collection of files. At
least 3 are required: .shp, .shx, and .dbf. Those files define shapes (the geometry), an
index of the geometry features, and attributes for those features, respectively.

Shapefiles are widely available. Many government agencies use this format to publish
public data. In fact, much of the data from free sources, public government data, or
even data published by corporations will often times be in shapefiles. Learning to con-
vert those shapefiles for usage in other formats is very useful.

Geo Datasets
There are many places that host public domained geographic data. Here is a small
collection:

US Census (http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html)
The data is provided as shapefiles per state. This data is very complete and updated
every 10 years. The last update was in 2010.

Natural Earth Data (http://www.naturalearthdata.com/)
This is a collection of free and open datasets ranging from country level shapefiles
of the world to many natural features including water, mountains, and geographic
regions.

7

http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
http://www.naturalearthdata.com/

Global Administrative Areas (http://gadm.org/)
A very complete set of administrative areas world wide. This includes country, state
or province, county in some cases, and cities.

Consortium for Spatial Information (http://www.cgiar-csi.org)
Datasets here include climate, elevation, soil, poverty. As well as links to other
great sources for worldwide data.

Food and Agriculture Organization of the United Nations (http://www.fao.org/geonet
work)

This data goes well beyond the common administrative boundaries available and
includes wildlife, land usage, forestry, human heath, and infrastructure among
other things.

GeoJSON
GeoJSON is a standard for encoding spatial data using JSON (JavsScript Object No-
tation). Since JSON has become the main data format for APIs on the web, it makes
sense to standardize the way we represent geospatial data. GeoJSON is very easy to
figure out, straightforward to parse, and simple to output. It supports many Geometry
types.

Example Geometries
Here is a point in GeoJSON (the coordinates are ordered longitude, latitude):

{ "type": "Point", "coordinates": [100.0, 0.0] }

Here is a polygon in GeoJSON. Holes can be added in the polygon by adding more
elements to the coordinates array:

{ "type": "Polygon",
 "coordinates": [
 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]
]
}

GeoJSON also defines Features and Feature Collections. With features you can asso-
ciate identifiers, and properties with your geometry or Geometry Collection:

{ "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [
 [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]
]
 },
 "properties": {
 "prop0": "value0",
 "prop1": 0.0

8 | Chapter 2: Geographic Data

http://gadm.org/
http://www.cgiar-csi.org
http://www.fao.org/geonetwork
http://www.fao.org/geonetwork

 }
}

CouchDB which will be discussed further in this book stores JSON en-
coded documents. So, for all of the geospatial functionality found in
CouchDB the data will need to be in the GeoJSON format.

GDAL
GDAL (Geospatial Data Abstraction Library) is arguably the most useful geospatial
library in existence. It is included as a dependency of many other geospatial libraries
that deal with reading or writing geospatial data in any of the common formats. There
are bindings for GDAL in many languages which make it even more useful. GDAL is
used for raster geodata, but the subproject OGR (Simple Feature Library) provides
read/write access for a wide variety of vector geospatial formats. This includes ESRI
shapefiles, KML, and some database formats.

Ogr includes several helpful command-line utilities. Those will be discussed after we
install GDAL.

Installing
Most systems have GDAL packages available, like apt-get or yum (or on OSX, home-
brew) that should be able to install it as well as all of its dependencies:

hostname $ brew install gdal

Grab Some Data
Next, get some test data. The data conversion example project is available to clone on
github.

Not everyone is familiar with git. Git has become a widely used distrib-
uted version control system. Github has a great introductory help page
at http://help.github.com/.

Also, all of the projects in the book can be found at http://github.com/
dthompson. Github also offers packaged download files as a means of
getting the source code instead of using git.

hostname $ git clone https://github.com/dthompson/example_shapefile_to_geojson.git
Cloning into example_shapefile_to_geojson...
....
Unpacking objects: 100% (8/8), done.

GDAL | 9

http://help.github.com/
http://github.com/dthompson
http://github.com/dthompson

This repository contains a directory named 110m_lakes that includes the shapefile data
(taken from Natural Earth Data, http://www.naturalearthdata.com/downloads/110m
-physical-vectors/110mlakes-reservoirs/). The first step is to see what is included in the
shapefile.

Ogrinfo
There is an Ogr tool to explore vector geospatial file, ogrinfo. Ogrinfo shows both top
level metadata for the vector data source as well as specfic layer information for data
sources that contain multiple layers.

Most of the tools that ogr provides allow for querying data by properties
or bounds. This can be helpful in limiting the data being converted to
only the certain region that is needed. More details on the options avail-
able can be found by running the commands with -h or browsing the
online documentation: http://www.gdal.org/ogr_utilities.html.

hostname $ ogrinfo 110m_lakes/110m_lakes.shp
INFO: Open of `110m_lakes/110m_lakes.shp'
 using driver `ESRI Shapefile' successful.
1: 110m_lakes (Polygon)

Ogr is using the ESRI shapefile driver. There is no real new information there, since
that is the type of file used as input. The other information can be helpful. The shapefile
only has 1 layer, named is 110m_lakes, containing polygon data. The layer’s name can
be used to find out more specifics about that layer. The option -so is used to output
addition layer information and the name of the layer is passed as the second argument:

hostname $ ogrinfo -so 110m_lakes/110m_lakes.shp 110m_lakes
NFO: Open of `110m_lakes/110m_lakes.shp'
 using driver `ESRI Shapefile' successful.

Layer name: 110m_lakes
Geometry: Polygon
Feature Count: 26
Extent: (-124.953634, -16.536406) - (109.929807, 66.969298)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
 DATUM["WGS_1984",
 SPHEROID["WGS_1984",6378137.0,298.257223563]],
 PRIMEM["Greenwich",0.0],
 UNIT["Degree",0.0174532925199433]]
ScaleRank: Integer (10.0)
FeatureCla: String (32.0)
Name1: String (254.0)
Name2: String (254.0)

10 | Chapter 2: Geographic Data

http://www.naturalearthdata.com/downloads/110m-physical-vectors/110mlakes-reservoirs/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/110mlakes-reservoirs/
http://www.gdal.org/ogr_utilities.html

Now there is a lot more information. The ouput contains the number of features in the
layer, the extent that contains all the features, spatial reference system, and a list of
attributes for each feature. There are four attributes: ScaleRank, FeatureCla (shorted
from FeatureClass), Name1, and Name2. Each attribute also has detailed field info that
includes the type as well as the max length of data in that field. This can all be useful
to examine what data is in a shapefile before converting or importing it.

Ogr2ogr
The ogr2ogr command line tool handles reading, converting, and writing in the formats
that ogr supports. This can used to easily convert the shapefile data to GeoJSON.

hostname $ ogr2ogr -f "GeoJSON" 110_lakes.json 110m_lakes/110m_lakes.shp

In this command, the format is specified by -f “GeoJSON”. To see a list of available
formats, use ogr2ogr --help. The next argument is the destination file, followed by the
source file.

The output is a valid GeoJSON-encoded list of all the features from that shapefile,
complete with attributes, saved to the destination file. Here is a small sample of the
output:

{
 "type": "Feature",
 "properties": {
 "ScaleRank": 0,
 "FeatureCla": "Lake",
 "Name1": "Lake\rMichigan",
 "Name2": ""
 },
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [[-85.539993,46.030007], ...]
]
 }
}

Geohash
Geohash is an algorithm that was created by Gustavo Niemeyer in 2008. By interleaving
latitude and longitude in a bitwise fashion, a composite string is generated that uniquely
identifies a geographic point. This string can then be easily stored or used to transmit
location point data.

Since the latitude and longitude are interleaved, geohashes have an unique property.
As the number of characters decreases from the right side of the string, the accuracy
decreases. Points that share similar prefixes will be close together. However, though
points can be on the edge of a Geohash bounding box, not all nearby points will share

Geohash | 11

similar prefixes. Since geohashes are easily stored and indexed as strings, in environ-
ments and datastores that don’t have strong spatial indexing support, geohashes can
be used.

The special handling of proximity queries for points on the edge of a Geohash bounding
box can be compensated for by doing lookups and queries of the surrounding Geohash
bounding boxes.

MongoDB uses geohashing for its spatial queries. CouchDB however,
does not. It uses R-Tree indexing, which is more flexible in terms of the
type of geometries that can be indexed. This will be discussed further
in the next chapter.

For more information about how the Geohash algorithm works, see the Wikipedia
explanation: http://en.wikipedia.org/wiki/Geohash.

There are further uses of geohashing besides using it as a quick means of implementing
proximity searches where only string indexing is available. A geohashed location can
be used as an identifier.

A quick example of using Geohash in an application is to use it for shortened URLs.
The node geohash module handles decoding geohashes, and then some Node.js code
will display a Google map of the correct latitude and longitude.

The geohash module can quickly be installed using the node package manager, npm:

hostname $ npm install geohash

Here is a quick project to show an example usage of geohashes. The project will provide
a URL that references a specific point on a map. Latitude and Longitude could be used
in the URL, but in order to keep the URLs a little shorter, the example will use geo-
hashes.

The example project uses ExpressJS again, as was introduced in Chapter 1, along with
the geohash module that was just installed:

var express = require("express"),
 app = express.createServer(),
 geohash = require("geohash").GeoHash;

The route uses an id variable match for all the characters at the start of the path. The
next step is to use the geohash module to decode the geohash captured from the URL.
The decode function returns an array of three values for latitude and longitude each.
The first two values are a bounding box for the geohash, based on it’s precision. The
third value is the point in the center of the bounds. The third value will be used to center
the map.

12 | Chapter 2: Geographic Data

http://en.wikipedia.org/wiki/Geohash

In order to make use of the precision of the geohash, it can be used to control the inital
zoom level of the map. If the geohash is longer and thus more precise, the zoom level
will be closer to the ground:

app.get('/:id', function(req, res){
 var latlon = geohash.decodeGeoHash(req.params['id']);
 lat = latlon.latitude[2];
 lon = latlon.longitude[2];
 zoom = req.params["id"].length+2;

 res.render('index.ejs', { layout: false, lat:lat, lon:lon, zoom:zoom,
 geohash:req.params['id']});
 });

app.listen(8000);

After the parameters are set up, the render function is passed those parameters, which
then calls the simple index.ejs template. Then the location of the geohash will be shown
using Google Maps.

<html>
 <head>
 <title>GeoHash</title>
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>
 <script type="text/javascript">
 var loadMap = function(){
 var myLatlng = new google.maps.LatLng(<%= lat %>, <%= lon %>);
 var myOptions = {
 zoom: <%= zoom %>,
 center: myLatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 map = new google.maps.Map(document.getElementById("map"), myOptions);
 };
 window.onload = loadMap;
 </script>
 </head>
 <body>
 <h2>Geohash: <%= geohash %></h2>
 <div id="map" style="width:500px;height:500px;"></div>
 </body>
</html>

A live example of this can be seen at http://geohash.mapchat.im/ and all the code can
be found at http://github.com/dthompson/example_geohash_to_location

Being able to convert and parse geospatial data is a big step towards more complex
applications. There are several options available for storing geospatial data—Geocouch
is a great choice.

Geohash | 13

http://geohash.mapchat.im/
http://github.com/dthompson/example_geohash_to_location

CHAPTER 3

CouchDB

CouchDB started as a document store with the great ability to replicate data between
nodes. This makes it ideal for use cases that involve eventual or relaxed consistency.
The built-in replication also makes it the ideal platform for synchronization between
mobile, desktop and server. CouchDB sports no fixed schema. Instead it stores docu-
ments which are formatted in JSON. JSON, being a lightweight and easy-to-understand
notation for simple data structures, is great for this task. And without a rigid schema,
CouchDB excels at being a fast developer-friendly datastore.

How Does CouchDB Work?
CouchDB is eventually consistent. CAP Theorem states that any database can only have
two out of three of the core properties of a data store. These are:

• Consistency: That all database clients see the same copy of the data.

• Availability: that all database clients are able to access a version of the data.

• Partition tolerance: That the database can be split over multiple servers.

Since CouchDB’s focus is on being partition-tolerant and highly available, this means
it is eventually consistent.

Replication
CouchDB’s built in replication can be super useful in creating a highly available and
partition tolerant system. Locally, CouchDB uses MVCC (Multi-Version Concurrency
Control) to provide consistent access to data. This means that versions of documents
are stored, and updates are appended. Read requests can always read from the most
recent version of the document with no need for locking on write requests. Versioning
is also important in replication between servers.

Incremental replication is used to keep multiple CouchDB servers in sync. Changes are
periodically copied between servers. This does not have to be a one way operation like

15

the classic master/slave setup that is commonly used by other databases. CouchDB
handles conflict detection and resolution. When a conflict on a document is detected,
it is flagged as being conflicted. The automatic resolution picks a winning copy of the
document (the most recent one) and saves the losing version as well. This happens
consistently on both servers. If this automatic resolution is not advanced enough for
the needs of the application conflicts can be resolved by the application in a why that
makes sense. The application can leave the winning document in place, choose the
other version that was saved to the history of the document, or create a new merged
version of the document.

Indexes and Views
Lookups in CouchDB are all key based. In fact the core storage engine used in CouchDB
is a B-tree. B-trees are an efficient sorted data structure. Using this allows CouchDB to
quickly perform lookups on keys. This same storage engine is used for documents is
also used for generated views. This means that querying a view in CouchDB can be very
fast. In order to create a view, CouchDB uses MapReduce functions written in Java-
Script.

MapReduce is used to compute the results of a view. These views are updated according
to changes to documents stored by CouchDB automatically when views are requested.

Getting Started with CouchDB
The easiest way to get started using CouchDB for development is by downloading and
installing a build of Couchbase. Builds are available for most major operating systems
at http://www.couchbase.com/downloads.

Couchbase is a company that combines the power and utility of CouchDB with Mem-
base. Several of the core committers to the Apache CouchDB project work at Couch-
base. They also offer CouchDB hosting options at Iris Couch (http://www.iriscouch
.com/).

After installing Couchbase, run it. The built-in administrator console, Futon, can be
found at the default URL, http://127.0.0.1:5984/_utils/.

Futon is a full database management interface for CouchDB. Futon can create and
delete databases, setup replication, and even design and test views. Futon is built on
the same HTTP API that is used by clients to talk to the database.

Creating a Database
Futon includes the ability to create new databases and add some initial data. When
adding a new document, CouchDB already adds an ID to the document automatically.
The ID is added to the document as the special property “_id”. This ID can be modified,

16 | Chapter 3: CouchDB

http://www.couchbase.com/downloads
http://www.iriscouch.com/
http://www.iriscouch.com/
http://127.0.0.1:5984/_utils/

but it does need to be unique for the entire database. After saving the document
CouchDB will add another special property, “_rev”. The “_rev” property is used to
track multiple revisions of a document. Futon includes links to “Previous Version” and
“Next Version” on the document page. Past revisions of documents can be viewed once
there have been changes saved to the document.

Add some sample data. The sample document will describe a person with the properties
name, age, and gender. The document should look something like this:

{
 "_id": "618f6d552f8cf3061934a4d08700089a",
 "_rev": "1-a9f8690408bbffaf3389dc1aa5ecd79c",
 "name": "John",
 "age": 23,
 "gender": "male"
}

Create two more entries of the person document so there is enough data to show some
example CouchDB views:

{
 "_id": "618f6d552f8cf3061934a4d087000d55",
 "_rev": "1-06b9a4a10fc3d2dc062d310d7cd28b59",
 "name": "Jane",
 "age": 24,
 "gender": "female"
}

{
 "_id": "618f6d552f8cf3061934a4d087001098",
 "_rev": "1-665db2e1bea428152881189c24400739",
 "name": "Jim",
 "age": 21,
 "gender": "male"
}

Creating a View
Views use map reduce in order to generate a list of documents. The first example will
be of a Map only View. In the Futon view drop-down, select “Temporary view”. This
is a convenient way of writing and testing views.

Views are designed to be calulated ahead of time and update incremen-
tally. Keep the test dataset small so the temporary view won’t take long
to run. This helps when you are testing many changes quickly.

Getting Started with CouchDB | 17

First, here’s a really simple view:

function(doc) {
 if(doc.gender == "male"){
 emit(doc.age, doc);
 }
}

The map function of the view selects what documents to add to the view, what fields to
use as the index, and what data to output for the corresponding document. In this case
the function will only add documents that have a gender property set equal to “male”.
Then the age property will be used as the key to index.

Run the view to make sure CouchDB returns the correct results. There should be two
results: Jim and John. Their ages, 21 and 23, should be used as the key.

Save this temporary view to create a permanent view. If it is the first time the view is
saved, then choose “Save as” and enter a filename. Views are saved in design docu-
ments, so they need both a name for the design document and the view. For this ex-
ample, use “person” as the design document and “males” as the view.

Assuming the name of the database is “example,” the URL of the view is http://127.0
.0.1:5984/example/_design/person/_view/males.

This is the JSON result of the view:

{
 "total_rows": 2,
 "offset": 0,
 "rows": [
 {
 "id": "618f6d552f8cf3061934a4d087001098",
 "key": 21,
 "value": {
 "_id": "618f6d552f8cf3061934a4d087001098",
 "_rev": "1-665db2e1bea428152881189c24400739",
 "name": "Jim",
 "age": 21,
 "gender": "male"
 }
 },
 {
 "id": "618f6d552f8cf3061934a4d08700089a",
 "key": 23,
 "value": {
 "_id": "618f6d552f8cf3061934a4d08700089a",
 "_rev": "1-a9f8690408bbffaf3389dc1aa5ecd79c",
 "name": "John",
 "age": 23,
 "gender": "male"
 }
 }
]
}

18 | Chapter 3: CouchDB

http://127.0.0.1:5984/example/_design/person/_view/males
http://127.0.0.1:5984/example/_design/person/_view/males

View Options
Once views are generated there are several query options that can be added to the URL
as parameters. URL parameters control offsets, limit the number of rows returned, find
individual keys, and even group by key.

In order to limit the rows, the view returns to a single row, so set the limit parameter:

http://127.0.0.1:5984/example/_design/person/_view/males?limit=1

This outputs:

{
 "total_rows": 2,
 "offset": 0,
 "rows": [
 {
 "id": "618f6d552f8cf3061934a4d087001098",
 "key": 21,
 "value": {
 "_id": "618f6d552f8cf3061934a4d087001098",
 "_rev": "1-665db2e1bea428152881189c24400739",
 "name": "Jim",
 "age": 21,
 "gender": "male"
 }
 }
]
}

Notice that CouchDB still returns the total number of rows in the view, and the offset
of where the rows begin.

Skipping one row will return the next row—John age 23:

http://127.0.0.1:5984/example/_design/person/_view/males?limit=1&skip=1

This outputs:

{
 "total_rows": 2,
 "offset": 1,
 "rows": [
 {
 "id": "618f6d552f8cf3061934a4d08700089a",
 "key": 23,
 "value": {
 "_id": "618f6d552f8cf3061934a4d08700089a",
 "_rev": "1-a9f8690408bbffaf3389dc1aa5ecd79c",
 "name": "John",
 "age": 23,
 "gender": "male"
 }
 }
]
}

Getting Started with CouchDB | 19

http://127.0.0.1:5984/example/_design/person/_view/males?limit=1
http://127.0.0.1:5984/example/_design/person/_view/males?limit=1&skip=1

Using these simple limit and skip parameters, combined with offset and total_row
properties of the returned JSON response, it is super easy to set up paging for a set of
rows in a view. A full list of parameters that can be included in the view request are in
Table 3-1.

Table 3-1. CouchDB View Options

Parameter Value Default Description

key key-value - URL encoded JSON value

startkey key-value - URL encoded JSON value

startkey_docid document id - The starting document ID

endkey key-value - URL encoded JSON value

endkey_docid document id - The ending document ID

limit number - The number of documents to return (rows)

stale “ok"/"
update_after”

- Specifies if it is OK to return a stale view for the request. Leave
this out and it will be generated before returning a response.

descending “true"/"false” false Reverses the rows (sorted by keys)

skip number 0 Skips this number of documents.

group “true"/"false” false Groups by key (this reduces rows to distinct keys).

group_level number - Specifies how many parts of the key to consider in compound
keys when grouping.

reduce “true"/"false” true Specifies whether to run the reduce function on the view.

include_docs “true"/"false” false Automatically fetches the document for each row and include
it in the JSON response.

inclusive_end “true"/"false” true Specifies whether the endkey is included in the result.

Using Reduce
The view examples so far have just used map functions. Using a reduce function in the
view adds the ability to create aggregate results. reduce functions have to accept two
different inputs: results emitted from the map function and results that are returned from
the reduce function itself:

function (keys, values, rereduce) {
 return sum(values);
}

The reduce function is passed three arguments: keys, which are an array of key and
document ID pairs; values, which are either the values emitted from the map function,
or are values that get returned from prior runs of the reduce function; and the third
argument, rereduce, which will be false if the values are from the map function and true
if they are results of the reduce function.

20 | Chapter 3: CouchDB

There are two cases to handle in a reduce function. The first is when the values come
from data emitted by the map function:

reduce([[key1,id1], [key2,id2], [key3,id3]], [value1,value2,value3], false)

The second case is when the values come from previous runs of the reduce function:

reduce(null, [reduceResult, reduceResult, reduceResult], true)

Most of the time the best way to deal with this is to emit from the map function and
return from the reduce function the same values.

When things go wrong in a view, it is sometimes hard to tell what is
happening. Keeping views small and simple as well as keeping your da-
taset small can help, but sometimes you need to debug output. The
log() function is built into CouchDB and will log a string value to
CouchDB.log. Check the install documentation for the platform to see
where the log file is placed on the system.

Using CouchApps…For Fun and Profit
CouchApps is a simple way of writing JS/HTML applications that are hosting com-
pletely on CouchDB. They serve up all static files from CouchDB, use CouchDB as a
data store, and include easy ways to replicate these apps or just the data they contain.
Find out more at http://couchapp.org/.

Beyond just standalone apps in CoucbDB, some of the tools for CouchApps can be
super useful for creating and managing views, lists, and shared JS files. The CouchApp
command tool can be used to push view functions to a CouchDB database based on a
file structure. This makes it easier to edit views in a text editor and still keep those
changes in sync.

CouchApp tools can be found on github at https://github.com/couchapp/couchapp.

After installing CouchApp, create a new CouchApp project. This will generate the file
structure for the CouchApp. The name of the CouchApp is used as the name of a design
document that will contain the views:

hostname $ couchapp generate people

This will create the directory named people with the following files:

hostname $ ls -l people/
total 32
-rw-r--r-- 1 thompson thompson 1660 Jan 9 18:12 README.md
drwxr-xr-x 4 thompson thompson 136 Jun 17 08:43 _attachments
-rw-r--r-- 1 thompson thompson 14 Jun 17 08:43 _id
-rw-r--r-- 1 thompson thompson 70 Jan 9 18:12 couchapp.json
drwxr-xr-x 4 thompson thompson 136 Jun 17 08:43 evently
-rw-r--r-- 1 thompson thompson 10 Jan 9 18:12 language
drwxr-xr-x 2 thompson thompson 68 Jun 17 08:43 lists
drwxr-xr-x 2 thompson thompson 68 Jun 17 08:43 shows

Getting Started with CouchDB | 21

http://couchapp.org/
https://github.com/couchapp/couchapp

drwxr-xr-x 2 thompson thompson 68 Jun 17 08:43 updates
drwxr-xr-x 3 thompson thompson 102 Jun 17 08:43 vendor
drwxr-xr-x 3 thompson thompson 102 Jun 17 08:43 views

The files here are going to be pushed into a design document in CouchDB. All the
directories and files here will be converted into a JSON representation. The directory
names will be used as names of arrays that contain key value pairs of filenames and file
contents.

From inside the new people directory, add a view:

couchapp generate view age

That will create a directory named age in the views directory that contains two files:
map.js and reduce.js. Those files will contain stubbed functions for map and reduce of
the age view. Edit the map so it emits ages for each person (views/age/map.js):

function(doc) {
 emit(doc.name, doc.age);
}

Then in the reduce function, sum all of those ages (views/age/reduce.js):

function(keys, values, rereduce) {
 return sum(values);
}

CouchApp defaults to pushing to your localhost at CouchDB’s standard port. Just push
to the example database from before:

hostname $ couchapp push example

Now, the result of the new MapReduce view can be seen here: http://127.0.0.1:5984/
example/_design/people/_view/age:

{
 "rows": [
 {
 "key": null,
 "value": 68
 }
]
}

The value is 68, the sum of all the ages in the database.

Load Shared Code
CouchDB allows the loading of JavaScript files into a view. This is helpful when in-
cluding a lot of code, or a library that is used by multiple views. First, add some code
to the vendor directory. Then, load that in a map function (vendor/timing.js):

/*
 * This creates a timing object that has a shared function for our views
 */

22 | Chapter 3: CouchDB

http://127.0.0.1:5984/example/_design/people/_view/age
http://127.0.0.1:5984/example/_design/people/_view/age

var timing = {};

timing.YearToSeconds = function(years){
 var curDate = new Date();
 var startDate = (new Date());
 startDate.setFullYear(curDate.getFullYear() - years);

 return (curDate.getTime() - startDate.getTime()) /1000;
};

CouchApp supports using macros to load shared code in place before sending it to
CouchDB. Create a new view to load this JavaScript file and use the YearToSeconds
function to add seconds to the response. The new view can be named ageByYear.

hostname $ couchapp generate view ageByYear

This creates the directory for the view with the map.js and reduce.js files. There is no
need for a reduce function in this example, so the reduce.js file can be deleted so that
the reduce function will not be run.

In the map.js file, the function is set up to include the shared code:

function(doc) {

 // Next line is CouchApp directive
 // !code vendor/timing.js
 emit(doc.name, {
 "age":
 {
 "seconds": timing.YearToSeconds(doc.age),
 "age": doc.age
 }
 });
}

The directive in the comment is seen by CouchApp and replaced with the contents of
the specified file. This allows sharing code between views. In other CouchDB functions
such as show, list, and update, modules can be loaded in the same fashion as Com-
monJS. This is also the same way modules are loaded in Node.js. There are differences
in the JavaScript interpreter used by CouchDB and Node.js, including several functions
that are not supported in both environments. However, some simple modules can be
shared between Node.js and CouchDB.

Again, push these changes to CouchDB using couchapp:

hostname $ couchapp push example

The new view can be requested at http://127.0.0.1:5984/example/_design/people/_view/
ageByYear.

Getting Started with CouchDB | 23

http://127.0.0.1:5984/example/_design/people/_view/ageByYear
http://127.0.0.1:5984/example/_design/people/_view/ageByYear

The output now includes both the person’s age in years and in seconds for all
documents:

{
 "total_rows": 3,
 "offset": 0,
 "rows": [
 {
 "id": "618f6d552f8cf3061934a4d087000d55",
 "key": "Jane",
 "value": {
 "age": {
 "seconds": 757382400,
 "age": 24
 }
 }
 },
 {
 "id": "618f6d552f8cf3061934a4d087001098",
 "key": "Jim",
 "value": {
 "age": {
 "seconds": 662688000,
 "age": 21
 }
 }
 },
 {
 "id": "618f6d552f8cf3061934a4d08700089a",
 "key": "John",
 "value": {
 "age": {
 "seconds": 725760000,
 "age": 23
 }
 }
 }
]
}

For more information about the CouchDB view API and the options that are available,
the CouchDB wiki is a great resource: http://wiki.apache.org/couchdb/HTTP_view_API.

GeoCouch
GeoCouch is an branch of CouchDB that was created by Volker Mische. Within the
same RESTful view framework of CouchDB he added a new index, R-trees. R-tree
indices are used by many to store geospatial data because of speed of lookups. R-trees
are basically a collection of bounding boxes—or ranges—that contain pointers to ac-
tual points in that range or other sub ranges contained in the parent range. This reduces
the number of bounding boxes that need to be queried, as the dataset can most often
be limited to a much smaller subset of the points stored. GeoCouch was merged and

24 | Chapter 3: CouchDB

http://wiki.apache.org/couchdb/HTTP_view_API

released as part of the new Couchbase, a merged datastore with functionality from both
CouchDB and Membase. GeoCouch offers an easy way to build spatial indices by sim-
ply including GeoJSON formatted geometry data in the CouchDB view.

Importing Data
In order to start exploring the functionality that GeoCouch adds, we need to import
some data. The next example uses a list of 500 geotagged photos fetched from the Flickr
API.

The code for importing the data from Flickr to CouchDB, the view functions as a cou-
chapp project, and the data itself can be found on github: https://github.com/dthompson/
example_geocouch_data.

The data was gathered from Flickr using this request. To update the data, just get a free
API key from Flickr and include it with the request:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=
 <API_KEY>&text=kitty+cat&has_geo=true&extras=geo&per_page=1000&
 format=json&nojsoncallback=1

JSON Response:

{ "photos": { "page": 1, "pages": "116", "perpage": "500", "total": "57870",
 "photo": [
 { "id": "5845159255", "owner": "11032335@N00", "secret": "4f81b07060",
 "server": "2778", "farm": 3, "title": "Wolfie enjoys his carpet tunnel",
 "ispublic": 1, "isfriend": 0, "isfamily": 0, "latitude": 37.33847,
 "longitude": -121.885787, "accuracy": 11, "place_id": "BG4MINxTVrLjdwou",
 "woeid": "2488042", "geo_is_family": 0, "geo_is_friend": 0,
 "geo_is_contact": 0, "geo_is_public": 1 },

] }, "stat": "ok" }

Using Cradle to Talk to Geocouch
In order to import the data into CouchDB, the data needs to read from the file, parsed,
a couple extra properties need to be added to the dictionary, and then saved that to
CouchDB. The script uses the cradle node module to interact with CouchDB.

Currently, Cradle does not support spatial views. Spatial view support has been added
to my fork of cradle on github at https://github.com/dthompson/cradle. Either grab the
commit that adds spatial view support, use the dthompson fork, or check to see if a
spatial function has been added to the main cradle repository.

Cradle can be installed from npm:

hostname $ npm install cradle

GeoCouch | 25

https://github.com/dthompson/example_geocouch_data
https://github.com/dthompson/example_geocouch_data
https://github.com/dthompson/cradle

Now it’s time to import the data from Flickr’s JSON response. The script imports to
the localhost in a database named geoexample.

var cradle = require("cradle"),
 sys = require("sys"),
 fs = require("fs");

var connection = new(cradle.Connection)("localhost", 5984);
var db = connection.database('geoexample');

data = fs.readFileSync("flickr_data.json", "utf-8");

flickr = JSON.parse(data);

for(p in flickr.photos.photo){
 photo = flickr.photos.photo[p];

 photo.geometry = {"type":"Point",
 "coordinates": [photo.longitude, photo.latitude]};

 // Save the URL to the Flickr image.
 // http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}_[mstzb].jpg

 photo.image_url_small = "http://farm"+photo.farm+".static.flickr.com/"+
 photo.server+"/"+photo.id+"_"+photo.secret+"_s.jpg";

 db.save(photo.id, photo, function(er, ok) {
 if (er) {sys.puts("error: "+er); return;}
 });
}

Add the Couchapp

Now that there is some example data in CouchDB, the next thing to do is add a spatial
view. Again, use couchapp to sync the local view files to CouchDB. The new example
CouchApp is named geocats:

hostname $couchapp generate geocats

CouchApp does not generate the spatial views, so they need to added. Create a directory
named spatial inside the CouchApp. Inside the spatial directory is where the spatial
views will be added. Unlike normal views in CouchDB, spatial views do not support
MapReduce. Currently the views are just a single map function (geocats/spatial/
points.js):

function(doc) {
 if(doc.geometry){
 emit(doc.geometry, {image:doc.image_url_small});
 }
}

26 | Chapter 3: CouchDB

The emit function in spatial views requires the key to be a geometry in valid GeoJSON
format. The output can be Points, Polylines, Polygons, etc. This example outputs the
geometry of the point where the photo was taken. The valid GeoJSON is saved in the
document on import, but it can also be constructed inside the view function as well.

Bounding Box Queries
Now that the spatial view function is outputting the geometry, CouchDB will create a
R-tree index for queries against the geospatial data. The results can been seen here:
http://127.0.0.1:5984/geoexample/_design/geocats/_spatial/points?bbox=-0,0,180,90.

This will return results for the bounding box 0,0 180,90 or half the globe.

This is the JSON response from CouchDB:

{
 "update_seq": 508,
 "rows": [
 {
 "id": "5807724052",
 "bbox": [
 -157.964782,
 21.4836,
 -157.964782,
 21.4836
],
 "geometry": {
 "type": "Point",
 "coordinates": [
 -157.964782,
 21.4836
]
 },
 "value": {
 "image":
 "http://farm3.static.flickr.com/2646/5807724052_9f7b947da9_s.jpg"
 }
 }
 //...MORE ROWS...
]
}

Valid GeoJSON geometry is included in the response, along with the bounds or bbox
that contains the geometry. The value property is the second argument that is passed
to the emit function. It can be any value—in this case, the function is returning the URL
to the photo on Flickr.

GeoCouch | 27

http://127.0.0.1:5984/geoexample/_design/geocats/_spatial/points?bbox=-0,0,180,90

Displaying the Data Using Node.js
Since the points are now being returned, and a bounds can be set to only return what
is needed to be displayed, make a quick map display for this data. Set up a simple
Node.js app to serve up the map and proxy requests to CouchDB:

var express = require("express"),
 app = express.createServer(),
 cradle = require("cradle"),
 sys = require("sys");

var connection = new(cradle.Connection)("localhost", 5984);
var db = connection.database('geoexample');

app.get('/geocats', function(req, res){
 bbox = req.param('bbox');
 db.spatial("geocats/points",
 {"bbox":bbox, "descending": "true"},
 function(er, docs) {
 if(er){sys.puts("Error: "+sys.inspect(er));
 res.send("error");return;}
 res.send(docs);
 });
 });

app.get('/', function(req, res){
 res.render('index.ejs', { layout: false});
 });

app.listen(8000);

There are two simple routes. The first one, geocats, serves up the CouchDB data for
bounding box queries. The second route just serves up the main page template.

The Google Maps client code will take into account the bounds map when requesting
points from CouchDB. It will also re-request points once the user changes the bounds
of the map. Bounds changes will happen when the user zooms the map, or moves the
center of the map.

The bounds_changed event will be used to know then the map bounds have been ad-
justed. Google Maps uses the order latitude, longtiude and so do a few other map
libraries. But GeoJSON, along with many server side geospatial libraries, orders points
as longitude, latitude. The client code has to take this into account in a couple places:

google.maps.event.addListener(map, 'bounds_changed', function() {
 bounds = map.getBounds();

 // We'll make our own bounding box string, so it is in the order CouchDB expects
 bbox = [bounds.getSouthWest().lng(),bounds.getSouthWest().lat(),
 bounds.getNorthEast().lng(),bounds.getNorthEast().lat()];

 $.get("/geocats?bbox="+bbox.join(","), function(data){
 count = 0;

28 | Chapter 3: CouchDB

 for(d in data){
 row = data[d];

 // Note that we also reverse the order of the coordinates returned from
 // CouchDB when displaying them on the map
 myLatlng = new google.maps.LatLng(row.geometry.coordinates[1],
 row.geometry.coordinates[0]);
 var marker = new google.maps.Marker({
 position: myLatlng,
 map: map,
 title:"cat"
 });
 }
 });
});

To round out the example, we will add the ability to click on a point and see the photo
from that location. We can use an Google Maps infowindow to show that picture. The
complete display code is below:

<html>
 <head>
 <title>GeoCats</title>
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>
 <script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js">
 </script>
 <script type="text/javascript">
 var map = {};
 var markers = [];
 var infowindows = [];
 var loadMap = function(){
 if(navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(function(position) {
 initialLocation = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);
 map.setCenter(initialLocation);
 });
 }
 var myLatlng = new google.maps.LatLng(39.7071, -100.4589);
 var myOptions = {
 zoom: 5,
 center: myLatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var addInfoWindow = function(image, marker){
 contentString = "";
 var infowindow = new google.maps.InfoWindow({
 content: contentString,
 disableAutoPan: true
 });
 infowindows.push(infowindow);

GeoCouch | 29

 google.maps.event.addListener(marker, 'click', function() {
 for(i in infowindows){ infowindows[i].close();}
 infowindow.open(map,this);
 });
 };

 map = new google.maps.Map(document.getElementById("map"), myOptions);
 google.maps.event.addListener(map, 'bounds_changed', function() {
 bounds = map.getBounds();
 bbox = [bounds.getSouthWest().lng(),bounds.getSouthWest().lat(),
 bounds.getNorthEast().lng(),bounds.getNorthEast().lat()];
 $.get("/geocats?bbox="+bbox.join(","), function(data){
 for(m in markers){markers[m].setMap(null);}
 markers = [];
 count = 0;
 for(d in data){
 row = data[d];
 myLatlng = new google.maps.LatLng(row.geometry.coordinates[1],
 row.geometry.coordinates[0]);
 var marker = new google.maps.Marker({
 position: myLatlng,
 map: map,
 title:"cat"
 });
 addInfoWindow(row.value.image, marker);
 markers.push(marker);
 count++;
 }
 });
 });
 };
 window.onload = loadMap;
 </script>
 </head>
 <body>
 <h2>Cats on a Map</h2>
 <div id="map" style="width:100%;height:500px;"></div>
 </body>
</html>

CouchDB can be used to quickly store geospatial data and use spatial indexing, to allow
return of only the points that are currently visible to the user. This is helpful for reducing
the amount of data that needs to be sent to the user, and the number of points that the
map needs to render at one time. This makes the map fast and easy to use. The data
can be seen on a map, as in Figure 3-1.

30 | Chapter 3: CouchDB

Figure 3-1. Display CouchDB Data using Google Maps

CouchDB Hosting Options
CouchDB is a well maintained project that has easy-to-use build scripts. Getting a
CouchDB packaged for specific OSs is also an option. However, sometimes it is easier
not having host CouchDB at all. There are a couple of CouchDB hosting options.

Cloudant (http://cloudant.com) was one of the first companies to focus on hosted
CouchDB. They offer free options for a limited sized dataset as well as a limited number
of requests. Their focus is on hosting large size datasets in CouchDB. They have de-
veloped Big Couch (https://cloudant.com/solutions/bigcouch) which added distributing
dataset over multiple servers. This allows CouchDB to handle much larger sizes of
databases.

IrisCouch is run by Couchbase, and involves several of the core committers to
CouchDB. This hosting service is a bit new, but easy to sign up for and get started with.
They are currently the only provider of hosted GeoCouch functionality. The quickest
way to get CouchDB that that includes spatial indexing is IrisCouch.

CouchDB Hosting Options | 31

http://cloudant.com
https://cloudant.com/solutions/bigcouch

CHAPTER 4

MapChat - Example Project

Node.js has made it simple to run event code on the web, as well as perform some basic
geospatial operations. CouchDB gives a quick easy way to query spatial indices as well
as a robust document based data store. Combined, these tools can be used to easily
create a great new project.

The project is www.mapchat.im. It will allow users to interact by posting real-time chat
messages that are tagged with their current location on the map. Other users will see
only the messages that are in their current map bounds. CouchDB will be used to store
history for the map chat room, and will also handle server side point clustering so
multiple chat messages in the same area will be grouped into a conversations. The
project will include several other smaller features, including using a custom Google
Maps overlay to display chat messages.

Realtime Chat
There are many chat examples for Node.js. Some of the more interesting Node.js
projects leverage websockets where available and use JSON to exchange data quickly,
giving the developer a synchronized object that both the client- and server-side Java-
Script can use. XHR-long polling is also a technique used in order to provide informa-
tion about changes from the server or client quickly, even in older browsers. One project
has become in many ways the standard for real-time communication between the
browser and the server: socket.io.

Socket.io
Socket.io provides a simple API for an application to use to handle messages passing
between the client and server. It automatically uses the best type of connection avail-
able. That includes using websockets, flash proxy, XHR-long polling, and a few others.
Many of the other libraries such as now.js are built on top of the functionality of
socket.io. Socket.io has proven to be such a good idea that it has been ported to a couple

33

of other server side languages, though Node.js surely has the most consistent feel be-
tween the client and server API.

Install Socket.io using the Node.js Package Manager:

npm install socket.io

To get started, look at a simple example of using socket.io to pass messages back and
forth. The server first needs to start up a socket.io listener:

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.send({message:"hello"});
});

After setting up the socket.io object, a callback is added for new connections. Once the
callback is run, it sends the client a JavaScript object.

On the client side, it loads the socket.io JavaScript, and then connects to the server:

<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost');
 socket.on('message', function (data) {
 console.log(data);
 });
</script>

When the client gets a new message, which will happen when it first connects, the client
will output the message to the browser console log.

Setting Up the Project
MapChat uses the ExpressJS web framework. Socket.io handles all of its own setup; it
just needs to be passed the server object which is returned by the createServer function:

var express = require("express"),
 app = express.createServer(),
 io = require("socket.io");

socket = io.listen(app);

It is that simple to set up socket.io to work with ExpressJS.

Now to set up the rest of the web app. The application will need to serve some static
files for the JavaScript and stylesheet as well as a couple of images. To do this, add a
static handler. Everything on a path that starts with “/static” will be served from a
directory named “static” in the root of our application directory:

app.use('/static', express.static(__dirname + '/static'));

34 | Chapter 4: MapChat - Example Project

Now add the handler for the main page:

app.get('/', function(req, res){
 res.render('index.ejs', { layout: false});
});

This looks for the view template “index.ejs” in the “views” directory. The view template
is fairly simple:

<html>
 <head>
 <title>Map Chat</title>
 <script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.min.js"></script>
 <script type="text/javascript" src="/socket.io/socket.io.js"></script>
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>
 <script type="text/javascript" src="/static/client.js"></script>
 <link rel="stylesheet" type="text/css" href="/static/style.css" />
 </head>
 <body>
 <div id="content">
 <div id="headerwrapper">
 <div id="header">
 <div id="logo">
 </div>
 </div>
 </div>
 <div id="footerwrapper">
 <div id="chatsend">
 <div id="chatarea"><textarea id="message"></textarea></div>
 <div id="send">
 Send
 </div>
 </div>
 </div>
 <div id="map"></div>
 </div>
 </body>
</html>

The JavaScript that gets loaded is for jQuery, socket.io, which is automatically served
by socket.io, Google Maps, and our own client JavaScript. There is also a stylesheet.
The stylesheet is basic, but can be altered to change most of the application’s style. It
is included in the example code for MapChat.

Now the application is ready for the server to start listening for user requests.

app.listen(8000);

Realtime Chat | 35

Making chat subscriptions

Socket.io will form the basis for messaging between the client and server in MapChat.
After the connection is created, the client will make a subscription request to the server
which will include the client’s current map bounds. In the JavaScript after socket.io is
set up, pass the hardcoded data for a worldwide subscription:

bounds = [[-180,-90],[180, 90]];
socket.send({action:"subscribe", bounds:bounds});

When the server gets a new subscription message from the client, it will add the client
along with its bounds to the subscription list:

mapchat = {
 subscriptions: [],
 subscribe:function(client, msg){

 bottomlatlng = new geojs.latLng(msg.bounds[0][1], msg.bounds[0][0]);
 toplatlng = new geojs.latLng(msg.bounds[1][1], msg.bounds[1][0]);
 bounds = new geojs.bounds(bottomlatlng, toplatlng);

 var allReadySubscribed = false;

 // If this connection already has a subscription update the bounds
 for(s in mapchat.subscriptions){
 if(mapchat.subscriptions[s].client.sessionId == client.sessionId){
 allReadySubscribed = true;

 //Set new bounds.
 mapchat.subscriptions[s].bounds = bounds
 break;
 }
 }

 // If no existing subscription, then add a new one.
 if(!allReadySubscribed){
 mapchat.subscriptions.push({client:client,
 bounds:bounds});
 }
 }
};

When a client connects and sends a subscription, we add it to the subscription list. But
first the application checks to see if the connection already has a subscription, and if
there is an existing subscription, it updates the new bounds. Subscription information
does not need to be persisted so it is just kept in memory.

There needs to be a handler for the subscription messages from the client. The client
adds the property named action and sets that to subscribe, so the server knows how
to handle that message:

socket.on('connection', function(client){
 client.on('message', function(msg){
 if(msg.action == "subscribe"){
 mapchat.subscribe(this, msg);

36 | Chapter 4: MapChat - Example Project

 }else if(msg.action="message"){
 mapchat.message(this,msg);
 }
 });
});

On a new connection on the server, there needs to be a handler for new messages from
the client. Then the server can check the action property that the client added and
handle the messages properly.

Socket.io has just added handling for custom event names. Using the
emit function instead of send, the client can name the event that the
message will trigger on the server or vice versa. The server or client can
add a callback for that event using the same “on” function and specifying
the event name as the first argument.

Handling Chat Messages

Now that the server has a subscription set up, the client can send a message. The client
will send the chat message tagged with the current center of the map. For now, start
by just sending a message with a hardcoded location:

var lat = 40.334,
 lon -103.644;
var point = {"type":"Point", "coordinates":[lon, lat]};
socket.send({action:"message", message:"hello", geometry:point});

On the server, the messages from the client will be handled by checking the action
property, and when that is set to “message”, calling the message function:

mapchat = {

 //subscribe: function...,

 message: function(client, msg){

 // Save message to the database
 msg.date = new Date();
 db.save(msg, function (err, res) {
 if(err){sys.puts("error: "+sys.inspect(err));}
 });

 for(s in mapchat.subscriptions){
 sub = mapchat.subscriptions[s];

 // We dont need to send a message to the same client that
 // sent the message.
 if(sub.client.sessionId != client.sessionId){

 // Check see if the bounds match.
 point = new geojs.point(msg.geometry);
 if(sub.bounds.contains(point)){
 sub.client.send({"type":"message",

Realtime Chat | 37

 "geometry":msg.geometry,
 "message":msg.message});
 }
 }
 }
 }
};

First the new message is saved to CouchDB so that the map can prepopulated on the
first load with with recent messages. Next, the subscription list is checked to see if the
new message is inside the bounds of any of the existing subscriptions. If the message
is inside the bounds, it will be sent to that client. The client will then show the new
message on the map. For now, the client will just output the message to the console.

Depending on the browser’s script console, the output of the object sent to the client
should like something like this:

geometry: Object
 coordinates: Array[2]
 0: -105.27054499999997
 1: 40.014985
 type: "Point"
message: "hello"
type: "message"

Now that the messages are being successfully passed back and forth between the client
and server, the client interface can be added next.

Using Google Maps
Chat messages should be shown on the map, and new messages should also be tagged
with the current center of the map that the user is viewing. Google Maps is easy to use,
and is what we will use for MapChat. There are other JavaScript map options, including
open source projects like http://openlayers.org/.

Now to set up the map:

$(document).ready(function(){
 var myLatlng = new google.maps.LatLng(40.334, -103.644);
 var myOptions = {
 zoom: 8,
 center: myLatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 map = new google.maps.Map(jQuery("#map")[0], myOptions);
});

This will simply default the map to a hardcoded location and load it at zoom level 8.
To make MapChat more interesting to the user, it will start them out at their current
location.

38 | Chapter 4: MapChat - Example Project

http://openlayers.org/

Getting User Location
Modern browsers allow JavaScript to request the user’s current location. The browsers
all then ask if the user wants to share their location with the current website. Not all
of the users will allow location, nor will all browsers support it. In MapChat if the
browser doesn’t support returning location, or if the user does not allow it, the map
will default to a central location. Another option would be to add a lookup using the
user’s IP address to get a general location based on the Whois record for that IP range.
There are databases for this available—however they are not always accurate, especially
on mobile devices. Using the built in location request in the browser is becoming more
widely supported, gives a more accurate answer, and allows users to opt out of the
feature if sharing their location is not something the user is comfortable allowing.

Grab browser location

In order to get the user’s location, the client has to check to see if the browser supports
location, and if it does, register a callback function to handle the data once the user
allows it and the browser has been able to locate the user.

The way the browser gets the location information varies. It can be a
lookup of the location based on IP, based on the known location of
wireless networks in the area, or on some devices, especially mobile, via
GPS. All we need to know is what to do on the callback.

The code to handle browser location:

if(navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(function(position) {
 initialLocation = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);
 map.setCenter(initialLocation);
 });
}

In this case once the callback is run, the map will be centered on the user’s location.

Center and Bounds

MapChat needs to know the map bounds in order to send the subscription message,
as well as the center of the map so chat messages can be tagged with the current location.
In order to get the bounds the client will use the built in functionality of Google Maps
and change the subscription message a bit.

google.maps.event.addListener(map, 'bounds_changed', function(){
 var mapbounds = map.getBounds();
 bounds = [[mapbounds.getSouthWest().lng(),
 mapbounds.getSouthWest().lat()],
 [mapbounds.getNorthEast().lng(),
 mapbounds.getNorthEast().lat()]];

Using Google Maps | 39

 socket.send({action:"subscribe", bounds:bounds});
});

Notice that the subscription code is inside a bounds_changed event on the map. Now
when the user moves the map or changes the zoom level, the client can update the
subscription on the server with the new bounds.

When the user sends new chat messages, the client needs to know the current center
of the map so the client can add location to the data sent to the server:

var latlon = map.getCenter();
var lat = latlon.lat(),
 lon = latlon.lng();
var point = {"type":"Point", "coordinates":[lon, lat]};
socket.send({action:"message", message:chatmsg, geometry:point});

Since the client now knows the location of the user, it can set the bounds subscription,
as well as tag the message with the location it was sent from.

Custom Overlays
To start displaying some chat messages on the map, the client will use the default
Google Maps infowindow. In the receive message function, the call to create and open
an infowindow will be added:

var chat= {
 //sendMessage:function()...

 receiveMessage:function(data){
 latlon = new google.maps.LatLng(data.geometry.coordinates[1],
 data.geometry.coordinates[0]);
 infowindow = new google.maps.InfoWindow({
 content: data.message,
 disableAutoPan: true
 });
 infowindow.open(map);
 }
};

For MapChat, it would be great to show some custom overlays for chat messages. Using
Google Maps, it isn’t too hard to extend the build in OverlayView and make a custom
overlay. Custom overlays can be used to show styled messages on maps, custom tile
sets, or any other geographic data overlays.

The first step is to set up the new type of overlay. For MapChat, the custom overlay
will be ChatOverlay. It is just a div with custom styling to make it fit in better with the
rest of the look and feel for MapChat. Whatever data needs to be used by the overlay
should be added as arguments to the function so it can be initialized in one call:

40 | Chapter 4: MapChat - Example Project

function ChatOverlay(latlon, message) {

 // Now initialize all properties.
 this._latlon = latlon;
 this._map = map;
 this._message = message;

 this._div = null;

 // Call setMap() on this overlay
 this.setMap(map);
}

ChatOverlay.prototype = new google.maps.OverlayView();

The overlay inherits from the Google Maps OverlayView. The custom overlay still
needs to override some functions so it can show up properly. The onAdd function
creates the element that is actually added to the map:

ChatOverlay.prototype.onAdd = function() {

 // Create a new div that will be added to the map.
 var chatbox = $("<div class='chatmsg'><div class='message'>"+
 this._message+"</div></div>");
 chatbox.css("position", "absolute");

 // This is the reference to the div.
 this._div = chatbox;
 // Have to add it to a map pane. in this case the overlay layer.
 var panes = this.getPanes();
 panes.overlayLayer.appendChild(chatbox[0]);
};

onDraw is called as the map is rendered. It will be called again when the user moves the
map, the zoom changes, or any other interaction that causes the Google map to redraw.
Here the overlay’s position can be set based on the current view options:

ChatOverlay.prototype.draw = function() {

 // This function is called when the map is redrawn, such as when the user
 // zooms or moves

 // To size and position the div correctly, get the projection.
 var overlayProjection = this.getProjection();

 // Convert the Lat Lon into a pixel position
 var point = overlayProjection.fromLatLngToDivPixel(this._latlon);
 var div = this._div;

 // The overlay is dynamically resized depending on zoom level to make
 // showing a lot of them not cover as much of the map
 width = 22 *(this.getMap().getZoom()/16)*10;
 height = 15 * (this.getMap().getZoom()/16)*10;
 div.css("width", width+"px");
 div.css("height", height+"px");

Using Google Maps | 41

 // Set the poition of the div.
 div.css("left", point.x-(width/2) + 'px');
 div.css("top", point.y-height + 'px');
};

To remove overlays from the map, the overlay’s map is set to null. When that happens,
the API will call the overlay’s onRemove function. Any extra cleanup should be done in
the onRemove function:

ChatOverlay.prototype.onRemove = function() {
 this._div.remove();
 this._div = null;
};

Other functions can also be added. For example, the ability to show and hide the overlay
are commonly added functions:

ChatOverlay.prototype.hide = function() {
 if (this._div) {
 this._div.hide();
 }
};

ChatOverlay.prototype.show = function() {
 if (this._div) {
 this._div.show();
 }
};

Now that the custom overlay is in place, MapChat will use the ChatOverlay for new
chat messages. In the receive message function, make a new ChatOverlay.

var chat = {
 //sendMessage:function()...
 recieveMessage:function(data){
 latlon = new google.maps.LatLng(data.geometry.coordinates[1],
 data.geometry.coordinates[0]);
 var chatbox = new ChatOverlay(latlon, data.message, map);
 chatbox.show();
 }
};

That will open the new overlay when a message is received. With a bit of styling and
adding some other data, the new custom overlay starts to look better, as seen in Fig-
ure 4-1.

42 | Chapter 4: MapChat - Example Project

Figure 4-1. Custom Google Maps overlay

Chat Messages from CouchDB
MapChat needs to populate the map with recent messages on the first load. From
CouchDB the client will get the recent messages within the current bounds of the user’s
subscription. This time, use the geocouch-utils repo to set up the spatial design docu-
ment. The repository provides some extra functions for working with geospatial data
in CouchDB. The repository also comes with some basic spatial view functions, which
are ready to use.

The repository is available at https://github.com/vmx/geocouch-utils.

There are several forks of this repo that haven’t all been merged. Max
Ogden has one of the most useful forks that is worth looking at for some
additional functionality. The geocouch-utils repository includes the ge-
ojson-js-util repo (as a submodule) from Max. It is also available at https:
//github.com/maxogden/geojson-js-utils.

Also check out the submodule for the rep:

hostname $ git submodule init
hostname $ git submodule update

From the couchapp directory, push the geo utils to the mapchat database:

hostname $ couchapp push mapchat

If the couchapp says that it is not a valid app, then it needs a .couchapprc file to be added:

hostname $ echo "{}" > .couchapprc

Now from the existing chat messages, CouchDB can run spatial bounding box queries
(http://127.0.0.1:5984/mapchat/_design/geo/_spatial/points?bbox=-180,-90,180,90).

Chat Messages from CouchDB | 43

https://github.com/vmx/geocouch-utils
https://github.com/maxogden/geojson-js-utils
https://github.com/maxogden/geojson-js-utils
http://127.0.0.1:5984/mapchat/_design/geo/_spatial/points?bbox=-180,-90,180,90

MapChat needs more data than is returned by the default points function—and it only
needs recent points. Create another spatial function (recentPoints.js):

function(doc){
 if(doc.geometry){
 startdate = new Date();

 //Only in the last 24hours.
 startdate.setTime(startdate.getTime() - (1000*60*60*24));
 if(doc.date > startdate){
 emit(doc.geometry, {
 id: doc._id,
 geometry: doc.geometry,
 date:doc.date,
 message:doc.message
 });
 }
 }
}

For new subscriptions or when the user updates their bounds, the server needs to return
the recent messages in the current boundary. In the subscribe function, add a query to
CouchDB:

mapchat = {
 subscribe:function(client, msg){

 // ...make subscription...

 bbox = bounds.toBoundsArray().join(",");
 db.spatial("geo/recentPoints", {"bbox":bbox},
 function(er, docs) {
 if(er){sys.puts("Error: "+sys.inspect(er)); return;}
 // For each of the recent message in the bounds,
 // send the client a message.
 for(d in docs){
 client.send({"type":"message",
 "geometry":docs[d].geometry,
 "date":docs[d].value.date,
 "message":docs[d].value.message});
 }
 });
 }
}

Great! Now recent messages are loaded so when a user first gets to the map they see
some past chat messages. The next feature to add is a list of the most concentrated areas
of chat activity. These clusters of activity will be shown to the user as places they might
want go join the conversation.

44 | Chapter 4: MapChat - Example Project

Clustering
In order to use CouchDB to cluster the points, a list function is required. List and show
functions are primarily used to format data especially for use in standalone CouchApps.
A list function can provide custom formatting for a view. List functions iterate over
view results one row at a time, to avoid loading all the view results in the memory at
once.

The geocouch-utils repo includes a function for proximity clustering. It works by group-
ing nearby points that are within a distance threshold from an averaged center point.
All the list function needs to do is add documents that contain valid GeoJSON points,
and it will return a list of clustered points.

Using a List Function
The proximity clustering list function is already included in geocouch-utils:

function(head, req) {

 var g = require('vendor/clustering/ProximityCluster'),
 row,
 threshold =100;

 start({"headers":{"Content-Type" : "application/json"}});
 if ('callback' in req.query) send(req.query['callback'] + "(");

 if('threshold' in req.query){ threshold = req.query.threshold;}
 var pc = new g.PointCluster(parseInt(threshold));

 while (row = getRow()) {
 pc.addToClosestCluster(row.value);
 }

 send(JSON.stringify({"rows":pc.getClusters()}));

 if ('callback' in req.query) send(")");
};

Three new options will be added to that list function. First, add an option to return the
cluster list without the full list of points in each cluster. The cluster function, by default,
includes the list of points that are included in the cluster. The second option is to sort
the list by the size of each cluster. The third option is to limit the number of clusters
that are returned. The call to the send function will be replaced with the following code
that applies the new options:

// ... in the list function

clusters = pc.getClusters();
if(('nopoints' in req.query) &&(req.query.nopoints == "true")){
 for(c in clusters){
 delete clusters[c]['points'];

Clustering | 45

 }
}
if(('sort' in req.query) &&(req.query.sort == "true")){
 clusters.sort(function(a, b) {return a.size < b.size})
}
if('limit' in req.query){
 if(clusters.length > req.query.limit){
 clusters.splice(req.query.limit, clusters.length-req.query.limit);
 }
}
send(JSON.stringify({"rows":clusters}));

// ...

Now the new list function can be requested at http://127.0.0.1:5984/mapchat/_design/
geo/_spatiallist/proximity-clustering/recentPoints?bbox=-180,-90,180,90&nopoints=
true&sort=true&limit=2.

Notice that this list function can be called on any view. The view to use is specified in
the URL. MapChat will use the recentPoints spatial view. When querying for clustered
chat locations, that data should be sent to all connected clients, as well as cached for
new clients.

Notify Clients of Cluster Updates
First, add a send function to the MapChat server:

maphat = {
 //subscribe:function()...

 sendChatClusters: function(client){
 if(client != undefined){
 // Send to just the one client
 client.send({"type":"clusters", "clusters":mapchat.clusters});
 }else{
 // Send to all subscriptions
 for(s in mapchat.subscriptions){
 sub = mapchat.subscriptions[s];
 sub.client.send({"type":"clusters", "clusters":mapchat.clusters});
 }
 }
 }
};

There are two cases for this function. First, if a new client just connected, it will send
them the current clustered chat locations. Second, it will periodically update all con-
nected clients.

In mapchat.subscribe:

//...
if(!allReadySubscribed){
 mapchat.subscriptions.push({client:client,
 bounds:bounds});

46 | Chapter 4: MapChat - Example Project

http://127.0.0.1:5984/mapchat/_design/geo/_spatiallist/proximity-clustering/recentPoints?bbox=-180,-90,180,90&nopoints=true&sort=true&limit=2
http://127.0.0.1:5984/mapchat/_design/geo/_spatiallist/proximity-clustering/recentPoints?bbox=-180,-90,180,90&nopoints=true&sort=true&limit=2
http://127.0.0.1:5984/mapchat/_design/geo/_spatiallist/proximity-clustering/recentPoints?bbox=-180,-90,180,90&nopoints=true&sort=true&limit=2

 mapchat.sendChatClusters(client);
}
//...

All the active connections will be updated every time the server requests the CouchDB
list function. Also, the results of that request will be cached:

mapchat = {
 //sendChatClusters:function()...

 getChatClusters: function(){
 db.spatiallist("geo/proximity-clustering/recentPoints",
 {"bbox":"-180,-90,180,90",
 "sort":"true",
 "limit":"5",
 "nopoints":"true"},
 function(er, docs) {
 if(er){sys.puts("Error: "+sys.inspect(er));return;}
 mapchat.clusters = docs;
 mapchat.sendChatClusters();
 // Check the clustered chat locationed every 10 mins.
 setTimeout(mapchat.getChatClusters, (1000*600));
 }
 }
 }
}

To start the first check of the clustered chat locations simply call the getChatClusters
function:

mapchat.getChatClusters();

Every ten minutes the server will check with CouchDB for the curent clustered points
and send that to the connected clients. The client will add those points to a list, and
add click events to those list items so users can navigate to other active conversations
on the map.

Display List of Clusters in the Client
The client needs to handle a new message type, clusters:

var chat = {
 displayChatClusters: function(clusters){
 $("div#clusters ul").empty();
 for(c in clusters){
 center = [clusters[c].center.coordinates[1],
 clusters[c].center.coordinates[0]].join(",");
 image_url = "http://maps.google.com/maps/api/staticmap?center=" +
 center + "&zoom=4&size=80x40&sensor=true"
 $li = $(""+
 "<div class='location'>"+clusters[c].locationName+"</div>");
 $("div#clusters ul").append($li);
 $li.data("location", center);
 $li.click(function(e){
 lat =$(this).data("location").split(",")[0];

Clustering | 47

 lon = $(this).data("location").split(",")[1];
 map.setCenter(new google.maps.LatLng(lat,lon));
 });
 }
 }
};

By adding a bit of styling, images from Google Maps API, and context from SimpleGeo,
the clustered points become a well-presented list of recent chat messages, as seen in
Figure 4-2.

Figure 4-2. List of Chat Clusters

There is the completed project, MapChat. A demo version of MapChat is hosted at
http://mapchat.im and the source code is available at http://github.com/dthompson/map
chat. MapChat makes good use of real-time communications via Node.js. It handles
saving and querying geo-tagged chat messages using CouchDB. It also renders those
messages on the map for users to interact with, by making use of the Google Maps API.
This quick demo shows the power of getting started with geospatial data using Node.js
and CouchDB.

48 | Chapter 4: MapChat - Example Project

http://mapchat.im
http://github.com/dthompson/mapchat
http://github.com/dthompson/mapchat

About the Author
Mick Thompson has been developing code using open source tools for 10 years. He is
passionate about open source, web applications, and API design. He has worked almost
exclusively for startups where building applications on new and innovative technolo-
gies is the norm. Since location has become more available on mobile devices in the
last few years, he has focused his attention at enhancing existing projects with geolo-
cation.

Colophon
The animal on the cover of Getting Started with GEO, CouchDB, and Node.js is a fifteen-
spined stickleback (Spinachia spinachia).

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

©2010 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 00000

oreilly.comSpreading the knowledge of innovators

Signing up is easy:

1.	 Go to: oreilly.com/go/register
2.	 Create an O’Reilly login.
3.	 Provide your address.
4.	 Register your books.

Note: English-language books only

Get even more
 for your money.

To order books online:

oreilly.com/store

For questions about
products or an order:

orders@oreilly.com

To sign up to get topic-specific
email announcements and/or
news about upcoming books,
conferences, special offers,
and new technologies:

elists@oreilly.com

For technical questions about
book content:

booktech@oreilly.com

To submit new book proposals
to our editors:

proposals@oreilly.com

O’Reilly books are available
in multiple DRM-free ebook
formats. For more information:

oreilly.com/ebooks

Join the O’Reilly Community, and
register the O’Reilly books you own.
It’s free, and you’ll get:

n	 $4.99 ebook upgrade offer

n	 40% upgrade offer on O’Reilly print books

n	 Membership discounts on books
and events

n	 Free lifetime updates to ebooks and videos

n	 Multiple ebook formats, DRM FREE

n	 Participation in the O’Reilly community

n	 Newsletters

n	 Account management

n	 100% Satisfaction Guarantee

The information you need,
when and where you need it.

With Safari Books Online, you can:
Access the contents of thousands of technology and business books
n	 Quickly search over 7000 books and certification guides
n	 Download whole books or chapters in PDF format, at no extra cost, to print or

read on the go
n	 Copy and paste code
n	 Save up to 35% on O’Reilly print books
n	 New! Access mobile-friendly books directly from cell phones and mobile devices

Stay up-to-date on emerging topics before the books are published
n	 Get on-demand access to evolving manuscripts.
n	 Interact directly with authors of upcoming books

Explore thousands of hours of video on technology and design topics
n	 Learn from expert video tutorials
n	 Watch and replay recorded conference sessions

©2009 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 00000

safari.oreilly.comSpreading the knowledge of innovators

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Node.js
	Getting Started with Node.js
	Asynchronous Callbacks

	Using Node.js on the Web
	ExpressJS
	Routes
	Templates
	Static Files

	Chapter 2. Geographic Data
	Geo Datasets
	GeoJSON
	Example Geometries

	GDAL
	Installing
	Grab Some Data
	Ogrinfo
	Ogr2ogr

	Geohash

	Chapter 3. CouchDB
	How Does CouchDB Work?
	Replication
	Indexes and Views

	Getting Started with CouchDB
	Creating a Database
	Creating a View
	View Options
	Using Reduce
	Using CouchApps…For Fun and Profit
	Load Shared Code

	GeoCouch
	Importing Data
	Using Cradle to Talk to Geocouch
	Add the Couchapp

	Bounding Box Queries
	Displaying the Data Using Node.js

	CouchDB Hosting Options

	Chapter 4. MapChat - Example Project
	Realtime Chat
	Socket.io
	Setting Up the Project
	Making chat subscriptions
	Handling Chat Messages

	Using Google Maps
	Getting User Location
	Grab browser location
	Center and Bounds

	Custom Overlays

	Chat Messages from CouchDB
	Clustering
	Using a List Function
	Notify Clients of Cluster Updates
	Display List of Clusters in the Client

